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Extreme wave runup on a vertical cliff
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[1] Wave impact and runup onto vertical obstacles are
among the most important phenomena which must be taken
into account in the design of coastal structures. From linear
wave theory, we know that the wave amplitude on a vertical
wall is twice the incident wave amplitude with weakly non-
linear theories bringing small corrections to this result. In
this present study, however, we show that certain simple
wave groups may produce much higher runups than previ-
ously predicted, with particular incident wave frequencies
resulting in runup heights exceeding the initial wave ampli-
tude by a factor of 5, suggesting that the notion of the
design wave used in coastal structure design may need to be
revisited. The results presented in this study can be consid-
ered as a note of caution for practitioners, on one side, and
as a challenging novel material for theoreticians who work
in the field of extreme wave-coastal structure interaction.
Citation: Carbone, F., D. Dutykh, J. M. Dudley, and F. Dias (2013),
Extreme wave runup on a vertical cliff, Geophys. Res. Lett., 40,
3138–3143, doi:10.1002/grl.50637.

1. Introduction
[2] The robust design of various coastal structures (such

as sea-walls and breakwaters) relies on the accurate estima-
tion of the wave loading forces. To this end, engineers have
introduced the notion of the so-called design wave. Once
the particular characteristics of this design wave are deter-
mined, the pressure field inside the bulk of fluid is usually
reconstructed (in the engineering practice) using the Sainflou
[1928] or Goda [2010] semiempirical formulas. However,
there is a difficulty in determining the wave height to be used
in design works. Sometimes, it is taken as the significant
wave height H1/3, but in other cases, it is H1/10 (the average
of 10% highest waves) that is substituted into the wave pres-
sure formulas. If we take, for example, an idealized sea state
which consists only of a single monochromatic wave com-
ponent with amplitude a0, its wave height H0 can be trivially
computed

H0 � H1/3 � H1/10 � 2a0. (1)

Consequently, the design wave will have also the height
equal to 2a0.
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[3] In the present study, we show that even such simple
monochromatic sea states, subject to the nonlinear dynamics
over a constant bottom, can produce much higher ampli-
tudes on a vertical wall. Namely, we show below that some
wave frequencies can lead to an extreme runup of the order
of � 5.5a0 on the cliff. The results presented in this study
suggest that the notion of the design wave has to be revis-
ited. Moreover, the mechanism elucidated in this work can
shed some light onto the freak wave phenomenon in the shal-
low water regime, where we recall in this context that over
80% of reported past freak wave events have been in shallow
waters or coastal areas [Nikolkina and Didenkulova, 2011;
O’Brien et al., 2013].

[4] It is well known that wave propagation on the free
surface of an incompressible homogeneous inviscid fluid
is described by the Euler equations combined with non-
linear boundary conditions on the free surface [Stoker,
1957]. However, this problem is difficult to solve over large
domains, and consequently, simplified models are often
used. In particular, in this study, we focus our attention on
long wave propagation. A complete description of wave
processes, including collisions and reflections, is achieved
by employing two-way propagation models of Boussinesq
type [Bona and Chen, 1998]. Taking into account the fact
that we are interested here in modeling (potentially) high
amplitude waves, we adopt the fully nonlinear Serre-Green-
Naghdi (SGN) equations [Serre, 1953; Green et al., 1974;
Green and Naghdi, 1976; Zheleznyak and Pelinovsky, 1985],
which make no restriction on the wave amplitude. Only the
weak dispersion assumption is adopted in the mathemati-
cal derivations of this model [Wei et al., 1995; Lannes and
Bonneton, 2009; Dias and Milewski, 2010].

[5] We consider a two-dimensional wave tank with a flat
impermeable bottom of uniform depth d = const, filled
with an incompressible, inviscid fluid (see Figure 1). The
Cartesian coordinate system Oxy is chosen such that the
y-axis points vertically upward and the horizontal x-axis
coincides with the undisturbed water level y = 0. The free
surface elevation with respect to the still water level is
denoted by y = �(x, t), and hence, the total water depth is
given by h(x, t) = d + �(x, t). Denoting the depth-averaged
horizontal velocity by u(x, t), the SGN system reads [Lannes
and Bonneton, 2009; Dias and Milewski, 2010; Clamond
and Dutykh, 2012]:

ht + (hu)x = 0, (2)

ut +
�

1
2

u2 + gh
�

x
=

1
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h3 �uxt + uuxx – u2
x
��

x
, (3)

where g is the acceleration due to gravity.
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Figure 1. (top) Schematic view of the numerical experi-
ments. Here L is the length of the computational domain,
d is the uniform water depth, a0 is the incoming wave ampli-
tude, and � is its wavelength. (bottom) Temporal evolution
of the first four harmonics of a sinusoidal wave of frequency
! = 0.01 injected in the domain (in the absence of the
right wall).

[6] The SGN system possesses Hamiltonian and
Lagrangian structures [Li, 2002; Clamond and Dutykh,
2012] and conservation laws for mass, momentum,
potential vorticity, and energy [Li, 2002] (Dutykh et al.
arXiv:1104.4456). From a more physical perspective,
the SGN model combines strong nonlinear effects with
some dispersion that approximates well the full water
wave dynamics. This model has been previously vali-
dated by extensive comparisons with experimental data for
wave propagation and runup [Chazel et al., 2011; Tissier
et al., 2011; Carter and Cienfuegos, 2011] (Dutykh et al.
arXiv:1104.4456).

[7] One of the most important questions in water wave
theory is the understanding of wave interactions and reflec-
tions [Linton and McIver, 2001; Berger and Milewski, 2003;
Clamond et al., 2006] and the interaction of solitary waves
has also been extensively studied [Zabusky and Kruskal,
1965; Bona et al., 1980; Fenton and Rienecker, 1982;
Craig et al., 2006]. By using symmetry arguments, one can
show that the head-on collision of two equal solitary waves
is equivalent to the solitary wave/wall interaction in the
absence of viscous effects.

[8] The accurate determination of the maximum wave
height on a wall is of primary importance for applica-
tions. Several analytical predictions for periodic or solitary
wave runup Rmax in terms of the dimensionless wave ampli-
tude ˛ = a0/d have been developed: linear theory [Mei,
1989] Rmax/d = 2˛, third-order theory [Su and Mirie,
1980] Rmax/d = 2˛ + 1/2˛2 + 3/4˛3, and nonlinear shal-
low water theory [Mirchina and Pelinovsky, 1984] Rmax/d =
4
�

1 + ˛ –
p

1 + ˛
	

= 2˛ + 1/2˛2 – 1/4˛3 + O(˛4).

[9] These results have been confirmed in previous exper-
imental [Maxworthy, 1976], theoretical [Byatt-Smith, 1988],
and numerical [Fenton and Rienecker, 1982; Craig et al.,
2006] studies. All these theories agree on the fact that the
wave height on the wall is 2 times the incident wave ampli-
tude plus higher order corrections. This conclusion provides
a theoretical justification for the use of a wave height such
as H1/3 in the design wave definition.

2. Numerical Study
[10] From a practical point of view, however, the reason-

ing presented above contains at least one serious flaw—
in real-world conditions, waves seldom come isolated but
rather as groups. In this section, we show numerically how
simple wave groups can produce much higher runups than
expected from the existing theoretical predictions.

[11] Our numerical wave periods cover a range between
20 s and 1100 s (i.e., for 6 < d < 30 m and g =
9.81 m/s2), from long swells to tsunami waves. Extreme
runups are obtained for wave periods which are in between
swell periods and tsunamis periods, corresponding possibly
to tsunamis generated by underwater landslides. Moreover,
we take as initial conditions waves which are not exact solu-
tions to the equations. Naturally, they deform as they evolve
toward the vertical wall. This deformation is reminiscent of
the transformation of waves over sloping bathymetries.

2.1. Numerical Scheme and Setup
[12] Let us consider a flat channel of constant depth d and

length L. This channel is bounded on the right by a rigid ver-
tical wall and by a wavemaker on the left (see Figure 1). We
use dimensionless variables where lengths are normalized
with d, speeds with

p
gd, and time with

p
d/g. This scaling

is equivalent to setting g = 1 m/s2, d = 1 m in the governing
equations (2) and (3).

[13] In order to solve numerically the SGN equations,
we use the high-order finite-volume scheme described
in Dutykh et al. (arXiv:1104.4456). This scheme has
been successfully validated against analytical solutions and
experimental data [Hammack et al., 2004]. For the time
integration, we use the classical fourth-order Runge-Kutta
scheme [Shampine, 1994; Shampine and Reichelt, 1997].
The computational domain is divided into equal intervals
(i.e., control volumes) such that we have N = 1000 control
volumes per wavelength. The convergence study showed
that this grid provides a good trade-off between accuracy
and overall computational time. Note that the extreme runup
values reported in this study can slightly increase under
mesh refinement, which decreases the effect of numeri-
cal dissipation. All simulations start with the rest state
�(x, t = 0) � 0, u(x, t = 0) � 0. The wavemaker generates
on the left boundary, during a time T, the following periodic
free surface disturbance with corresponding fluid velocity:

�(x = 0, t) = �0(t) = a0 sin(!t)H(T – t), (4)

u(x = 0, t) =
�0(t)cs

d + �0(t)
, (5)

where the amplitude a0 = 0.05, ! 2 [0.01, 0.25],
H(t) is the Heaviside function, and cs is the wave speed
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Figure 2. Time evolution of the free surface elevation as a function of space, at three different times t* (first three top
panels of Figures 2a–2c) reported on the figure. The bottom panel of Figure 2a refers to the single-wave case with frequency
! = 0.145, the bottom panel of Figure 2b refers to the two-wave case with frequency ! = 0.021, and the bottom panel of
Figure 2c refers to the three-wave case with frequency ! = 0.0315. The bottom panel of each column reports the maximal
elevation at the wall RL/a0 as a function of time.

cs =
p

g(d + a0) (Dutykh et al. arXiv:1104.4456). An
important remark should be made on the initialization of
the problem: sometimes spurious high-frequency standing
waves are generated when numerical simulations of nonlin-
ear progressive waves are initialized using linear waves (in
particular, for deep water waves). In such cases, the problem
should be initialized by suppressing the spurious generation
of standing waves. However, a nonlinear simulation can be
initialized with simple linear waves if the runtime is long
enough to adjust the wave shape [Dommermuth, 2000]. As
can be seen in the bottom panel of Figure 1, the amplitude

of the first harmonic remains constant during the propa-
gation while the amplitudes of the higher harmonics tend
to increase until a constant value is reached, as illustrated
in Dommermuth [2000]. For this reason, no adjustment is
required in our case.

[14] We generate only a finite number Nw of waves with
period T0 = 2� /!, and thus, the wave generation time T is
defined as T = NwT0. The monochromatic deviation of the
free surface at the left boundary is then propagated toward
the right wall under the SGN dynamics. The length L of the
computational domain and the final simulation time Tf are
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Figure 2. (continued)

chosen adaptively in order to allow all important interactions
and to prevent any kind of reflections with the left generating
boundary:

L =
�

Nw +
1
2

�
�, Tf =

Lp
g(d + a0)

+ T, (6)

with � being the wavelength corresponding to the
frequency !.

2.2. Numerical Results
[15] We begin our numerical experiments by consider-

ing a single sinusoidal wave interacting with the solid wall.
In Figure 2, we show three snapshots of the single-wave
evolution at three different times (first three panels on
Figures 2a–2c), i.e., before reaching the wall, during the
impact, and right after the reflection. The initial sinusoidal
wave undergoes steepening during its propagation. The
runup on the vertical wall is shown on the bottom panel
of Figures 2a. The maximal dimensionless wave elevation
Rmax ' 0.10245 on the wall reaches roughly twice the inci-
dent wave amplitude a0 = 0.05 (at t ' 70). This result is
in good agreement with previous numerical studies on the
solitary waves interactions [Cooker et al., 1997; Pelinovsky
et al., 1999; Chambarel et al., 2009] even if the incident
shape is not exactly the same. The maximal relative runup
Rmax/a0 ' 2.34 is achieved for !max = 0.145. The value of
Rmax is slowly decreasing for ! > !max.

[16] When two waves are injected into the domain, the
dynamics is similar to the single-wave case. However, with
two waves, the nonlinear effects become even more apparent
(see the bottom panel of Figure 2b).

[17] In a certain range of wave periods (! 2 (0.01, 0.05)),
the so-called dispersive shock waves are formed [Wei et al.,
1995; Tissier et al., 2011]. This particular type of solution
has been extensively studied theoretically and numerically
in El et al. [2006]. When the second wave impinges on
the first reflected wave, a dispersive shock wave forms and

propagates toward the wall. As shown in the bottom panel
of Figure 2b, the maximal amplification is achieved when
the second wave hits the wall due to nonlinear interac-
tions between two counter-propagating waves. However, we
underline that with only two waves, one can achieve a max-
imal runup on the wall Rmax of almost four incident wave
amplitudes a0: Rmax/a0 ' 3.8, for ! = 0.021. Such
high runup values are possible due to the energy transfer
between the first reflected wave and the second incoming
wave. The dependence of the maximal runup Rmax on the
incident wave frequency ! and the number Nw of incident
waves is shown in Figure 3. One can see from this figure that
the optimal energy transfer due to dispersive shocks happens

Figure 3. Maximum wave runup Rmax/a0 on the right
vertical wall as a function of incoming wave frequency
for different numbers of incident pulses: 1 (diamonds), 2
(squares), 3 (circles), and 4 (solid line). The dashed line
represents the linear limit where Rmax/a0 � 2.
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Figure 4. (top) Space-time evolution plots for the three incident wave case shown for three particular values of the wave
frequency !. (bottom) Time evolution of the wave runup on the vertical wall for the three incident wave case recorded for
several values of the incoming frequency !. The maximum runup is achieved for !max � 0.0315.

for three incident waves (see the bottom panel of Figure 2c).
In this case, the maximal runup is observed around !max =
0.035, and the amplification is equal to Rmax/a0 ' 5.43.
However, the energy transfer process is saturated for three
waves.

[18] We performed similar computations with four inci-
dent waves (also shown on Figure 3), and the maximal
runup is not higher than with three waves. Consequently, we
focus now only on the optimal three-wave case. The three
regimes (hyperbolic, equilibrium, and dispersive) are illus-
trated on Figure 4, where we show the space-time dynamics
of the three-wave system. The left panel shows the hyper-
bolic regime. On the central panel, strong dispersive shocks
can be observed, while on the right panel, the dynamics
is smoothed by the dispersion. In the last case, the ampli-
fication is mainly produced by the linear superposition of
the incident and reflected waves. The reflection and interac-
tion are clearly observed by smooth secondary peaks in the
space-time plots (see Figure 4, bottom panels).

[19] The wave interactions described above strongly
depend on the frequency ! of the impinging waves as can
be seen in the bottom panels of Figure 4, where we show
the wave records on the wall for several values of the fre-
quency !. As the wave frequency increases, the wavelength
shortens and the dispersive effects become gradually more
important. Around !max, the dispersive effects are balanced
with nonlinearities to produce the most pronounced disper-
sive shock waves. Starting from ! ' 0.11, we enter into the
dispersive regimes where the waves become regularized.

3. Conclusions and Perspectives
[20] In the present study, we investigated numerically

the interaction between a wave and a vertical wall in the
framework of the Serre-Green-Naghdi (SGN) equations.
These equations combine strong nonlinear and weak disper-

sive effects. We explored the whole range of wavelengths
from the hyperbolic regime (including shock waves) to
smooth dispersive waves (! & 0.1). More importantly, we
showed that the wave runup on the wall is strongly depen-
dent on the incident wave frequency, the dependence not
being monotonic. In particular, there is a fixed frequency
!max which provides the maximum long wave runup on the
vertical wall. The function Rmax(!) is monotonically increas-
ing up to !max and monotonically decreasing for ! > !max
(at least within the range of considered numerical param-
eters). The dynamics can be conventionally divided into
three main stages: propagation of the wave group toward
the wall along with the front steepening and other nonlin-
ear deformations, first wave runup and its reflection from the
wall, and projection of the reflected energy again onto the
wall by subsequent incident waves. The maximal observed
amplification � 5.5a0 is achieved with only three incident
waves. For example, on a 10 m water depth the critical
period is equal approximatively to Tmax � 180 s (!max �
2� /Tmax). Such a wave period can be generated by small
underwater landslides.

[21] The results presented in this study shed light onto
extreme wave runups on vertical cliffs and similar coastal
structures. Moreover, in view of these results, the defini-
tion of the design wave has to be revisited. Our suggestion
would be to take at least 3H1/3 or even 3H1/10. The present
results also shed some new light on the mysterious accu-
mulations of large boulders on cliff tops up to 50 m high
on the deep water coasts, especially on the west coast
of Ireland [Hansom and Hall, 2009; Williams, 2010; O’Brien
et al., 2013]. The emplacement of these megaclasts is usually
attributed to extreme storm waves, but there are also those
who believe that tsunamis are the most probable explanation
of boulder ridges in these areas [Kelletat, 2008; Scheffers
et al., 2009, 2010].
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[22] In future investigations, more general wave groups
have to be studied to unveil their potential for focusing on
the walls. We recall that so far, we considered only simple
idealized monochromatic waves. In addition, we are going
to investigate the effect of the forces exerted by incident
waves on vertical obstacles, which can be different from the
purely kinematic amplitude focusing presented in this study.
In other words, it is not clear whether the highest wave will
produce the highest dynamic pressure spike on the wall. The
effect of the wave amplitude is to be investigated as well
since all the processes under consideration are highly non-
linear. Some theoretical explanation of these phenomena is
also desirable. However, the difficulty is rather high again
because of important nonlinearities mentioned hereinabove.
We claim that no linear theory is sufficient to provide a
satisfactory explanation.
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