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On estimating the mean energy of sea waves 
from the highest waves in a record 

BY D. E. CARTWRIGHT 

National Institute of Oceanography, Wormley, Surrey 

(Communicated by G. E. R. Deacon, F.R.S.-Received 19 February 1958). 

An analysis is made of the probability distribution of the largest values attained by a 
stationary random variable f(t) over a period of time containing several oscillations. Exact 
computations are made and asymptotic formulae are derived for the expectation and 
standard error of the first, second and third greatest maxima in terms of /mo, the r.m.s. 
deviation of f(t) about its mean value, on the assumption that successive waves are un- 
correlated; an analysis is also made of the corrections necessary to allow for mutual correla- 
tion when f(t) has a narrow spectrum. The results are applied to measurements from a 
24 h record of ocean waves containing some 10000 oscillations. 

1. INTRODUCTION 

When considering a continuous record of some randomly oscillating quantity, such 
as the height of the sea surface above a fixed point, one often wishes to find a single 
statistic which will characterize the ensemble of wave heights occurring over a 

given period of time. Among those which have been used are the mean or r.m.s. 
wave height, the mean of the highest one-third or one-tenth wave heights, the 
standard deviation of the record, or, simplest to estimate in practice, the height of 
the largest wave occurring in the record. For sea waves it is well known that the 

expectancies of all the above statistics bear simple ratios to one another, as shown 

by Longuet-Higgins (1952), who derived theoretical values which were in fair 

agreement with observations. The maximum wave height in a very long stationary 
record would therefore be equivalent to any of the other more laboriously estimated 

parameters. Indeed, the idea of estimating the variance of a population from the 

largest in a sample is quite familiar (see, for example, Kendall 1945, pp. 217-18). 
However, in practice, stationarity does not hold for more than a few hundred waves, 
and so only a limited length of record is available; this introduces sampling errors 
for which confidence limits must be established. 

In what follows we study first the probability distribution of the highest of 
N waves, so obtaining the expectation, standard error, and confidence limits of 
the estimate. Then similar analyses are made for the second and third highest 
waves, whose sampling errors are somewhat lower. In the next section, the effect 
of mutual correlation of adjacent waves on the above quantities is considered, and 

finally the results are applied to an actual record containing some 10 000 ocean waves. 
The measurements being in good agreement with theory, the latter can be con- 

fidently used to estimate the mean energy of any wave system (or the standard 
deviation of any stationary record), and also the probable errors in such an estimate. 

Although the discussion will be in terms of sea waves, the whole treatment applies 
equally well to any related random oscillation, such as the motions or stresses 

experienced by a ship at sea. 
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Estimating the mean energy of sea waves 

The literature on the theory of extreme values in general is fairly extensive; 
a recent summary with bibliography is given by Gumbel(I954). However, practic- 
ally all the work has been done in application to extreme values of very large 

samples, usually extending over years of measurements, and so only the leading 
terms in asymptotic expressions have been considered. Further, there is no ade- 

quate treatment based on the special probability distribution appertaining to 
waves, or taking into account correlation of successive members. A fresh approach 
from first principles for this particular problem is therefore desirable. 

In the case where the spectrum of the wave record is very narrow, the expected 
and most probable values of the maximum of N waves have been derived by 
Longuet-Higgins (I952). However, as pointed out by that author, his results may 
be modified in two ways. First, if the spectrum is not narrow, the assumed (Rayleigh) 
distribution of the waves themselves no longer holds exactly. To allow for an arbi- 

trary spectral shape, we shall therefore consider the more general distribution 
derived by Rice (1945) and analyzed by Cartwright & Longuet-Higgins (1956); this 
distribution strictly applies not to wave heights measured from crest to trough, 
but to crest heights measured from the mean level. 

Secondly, if the spectrum is, on the contrary, very narrow, then consecutive 
crests have a large correlation, so that the effective value of N is reduced. Watson 

(1954) has shown that the effect of correlation on the distribution of extreme values 
in general is rather small for large N, provided certain conditions hold, but 
we shall extend Watson's argument to estimate the magnitude of the effect, which 
is desirable when N is not very large. Nevertheless, it will be found that for a wide 

range of conditions it is sufficiently accurate to work in terms of the Rayleigh 
distribution considered by Longuet-Higgins, with some simple correction factors 
to allow for the two effects just mentioned. 

2. THE DISTRIBUTION AND STATISTICAL PARAMETERS OF THE 

LARGEST OF N UNCORRELATED CREST HEIGHTS 

We begin by considering the general case of mutual independence, since it is 
least complicated. When the effect of correlation is considered later (? 4), it will be 

expressed as a small correction to these results. The case of zero correlation is not 
without practical significance, since it applies, for example, to a set of waves chosen 

randomly at reasonably large intervals of time. 

Suppose the wave profile is represented by the stationary random function of 
time f(t), whose mean value is taken to be zero, and whose mean square deviation 
taken over all time is mn, and let x denote a crest height in terms of ml. That is, 

x =f(t')lmi, 

d d2 1 
where -f(t') = O, d f(t') < and m0 = lim [f(t)]2dt. 

(In the case of sea waves, mn represents of course the mean energy per unit area 
of surface.) 
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If ql(x) denotes the probability that any given crest shall exceed x, then the 

probability that the maximum of N mutually independent crests shall be less than 
x is PN(X) = [1-q1(X)]N. (1) 

The expected value of the maximum, or the first moment of the distribution, is 

given by 00 
Mg(N y) = xdpN(x) = [1-pN(X)]dx- PN(x) dx, (2) 

_ -oo JO -?00 

after integrating by parts, since q(x) decreases monotonically from 1 at -oo to 
0 at oo. 

Similarly, the rth moment, provided it exists, is given by 

Mr(N) x= -dp- r= rxr PN)] dx - rx pN(x) dx. (3) 
J-GO fO -ooX 

The standard error D(N) is of course derived from these moments by means of 
the relation D2(N) M(N) (N) 

Using the notation of Cartwright & Longuet-Higgins (I956), the most general 
formula for ql(x) can be written as 

ql(x) = q(x, e) = (27r)4- e-t dt+(1 2)e-i2 e-2 dt, (4) 

where e is a fixed positive number never exceeding 1, which depends on the shape 
of the energy spectrum off(t), and tends to zero as the spectral width decreases. 

(a) Computed values 

Exact calculation of the moments of the general distribution (4) can only be made 

by numerical integration. Values of M1, M2 and D have been computed on the 
DEUCE electronic computor at the National Physical Laboratory, Teddington, 
by Mr G. F. Miller and are tabulated in Appendix 1 for e = 0 (0-1) 1.0 and N = 2m, 
with m = 0 (1) 15. From these tables, statistics for most practical values of e and 
N can be obtained by interpolation. In these tables the last digit given may be in 
error by not more than one unit. 

The probability functions pN(x) were also computed, and the functions for e = 0 
and 0-9 are shown graphically in figures 1 a and b. For some analytical purposes 
(see Cartwright & Longuet-Higgins 1956) it is convenient to approximate to PN(X) 
with the asymptotic expression 

PN(x) - exp [ - N( 1- 2)i e-xX2] (5) 

for large N; the difference between the asymptotic and exact expressions are also 
shown graphically in figures 1 c and d for the same values of e as in 1 a and b. 

Figures 2 a and b show the upper and lower confidence limits at 5 and 1 % pro- 
bability, respectively. They represent the solutions of the equations 

N(x) = 0-025, 0975; 0-005, 0-995 

and were obtained by interpolation from the computed values of PN(x). 
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FIGU:RES la and b. Probability functions PN(x) (equations (1) and (4)) for various values of 
N=2m and (a) e= O, (b) e=0-9. 
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Figure 3 shows the standard deviation relative to the mean, D/M,, plotted against 
N, for most of the available values of e. 

(b) Analytical formulae 

For analytical purposes we require a simplifying approximation for the general 
formula (4). Figures 1 c and d show that the asymptotic formula (5) is quite good 
for a wide range of values of e, and large values of N(1 - 2)1. We shall therefore 

approximate to the distribution of the maximum of N wave crests by replacing 
ql(x, e) by ql(x, 0) and N by N(1 -e2). We can therefore restrict discussion to the 

simple case) q (X0) 
ql(x ) = ql(x, o) = I (x o), 

exp{- N e-l)2} -pw(x) exp[- N(1 - e2)i e-4x] -pp(x) 

0'08- N=22 
\,19J=22 

x x 

FIGURES 1 c and d. Difference between exact and asymptotic formulae for the functions PN(x), 
with (c) e= 0, (d) e=0-9. 

provided e < 1. The case e = 1 is unlikely to arise in practice; in fact it corresponds 
to a normal distribution, for which the theory of extreme values is well known- 
see, for example, Tippett (1925). 

From (3) we have 

Mr(N) = r xr-1l[- (1 -e-x2)N] dx. (6) 

On expanding the internal bracket binomially and integrating term by term, we 

may write this as follows 

Mr(-) = 2r r-) !,- 
N(N- 1) N+ NN-1) (N-2) + 

(- )N (- i)N.( 
'2 - 2ir.2! ! 3r.3! (N-1 )jr Nr J 

(7) 
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x 

x 

N 

FIGUnES 2 a nd b. Upper and lower confidence limits for pN(x) 
(a) at 5 % level, (b) at 1 % level. (e = 0, 0-4, 0-6, 0-7, 0.8, 0-9, 1). 

a 

b 
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As it stands, (7) gives no useful information about the behaviour of the moments 

1M(N), and is unsuitable for calculation when N is greater than about 20. A more 
useful result can be obtained as follows. From (7), or on integrating by parts from 

(6), we have the reduction formula 

,4(N) - ,(N- 1) = (r/N) r2(N), 

and on summation with respect to N, 

4(N) = r E (s)(s) 
s=1 

q 

N 

FmaTE 3. COmves of standard deviation of x relative to its expectation. 

since from (6), 1M(0) - 0. We also have 

Mo;(N) = 
- 2 N(N - 1) --( - 2) (N) T= NV - 1-I ... +(- 1)NN-(- 1)2 

= 1- '- o)N3! 
- l1(l1-1)N-l)1 

and so 
N 

M2(N) = 2 , 1/s, 
i 

M14(N) - 2.2! 21 (/s l/) 
NN 

= 22. *2! 1t (s> t) 

and in genera 
N N N 

Mr(N) 
1 2rr! . E ... | (s81t... s) (s > ^ 2^ ...S >). 

spI s,2=l sr=l 
(10) 

(8) 

(9) 
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These formulae can be expressed as series of powers and products of the functions 

N 

Sn(N)= E 8-, 
s=l 

from which asymptotic formulae for large N can be derived by means of the relation 

(Whittaker & Watson I952, p. 235) 

S1(N) = In N + y + -iN-1 + O(N-2), 

and by replacing Sn(N) (n > 1) by Sn(oo) with errors of order N-n+l (in the above 
formula y is Euler's constant, 0-5772...). 

Thus 

M2(N) = 2S(N)-2(n N +y) 

iM4(N) = 22[S2(N)+ S2(N)] 22[(ln N)2 + 2y ln N + 2 + 7T2], (11) 

M6(N) = 23[S (N) + 3S1(N) S2(N) + 2S3(N) 

23[(ln N)3 + 3y(ln N)2 + 3(y2 + 1r)2) In N + y3 + t 7i2 + 2S3] 

where S3 = S3(00) = 120206.... 
It appears difficult to formulate the general result for the 2rth moment by this 

method and one certainly cannot use it for the odd moments, since M, is not expres- 
sible in exact terms. However, the asymptotic formulae for all moments may be 
obtained directly by a different method as shown in Appendix 2. (The author is 
indebted to Dr Longuet-Higgins for pointing out this method to him.) The result is 

Mr(N)(20)4r[l+1+ AlO-l+( (r (?r) 

- 

1)A -2+ (12) 

where 0 = In N, 

A1 =y = 0-5772..., 

A = 2+17T2 = 1-9781..., 

A3 = y3 + y7T2 + 2S3 = 5-4449..., 

A4 = y4 +y2T22 +87S 3+(3/20) 74 = 23-5615.... 

Equation (12), which is correct to an order (ln N)rN-1, is seen to agree with the 

previous results (11) derived for the even-order moments. The 2rth moments also 
accord with rth moments about the mean derived for a variable proportional to x2 

by Fisher & Tippett ( 928). When r is odd, the series in (12) does not terminate, or 
even ultimately converge, but any finite number of terms will approach the true 
value asymptotically as In N increases, as shown in Appendix 2. 

In particular, we have for the first moment 

M1(N) (20) (1 + 0Al --1-A2 -2 + -A30-3- ...). (13) 

This is in accordance with the result of Longuet-Higgins (I952), where the first 
two terms only were obtained by another method. 
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By formally squaring the series (13) and subtracting from that for M2, we obtain 
the following expression for the variance D2 

with 
D2(N) = M- M2N (20)-I (Bo + B 0-1 + B -2+ ...) 

B = 7n2 = 1-6449..., 

B1 = - 7r2 - S3 = - 2-1515... 

(14) 

B =l try2r2 + 2^yS3 + (13/288)r4 = 6-3327 .... 

(c) Discussion of results so far obtained 

Table 1 compares the asymptotic formulae for M,, M2 and D for e = 0 and 0-9 
with exact values taken from Appendix 1. For e = 0, the formulae obtained above 
were used directly, with the first four terms only of (13) and the first two terms only 

TABLE 1. COMPARISON OF EXACT AND ASYMPTOTIC FORMULAE FOR MOMENTS 

= 0-0 

N 

23 
24 
25 
26 
27 

23 
24 
25 
26 
27 
28 
29 
210 

exact 

2-276 
2-559 
2-817 
3-054 
3-275 

5-436 
6*761 
8-117 
9-488 

10-866 
12-249 
13-633 
15-018 

e=0-9 

asymptotic 

2-283 
2-562 
2-819 
3-057 
3-277 

5-313 
6*700 
8-086 
9*472 

10-858 
12-245 
13-631 
15-017 

( 

exact 

1-894 
2.221 
2-510 
2-773 
3-013 

3*927 
5-200 
6-524 
7-874 
9-240 

10-613 
11-991 
13-372 

asymptotic 

1-971 
2-226 
2-508 
2-770 
3-011 

3-653 
5-039 
6-425 
7-811 
9.198 

10-584 
11-970 
13-357 

D 
25 

26 
27 
28 
29 
210 
211 
212 

0-428 
0-398 
0-374 
0-353 
0-336 
0-320 
0-307 
0-295 

0-384 
0-368 
0-352 
0-337 
0-323 
0-310 
0-299 
0-289 

0-470 
0-432 
0-402 
0-377 
0-356 
0-338 
0-323 
0-309 

0-396 
0-387 
0-371 
0-355 
0-340 
0-325 
0-313 
0-301 

of (14). The results for e = 0*9 were obtained similarly, but with N(1 - 2) in place 
of N. It is seen that the asymptotic formulae for M1 are very accurate, being within 
1 % for e = 0, N = 8, and for e = 0-9, N = 16. (It should also be remarked that 

Longuet-Higgins (1952) showed that the first two terms alone of M1 give an error 
of only 2 % for e = 0, N = 20.) The formulae for M2 are slightly less accurate, but 
are within 1% for e = 0, N = 16, or e = 09, N = 64. The relative error in D is 

considerably higher, 10% for e = 0, N = 64, or e = 0.9, N = 128. This is to be 
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expected, however, since in forming equation (14) the leading terms of M1 and M2 
vanish, leaving terms of relatively higher order but smaller magnitude. In all cases 

accuracy increases steadily with increasing N and decreasing e. 
It is interesting to note that although the asymptotic formulae developed above 

do not apply to the limiting case e = 1, the moments of the normal distribution e = 1 
shown in Appendix 1 do not differ very greatly from the corresponding values for 
e = 0*9, to which the asymptotic formulae developed from the Rayleigh distribution 
with N(1 - 2)i in place of N give a good approximation. 

Having established numerically the closeness of the asymptotic formulae to the 
exact values, for most values of e and from fairly small values of N upwards, we may 
now use the asymptotic formulae (12) with confidence to discuss the general be- 
haviour of the moments Mr(N). In what follows NE denotes N(1 - C2). 

As would be expected, all the moments about the origin increase steadily with 

N, but since M,(N) - (ln N,)I the rate of increase is slow, being slower for the larger 
values of N, and the smaller values of r. On the other hand, the variance, or second 
moment about the mean (14), is seen to decrease like (ln N)-1, showing that the 
distribution becomes confined within a steadily narrowing range as N, increases. 
This is also clear from the steady steepening of the probability curves pN(x) in 

figures 1 a and b as N increases, and the narrowing of the interval between the 
confidence limits in figures 2a and b. While D is decreasing with (lnN,)-?, the 

expectation M1 is increasing with (ln N,), so that the relative standard error (in 
the estimate of ml for example), plotted in figure 3, decreases like (ln N,)-l; in fact 

D 7/1/24 0-641 
M1 In N, n 'N 

This result contrasts with the sampling error of a direct measure of the r.m.s. 
value of f(t), the error being ultimately proportional to N-~ (see Rice I945 and 
Tucker I957). Therefore the latter error decreases more rapidly than the error of 
the estimate obtained from the maximum wave. A numerical comparison between 
these sampling errors will be made in ? 3, after studying the effect of correlation. 

The leading terms in the asymptotic series for the 3rd and 4th moments about 
the mean, m3 and m4, also decrease with increasing N, as would be expected. They 
are are 

i3 = M- 3M2M- 1 + 21M f(2 ln N)-A 2S3, 
m4 = M - 413 + 6M 2M - 3Mi (2 In N)-2 (6S4 + 3S2). 

It follows that the coefficients of skewness, 8,, and kurtosis, f2, tend to the finite 
limits 2 ~limits fi = milm32(2S3)2/S3 = 1.299... ( 

1 = m4/m2 3 3+6S4I2 = 3 + 12/5 = 54, 

indicating that the distribution becomes positively skew and more peaked than the 
normal distribution (for which 0/? = 0, /, = 3). For this reason the lower confidence 
limits are nearer to the mean than the upper limits (figures 2 a, b). However, the 
differences between the respective limits are remarkably close (within 2 or 3 %) 
to the values which would be appropriate to a normal distribution with the same 
standard deviation (3-92D and 5-15D, respectively). The departure from normality 
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of similar distributions of extreme values was first remarked by Tippett (I925), 
and Fisher & Tippett (1928) showed that the same numerical values as in (15) apply 
to the limiting distribution of extreme values of a normal population; this of course 

corresponds to our e = 1, and it appears that the same limits will hold for all 
values of e. 

3. THE SECOND AND THIRD HIGHEST WAVES 

It is a well-known fact that the second or third, etc., largest individual is often 
a more reliable measure of the parent population than the largest. We shall, there- 
fore, now investigate the reduction in standard error in the second and third highest 
waves from that of the highest of N waves, again at this stage assumed mutually 
uncorrelated. 

If M(N) denotes the rth moment about the origin of the distribution of the second 

highest crest, it can be shown by the same argument as before that 

Mr(N) = Mr(N) - N[Mr(N) -mr(N- 1)]. (16) 

If, as in ? 2, we approximate to ql(x, e) by ql(x, 0), with N, in place of N, then on 

using equation (8), (16) becomes 

M.(N) = M,(N)-rMr-2(N). (17) 

This gives a very simple result for the second moment, namely 

Mi(N) =- M2(N) - 2 2(E 1/s - ) - 2(ln +y - 1). 

To obtain the first moment from (17) requires an expression for M1, or the mean 

reciprocal of the maximum wave. Although the derivation of the asymptotic 
formulae for Mr(N) (Appendix 2) is valid only for r > 0, it can be shown that the 
same general formula (12) can be used for negative values of r also. Thus 

M_qx, (20)- (1 -A1-1 + -A20-2-...) 

and Mi(N) = M1(N) - M (N) 

(20)) [1- (1 - ,) -1 + (27-A2) 0-2- 6(3A2-A3) -3+...]. (18) 

If D'(N) denote the standard error of the second highest wave, then 

[D'(N)]2 (20)-l{(1rg2 1)+ [I(1 -7)2+r -S3]-l- . 

= (20)-1(0-6449+0-07060-1-- ...). (19) 

Equation (19) shows that D' tends to lower values than D, while from (18) it is 
seen that MX is only slightly less than M1, and tends ultimately to be equal to M1. 
For large N, therefore, the standard error relative to the mean is less than that for 
the highest wave by a factor approaching the value 

(1- 6/1T2) = 0-626.... 

Figure 4 shows the exact value of D'/D, for values of N up to 105, and it is seen 
that the limit is approached rather slowly. 
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Estimating the mean energy of sea waves 

Similarly, the rth moment of the distribution of the third highest wave in a 

sample of size N is given by 

M'(N) = M,(N)-rM_(N) + 'r(r- 2) Mr_(N). 
For the second moment this formula gives immediately 

N 

M'(N) = 2 I/sl- 3~ 2(lnN + y-j). 
1 

(20) 

log2 N 

FIGURE 4. Ratios of means and standard deviations of second and third highest maxima to 
those of the highest maximum, for e = 0. (The circles and crosses represent the computed 
points for small integral values of N and the curves, if continued, would pass through 
them. The horizontal broken lines are asymptotic values for large N.) 

The asymptotic series for the mean M' and variance, D", are respectively 

M'[(N) - (20)i [1 -( 7) 0-1- (l - 3y + A) 0-2 + !2 (6-- + 2A ) ..] 1 \Y"/~ f_l - \q 2YIV --~ ~ ~ 32 2 + 2A3) 0- 

(21) 

= (20)-1(0-3949+0.28740-1- ...). (22) 

Equation (22) shows a still greater reduction in standard error for large N, bearing 
a limiting ratio to D(N) of 

(1- 15/27T2) = 0490.... 

The exact values of D'/D, D"/D, jMl/M1 and Ml/Ml1 for e = 0 are shown in 
figure 4. For N < 16 points on the curve were computed directly, using equations 
(7), (17) and (20), and for greater values of N the calculations were based entirely 

Vol. 247. A. 
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and (D")2~ (20)-1 [(-f2 -- )- (S3 + + ltr2 - r2 - y) 0-1 + ...] 6 4 A + -4 -7T2- 
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on the values of Ml(N) given in Appendix 1, using equation (16) and suitable finite- 
difference formulae. The latter method could, of course, be used for other values of 
e if required. The curves shown approach their limiting values relatively slowly, so 
that for values of N generally used (say between 100 and 1000), values differing 
considerably from the limits will apply. 

The process described above could be extended to give the parameters for the 
mth highest wave, but with increasing complication. In some cases the following 
alternative method of reducing the sampling errors may be worth considering. A 
record containing N waves may be divided into n subgroups, and the average of the 
maximum waves in all these subgroups may be taken. The standard error of this 
estimate will be reduced from that of the overall maximum in the ratio 

,-D(N/n) [n( lnn -? 

D(N) lnN1- 

for large N. For n = 2, the reduction in sampling error is numerically about the 
same as that of the second highest wave. 

4. THE EFFECT OF CORRELATION 

The theory has so far been developed entirely on the assumption that the N wave 
crests in the sample are mutually uncorrelated. In practice this condition could 
be met by ignoring all but every nth wave, where n may be 3 or 4, say, but this 

process would be both tedious and wasteful of available data. However, if each 
wave is highly correlated to the adjacent waves, the effective number of indepen- 
dent waves is clearly reduced to some extent, and we shall now consider the magni- 
tude of this reduction. Watson (1954) has shown that if the members of a population 
are unbounded and m-dependent (that is correlation is negligible only between 
waves separated in order by more than m), and the ratio of the probability of any 
two waves exceeding c to the probability that one wave exceeds c tends to zero as 
c tends to infinity, then the distribution of extremes tends to the same value for 

increasing N as in the case of independence. We shall here extend Watson's analysis 
to give a higher approximation for the moderately large values of N in which we 
are mainly interested. 

Suppose the ordered set of crest heights are x,, x2, X3, ..., xN. Let 

Q(XR1, XR, X X Rr; x) (r < N) 

denote the probability that the r quoted waves shall exceed x, regardless of the 
value of the remaining N - r waves, and EQr(x) denote the sum of such probabilities 
for all the (N) combinations possible. Then it can be shown that the probability 

pN(x) that all the waves (and therefore the maximum wave) shall be less than x 
can be expressed in general by 

PN(X) = 1-Q1(x) + EQ2(x) - Q3(x)+ .. + (- 1)QN(x). (23) 

Let us first apply (23) to the simplest case, that of independence. Here the 

probability of any r waves exceeding x is ql(x), and so 

zQr(x) = N(N- ) (N-2) ... (N-R + 1) (ql/r!). 

34 
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Equation (23) then gives immediately 

p(x) = [1-ql(x)]N 
as in equation (1). 

Following Watson (I954), we define a sequence cAN() such that for any given 
positive number ? < 1: (c) = f/N. 

Clearly N -> oo as N-X 0, so that if we put x equal to cN we obtain in the limit the 
well-known result for independence 

pv(CN) _e-6 (1 -6212N) e-. 

Next consider the waves to be 1-dependent, that is, to have correlation only 
between adjacent members. If q;(x) represents the probability of r consecutive waves 
all exceeding x, the components of (23) can be expressed in the form 

Q1l(x)= Nq1(x), 

EQ2(x) (N- 1)(N- 2) (q/2!) + (N- )q,2 

EQ3(X) = (N-2)(N-3)(N-4)(q/3) + (N - 2) (N-3) qlq + (N-2) q, 

ZQ4(X) = (N - 3) (N- 4) (N- 5) (N- 6) (q/4!) + (N- 3) (N - 4) (N - 5) [(212 !] 
+ (N- 3)'(N-4) [q.(q + (q2)2/2!] + (N- 3) q, 

etc. 

With x = cN and ql = c/N, (23) then consists of a number of terms independent 
of N, and a remainder of order N-1. The former terms may be divided into a group 
involving 6 only, namely 

1-_+ 62/2!_... +( - 1)N /!N e-N, 

and another finite group of terms involving ql/q,, starting as follows 

(q/q4l) (6 - 62 + 6/2!- ...) + 1/2! (ql/ql)2 (2 _ g3 + 64/2! ...) 
+ 1/3! (q/lql)3 (63- 64 + 65/2!-...) + ... 

and tending asymptotically to 

e,(e(i/ql)- 1). 

On collecting similarly the terms in ql/ql, etc., we obtain finally as the asymptotic 
form for pN(cN), correct to order N-1, 

PN(CN) " e- {l + [exp (+ 2q/?ql) - 1] + [exp (- + gq4/q)- 1] + .* .} 

Since qlql/ = (q2/ql)~n, it follows that if qi/ql < 1, then ql/q1 and higher terms can 
be neglected, and the first approximation to pN(CN) for 1-dependence is 

PN(CN) . exp {- C[ - (q/q1)]} 

= exp {-Nq[l -(qg/q1)]}. 

The general result for m-dependence can be obtained in a similar way. If q) 
(r < m) is the joint probability that two waves separated in order by r exceed x, 

m 
and 2q2 denotes E q(r) and 2qs denotes a similar sum covering all combinations of 

r=l 

3-2 
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groups of size s, no two members of which are separated in order by more than m, 
then it can be shown that 

PN(CN) e-6{1 + [exp (+ fEq21/q) - 1] + [exp (- q3/q,) -1] + ...}. (24) 

Watson (I954) used the condition that 

lim max (qr)/q) = 0, (25) 
CN-o00 r6m 

from which it follows that 
lim qsl/q = 0 ( > 2). 

CN 
He deduced that lim PN(CN) = e-5, 

so that for large N the distribution tends to the same form as for independence. 
Condition (25) will certainly hold for the type of distribution with which we are 

dealing, but in order to assess the effect of correlation for moderate values of N we 
shall retain a few more terms in (24). Assume for convenience that quotients of 

higher order than q3/q, can be neglected. Then (24) can be written 

PN(CN) - exp {-[1 - (q2/q,)]} {1 - 6(q3/q,) exp [ -(Eq/q)]} 

exp [- 6{1 - (2q2/q) + (q3/ql) exp [ - 6(q2/q)]}]. (26) 

If we now replace CN by x, and 6 by Nql(x), (26) can be interpreted as meaning 
that the distribution of the highest wave for m-dependence is to a first approxima- 
tion equivalent to that for independence with N multiplied by 

1- Eq2/q +3 (q3/1q) e-NEq2 = 1 - , (27) 

say, where for the approximation to be valid a must of course be fairly small. 
In order to assess relative magnitudes of a it is necessary to obtain an expression 

for Eql./q in terms of the energy spectrum of f(t). An exact expression would be 

very difficult to obtain. However, when the spectrum is narrow, which is the case 
when correlation becomes important, the following treatment gives a good 
approximation. 

For a narrow spectrum we have 

ql(x) - e-X2, 

and, given a wave crest x,, the next wave crest, x2, occurs approximately after an 
interval for which the autocorrelogram off(t) has its first maximum, Pi, say, with 
a mean value p,xl and a nearly normal distribution of variance (1 - p2). Hence, the 

joint probability that both x, and x2 shall exceed x is given by 
X r"O 

q'(x) _ dx,x e-x2 [2n(1-pIp2)]-? exp [ ?(X2 -p1XL)2[(1 -p2)] dX2 

=[(1 +pl)/V(27r)] e-Ax2 e-i2dt, 

Therefore qlql - (1 + p) erfc (a, x/J2), (28) 

where erfc = 2/41r e-t2dt 

provided x is large. 
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Figure 5 shows curves of the function given by (28) for various values of Pl, 
It will be seen that all curves tend to zero with increasing x, the more rapidly the 
smaller the value of p,, as we should expect. In fact, for values of x greater than 
about 4, q2/ql has appreciable magnitude only for values ofp, in the range 0 8 < pl < 1. 

For q'/qL we replace p, by P2 and /, by #2 in (28), where P2 is the second maximum 
of the autocorrelogram, and so on. To the same order of accuracy, 

q3q1 = (f/1ql)2 

and similar expressions hold for other combinations of three waves. 

x 

FIGURE 5. Curves of ql/q1 (equation (28)). 

Substitution of expressions as above in (26) gives an approximation to PN(x) in 
terms of the autocorrelogram, and it would be possible in theory to integrate the 
result to obtain the effect of correlation on the moments of the distribution. How- 
ever, the integrations would prove very laborious, and it is convenient again to 
approximate, this time using (27) with a suitable constant value of x, namely 

x= (2lnN)?, or = 1. 

This is close to the mean value of x in the case of independence, and even closer 
to the mode of the distribution (Longuet-Higgins 1952). Further, since the dis- 
tribution is confined to a relatively narrow region about the mode, the approxima- 
tion should be reasonably close. This then gives for the effective value of N 

N(1 - a) . N[1 - 8(N) + y(N) e-P(N)], 

37 
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m 

where fl(N) - (1 (+pr) erf c{[(1 -pr)/(1 +pr)] ln N} 
r=l 

r=1 

m nz 

and y(N) =E flr(N) ,s(N). 
r=l s=l 

(a) Application to second and third maxima 

The type of argument considered above can be applied to the distribution of the 
second and third highest waves for m-dependence, by replacing N by N(1- a) in 
the results of ? 3, on condition that the first and second maxima are independent, 

TABLE 2. SAMPLING ERRORS AND OTHER PARAMETERS FOR 

ENERGY SPECTRA OF VARIOUS WIDTHS 

=0 1, e =0.12 -=0-2, e=0-22 - =0-3, e=032 - = 0-4, e= 040 

N 102 103 104 102 103 104 102 103 104 102 103 104 
a 0'63 0-48 0*38 0'19 0-13 0'09 0-06 0'03 0.01 0-02 0-00 0-00 
A 0'15 0'09 0*07 0'13 0-09 0-07 0-12 0-08 0'06 0'12 0'08 0'06 
As 0.11 0.04 0 01 0'08 0'03 0-01 0-07 0'02 001 0-06 0-02 0.01 

d=0-6, 6=0-53 S=0.8, 6=0-61 = 1-0, 6= 0-67 
r .. 

A . 

N 102 10 10 102 103 104 02 103 104 
Oa 0'00 0'00 0.00 0.00 0.00 000 0-00 0-00 0.00 
A 0 125 0-085 0.065 0-126 0'086 0-065 0*127 0-087 0'066 
AS 0'051 0'016 0*005 0-047 0-015 0-005 0*044 0-014 0-004 

or if the third is considered, that it should be independent of both the first and the 
second. This proviso means that the second highest wave must be counted as the 

greatest of all waves barring the highest itself and m waves on either side of it 

(assuming of course that m < N). Without this proviso the problem is much more 

difficult, and further, if the correlation is high there is a strong tendency for the true 
second highest wave to be adjacent to the highest, and nearly equal to it; their 
distributions would therefore be nearly identical, and there would be no advantage 
gained by way of reduction in sampling error. 

(b) Numerical example 

Values of a given by equation (29) were calculated for a series of spectra, each 

spectrum consisting of a uniform band of energy centred on a mean angular 
frequency c, and extending between (1 + ) and i(1- ). The results, for 

== 0-1, 02, 03, 04, 06, 08, 1-0 and N = 100, 1000 and 10000, are shown in 
table 2. 

The autocorrelogram for this form of spectrum is 

sin (8Tr) 
--T 

cos or, 
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whose maxima (except for T = 0) were used as successive values of pr. The corre- 

sponding value of e is 
6 = 8[(60 + 482)/(45 + 9062 + 94)]I. 

The relatively large values of a obtained for the narrowest spectrum, 6 = 0.1, 
are probably not very accurate, owing to the omission of terms of order q4/q1 in (27); 
accuracy will again be impaired for 8 greater than about 0-4, since some of the 

assumptions used in deriving (29) do not hold for wide spectra. However, it is 
clear that for the type of spectrum considered, and for 8 greater than about 0-4, 
a rapidly becomes so small as to have almost negligible effect on calculations. 

Table 2 also offers comparison between the relative standard errors in estimating 
ml from the highest wave, and from direct measurement of the r.m.s. value of f(t) 
over the time taken by N waves. The former was in general calculated by inter- 

polation of values of A = D/M, from Appendix 1 with e = 0 using an effective value 
of N equal to N(1 - 62) ( 1l-). 

However, when a was negligible Appendix 1 was used with the true values of N 
and e. 

We have denoted by As the sampling error, relative to the mean, of the standard 
deviation off(t) evaluated over N waves. This was calculated from equation (3.9-9) 
of Rice (I945), which in our notation can be written 

s.e. of (s.d.)2 2 (2 (1+8) o a(+8) 
* * ' *,,,I_(26i)-2 I do,l do2 

M0O J (1-6) J (l-d8) 

{[sin 2( - 
(cr) T12 sin 12 a1 - 2) T] 

k 1(o-1 )T 0L (212 (1+ ) J2 

where T is the duration of the record, taken as 

T = N(2n7l/) [(15 + 582)/(15 + 302 + 384)]I, 

which is the expected value for N waves. The double integral can be evaluated to 
give a bulky expression involving sine and cosine integrals, which for the values 
of N concerned reduces to 

mo 28-T 
[s.e.of(s.d.)2] I 2 

r 

and further calculation shows that the sampling error required is given by 

s.e. of s.d. 1 
[ 

27 
As - = 2L2-TJ ' 

An alternative method is to take the mean of all the maxima off(t), for which 
the sampling error would be roughly equal to A,. Comparison of A with As in table 2 
shows that for N = 100 there is little advantage gained in estimating mr by the 
laborious direct method, for A is only slightly greater than A8, except for large 8, 
when both A and As are very small anyway. It is also seen that the two sampling 
errors tend to equality as 8 decreases; this is because both tend to the error of an 
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estimate based on a single wave crest as the spectral width tends to zero for constant 
N. For the larger values of N the relative differences increase, because As decreases 
like NV-, while A decreases like (ln N)-. The slight increase in both sampling errors 
for large values of 6 is caused by a decrease in T for fixed N as e increases. 

5. A PRACTICAL APPLICATION 

The theory developed in the previous sections was applied to a practical instance 
of a very long continuous record of 10 000 waves, taken in the Bay of Biscay on the 
R.R.S. Discovery II on 21 and 22 May 1955. Conditions were specially chosen to be 
as nearly as possible stationary. The record had previously been analyzed by 
Mr M. J. Tucker for the variation of mean square wave height in successive 10 min 

samples (Tucker 1957). Simultaneously with the record of wave height, f(t), an 
electrical device recorded 'mean rectified wave height', or effectively, the mean 
value of I f(t) I over a few minutes. On multiplication by a calibration factor and 

4- 

? 3- 

2 I I I . I I I I 
0 4 8 12 16 20 

hours 

FIGURE 6. Estimates of m, over 24 h continuous wave record. 

using the Gaussian property off(t), average values of this quantity taken over 3 h 
give reliable estimates of mj. Successive estimates of mj so obtained are represented 
in figure 6, which covers the 22 h period containing the 10 000 waves analyzed. The 
constant value shown over each hourly period is the average over the period con- 

sisting of that hour and the hours preceding and following it, so that the averages 
actually extended over 24 h altogether. It is clear that, in spite of a slow irregular 
decrease from 3-7 to 2.7 ft., any short section off(t) lasting about an hour or less can 
be regarded as stationary with the value of m0 read off figure 6 at the instant corre- 

sponding to the mid-point of the section. 
Values of e were estimated at several stages of the record by counting zero crossings 

and turning points of f(t); the ratio of the numbers of these two events has the 

expectation (1 - e2). It was found that e varied little from an average value of 0-52 

throughout the record. Autocorrelograms measured by an analogue computor at 

various stages gave practically negligible values of P1, P2,..., although it was clear 

from visual inspection that there was some correlation between at least consecutive 
wave crests. The failure of the autocorrelogram to show up this correlation is 

understandable from the wide variation in time intervals between successive waves 

associated with the wide spectrum. To obtain a more realistic estimate of P,, the 

correlation between successive wave crests was calculated numerically at various 

stages, and these gave estimates of p, of about 0.5. However, the corresponding 
values of c ranged only from 0-08 for N = 50 to 0-01 for N = 10000, and so the 
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error in taking p, from the autocorrelogram and thus ignoring correlation. altogether 
would not be at all large. 

The waves were divided into 200 consecutive groups of 50 waves each, and the 
maximum wave crest in each of the 200 groups was measured and divided by the 

appropriate value of m0 from figure 6 to give a sample value of Xmax.(50) (the notation 
is obvious). Sample values of x,ax.(50) and 4xax,(50), the second and third highest 
maxima, were obtained similarly, taking care that none of these three maxima was 

6- 06- 
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2- ^ 
^ 

a 0.2- b-. 
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4r .. . - -. 0'4- 

2- e 042- 

1f0 0 

10 100 1000 N 10000 10 100 N 1000 
FIGURES 7 a to f. Comparisons of observed and theoretical values of means 

and standard deviations of xma,,(N) (see text). 

consecutive (m being taken as 1). Then the 200 sets were combined in consecutive 

pairs, giving 100 sample values of Xmax.(100), ax.(100) and ma.(100), and the 

process was continued to give 50 samples of first, second and third maxima for 200 
waves, 20 for 500, 10 for 1000, 5 for 2000, 2 for 5000, and one value of each maximum 
for 10 000 wave crests. From these measurements, means and standard deviations 
were computed, and the results are plotted against curves derived from theory in 

figures 7 a tof. 
In figures 7 a and b the solid curves were obtained by interpolation from the values 

of M1 and D, respectively, in Appendix 1, with e = 0-52 and N(1 - a) in place of N. 
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In figures 7 c to f, the solid curves were obtained from the curves of ML/M1, D'/D, 

MH/Ml, D"/D, shown in figure 5, with N(1 - e2)1 (1 - a) in place of N, and the values 
of M1 and D as derived above. The broken curves represent confidence limits for 
the (10 000/N) sample values from which the estimates were derived, and in fact 
differ from the solid curves by twice the standard sampling error, thus corre- 

sponding roughly to 5 % confidence limits. In figures 7 a, c and e the sampling errors 
are D//n, D'/Jn and D"lVn, respectively, where n is the sample size, 10000/N. 
For the standard deviations (figures 7 b, d and f), the sampling variance is 

theoretically t 
(4 -m2)/(4m2 Vn) or (2 - 1) m2/4 Jn 

(see Kendall I945, p. 224). The exact value of the fourth moment about the mean 
not being readily available, we have here used the limiting value f2 = 5-4, deduced 
from the asymptotic formulae for large N in ? 2. With this figure, the sampling errors 
are simply (1.1)1 times those used in figures 7 a, c and e. No comparisons were made 

beyond N = 1000 in figures 7 b, d and f, since the confidence limits there became 
too wide: for example, for N = 2000, the number of sample maxima was only 5, 
from which it is clearly impossible to make a valuable estimate of standard deviation. 

The comparisons of mean values in figures 7 a, c and e are all quite good, par- 
ticularly for the larger values of N. The estimates tend to fall slightly below the 
lower confidence limits for Mi and M1 for N = 50 and 100, probably because the 
effect of correlation has not been fully allowed for in the theory of the second and 
third maxima. However, the error in these cases is numerically quite small. The 

comparisons of standard deviations with D, D' and D" are again mostly within the 
confidence limits, but there is a tendency to be above the theoretical curve rather 
than below it. This again may be partly due to inadequate allowance for correlation, 
but the random errors in measurement of x, which are certainly of the order of 0 1, 
must also be responsible. Again, the differences are numerically quite small com- 

pared with the mean values, Ml, etc. 

6. CONCLUDING REMARKS 

From the analysis and computations presented above, expectancies and pro- 
bability distributions of the highest three maxima of a record may be calculated, 
given mo and the degree of correlation. Conversely, from measurements of these 
maxima one may rapidly estimate m,. The whole theory is based ultimately on the 

assumption that the function f(t) is a stationary random function of time which 
can be represented by the linear sum of an infinite number of sinusoids in random 

phase (Rice 1945; Cartwright & Longuet-Higgins I956). Though this assumption 
is known to be justified in the main for sea waves and similar variables, it cannot be 

completely accurate; one may justifiably suspect that non-linearities might become 

important for the largest waves considered in a theory of extreme values. But the 

satisfactory results of measurements shown in figures 7 a tof confirm that the assumed 

representation still holds good well into the tail of the probability distribution. 
Nevertheless, errors will always be likely to arise from non-stationarity of the wave 

system, which for sea waves will limit the number of waves to which the theory can 
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confidently be applied to about 1000 at most. For very long periods of time, such 
as when one considers the maximum wave height over the course of years, the more 
general theory as described by Gumbel (I954) is appropriate. 

The treatment of correlation in ? 4 can hardly be called precise, since it was found 
necessary to make several simplifying assumptions. Luckily it appears that unless 
N is very small, or the spectrum particularly narrow, the effect of correlation will 
be slight, so that a certain amount of inaccuracy in estimating the effect will be 
unimportant. When the effect does become important, the basic assumptions, most 
of which involve the narrowness of the spectrum, are more justifiable, and so 
accuracy can be expected to increase with the magnitude of the effect. In any case, 
under most conditions, errors will not be great if correlation is ignored altogether, 
and so the tables in Appendix 1 can frequently be used with confidence without any 
additional correction. 

The author is indebted to his colleague Dr M. S. Longuet-Higgins for much 
helpful advice and criticism, and for indicating the method of obtaining the 
asymptotic formulae (12); to Mr G. F. Miller of Mathematics Division, National 
Physical Laboratory, for preparing the computations of the probability functions 

pN(x) and their moments; also to Mr A. J. Williams for having in the first place 
brought to the author's notice some useful applications of the theory to the rapid 
analysis of ship motions at sea. 
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APPENDIX 1. TABLES OF M1(N, e), M2(N, e) AND D(N, e) FOR N=2m 

m M1 
0 1-253 314 
1 1-620 401 
2 1-963 643 
3 2-275 764 
4 2-558 673 
5 2-816 765 
6 3-054 383 
7 3-275 156 
8 3-481 954 
9 3-677 015 

10 3-862 086 
11 4-038 545 
12 4-207 489 
13 4-369 806 
14 4-526 225 
15 4-677 349 

e=0 
M2 D 

2-000 000 0-6551 
3-000000 0-6118 
4-166 667 0-5575 
5-435 714 0-5066 
6-761 458 0-4633 
8-116 990 0-4276 
9-487 782 0-3982 

10-866294 0-3737 
12-248 690 0-3531 
13-633 033 0-3356 
15-018 351 0-3204 
16-404 158 0-3071 
17-790 208 0-2954 
19-176 380 0-2849 
20-562 613 0-2755 
21-948 877 0-2670 

M1 
0 1-247 032 
1 1-616701 
2 1-960850 
3 2-273 441 
4 2-556 644 
5 2-814940 
6 3-052710 
7 3-273602 
8 3-480496 
9 3-675 637 

10 3-860 776 
11 4-037 293 
12 4-206 289 
13 4-368651 
14 4-525 111 
15 4-676 272 

e= 0-1 

Ms 

1-990 000 
2-989 950 
4-156 616 
5-425664 
6-751408 
8-106 940 
9-477 732 

10-856 244 
12-238 640 
13-622983 
15-008 301 
16-394 107 
17-780158 
19-166 330 
20-552 563 
21-938 827 

D 
0-6595 
0-6134 
0-5583 
0-5071 
0-4637 
0-4278 
0-3984 
0-3739 
0-3533 
0-3357 
0-3205 
0-3072 
0-2955 
0-2850 
0-2756 
0-2670 

m M 
0 1-227992 
1 1-605255 
2 1-952 263 
3 2-266312 
4 2-550421 
5 2-809345 
6 3-047 583 
7 3-268 839 
8 3-476 029 
9 3-671415 

10 3-856763 
11 4-033459 
12 4-202 612 
13 4-365114 
14 4-521697 
15 4-672970 

e=0-2 

M2 D 
1-960000 0-6723 
2-959200 0-6183 
4-125 845 0-5608 
5-394892 0-5087 
6-720636 0-4647 
8-076168 0-4287 
9-446 960 0-3990 

10-825 472 0-3744 
12-207 868 0-3537 
13-592 211 0-3360 
14-977 529 0-3208 
16-363336 0-3075 
17-749 386 0-2957 
19-135558 0-2852 
20-521 792 0-2758 
21.908 055 0-2672 

e=0-3 
m Ml M2 D 
0 1-195586 1-910000 0-6932 
1 1-585 080 2-905 942 0-6273 
2 1-937204 4-072362 0-5653 
3 2-253853 5-341404 0-5114 
4 2-539 562 6-667 147 0-4667 

5 2-799591 8-022680 0-4301 
6 3-038648 9-393471 0-4001 
7 3-260 544 10-771984 0-3753 
8 3-468250 12.154379 0-3544 
9 3-664065 13-538722 0-3367 

10 3-849776 14-924041 0-3214 
11 4-026 786 16-309 847 0-3080 
12 4-196213 17-695897 0-2961 
13 4-358957 19-082070 0-2856 
14 4-515 757 20-468 303 0-2761 
15 4-667225 21-854567 0-2675 

e=0-4 
m M1 M2 D 
0 1-148681 1-840000 0-7215 
1 1-554558 2-827117 0-6407 
2 1-914377 3-992408 0-5723 
3 2-235048 5-261365 0-5157 
4 2-523212 6-587105 0-4696 
5 2-784924 7-942637 0-4322 
6 3-025225 9-313428 0-4018 
7 3-248088 10-691941 0-3766 
8 3-456574 12-074337 0-3556 
9 3-653 037 13-458 680 0-3376 

10 3-839296 14-843998 0-3222 
11 4-016779 16-229804 0-3087 
12 4-186619 17-615854 0-2968 
13 4-349728 19-002027 0-2862 
14 4-506854 20-388260 0-2766 
15 4-658615 21-774524 0-2680 
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m M1 
0 1-085 402 
1 1-511284 
2 1-881614 
3 2-208107 
4 2-499 856 
5 2-764013 
6 3-006111 
7 3-230 367 
8 3-439 974 
9 3-637364 

10 3-824408 
11 4-002567 
12 4-172997 
13 4-336627 
14 4-494218 
15 4-646397 

m Ml 
0 0-895045 
1 1-369 824 
2 1-769 851 
3 2-114917 
4 2-418920 
5 2-691664 
6 2-940119 
7 3-169296 
8 3-382852 
9 3-583 500 

10 3-773 293 
11 3-953811 
12 4-126296 
13 4-291 739 
14 4-450943 
15 4-604 572 

M2 D 
1-750000 0-7562 
2-718246 0-6590 
3-879733 0-5825 
5-148113 0-5219 
6-473784 0-4738 
7-829 309 0-4354 
9-200100 0-4042 

10-578612 0-3786 
11-961008 0-3572 
13-345351 0-3390 
14-730669 0-3234 
16-116476 0-3097 
17-502 526 0-2977 
18-888698 0-2870 
20-274931 0-2774 
21-661 195 02687 

e=0-7 
M2 D 

1-510000 0-8420 
2-381 722 0-7108 
3-510320 0-6148 
4-767903 0-5432 
6-090019 0-4887 
7-444336 0-4464 
8-814698 0-4128 

10-193051 0-3855 
11-575 386 0-3629 
12-959705 0-3439 
14-345014 0-3275 
15-730816 0-3134 
17-116865 0-3009 
18-503036 0-2899 
19-889269 0-2800 
21-275 533 0-2710 

e=0-6 
m M1 M2 D 
0 1-002651 1-640000 0-7967 
1 1-451656 2-572 952 0-6824 
2 1-835400 3-724 396 0-5964 
3 2-169914 4-990254 0-5308 
4 2-466 783 6-315 344 0-4799 
5 2-734460 7-670741 0-4399 
6 2-979 142 9-041 503 0-4077 
7 3-205393 10-420009 0-3814 
8 3-416600 11-802403 0-3595 
9 3-615311 13-186746 0-3410 

10 3-803472 14-572064 0-3251 
11 3-982590 15-957870 0-3112 
12 4-153855 17-343921 0-2990 
13 4-318 224 18-730093 0-2882 
14 4-476472 20-116326 0-2784 
15 4-629242 21-502 590 0-2696 

6=0-8 
m Ml M2 D 
0 0-751989 1-360000 0-8914 
1 1-254781 2-128375 0-7442 
2 1-673 847 3-208 839 0-6380 
3 2-032224 4-443 457 0-5599 
4 2-345850 5-754267 0-5013 
5 2-625795 7-102829 0-4561 
6 2-879815 8-470166 0-4205 
7 3-113418 9-846885 0-3918 
8 3-330581 11-228315 0-3682 
9 3-534232 12-612 122 0-3483 

10 3-726569 13-997136 0-3314 
11 3-909277 15-382766 0-3167 
12 4-083671 16-768713 0-3039 
13 4-250795 18-154824 0-2925 
14 4-411497 19-541021 0-2823 
15 4-566468 20-927 262 0-2732 

m M 
0 0-546 307 
1 1-079 002 
2 1-519750 
3 1-894363 
4 2-220539 
5 2-510463 
6 2-772616 
7 3-012 985 
8 3-235 876 
9 3-444446 

10 3-641061 
11 3-827527 
12 4-005253 
13 4-175354 
14 4-338 734 
15 4-496130 

e= 0-9 
M2 

1 190000 
1-776430 
2-753 913 
3-927 271 
5-199 902 
6-523 682 
7-874375 
9-239598 

10-612 903 
11-990861 
13-371598 
14-754061 
16-137 636 
17-521955 
18-906 786 
20-291 981 

D 
0-9442 
0-7824 
0-6665 
0-5819 
0-5188 
0-4704 
0-4324 
0-4019 
0-3768 
0-3559 
0-3380 
0-3226 
0-3092 
0-2973 
0-2867 
0-2771 

m Mi 
0 0-000 000 
1 0-564190 
2 1-029 375 
3 1-423600 
4 1-765991 
5 2-069 669 
6 2-343 733 
7 2-594597 
8 2-826 863 
9 3-043 903 

10 3-248 240 
11 3-441799 
12 3-626082 
13 3-802279 
14 3-971351 
15 4-134083 

6=1-0 

Ms D 
1-000000 1.000 
1-000000 0-8256 
1-551329 0-7012 
2-399535 0-6106 
3-413 736 0-5431 
4-525147 0-4915 
5-696573 0-4511 
6-907180 0-4186 
8-144806 0-3920 
9-402 028 0-3697 

10-674093 0-3508 
11-957814 0-3344 
13-250957 0-3201 
14-551896 0-3075 
15 859406 0-2963 
17-172 536 0-2862 
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APPENDIX 2. ASYMPTOTIC FORMULAE FOR THE MOMENTS M.(N) OF 
THE PROBABILITY DISTRIBUTION qN(x, 0) 

From ? 2, equations (3) and (4), we have for e = 0 

Mr(N) = xr d[(l e-X2)N]. 

With the substitution x2 = 2(y + 0), 0 = InN, this becomes 

-0 
i4(N")= 2f (y) + )Jr d[(l - e-YIN)NI. (Al) 

We shall now prove two lemmas. 

LEMMA 1. When r 0 

{(y + 0)r d[( 1- e-Y/N)N] = f (y +)r d[exp (- e-)] + R(r, N), 
J- -0 

where R(r, N) is O(N-1(ln N)4r). 

Now R(r, N) = (ln N/u)Ir g'(u)du (A2) 
o 

= rf(ln N/ Nu)-l g(u) du/u (r > 0), (A 3) 

where g(u) = e-u-(l -u/N)N, g'(u) = -e-U+(1-u/N)N-1. 

In the range 0 < u < N, g(u) is zero when 

e-U!N = 1- /N, 

which equation is only satisfied by u = 0. Therefore g(u) does not change sign, and 
since g(N) = e-N > 0, it follows that g(u) > 0 throughout the range of integration. 

From (A 3), therefore, R(r, N) > 0 if r > 0, since the integrand is never negative. 
On the other hand, q'(u) is zero when 

e-u(N-1) = 1- uN, (A 4) 

and it can be shown that this equation is satisfied for u = 0 and just one other value 
of u, say u = k(N), where < k(N) < N. Since g'(N) = -e-N < 0, it follows that 

g'(u) < 0 for k(N) < u < N, and g'(u) 0 for 0 < u < k(N). By expanding (A 4) in 

series, it can be seen that for large N 

k(N) 2(1- 1/N). 

In fact k(N) < 2 for all N, because 

e-2/(N-1)- _+2/N= 2(N --3) [ 21 e il-fY + 2/N 
=3N(N- 1) 

+ 
(N -1)4 4! (N - 1)5 5!] 

+ (N-1)66! (Nl)77!J+..>0 if N>3, 

so that g'(2) < 0 for all N > 3 (and, it is easily checked, for N = 1 and 2 also). 
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By Rolle's theorem, g'(u) has at least one positive maximum for u = kl(N), say, 
where 0 < kl(N) < k(N) < 2, and 

e-k1 = (1 - 1/N) (1 - kiN)N-2, 

so that 0 < g'(kl) = 1/N(1 - kl) (1- k1/N)N-2 < 1/N (incidentally proving also that 
k1(N) < 1). 

Using (A 2), we can now state that 

R(r,N) < 1/N (ln N/u)r du. 

On integrating by parts, and putting 01 = In ?N, the last integral is shown equal to 

2[0r + rir-1 + . r(ir - 1) 0t-2 -+ ... + (-r)!] 
if r is even, or 

2[0Ar + r ... +r(~r-1 1.... 1.Rj, 
2where 

where R1 = (ln N/u)- du < 20i-, 

if r is odd. 
Thus 0 < R(r, N) < 2/N(ln 2N)jr {1 + 0[(ln N)-1]}, 

which proves the lemma. 

rco 
LEMMA 2. Let I(r,N) denote (y+ 0)j d[exp (- e-)]. Then for any r> 0 and 

large N 
I(r, N)- O r [ 1 lrO-'A,+ 1 2r-1) 0-2A 

+ 

..], 

where As = ysd[exp (- e-)]. 

We first observe that 

I(r, N) = J ( + 0)Jr d[exp (-e-)] + I'(r, N), 
00 

where I'(r, N) = f(y + 0)1r d[exp (-e-Y)] 

= NJ (In v)ir exp (-N/v) v-2dv 

< N 
0 

(ln V)iv-2dv = 0[(21nlN)r N-1], 
J2 

as can be verified by integration by parts. Therefore, with any value of r, for large N, 

I(r, N) - (y + 0) rd[exp(- e-y)] 
J0-0 

oirJ [1 + r0-ly+ ... .+ 1/s! r( r- 1) ... (r -s + 1) 0-sys]d[exp (-e-)], 
0 

(A5) 

where s can be chosen sufficiently large to make the last approximation as close as 
desired. 
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Now, for any p > 0, 

y d[exp (-e-)] = (ln v)p e-1l/ v-2dv < (ln v)P v-2dv = O[(ln N)P N-1] 

j'-o 
and jy I d[exp (- e-)] = (n u) e-u du = O[(ln N)P e-N]. 

Therefore the range of integration in (A 5) can be extended to (- oo, oo) with errors 
of any required degree of smallness, for all N greater than a certain number, and 

I(r, N) - 0r[l + r-lAl + . .+ l /! r(Ir- 1) ... (r- s + 1) O-sAs]. 

From (A 1), and the results of the above two lemmas, we can write the moments 

Mr(N) in the following form 

M,(N) = (20)r [1 + rO-lAl r-1) -2A2+ ...] +O(lnN)rN-1]. 

It remains to evaluate the integrals A,. 

We have As = f ysd[exp (e-y)] 
d--00 

= {djS_ eYtd[exp (-e-Y)] O 

d= [( 
t)!J - 

8t) =(-1 

The derivatives of the r-function may be expressed in terms of the derivatives 
of fr (z) = (d/dz) ln r(z) by means of Leibnitz's theorem, as follows 

r'(z) = r(z)f(z), 
r"(z) = r + r', (A6) 
r"(z) = r"l + 2r'p' + rf", 

rIV(z) = rF"/ f+ 3r"' + 3sr'f" + rf", etc. 

Given r(z), the first s of these equations can be solved by a simple process to give 
r(s)(z) in terms of ), fr', r", ., . s-l), and it can be shown (Whittaker & Watson 

1952, p. 241) that 

p(1) = -y= -0-577216..., 

r'(1) = S2 = {T2 = 1-644 934..., 

"(1) = -283 = -2-404 114..., ^ (-CJ(A7) 
lr'(1) = 6S4 = 8 -1 4 = =6493 939..., 

Co 
f()(l) = (-l) n! S+1, where S = t-. 

1 

With r(l) = 1, (A 6) and (A 7) give the numerical values for As quoted in ? 2. 
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