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ABSTRACT

The visual description of wave climate is usually limited to two-dimensional conditional histograms. In this

work, self-organizing maps (SOMs), because of their visualization properties, are used to characterize mul-

tivariate wave climate. The SOMs are applied to time series of sea-state parameters at a particular location

provided by ocean reanalysis databases. Trivariate (significant wave height, mean period, and mean di-

rection), pentavariate (the previous wave parameters and wind velocity and direction), and hexavariate (three

wave parameters of the sea and swell components; or the wave, wind, and storm surge) classifications are

explored. This clustering technique is also applied to wave and wind data at several locations to analyze their

spatial relationship. Several processes are established in order to improve the results, the most relevant being

a preselection of data by means a maximum dissimilarity algorithm (MDA). Results show that the SOM

identifies the relevant multivariate sea-state types at a particular location spanning the historical variability,

and provides an outstanding analysis of the dependency between the different parameters by visual in-

spection. In the case of wave climate characterizations for several locations the SOM is able to extract the

qualitative spatial sea-state patterns, allowing the analysis of the spatial variability and the relationship be-

tween different locations. Moreover, the distribution of sea states over the reanalysis period defines a prob-

ability density function on the lattice, providing a visual interpretation of the seasonality and interannuality of

the multivariate wave climate.

1. Introduction

The wave climate at a particular location is usually

defined by empirical statistics (mean, standard devia-

tion) or by the empirical or analytic univariate proba-

bility density function (PDF) of one of the following

parameters: significant wave height Hs, mean period Tm,

and mean wave direction um. The combination of two

parameters is analyzed by similarly bivariate PDFs and

empirical statistics. In the case of three parameters, the

analysis is usually limited to the empirical probability

function p(Hs, Tm, um), sorting the values in classes and

visualizing the results using two-dimensional histograms

[e.g., the Hs–Tm for a given directional sector Du

(Holthuijsen 2007)].

In the last decade, long-term reanalysis databases have

been developed (see, e.g., Pilar et al. 2008; Ratsimandresy

et al. 2008; Weisse et al. 2002; Dodet et al. 2010; Sebastião

et al. 2008). In addition to high spatial and temporal data

resolution, the number of wave parameters to define

each sea state has also increased considerably. Apart

from long-term hourly time series of Hs, Tm, and um, the

ocean reanalysis databases provide other parameters

such as wind velocity W10, wind direction bW, storm

surge Ss, swell significant wave height Hs2, and even the

directional spectra. However, the description of wave
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climate combining the different parameters available is

still reduced to two-dimensional histograms of just two

variables.

Several statistical methods have been developed in

the field of data mining to efficiently deal with huge

amounts of information [see Cofiño et al. (2003) for some

applications in meteorology]. These techniques extract

features from the data, providing a more compact and

manageable representation of some of the important

properties contained in the data. Standard methods in

data mining include clustering techniques, which obtain

a set of reference vectors representing the data; one of

the most powerful of these techniques is self-organizing

maps (SOMs). The SOM algorithm computes a set of M

prototypes or centroids, with each of them characteriz-

ing a group of data, preserving the topology of the data

in the original space in a low-dimensional lattice. The

cluster centroids are forced with a neighborhood adapta-

tion mechanism to a space with a smaller dimension (usu-

ally a two-dimensional regular lattice), which is spatially

organized. SOMs have been applied to different geo-

physical parameters across several disciplines; in mete-

orology, for example, they classify atmospheric patterns

and derive relations with local precipitation in order to

downscale to local stations (Cavazos 1999; Gutiérrez

et al. 2005). In hydrology they have been used to identify

homogeneous regions for regional frequency analysis

(Lin and Chen 2005); and in oceanography, they relate

satellite-derived sea level with the sardine recruitment

(Hardman-Mountford et al. 2003) to identify sea sur-

face temperature and wind patterns from satellite data

(Richardson et al. 2003), to extract spatial patterns of

ocean current variations from moored velocity data (Liu

and Weisberg 2005), or to analyze the biogeochemistry

dynamic in the Adriatic Sea by a combination with a k-

means technique (Solidoro et al. 2007). A recent com-

pleted review of SOM application in meteorology and

oceanography can be found in Liu and Weisberg (2011).

In this work, the SOM technique is applied to wave

reanalysis data in order to graphically analyze the com-

bination of three or more wave parameters and extract

the ‘‘sea-state types’’ defined by the ensemble-considered

parameters. In the simple case of considering three pa-

rameters Hs, Tm, and um, for example, the objective could

be the identification of the range of significant wave

heights and the range of directions associated with the

sea states with the largest mean periods. Another more

complex example could be the determination of the

proportion of sea component or swell component of the

most frequent sea states at a particular location.

Additionally, the spatial information provided by

wave reanalysis databases could be classified by SOM to

analyze the combination of several variables at different

locations at the same time and to extract sea-state spatial

patterns.

Therefore, in this work, the self-organizing maps are

applied to hourly time series of meteorology–ocean pa-

rameters to characterize the multivariate wave climate.

To explore the ability of the SOM to analyze wave climate,

different examples for three-, five-, and six-dimensional

data are shown for a particular location, and a spatial wave

climate characterization is also presented.

This paper is organized as follows. In section 2, the

data used to characterize wave climate at different lo-

cations and with different parameters is described. In

section 3, the proposed methodology to define multi-

dimensional wave climate at a specific location is ex-

plained; and trivariate, pentavariate, and hexavariate

applications are presented. The spatial multivariate wave

climate characterization is presented in section 4, in-

cluding the steps of the methodology and the results of

a particular application. Finally, conclusions are given in

section 5.

2. Data

Several locations around the Spanish coast (Fig. 1)

have been considered to carry out different multivariate

wave climate characterizations by means of the SOM.

The wave data used is extracted from the SIMAR-44

database, developed by Puertos del Estado (Spain) us-

ing the wave model (WAM) and forced by 10-m winds

from the Regional-Scale Model (REMO; Jacob and

Podzun 1997). The temporal coverage spans 44 yr (1958–

2001) with an hourly resolution and a spatial resolution

of 1/88–1/128.

Figure 2 shows the empirical bivariate distribution of

the hourly time series of Hs and um of almost 400 000 sea

states at the locations considered around the Spanish

coast. This directional distribution provides information

about the direction of the most frequent sea states as

well as the largest significant wave heights. These ex-

amples clearly show the different typology of wave cli-

mate along Spanish coast. The most energetic sea states

come from the northwest; the range of wave directions is

narrower at Santander, coming from the west to the

northeast; while at Villano, the range spans from the

southwest to the northeast. At Gran Canaria Island, the

most energetic sea states mainly come from the northwest

to northeast. At Cadiz, sea states come from a wider range

of directions, the most frequent ones being west and

southeast. Wave climate at Almeria has a clear bimod-

ality around the east-northeast and west-southwest di-

rections. In Tarragona, sea states are from all possible

directions, with the most energetic and the most frequent

sea states from the east-northeast and south-southwest.
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3. Multivariate wave climate at a particular
location

In this section, the SOM algorithm is applied to dif-

ferent combinations of sea-state parameters: significant

wave height Hs, mean period Tm, mean wave direction

um, wind velocity W10, wind direction bW, sea significant

wave height Hs1, sea mean period Tm1, sea mean di-

rection um1, swell significant wave height Hs2, swell

mean period Tm2, swell mean direction um2, and storm

surge Ss, from a grid node of the SIMAR-44 database to

characterize the multivariate wave climate at a particu-

lar location.

a. Methodology

The wave reanalysis data are defined by scalar and

directional variables of different magnitudes, which re-

quire several processes and some modifications of the

SOM algorithm. Therefore, a methodology has been de-

veloped in order to obtain proper wave climate classifi-

cations by means of the SOM. The methodology has been

divided into the following several steps: (a) normalization

of the sea-state parameters, (b) preselection of the input

data using the maximum dissimilarity algorithm (MDA),

(c) application of SOM with a Euclidian–circular (EC)

distance, and (d) denormalization of obtained clusters.

A sketch of the methodology for a trivariate sea-state

definition fHs, Tm, umg is shown in Fig. 3, and the steps

of the methodology are explained below. The Matlab

SOM Toolbox (Vesanto et al. 2000) is used based on the

sequential algorithm with a linearly initialization and on

the other default tuneable parameters.

1) STEP A: NORMALIZATION

The normalization step is required to give a similarly

weight when applying the selection and classification

algorithms. The multivariate database is defined as fHs,i,

Tm,i, um,ig; i 5 1, . . . , N, where N is almost 400 000 sea

states (44 years of hourly data). The scalar variables are

normalized by scaling the variables values between [0, 1]

with a simple linear transformation, which requires two

parameters—the minimum and maximum value of the

two scalar variables,

FIG. 1. Locations along the Spanish coast for wave climate characterization.
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Hmin
s 5 min(Hs); Hmax

s 5 max(Hs)

Tmin
m 5 min(Tm); Tmax

m 5 max(Tm).

For the circular variables (defined in radians or in

sexagesimal degrees using the scaling factor p/180),

taking into account that the maximum difference be-

tween two directions over the circle is equal to p and the

minimum difference is equal to 0, this variable has been

normalized by dividing the direction values between p,

therefore rescaling the circular distance between [0, 1].

2) STEP B: PRESELECTION

After these transformations, the dimensionless input

data Xi 5 fHi, Ti, uig; i 5 1, . . . , N are defined as

Hi 5
Hs,i 2 Hmin

s

Hmax
s 2 Hmin

s

; Ti 5
Tm,i 2 Tmin

m

Tmax
m 2 Tmin

m

; ui 5
um,i

p
.

The preselection removes the redundancy of wave

reanalysis data, avoids most of the clusters from being

representative of these conditions, and enables a wide

variety of possible sea-state types to be obtained. The

MDA selects a representative subset of size P from a

database of size N (Camus et al. 2010). Therefore, in this

case, given a data sample X 5 fX1, X2, . . . , XNg, con-

sisting of N three-dimensional vectors, a subset of P

vectors fX1
D, . . . , XP

Dg representing the diversity of the

data is obtained by applying this algorithm. The selec-

tion starts initializing the subset by transferring one

vector from the data sample fX1
Dg. The rest of the M 2 1

elements are selected iteratively, calculating the dissim-

ilarity between each remaining data point in the database

and the elements of the subset, and transferring the most

dissimilar one to the subset (Kennard and Stone 1969).

Many variants, depending on the precise implementation

of the initialization and the definition of the most dis-

similar vector, are available (Willet 1996). In this work,

the initial datum of the subset is the sea state with the

largest value of significant wave height. The dissimilarity

between each remaining vector in the database and each

vector in the subset is calculated, and a unique dissimi-

larity between each vector in the database and the subset

is established as the minimum one. For example, if the

subset is formed by R (R # P) vectors, the dissimilarity

between the vector i of the data sample N – R and the

j vectors belonging to the R subset is calculated as

dij 5 kXi 2 XD
j k; i 5 1, . . . , N 2 R; j 5 1, . . . , R,

where k k is defined as the Euclidean–circular distance

kXi 2 XD
j k 5 f(Hi 2 HD

j )2
1 (Ti 2 TD

j )2

1 [min(jui 2 uD
j j, 2 2 jui 2 uD

j j)]2g1/2.

FIG. 2. Empirical joint distribution of Hs and um at the different locations considered along the Spanish coast.
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Subsequently, the dissimilarity di,subset between the

vector i and the subset R, is calculated as

di,subset 5 minfkXi 2 XD
j kg; i 5 1, . . . , N 2 R;

j 5 1, . . . , R.

Once the N – R dissimilarities are calculated, the next

selected element that is with the largest value of di,subset,

the most dissimilar one. The efficient algorithm devel-

oped by Polinsky et al. (1996) has been considered to

reduce the computation time.

Several tests have been carried out to analyze the in-

fluence of the preselected data (P) in the trivariate wave

climate SOM classifications at several locations around

the Spanish coast. SOMs of different sizes, considering

different quantities of preselected data, have been trained.

The representativeness of wave climate has been ana-

lyzed by means of the error between the real value of the

mean significant wave height and the 99th percentile of

the significant wave height, calculated by the complete

wave reanalysis time series, and the estimated value,

calculated using the centroids and its corresponding

probability. The preselected data influence the results

for SOM sizes lower than 600 clusters. The error in the

mean significant wave height decreases when P increases,

while the error in the 99th percentile of the significant

wave height increases when P increases. However, the

magnitude of the error in the 99th percentile is higher

than in the mean value and the increase is significant for

P . 10 000. Therefore, we recommend P 5 10 000.

3) STEP C: SOM

Once the preselection of P elements has been done

fX1
D, . . . , XP

Dg, the SOM is applied. SOM automatically

extracts patterns or clusters of high-dimensional data

and projects them into a bidimensional organized space,

allowing an intuitive visualization of the classification

and the transformation of the distributions from the

high-dimensional space into PDFs on the lattice (Kohonen

2000).

Given the database of three-dimensional vectors XD 5

fX1
D, . . . , XP

Dg, SOM is applied to obtain M groups de-

fined by a prototype or centroid Sk 5fHk
S, Tk

S, uk
Sg, with

k 5 1, . . . , M. The classification procedure starts with

a linear initialization of the centroids fS1
0, S2

0, . . . , SM
0 g.

This means that the centroids are initialized along the

mdim greatest eigenvectors of the given data, where

mdim is the dimension of the map grid. The algorithm

adjusts the prototypes iteratively to the data trying to

minimize an overall within-cluster distance from the

data vectors Sk to the corresponding centroid vector Xj
D

for each cluster j.

The SOM runs in cycles; during each training cycle,

each of the data vectors Xj
D is considered, and the

‘‘winning’’ centroid vector Sw( j) is found to be the one

closest to the data vector,

kSw( j) 2 XD
j k 5 min

k
fkSk 2 XD

j k, k 5 1, . . . , Mg,

where 1 # w( j) # M is the index of the winning refer-

ence vector.

The training procedure includes a neighborhood ad-

aptation mechanism in the lattice of projection; thus, not

only does the winning centroid move toward the data

vector, but the neighboring centroids in the lattice are

also adapted to the sample vector,

Sk 5 Sk 1 ah[w( j), k](XD
j 2 Sk), k 5 1, . . . , M,

where 0 # a # 1 is the learning rate and controls the

velocity of the adaptation process. The function h[w( j), k]

is a neighborhood kernel on the SOM lattice, which de-

termines the rate of change around the winning centroid

and projects the topological relationships in the data space

FIG. 3. Methodology to characterize wave climate by SOM at

a specific location.
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onto the lattice. This means that similar clusters in the

multidimensional space are located together in the lattice

of projection. Each cluster of a SOM is defined by two

vectors—one in the data space yk (prototype) and the other

one (mk, nk) describing the position on the lattice (Fig. 3;

SOM). For a given SOM of size M 5 AB, the kth index of a

cluster is related with the lattice dimensions and its position

in the lattice by the expression k 5 B(m 2 1) 1 n. In this

algorithm, the EC distance is also applied as in the MDA,

kXD
j 2 Skk5 f(HD

j 2 HS
k)2

1 (TD
j 2 TS

k )2

1 [min(juD
j 2 uS

kj, 2 2 juD
j 2 uS

kj)]2g1/2.

4) STEP D: DENORMALIZATION

Finally, the last step is the denormalization of clusters,

applying the opposite transformation of the normalization

step:

FIG. 4. Trivariate wave climate characterization by means of SOM at different locations along the Spanish coast; Hs, Tm, and um are

represented by the size, grayscale, and direction of the arrow.
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HS
s,k 5 HS

k(Hmax
s 2 Hmin

s ) 1 Hmin
s ;

TS
m,k 5 TS

k (Tmax
m 2 Tmin

m ) 1 Tmin
m ; uS

m,k 5 uS
kp.

Although the methodology is explained for only three

parameters, the approach is applicable to different com-

binations of multivariate meteorology–ocean parameters.

The main requisite is the identification of the scalar and

directional variables in order to establish the normali-

zation and define the Euclidian or circular distance in

the similarity criterion of the SOM algorithm.

b. Trivariate wave climate characterization along
the Spanish coast

The hexagonal self-organizing maps of 14 3 14 size of

trivariate wave climate at the selected locations along

the Spanish coast are shown in Fig. 4. Each cell of the

SOM represents a cluster defined by fHs, Tm, umg pa-

rameters. The significant wave height Hs, the mean wave

period Tm, and the mean wave direction um are repre-

sented by the size, intensity of the gray color, and di-

rection of the arrow, respectively. The smaller hexagon,

in a light yellow–dark red scale, defines the Hs magni-

tude. The larger hexagon in a blue scale shows the rel-

ative frequency. The input data have been projected

into a toroidal lattice, which means that the centroids

located on the upper and lower and in the lateral sides of

the sheet are joined in the toroidal projection, being

similar in the data space. As we can see, similar clusters

are located together on the lattice; the magnitudes of the

centroid parameters vary smoothly from one cell to

another because the SOM algorithm projects the topo-

logical relationships of the tridimensional data space in

the map.

This technique is able to detect all the possible sea-

state types. In the SOM at Santander and Villano, it can

be observed that the directional diversity of the clusters

matches the corresponding bidimensional distributions

(Hs, um). The directional range at Villano varies from

the southwest to the northeast direction, being wider

than at Santander, which is between the west and north-

east directions. The higher diversity of wave directions at

Villano can also be observed in the most energetic sea

states. Additionally, this trivariate wave climate SOM

classification adds the information about the mean pe-

riod in the analysis of sea-state types. For example, the

sea states with the maximum periods at Santander and

Villano are from the west-northwest and have medium

wave energy (long-period swells).

The SOM at Gran Canaria informs us that wave di-

rections vary between the southwest and northeast di-

rections. The sea-state types with the largest significant

wave heights and the ones with the largest periods come

from the north-northwest. The most frequent sea-state

types are low energy and come from the north-northeast.

The SOM at Cadiz shows that sea states may come

from all possible directions. The largest significant wave

heights are from the west-southwest. The most frequent

FIG. 5. Five-dimensional wave climate characterization by means of SOM at Almeria; Hs,

Tm, and um of each cluster are represented by the size, grayscale, and direction of the gray

arrow, and W10 and bW of each cluster are represented by the size and direction of the magenta

arrow.
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wave types and the ones with the highest period are from

the west.

The wave climate bimodality at Almeria is reflected in

the SOM classification: the sea-state types are mainly

from the east-northeast and west-southwest. The sea-state

clusters from the east-northeast direction have a higher

significant wave height and wave period and are more

frequent than the ones from the west-southwest direction.

The SOM at Tarragona detects the diversity of the

wave climate with sea-state types coming from all pos-

sible directions. The most energetic sea states are from

the east-northeast and south-southwest, while the sea-

state types with the highest periods are from the east.

c. Pentavariate wave climate

In this section, the SOM is applied to five-dimensional

wave data at Almeria. Each hourly sea state is defined by

the following five parameters: Hs, Tm, um, W10, and bW.

Figure 5 shows a SOM of M 5 14 3 14 size, with each

cluster being defined by five parameters, Sk 5 fHs, Tm,

um, W10, bwg, k 5 1, . . . , M. In this map, the gray arrows

represent the wave characteristics; the size, color in-

tensity, and direction of the arrows are indicated by Hs,

Tm, and um, respectively. The size and the direction of

the magenta arrows represent W10 and bw. In addition,

the smaller hexagon in a scale of light yellow–dark red

defines the Hs magnitude and the hexagon in a blue scale

defines the wind velocity. As in the previous example, the

classification has been projected onto a toroidal lattice.

The bimodality of wave climate at Almeria, detected

in the trivariate characterization, is also represented in

this pentavariate SOM. We can see two families of en-

ergetic sea states from the east-northeast and south-

southwest directions, respectively, with associated winds

from the same directions. The significant wave height and

the wind velocity of the sea-state types from the east-

northeast direction are of higher magnitude than the

other family of sea-state types. Many clusters represent

low energetic sea states from all of the possible directions

associated with gentle winds. Most of them are sea states

from the first and third quadrant, which are the most

frequent sea states at this location, as we have seen in the

tridimensional SOM characterization. Additionally, the

clusters with the maximum wave periods (Tm .5 5 s) are

from the east-northeast, located at the right side of the

clusters with the extreme events on the lattice, with as-

sociated winds from the northwest to northeast directions.

The seasonality of wave climate at Almeria has been

analyzed by calculating the probability of the clusters at

each month. The SOM probability density functions in

January and July are shown in Fig. 6, as represented by

the blue-scale hexagons. All of the sea-state types that are

identified occur during the winter months, while during the

summer the probability of the sea types defined by waves

from the north-northwest to east-northeast directions with

associated winds from north-northwest to north-northeast

directions is practically null. These blue maps represent

very useful quantitative multivariate histograms of wave

climate.

d. Hexavariate wave climate (sea 1 swell)

In this application, we have considered the sea and the

swell sea-state components at Villano. Each hourly data

point is defined by six parameters: the significant wave

height, the mean period, and the mean direction of the

sea component (Hs1, Tm1, um1), and the significant wave

height, the mean period, and the mean direction of the

swell component (Hs2, Tm2, um2). Figure 7 shows a SOM

FIG. 6. Seasonality of 5D wave climate characterization by means of SOM at Almeria. (See Fig. 5 caption for an

explanation of the map).
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of 23 3 23 size, where each cell is defined by these six

parameters, with the sea component being represented

by the thicker arrow and the swell component by the

thinner arrow, with the same symbolism used in the

trivariate characterization. In this case, the little hexa-

gon in a light yellow–dark red scale represents the sig-

nificant wave height (Hs) defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2

s1 1 H 2
s2

q
.

The clusters are defined by a combination of sea and

swell components from the southwest to the northeast

range of directions and different quantity of energy. The

sea-state types with the largest significant wave height

are mainly defined by a sea component from the west-

northwest to northwest direction with a swell compo-

nent with very little energy. There are other wave types

with an important significant wave height consisting of

a sea and swell component, both from the northwest and

with an equal amount of energy (located in the upper-

right side of the extreme events on the SOM). Other

clusters are defined by a sea component from the west

and a swell component from the northwest with a similar

significant wave height (on the right side of the most

energetic clusters). Sea-state types with a sea compo-

nent from the southwest and more energetic swell

components from the northwest are also detected (lo-

cated in the lower right-hand side of the most energetic

clusters). The sea-state types with a well-defined swell

component are from a northwest direction (located in

the lower left side of the SOM). The clusters with the

highest periods are located in the middle–upper right-

hand side of the SOM and are defined by a sea component

from the northwest and a low energetic swell component

from the southwest. Most of the clusters represent low

energetic sea states from a wide variety of combinations

of directions.

e. Hexavariate wave climate
(wave 1 wind 1 storm surge)

In this wave climate characterization at Tarragona by

means of a SOM, each sea state is defined by the fol-

lowing six parameters: significant wave height Hs, mean

period Tm, mean direction um, wind velocity W10, wind

direction bW, and storm surge Ss. Figure 8 shows a SOM

of 18 3 18 size, where Hs, Tm, and um are represented by

the size, the gray color intensity, and the direction of the

thicker arrow; W10 and bW are represented by the size

and the direction of the thinner arrow. The background

of each hexagon represents the storm surge (red scale

for positive values and blue scale for negative).

The sea-state types obtained by the SOM are from all

possible directions. As in the trivariate classification, the

most energetic sea states are from the northeast to the

east-southeast directions associated with the strongest

winds mainly from the northeast in that location. Other

clusters represent considerable energetic sea states from

the southwest, with winds from the northwest and with

waves and winds from the north-northwest. Most of the

SOM clusters correspond to calm situations (very small

significant wave heights and gentle winds from different

directions). Regarding the storm surge, the positive sit-

uations are associated with southern waves. This aspect

FIG. 7. Six-dimensional wave climate characterization by means of SOM at Villano (sea 1

swell component); Hs1, Tm1, and um1 (sea parameters) of each cluster are represented by the

size, grayscale, and direction of the thicker arrow, and Hs2, Tm2, and um2 (swell parameters) are

represented by the size, grayscale, and direction of the thinner arrow.
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is very relevant because the SOM is able to reveal the

different combinations of wave height, wave direction,

and storm surge that occur at a particular site.

4. Spatial variability of multivariate wave climate

The combination of coastal orientation and wave di-

rection produces significant wave climate variations at

certain areas. In these situations, a spatial multivariate

wave climate characterization defined by offshore data

at several locations is necessary. In this section, SOM is

used to identify characteristic spatial patterns from the

hourly time series of wave and wind fields around the

coastal area of interest. The high dimensionality of

spatial fields slows down and even spoils the training

process of clustering algorithms. Therefore, we have

previously considered the problem of dimensionality

reduction using principal component analysis (PCA) to

extract as much correlation as possible from spatial

fields, but keeping the diversity of climate situations. To

avoid problems resulting from different scales, all the

variables are previously standardized for each grid point,

following the procedure that is described later on. As in

the characterization of wave climate at a particular lo-

cation, the amount of similar wave climate situations rep-

resenting the mean wave conditions requires a preselection

for a better SOM classification result. These processes

establish a methodology for spatial wave climate char-

acterization, which is described below.

Methodology

The methodology has been divided into the following

several steps: (i) standardization of the spatial wave and

wind fields, (ii) reduction of data dimensionality by

PCA, (iii) preselection of data in the reduced space by

MDA algorithm, and (iv) application of SOM to dimen-

sionally reduced preselected data and identification of

the closest real data to each centroid. Figure 9 shows

a sketch of the methodology for a spatial wave charac-

terization. Each step is described in detail.

1) STEP A: STANDARDIZATION

Each hourly situation is defined by the wave and wind

fields around the area of interest, Xi* 5 fHs,1, Tm,1,

um,1, . . . , Hs,n1, Tm,n1, um,n1, . . . , W10,1, b10,1, . . . , W10,n2,

b10,n2gi; i 5 1, . . . N, where n1 is the number of wave data

locations, n2 is the number of wind data locations, and N

is the total amount of hourly situations. The wave and

wind directions are transformed to x and y components

and then standardized (with a zero mean and a standard

deviation of one). After these transformations, the di-

mensionless input data are defined as Xi 5 fH1, T1,

FIG. 8. Six-dimensional wave climate characterization by means of SOM at Tarragona (wave 1

wind 1 storm surge); Hs, Tm, and um of each cluster are represented by the size, grayscale, and

direction of the thicker arrow, and W10 and bW of each cluster are represented by the size and

direction of the thinner arrow.

NOVEMBER 2011 C A M U S E T A L . 1563



u1, . . . , Hn1, Tn1, un1, . . . , Wx,1, Wy,1, . . . , Wx,n2, Wy,n2gi;

i 5 1, . . . , N.

2) STEP B: PCA

The PCA reduces the dimension of the data by means

of a projection in a lower dimensional space that pre-

serves the maximum variance of the sample data. The

new vectors are formed by the ones where the projected

data have the higher variance. Given the spatiotemporal

variable Xi(x, ti), where x is the spatial data position of

dimension 3n1 1 2n2 and ti is time, we apply PCA to

obtain a new d-dimensional space. The eigenvectors

[empirical orthogonal functions (EOFs)] of the covari-

ance matrix of the data define the vectors of the new

space. The idea of PCA is to find the minimum d linearly

EOFs, so that the transformed components of the origi-

nal data [principal components (PCs)] explain the maxi-

mum variance necessary in the problem at hand. The

original data can be expressed as a linear combination of

EOFs and PCs,

X(x, ti) 5 EOF1(x) 3 PC1(ti) 1 EOF2(x) 3 PC2(ti)

1 � � � 1 EOFd(x) 3 PCd(ti).

Once we apply PCA, our data are defined by the prin-

cipal components Xi
EOF 5 fPC1, PC2, . . . , PCdgi: i 5

1, . . . , P.

3) STEP C: MDA

The next step consists of selecting a representative

subset of size P using MDA Xj
EOF 5 fPC1, PC2, . . . ,

PCdgj: j 5 1, . . . , P. This algorithm has been explained in

section 3a. In this case, it is not necessary to implement

the EC distance. The first element selected is the one

with the largest significant wave height, identified in the

original space.

4) STEP D: SOM

SOM is applied to this selected sample in the EOF

space to the obtained M clusters, Sk
EOF 5 fPC1, PC2, . . . ,

PCdgk, where k 5 1, . . . , M. To avoid the reconstruction

of the centroids when projected back to the original

space, we have considered the closest data to each cen-

troid and have identified them in the original space.

Finally, each cluster is defined by Sk* 5 fHs,1, Tm,1,

um,1, . . . , Hs,n1, Tm,n1, um,n1, . . . , W10,1, b10,1, . . . , W10,n2,

b10,n2gk; k 5 1, . . . , M.

We have applied this methodology in the character-

ization of wave climate around the south coast of Gran

Canaria. In this particular application, we have consid-

ered n1 5 16 and n2 5 16 grid points to define wave and

wind fields. To select a convenient dimension reduction

of the data, we have computed the reconstruction root-

mean-square error (rmse) of variables that define the

FIG. 9. Methodology for spatial wave climate characterization.
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wave and wind fields (Hs, Tm, um, W10, and bW) for an

increasing proportion of explained variance of data.

Figure 10 shows the mean errors of the five variables

for different explained variance and the corresponding

number of principal components. We can see that for an

explained variance of 95%, the rmse of Hs, Tm, um, W10,

and bW is around 0.09 m, 0.28 s, 8.08, 0.22 m s21, and 58,

respectively. Therefore, we can reduce the dimension of

the wave and wind fields from 80 to 9 with no significant

loss of information and a significant decrease of com-

putational effort.

In this study, a SOM with M 5 49 patterns in a 7 3 7

array is constructed. Figure 11 shows the 49 wave cli-

mate patterns identified by the SOM around the south

coast of Gran Canaria. Each cluster is defined by a wave

and wind field at the considered grid nodes. In this case,

the input data have been projected into a sheet lattice,

which means that the centroids located on the corners of

the map are completely different. The fields change

gradually across the SOM lattice, from patterns with

generally energetic waves and strong winds on the left,

to patterns with generally low waves and weak winds on

the right. The clusters on the upper left side of the SOM

define the most energetic southwesterly wave fields in

this area, with wind fields from the same direction. In the

opposite lower left corner, the clusters define the highest

northeasterly wave and wind fields, which are predom-

inant in this area of study. The wave directions on the

right side of the island are coming from the north-

northeast, while on the left side of the island the direc-

tion is from the north. This pattern, defined by waves

from the north to the north-northeast and winds from

the north-northeast, persists throughout the lower row

and in the middle rows of the array, although the trend is

for waves and winds to decrease progressively toward

the right side.

Once the characteristic patterns are identified, the

frequency of occurrence of each pattern is determined

finding out which is the most similar one to each hourly

wave and wind field. Monthly PDFs on the SOM lattice are

shown in Fig. 12. Every month, the most frequent patterns

correspond to the clusters located in the lower–middle

FIG. 10. Reconstruction rmse for each of the five variables in the wave and wind fields used in the spatial wave climate

characterization by SOM at Gran Canaria.
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right side of the lattice, defined by strong winds from

the north-northeast to the northeast and waves from the

same directions. Although similar dominant patterns are

seen for all months, a monthly variability in the patterns

located on the upper right corner of the lattice is high-

lighted in the frequency maps. These patterns represent

the most energetic waves from the southwest direction

and the probability of occurrence in summer months is

practically null.

5. Conclusions

The SOM is a powerful classification technique to

extract patterns from huge amounts of information

providing a visual interpretation of high-dimensional

data. In this work, the SOM is applied to wave data-

bases to characterize multivariate wave climate at a

particular location. A complete methodology is devel-

oped, including preselection of data using MDA and

new Euclidian–circular distance implemented in the

SOM algorithm to work with directional parameters.

We define each sea state by three wave parameters fHs,

Tm, umg, five fHs, Tm, um, W10, bWg, six fHs1, Tm1, um1,

Hs2, Tm2, um2g, and fHs, Tm, um, W10, bW, Ssg, which

are widely used in wave climate characterization at

different locations along the Spanish coast. It is shown

that the SOM is able to identify multivariate sea-state

patterns defining the interaction between wave and

wind; sea and swell; and wave, wind, and storm surge.

In addition, the prominent visualization properties of

the SOM allow for the evaluation of the correlation and

dependency between these sea-state parameters by means

of visual inspection.

The SOM is also used to identify spatial sea-state

patterns. In this case, each situation is defined by the

wave field (Hs, Tm, and um in several grid nodes of wave

reanalysis database around the area of interest) and the

wind field (W10 and bW in the same grid nodes). A dif-

ferent methodology is established, which includes a re-

duction of the data dimensionality by a principal

component analysis (PCA) and preselection by an MDA

algorithm, as in the methodology for wave climate

characterization at a particular location. From the ex-

ample presented, we can conclude that the SOM char-

acterization is able to extract the dominant spatial wave

patterns in the area of study. This spatial characteriza-

tion of the wave climate allows the analysis of the spatial

relationships between waves at different locations and

the associated wind field. It provides a more global de-

scription of wave climate, detecting the spatial variability

FIG. 11. Spatial wave climate patterns at Gran Canaria, SOM 7 3 7.

1566 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 28



of wave climate at a certain area of study and the request

of wave data at more than a single location to know

where waves comes from when they reach a specific

coastal stretch.

In addition, the projection of the results in a bidi-

mensional lattice transforms the multivariate distribu-

tion into a probability density function on the SOM

lattice because of the topology preservation, providing

an easy analysis of the probability of sea-state types at

different time scales, such as monthly, seasonal, or in-

terannual.

It is finally concluded that the SOM allows an intuitive

characterization of the multidimensional wave climate

resulting from the visually appealing properties of this

clustering technique, improving the knowledge of the

wave climate provided by the valuable information of

the reanalysis databases. More complex characteriza-

tions are possible by means of this useful technique for

large datasets.
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