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The statistical distribution of the maxima 
of a random function 

BY D. E. CARTWRIGHT AND M. S. LONGUET-HIGGINS 

National Institute of Oceanography, Wormley 

(Communicated by G. E. R. Deacon, F.R.S.-Received 14 April 1956) 

This paper studies the statistical distribution of the maximum values of a random function 
which is the sum of an infinite number of sine waves in random phase. The results are 
applied to sea waves and to the pitching and rolling motion of a ship. 

INTRODUCTION 

Let f(t) denote a continuous, random function of the time t, representing, for 

example, the height of the sea surface above a fixed point. It is interesting to inquire 
into the statistical distribution of the heights of the maxima off(t). 

There are two distinct problems. On the one hand we may consider the total wave 

height 2a, being defined as the difference in level between a crest (maximum) and 
the preceding trough (minimum). The statistical distribution of a is difficult to 
determine in the general case, but whenf(t) has a narrow frequency spectrum it may 
be shown that a is distributed according to a Rayleigh distribution 

2a 
p(a) = e-a/mo, 

mo 

where mo is the root-mean-square value off(t) (see Rayleigh x880). This distribution 
has been compared with the observed distribution of the heights of sea waves and it 
has been shown that many theoretical relations, for example the ratios of the mean 
wave height to the mean of the highest one-third waves or to the mean of the 

highest of N consecutive waves, are in close agreement with observation (Longuet- 
Higgins I952). Application of the X2-test to some histograms of wave heights has 
also indicated, apparently, no significant departure from the Rayleigh distribution 
(Watters I953). It is certain, however, that for functions f(t) having a broad 

frequency spectrum, the theoretical distribution of a must be different from the 

Rayleigh distribution. 

Alternatively, we may consider the difference in height 6 between a crest and the 
mean level of the function f(t). Although in practice 6 may be less convenient to 
measure than a (since the appropriate mean value is sometimes difficult to deter- 
mine) the theoretical distribution of ? is easier to obtain, and has been found for 
a wide class of random functions by Rice (1944, 945) in connexion with the analysis 
of electrical noise signals. Rice's solution, which is only one out of many results in 
a long paper, has not been fully discussed, and it is the purpose of the present paper 
to examine the solution and to calculate some of the statistical parameters associated 
with it. We shall also apply the results to ocean waves and to the motion of ships 
at sea. 
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Statistical distribution of the maxima of a random function 213 

In ? 1 we outline briefly Rice's derivation of the statistical distribution of the 
maxima 6. The discussion shows that the distribution depends, surprisingly, on only 
two parameters: the root-mean-square value off(t), which we denote by mj, and 
a parameter e which, as we show in ? 2, represents the relative width of the frequency 
spectrum of f(t). When e is small, the distribution of 5 tends to a Rayleigh dis- 
tribution, as we should expect, and when e approaches its maximum value 1 the 
distribution of 6 tends to a Gaussian distribution. 

One of the main differences between the two variables 6 and a is that 6 may take 

negative values (since some maxima may lie below the mean level) whereas a is 

always positive. The proportion r of maxima that are negative can be readily 
determined in practice, and in ? 3 we show that this proportion depends only upon e. 
Hence if r is measured, e can be estimated. 

In ?? 4-6 we calculate the moments of the distribution, the mean values of the 

highest 1/nth of all the crest heights and the expectation of the highest in a sample 
of N crest heights, and we show how these quantities depend upon e. 

The distribution of crest heights, as measured from records of ocean wave 

phenomena, is compared with the theoretical distribution in ? 7. No significant 
difference is found. On the other hand, the crest-to-trough heights, examined in ? 8, 
are found to depart significantly from the Rayleigh distribution. 

1. THE DISTRIBUTION OF MAXIMA 

The random function f(t) is represented as the sum of an infinite number of 
sine-waves f(t)E cn cos (nt+e+), (1.1) 

n 

where the frequencies c- are distributed densely in the interval (0, oo), the phases 
en are random and distributed uniformly between 0 and 27r, and the amplitudes cn 
are such that in any small interval of frequency doc 

o-+dcr 
Cc = E(cr)doC, (1.2) 

On--=o 

where E(o) is a continuous function of o which will be called the energy spectrum 
off(t) .The total energy per unit length of record is 

O = fE(o-)dor. (1.3) 

More generally we shall find it convenient to write 

Mn= E(C) rondo- (1.4) 

for the nth moment of E(o) about the origin. 
To find the distribution of maxima off(t) we note that, iff(t) has a maximum in 

the interval (t, t + dt), then in this intervalf'(t) must take values in a range of width 

If"(t) I dt very nearly; and the probability of this occurrence, and off simultaneously 
lying in the range (61, 61 + d61), is 

00 
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214 D. E. Cartwright and M. S. Longuet-Higgins 

where p(6, 2, 63) is the joint probability distribution of 

(61, 2, 63) = (f,f,f"). (1.6) 

The mean frequency of maxima in the range 61 <f < i + d6l is therefore 

F(61) d = f- [p( o, 0,63) | 63 1 d] d3, (1.7) 
_ -00 

and the probability distribution of maxima is found by dividing this distribution 
by the total mean frequency of maxima, which is 

N, = 3 (1, 0, 63) I dgld3 . (1.8) 
- 0oo0 00 

Now from (1.6) we have 

61 =f(t) = ECc os (t+et + ), 
n 

62 = f'(t) = - Ccn sin (nt + en), (9) 

93 = f"(t) = - C OS + n). 
n y 

1,g2,63 are therefore each the sum of an infinite number of variables of zero 
expectation and random phase. Therefore, by the central limit theorem in three 
dimensions, the joint probability distribution of (6,, 25, 3) is normal (under general 
conditions assumed to be satisfied by the amplitudes cn; see Rice 1944, I945). The 

matrix of correlations or statistical averages -Ei = gi 6 is seen to be 

M o 0 -m2 

() -= 0 m2 . (1.10) 
-m2 0 m/ 

Hence 

p(1 2, 3) 
= 

(2T) (Am) 
exp {- f~21' m 2 + (m4g2 + 2m2 1~3 + m03)/A]}, 

(1.11) 
where A = mom4-m2. (1.12) 

Substituting in (1.7) we have 

F(61) (2=r)(Am2) exp{-?(m4~+2m2l13? + m05)/A} j}lSi dS3. (1.13) 

On evaluating the integral and writing 

ll/m = , Ai/W/n2= (1-14) 
we obtain 

F ( 7) m= m 2 
[ei2/&2 + (0/)J e-2 dx] . (1.15) 

(27T)mi M J -V14 

The last integral can be expressed in terms of the known function 

erfx = -2) eX d (1 d16) 
\~/ Jo 
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D. E. Cartwright and M. S. Longuet-Higgins 

The probability distribution of y is ml times the distribution of 6: 

p(y) = mnp(g) = mF(6i)/N. (1.17) 

From (1.8) we find N = (1.18) 27r \m2j 
and so finally 

P()= (21 
[ +e1e-2/62+ -2)e-+2J e-dx , (1'19) 

(27T)l L J -oo J 

? 92 A m4 m2 
where 62 = = = m 4-2 (1.20) 1 + 2 m0m4 m0m4 

The function f(t) is statistically symmetrical about the mean level t = 0. For, in 

equation (1.1) each phase angle en might be increased or diminished by 7r without 

affecting the random character of the phases; and this would merely reverse the 

sign off(t). It follows that the statistical distribution of the minima is simply the 
reflexion of (1-20) in the mean level y = 0. 

2. DIsCUSSION 

In equation (1.19) r denotes the ratio of the surface height to the r.m.s. height 
mO. We see that the distribution of y depends only on the single parameter e. A simple 
interpretation of e is as follows. From (1 12) we have 

A = m0m4 -m=f- E E(r E(r2) (-2 - 
-2) do- d2. (2.1) 

On interchanging eo and r2, and adding, we have 

2A -f fE(ol)E(o2)(r2 - o-2)2do-ldro2. (2.2) 
Jo Jo 

Since E(cr) is essentially positive, it follows that A > 0 and so 

0<e<l. (2-3) 

For a very narrow spectrum, with the energy grouped around o- = o, say, E(cr1) and 

E(cr2) are small except when o- and a2 are both near to o-; but then the factor 

(o21 - 2)2 in (2.2) is small and so 
e<l1 (2.4) 

In general e is a measure of the r.m.s. width of the energy spectrum E. 

Clearly e may take values indefinitely near 0. For a low-pass filter (E = Eo when 
or < ao, and E = 0 when or > r0) we find 

e = (2.5) 

e may also take values indefinitely near 1. For suppose a proportion m of the energy 
is at frequency Co = o1, and (1 -w) at o = r2; we have 

m9 = mo{wrol + ( 1- ) (2r}, 

m4 = m0o{Joi + (1- w)o}.J 
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When cr2/0c -> oo we see that m2/mom4 - 1- and so 

e62 -> , (2.7) 

which can be as near to unity as we please. 
The first limiting case (e->0) gives the distribution for an infinitely narrow 

spectrum. From equation (1-19) we have then 

o (^ (K ~0),) P(Y)= {? (y ),} (2.8) 

which is the Rayleigh distribution, or the distribution of the envelope of the waves 

(see Rice 1944, '945; Barber 1950; Longuet-Higgins 1952). 
The second limiting case (e-> 1) can occur, as we have shown, when one wave of 

high frequency and small amplitude is superposed on another disturbance of lower 

frequency. The high-frequency wave forms a 'ripple' on the remaining waves, and 
the distribution of maxima tends to the distribution of the surface elevation 

(4l/mo) itself. On letting e tend to 1 in (1.19) we obtain 

p() (2 e)I (2.9) 

which, as we should expect, is a Gaussian distribution. 
The distribution p(y) has been plotted in figure 1 for e = 0.0, 0-2, ..., 10. The 

transition from the Rayleigh distribution to the Gaussian distribution can be clearly 
seen. 

3. THE PROPORTION OF NEGATIVE MAXIMA 

This may be found by a simple geometrical argument as follows. Suppose that in 
a certain interval of time, say (0, t), there are n+ zero up-crossings, at whichf passes 
from negative to positive values, and similarly suppose that there are n- zero down- 

crossings. Also let there be n+ positive maxima, n- negative maxima, n+ positive 
minima and n- negative minima. Between a zero up-crossing and the next zero 

down-crossing the function is always positive, and so the number of maxima exceeds 
the number of minima by one. In other words, when n6 increases by 1, so also does 
(nj - n+). Similarly, when no increases by 1, so does (n - nf). Therefore, if NO+, 
No, N+j, Ni, N+, N- denote the average densities of zero up-crossings, etc., over 
a long interval we have = N+- 

No = NV - N., N N,-NjJ (3.1) 

Now since f(t) is statistically symmetrical about the mean level it follows that 

N N+ = N = rN, 

N_ = N+ = ( -r)N, 
(32) 

where N, denotes the total density of maxima, and r denotes the proportion of 

negative maxima. So from (3-1) 
N+- =N (l- 2r), (3-3) 

or r = (1-No+IN+/ ). (3-4) 
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But from Rice (I944, 945) and equation (1.18) we have 

1 (m2]3 1 (m4]~ N+=' = 2,' N1= 2( 
(3.5) 

So equation (3-4) can be written 

r = 1-= t 1 [-(-e)] . (3.6) 
21 (momM4)l 

Hence the proportion of negative maxima increases steadily with the relative width 
of the spectrum. Conversely, we have 

62 = 1- ( - 2r)2. (3.7) 

This relation provides us with a ready means of estimating e by simply counting the 
numbers of positive and negative maxima in a length of record. 

4. THE MOMENTS OF P(y) 

The nth moment /t of the probability distribution p(y) taken about the origin, 
is defined by 

oo 
rUr p (Vpw ^n dV. (4-1) 

The even moments (n = 2r) may be calculated by means of the moment-generating 
function 

J e-W(t)dp() d =' - 21! + 2 /.... (4-2) 

On substituting from (1.19) and evaluating the integral we find 

f^ ne-iW^f )d^= (l+e^2)a(l+^)-1 (4-3) f e-A(nt)'p(y) dy - (1 + e2t2)~ (1 + t2)-1, (43) 

and so on, comparing coefficients of t2r in these two equations, we have 

[1-2 i2- 1.1 e 1.1.3... (2r- (4 4) 
P2r = ^ /. 

22.2! "2r.r! 

The odd moments (n = 2r+ 1) may be found in a similar way by means of the 

moment-generating function 

e0 t3 t5 o 

,t 
^ e- t)2p(l) d ]/ - t/;l + - + 2./+ 2 2/ta 

....) (4-5) 

From (1.18) we have 

f te-'(nt)p()d] = (r) (1 -2)t(1 + t2)-, (4-6) 
a 00 

and hence sc2r+1=(W77j( 1 1. 3. 3 5 ;(2r + 1) ancl hence rCC-r/ = (7 (le2)1 (1-7) (r!)2. 
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In particular we have = 1, 

,6,=1-(ilt)i(1-e2)-^, p (4.8) 
/4 = 2-e2, 

/-1 = (1)i (1 - 62) .3 

We see that the mean ju is a steadily decreasing function of e, the width of the 

spectrum. A non-dimensional quantity depending on e is the ratio 
'2 1_2 

P Al~ ~~~~~~~ ~o~(4.9) 

The width of the spectrum is given in terms of p by the relation 

e =7T- 4p (4.10) 

12- 

1-0-- 

0'8 - 

6.1 

0'6;-- 

0-2 - 

0 0-2 0-4 0'6 0-8 1'0 

FIGURE 2. Graphs of the mean /,u, variance /,2, skewness f, proportion r of 
negative maxima, and p( =/i2/,o/#') as functions of e. 

On the other hand, we have the following two quantities which are independent of e: 

,/Co-M _2v 1, - /^ti = 3. (4-11) 
The moments /u about the mean, which are defined by 

/ fn= p(j/) (/-/ )~ dr, (4.12) 
Goo 

may be deduced immediately from the moments about the origin. In particular 
we have from (4 8) =, 

v/o = 1, 
/1 = O, da3 - O(4-13) 
/62 = 1--( 7T- 1) (1-e2), 

/b3 = (7T) (7T- 3) ( - _62). 
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The coefficient of skewness is given by 

ft2 /3= ( Tr) (27- -3)[i- (-?)1 (4.14) 

We see that the standard deviation /i| steadily increases as e increases. fi, on the 
other hand, steadily decreases. 

The mean Iu4, the variance #2, the skewness / and the ratios r and p are shown 

graphically as functions of e in figure 2. 
In some practical cases we may know the distribution of the maxima 61 ( = my^) 

experimentally and wish to make an estimate of the mean energy mO. Let v' and 

v, denote the nth moments, about the origin and about the mean, of the variate 1. 
Then V= 1 

m(n+l),n, vn = m4(n+l1, (4.15) 
and so from (4.11) 

V 2o -71 = 2 , v /v' = 3m0. (4.16) 

By forming either of these quantities, therefore, we may estimate mo. 

5. THE CUMULATIVE PROBABILITY 

The cumulative probability q(v) may be defined as the probability of y exceeding 
a given value: q 

q(v/ p(V) d= Pd.(5.1) 

Substituting from (1.19) we find 

I 00 
1JX2 rjq2 

?,(I d-62)1/6 
-X( 

q(v) =(2^-- \\e dx + ( 2 l-e2)I e- 02t e-X' dxz. (5-2) 

When e-> O, 

q(v)- l_Jr (5.3) 
e-52 ( > 0), 
I r00 

and whene- 1, q() -> e-2 dx. (5.4) 

Graphs of q(Q) for these and intermediate values of e are shown in figure 3. The 

proportion r of negative maxima is given by 

r = p() dy = 1 -q(O), (5-5) 

which from (5-2) is r = 1[1-(1-e2)l], (5-6) 
in agreement with (3.6). 

In some geophysical applications it is found convenient to consider only the higher 
waves, say the highest 1/nth of the total number in a sample. The 1/nth highest 
maxima correspond to those values of y greater than y', say, where 

q(/')= fp(V) d = l/n. (5.7) 
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The average value of y for these maxima will be denoted by y(1/n), so that 

V(l/n) = n p(y) d]. (5-8) 

Clearly ((1) is the same as the mean ,4t. (lx/n) has been computed numerically for 
n = 1, 2, 3, 5 and 10, and for different values of e. The results are shown in figure 4. 
(li/n) is apparently a decreasing function of e. For small values of e, say e < 0 5, the 

dependence of y(l/fl) on e is slight, but each curve gradually steepens, and it can be 
shown that as e approaches 1 the gradient yI(1ln)/ls tends to -oo. Near e = 1 the 
curves are all exactly similar in shape, being independent of n. 

n=10 2.5-- 

5 

20' 3 

(ln)\ \ 

0. 105 

0 0-2 0-4 0.6 0'8 1.0 

FIGURE 4. Graphs of (lln), the mean height of the 1/nth highest maxima, 
as a function of e, for n = 1, 2, 3, 5 and 10. 

6. THE HIGHEST MAXIMUM IN A SAMPLE OF N 

Suppose that a sample of N maxima is chosen at random; we wish to know the 

average value of the highest of these, Ymax*. The problem has been considered in the 

case e = 0 (Longuet-Higgins 1952) and the expectation Ymax. has been computed for 
values of N up to 20. For values of N greater than 50 (in which we are usually 
interested) it has been shown that the asymptotic formula 

Vmax./l( #) - (ln N)l + iy(ln N)- (6.1) 

is accurate to within 3 %. (Here y denotes Euler's constant, 0-5772....) 
The formula (6*1) may be generalized to values of e between 0 and 1 as follows. 

The probability distribution of Ymax. is given by* 

a max.)s = 
d tmax' [1 - q ( qmax.)IN, (6s2) 

* We follow here the same method as in the paper just quoted. But a general study of 
the limiting form of the distribution of the largest member of a sample has been made by 
Fisher & Tippett (1928). For a more recent discussion see Gumbel (1954). 
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where q(y) is given by (5.1). Therefore we have 

Vmax. = -f _ - q(y)]Ndy. (6.3) 

On separating the integral into two parts, from -oo to 0 and from 0 to oo, and 

integrating by parts we find 

Vrmax. [= l- q(y)]Nd+{1-[1-q(y)]N}dq. (6.4) 

When N is large [1 _q(,)]N is very small unless q is of order 1/N. Now as x tends 
to infinity we have 00 

e-2 2dx=e +-i2-+0 (6-5) 

and so from (5-2) 

q(y) = (1-e62) e-2 + o e-42/2) (6.6) 

for large values of q and when 0 < e < 1. If q is of order 1/N, V is of order (InV N). 
Therefore neglecting terms of order (ln N)- we have 

q(]) = (1 -2)1 e-j2 - (1 -e2) e-0, (6-7) 

where 0 = ?V2. The first integral in (6-4) is negligible, and on substituting in the 
second we have 

iax. = 

2 

{1- 1- ( 1-6)e- ) 0]N}0- d0. (6.8) 
22.1o"0 

"11^1"^16"^0"^- (6-8) 

Writing 0 =log[(l-e2))N], ' = 0-00, (6-9) 
e_o, 

and so e-o = (6-10) 
(1-e2) N' 

we have = I 1 - 1-N- }(0o+ 9')-idO (6.11) 

*-r (1-exp[-e-']) (0o+0')-d0,, (6.12) 

with relative errors of order 1/N only. It may be shown (Longuet-Higgins 1952) 
that when 00 is large the above integral equals 

2[0 + yO-A + O((0-)]. (6.13) 
Hence we have 

max.- 2!{[n ln- (61 - 2) N] + ~y[ln (I - e2)' N], (614) 

which can also be written 
-- /!(, ) [ln (1 -62) Ni] + 1[ln (1 - 2) Ni]- 

~Vmax./(#2- n 1\-- 
~ 
.(6.15) 

(1_ -e 2) 

When e - 0 this equation reduces to (6.1). The expression on the right-hand side of 

(6-15) is an increasing function of e, when N is large. It follows that as the spectrum 
broadens, the ratio of the greatest in a sample to the root-mean-square will tend 
to increase. 
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When e approaches 1 (so that In (1 - e2)i N is not large compared with 1) the above 
formula is no longer valid. The corresponding expression for the general case is 

complicated and probably not of practical importance. We shall simply give the 

limiting form when e- 1, and p(V) is normal (equation (2.9)). Fisher & Tippett 
(1928) have shown that the average value of Vmx. in this case is given by 

ym 
^ =M+^^2 (6-16) Ymax. = m+ + (616) 

approximately, where m is the mode of the distribution of ?max., given by 

(27r)m e-2 = N. (6-17) 

From (6.17) we have m2 = In - lnm2, (6-18) 
N27 19 

and so mL n- ( lnl) ( )] (6.19) 
L 27T 27r/J 

The leading term in (6.16) is thus 

ma= 2[In N (6.20) 

However, Fisher & Tippett have shown (1928) that for the normal distribution the 

limiting forms are approached exceptionally slowly. A table of the exact values of 

rmax. computed for values of N up to 1000 is given by Tippett (I925). 

7. APPLICATIONS 

It is interesting to verify that the distribution just discussed is applicable to 
records of sea waves and of associated phenomena. In this section we shall consider 
five such examples: a record of wave pressure at a fixed point on the sea bed; two 
continuous records of wave height made at sea by a shipborne instrument; one 
record of the angle of pitch of the ship, and one of the angle of roll. The widths of the 

corresponding Fourier spectra are fairly representative of the possible range 0 < e < 1. 

Typical sections of the records are shown in figure 5 (a) to (e). Each complete 
record lasted from 12 to 20 min and contained about 100 maxima and 100 minima. 
In order to increase the amount of data both maxima and minima were included in 
the sample. The analysis was carried out as follows. The ordinates An of all the 

stationary points in the record, measured from some common baseline, were 
numbered consecutively from 1 to N so that the maxima, say, corresponded to even 
values of n and the minima to odd values of n. The zero of the record was taken to 
be the mean of A: 1 

A=- A. (7.1) 

The distribution of the variate 

Xn =(-1)(An-A) (7-2) 

was then studied. The histograms corresponding to the distribution of Xn are shown 
in figure 6 (a) to (e). 
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To obtain the parameters for the theoretical distribution a harmonic analysis of 
the original record was made by means of the N.I.O. Fourier analyser (see Darby- 
shire & Tucker I953). The range of frequency was divided into a number of equal 

aft.e 
water 

1 mil I mil 

l in 1 mi 

A 
20ft.[ 

(a) 

(b) 

I (c) 

1 Iin 

A .1 i i.k AA i AA ̂  A A 

204[ jjl 

Imin 

FIGURE 5. Typical short sections of the five records chosen for analysis. (a) pressure on the 
sea bed off Pendeen, Cornwall, 08.00 to 08.20, 15 March 1945; (b) wave height in the Bay 
of Biscay, 19.00 to 19.12, 11 November 1954; (c) wave height in the Bay of Biscay, 
02.00 to 02.12, 12 November 1954; (d) angle of pitch of R.R.S. Discovery II, in North 
Atlantic, 13.21 to 13.33, 25 May 1954; (e) angle of roll of R.R.S. Discovery II, in North 
Atlantic, 14.05 to 14.17, 21 May 1954 

narrow ranges each containing about 10 harmonics of the length of the record, and 
the energy SEc2 was summed for each interval. The energy spectra are shown in 
figure 7 (a) to (e). The moments m0, m2 and m4 of the distribution were then calculated 
by multiplying the energy in each small range of frequency by 1, ar2 and oa4 

10 [ IA A A A a (d) 

min I m i n 

(e) 
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respectively. From these three moments the parameter e defined by equation (1.20) 
was calculated. The corresponding curves of probability p(y), multiplied by the 
total number N in each sample, are shown in figure 6 (a) to (e). 

In constructing the histograms the horizontal scale has been divided, not into 

equal intervals, but into intervals such that the expected numbers of maxima in 
each interval (according to the theoretical distribution) are equal. The purpose is 
to avoid the small classes that must otherwise occur at the two ends of the dis- 

tribution, and which make the application of the X2 significance test unsatisfactory 
unless the classes are amalgamated in some arbitrary way. The vertical scale is so 
chosen that, for each separate subclass, a rectangle whose height indicated the 

expected frequency of maxima would enclose the same area as is enclosed by the 
curve of theoretical frequency. The width of the two outermost rectangles is chosen 

quite arbitrarily, but this does not affect in any way the application of the X2 test. 
Some relevant data concerning the five records are given in table 1. The first record 
is of wave pressure measured on the sea bed in a depth of 110 ft. of water by a power- 
phone pressure recorder, in March 1945 (described by Barber & Ursell, I948). The 
section of record in figure 5 (a) indicates a long, regular swell with a fairly narrow 

spectrum (e = 0.41). However, it contains a certain amount of energy outside the 
main frequency band. 

TABLE 1. DATA FOR THE RECORDS IN FIGURES 5 TO 7 

(from energy e e 

example N spectrum) P(X2) (from r) (from p) 

(a) 164 0.41 0'60 0-31 0'37 
(b) 220 0.57 0.62 0.58 0.66 

(c) 270 0.67 0.55 0.68 0.69 

(d) 180 0.48 0.67 0.44 0.45 
(e) 250 0.20 0.12 0.26 

The second and third records are of waves in deep water (Bay of Biscay) measured 

by the shipborne wave recorder installed in R.R.S. Discovery II. The instrument has 
been described by Tucker (1952). The two records are somewhat more irregular than 
the pressure record and have correspondingly broader spectra (e = 0-57 and 
e = 0-67 respectively). This is due partly to the fact that the records of wave height 
contain more energy of higher frequency than the record of pressure. 

The last two records are of the pitching and rolling motion of R.R.S. Discovery II 
in a seaway in the North Atlantic. The angles of pitch and roll were measured in the 
conventional manner by gyroscopes. The roll, in particular, has a very narrow 

spectrum (e = 0-20) and the record is correspondingly regular. This is as we should 

expect, since the rolling motion of a ship is only lightly damped, and is tuned sharply 
to oscillations having a period close to its period of free motion. 

For each of the above records the quantity X2 was calculated, and also the 

probability of X2 exceeding this value. Since two parameters have been estimated 
from the sample (the mean height and the total frequency) x2 has in each case 
8 degrees of freedom. From table 1 it will be seen that for none of the records is the 

probability of x2 significantly small. 



Statistical distribution of the maxima of a random function 229 

For each measured sample of Xn the quantities r (the proportion of negative 
maxima) and p (= /il2/1/tl) have been found, and from the relations (3.7) and 

(4 10) two independent estimates of chave been made. These are also given in table 1. 
It will be seen that in examples (b), (c) and (d) the values of e are in good agreement 
with that derived from the moments of the energy function E(C). In examples 
(a) and (e) the estimate derived from r is not in such good agreement, but this is 

hardly surprising, since the number of negative maxima on which the estimate is 
based is rather small. In example 5, the estimate derived from p gives a small 

negative value for 62, which is of course impossible. In all the other cases the 
alternative estimates of e are so close to the original estimate as to make no 

significant difference to the probability of X2. 

8. CREST-TO-TROUGH WAVE HEIGHTS 

In view of the agreement of the observed distributions of the heights of crests 
with the theoretical distribution it is interesting to study also the distribution of the 

crest-to-trough wave heights in the same records. 
The local crest-to-trough wave amplitude a, may be defined as half the absolute 

difference in height between a crest and the preceding trough, or between a trough 
and the preceding crest. Thus 

an = (Xn+Xn_). (8.1) 

The statistical distribution of an is more difficult to obtain theoretically than that 
of Xn for general values of e. However, when e < 1 the functionf(t) is a regular sine- 
wave with slowly varying phase and amplitude, so that an = Xn very nearly. So we 

may expect an to be distributed according to the Rayleigh distribution (2-8). By 
considering a disturbance consisting of a small ripple superposed on a long wave 

(e 1) it can be seen that the distribution of an must in general be different from the 

Rayleigh distribution, though not necessarily by very much. The general distribu- 
tion no doubt depends on other parameters besides e. Yet it is reasonable to expect 
that for small values of e the observed distribution of an will be in better agreement 
with the Rayleigh distribution than for larger values of e. 

In figure 8 are shown the observed distributions of an in the five examples 
discussed in ?7, together with the corresponding Rayleigh distributions 

p(a) = e-a2 

where a is the root-mean-square wave amplitude. The values of X2 and P(X2) are 

given in table 2. (X2 again has 8 degrees of freedom, since two parameters-in this 
case the total number in the sample and the root-mean-square amplitude-have 
been estimated.) 

The table shows that the records with the smallest value of e (examples (a), (d) 
and (e)) do not give significantly small values of P(X2). On the other hand, those 
with the two largest values of e give very significant values of P(X2). This verifies 
our expectation that the observed distribution departs more from the Rayleigh 
distribution as the width of the energy spectrum increases. 

Vol. 237. A. I5 
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From figure 8 it will be seen that the records with the two broad spectra deviate 

especially from the Rayleigh distribution for low values of the wave amplitude, 
having relatively more waves in that range. It appears that the mode of the dis- 
tribution has a tendency to move to the left in the broader spectra. 

(a) 

_. 
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FIGURE 8. The statistical distribution of the crest-to-trough amplitudes 
for the five records shown in figure 5. 
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Our conclusions may be compared with those of Watters (I953) who studied 

histograms of wave heights of 109 records, and compared 38 of these with the 

corresponding Rayleigh distributions (with variance chosen so as to give the best 

fit). Although some of the values of P(X2) were low (as small as 0-05) the values taken 
as a whole did not show a significant departure from the Rayleigh distributions. 
There are two possible explanations for this. First, the intervals of wave height 
were equal, and so there were many classes containing only very few heights. In 

applying the test these classes were arbitrarily pooled, and it can be shown that in 
several cases pooling the classes in a different way would have resulted in much lower 
values of X2. (The difficulty is avoided by our present method of making the 
theoretical classes of uniform size.) Secondly, the widths of the energy spectra of the 
records studied by Watters were probably less than in examples (b) and (c) of the 

present paper, which were in fact chosen on account of their exceptional breadth. 

TABLE 2. DATA FOR THE DISTRIBUTIONS OF FIGURE 8 

example e P(X2) 

(a) 0.41 0.33 
(b) 0.57 0.001 
(c) 0.67 0.000 
(d) 0.48 0.55 
(e) 0.20 0-51 

9. CONCLUSIONS 

If g denotes the height of a maximum of the random functionf(t) above the mean 
level, and if ml is the r.m.s. value off(t), then the statistical distribution of ( = 6/m( ) 
is a function only of y and one other parameter e, which defines the relative width 
of the energy spectrum off(t). e lies between 0 and 1. When e-> 0, p(v) tends to 
a Rayleigh distribution; when e- 1, p(s) tends to a Gaussian distribution. As 
e increases from 0 to 1, the mean of p(,) gradually decreases, the variance increases 
and the shewness decreases. The proportion of maxima that are negative steadily 
increases. The mean height of the highest 1/1th of the waves varies little for small 
values of e, but tends always to decrease. The highest maximum in a sample of 
N maxima tends to decrease relative to m, but to increase relative to the r.m.s. 

height of the maxima. 
The records of ocean waves and of ship motion which are discussed in the present 

paper show good agreement with the theoretical distributions, for various values 
of e ranging from 0.20 to 0.68. 

The theoretical distribution of crest-to-trough heights is known only for a narrow 

spectrum (e = 0), when it is a Rayleigh distribution. In three of the examples in 
this paper, for which e < 0-5 and the total number in the sample was less than 300, 
there was no significant departure from the Rayleigh distribution. On the other 
hand, the examples with the broadest spectra (e = 0.57 and e = 0.67) did show 

significant departures. 
This indicates the need for a theoretical derivation of the crest-to-trough height 

distribution when e > 0. Meanwhile, for the purpose of practical prediction, it would 
15-2 
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be better to deal with crest-heights rather than with crest-to-trough heights as is 
customary at present. 
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