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Recent wave reanalysis databases require the application of techniques capable of managing huge amounts of
information. In this paper, several clustering and selection algorithms: K-Means (KMA), self-organizing maps
(SOM) and Maximum Dissimilarity (MDA) have been applied to analyze trivariate hourly time series of met-
ocean parameters (significant wave height, mean period, and mean wave direction). A methodology has been
developed to apply the aforementioned techniques to wave climate analysis, which implies data pre-
processing and slight modifications in the algorithms. Results show that: a) the SOM classifies the wave
climate in the relevant “wave types” projected in a bidimensional lattice, providing an easy visualization and
probabilistic multidimensional analysis; b) the KMA technique correctly represents the average wave climate
and can be used in several coastal applications such as longshore drift or harbor agitation; c) the MDA
algorithm allows selecting a representative subset of the wave climate diversity quite suitable to be
implemented in a nearshore propagation methodology.
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1. Introduction

In the last decade, long-term wave databases from numerical
models have been developed improving the knowledge of deep water
wave climate, especially at locations where instrumental data is not
available (see, for instance, Dodet et al., 2010; Pilar et al., 2008;
Ratsimandresy et al., 2008; Weisse et al., 2002). These reanalysis (or
hindcast) databases present the advantage of having an adequate
s for the study of multivariate wave climate, Coast.
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spatial and temporal resolution, not presenting the problems of
instrumental buoys such as missing data or sparse locations. This
increase of information requires different data mining techniques, in
particular clustering and selection techniques, to deal with such
amounts of information and to provide an easier analysis and
description of the multidimensional wave climate. An example of an
application of a classification process to obtain representative sea
states can be found in Abadie et al. (2006).

The reanalysis database provides long-term hourly time series
(say, N300,000 data) of several sea state met-ocean variables (such
as significant wave height—Hs, mean period—Tm, mean wave
direction—θm, wind velocity, wind direction, swell significant wave
height, or even, the directional spectra), which can be used for the
statistical characterization of wave climate. Usually, the long-term
distribution ofwave climate is limited to the analysis of significantwave
height by means of parametric probabilistic models. The multivariate
analysis of wave climate (e.g. of Hs, Tm and θm) is usually carried out
defining the empirical joint probability density function p(Hs, Tm,
and θm), sorting the observed values in classes and visualizing the
results using two-dimensional histograms of Hs and Tm for a given
directional sector Δθ (Holthuijsen, 2007). The development of an
analytical parametric multivariate model is not an easy task due to the
complicated form of the corresponding probability density functions
(Athanassoulis and Belibassakis, 2002). The availability of an analytical
expression for the probability density function (pdf) is very useful for
several applications, e.g. the extrapolation to calculate extremevalues or
the integration to obtain different return value quantiles. However, the
joint analysis of all the variables is difficult and the visualization is
limited to 2D marginal pdfs. Therefore, a statistical tool able of
representing graphically multivariate data is highly demanded.

On the other hand, the characterization of nearshore wave
climate requires long-term time series of wave parameters at a
particular location. The available information is usually located in
deep water and must be transferred to shallow water using a state-
of-the-art wave propagation model capable of simulating the most
important wave transformation processes. The huge number of sea
states to propagate leads to different strategies which aim to reduce
the computational effort. The more common methodologies consist
of replacing all available data with a small number of representative
sea states, which are later propagated to shallow water areas. A
transfer function is defined allowing the propagation of all the sea
states of the long-term series of wave parameters in deep waters by
means of an interpolation algorithm (Groeneweg et al., 2007;
Stansby et al., 2007). The success of the interpolation scheme
depends totally on the correct selection of the most representative
sea states, requiring new algorithms that synthesize the huge
amount of information.

Several clustering methods have been developed in the field of
data mining to efficiently deal with huge amounts of information.
These techniques extract features from the original N data, giving a
more compact and manageable representation of some important
properties contained in the data. Standard methods in data mining
include clustering techniques (to obtain a set of reference vectors
representing the data), dependency graphs (to represent depen-
dencies among the variables), association rules, etc. The K-means
algorithm (KMA) and the self-organizing maps (SOM) are some of
the most popular clustering techniques in this field. The KMA
computes a set of M prototypes or centroids, each of them
characterizing a group of data, formed by the vectors in the
database for which the corresponding centroid is the nearest one
(Hastie et al., 2001). A SOM algorithm is a version of the KMA that
preserves the topology of the data in the original space in a low-
dimensional lattice. The cluster centroids are forced with a
neighborhood adaptation mechanism to a space with smaller
dimension (usually a two-dimensional regular lattice) and which
is spatially organized. A number of applications of SOM for different
Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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geophysical parameters have been presented over the last decade
(Cavazos, 1997; Gutiérrez et al., 2004, 2005; Lin and Chen, 2005; Liu
and Weisberg, 2005; Solidoro et al., 2007).

Regarding the selection algorithms, the requirements of high-
throughout screening and combinatorial synthesis in pharmaceuti-
cal discovery programs have led to much interest in the develop-
ment of computer-based methods for selecting sets of structurally
diverse compounds from chemical databases. Dissimilarity-based
compound selection has been suggested as an effective method, as it
involves the identification of a subset comprising the M most
dissimilar molecules in a database containing N molecules (Snarey
et al., 1997). One subclass of these selection algorithms, referred to
as maximum-dissimilarity algorithm (MDA), has been considered.
The subset selected by this algorithm is distributed fairly evenly
across the space with some points selected in the outline of the data
space.

The objectives of this work are to develop numerical tools for: a)
describing graphically multivariate wave climate; b) describing
statistically multivariate wave climate; c) defining a propagation
strategy consisting of a selection of a reduced number of multidi-
mensional sea states representative of the wave climate in deep
waters to be propagated to shallowwater. For this reason, we adapted
the above-mentioned algorithms to analyze the trivariate (Hs, Tm, and
θm) time series at a specific location and compare their performance in
the proposed objectives.

In Section 2, the KMA, the SOM and the MDA are described and the
differences between them are established. Section 3 gives a brief
description of the data used to define wave climate at a particular area
in Galicia (Spain). The proposedmethodology to analyze the trivariate
wave climate is presented in Section 4. Some results are described in
detail in Section 5. Finally, conclusions are given in Section 6.

2. Clustering and selection algorithms

The initial database is composed of N three-dimensional vectors,
defined as X={x1,x2,…,xN} where xi={Hs, i,Tm, i,θm, i}. In order to
generalize the algorithms to be valid for different met-ocean para-
meters, in this section we used a notation for n-dimensional data (n=3
in this work) and xk is defined as x1k=Hs,k, x2k=Tm,k and x3k=θm,k.

2.1. K-means algorithm (KMA)

The KMA clustering technique divides the high-dimensional data
space into a number of clusters, each one defined by a prototype and
formed by the data for which the prototype is the nearest.

Given a database of n-dimensional vectors X={x1,x2,…,xN}, where
N is the total amount of data and n is the dimension of each data xk=
{x1k,…,xnk}, KMA is applied to obtainM groups defined by a prototype
or centroid vk={v1k,…,vnk} of the same dimension of the original
data, being k=1,…,M. The classification procedure starts with a
random initialization of the centroids {v10,v20,…,vM0 }. On each iteration
r, the nearest data to each centroid are identified and the centroid is
redefined as the mean of the corresponding data. For example, on the
(r+1) step, each data vector xi is assigned to the jth group, where
j=min{‖xi−vj

r‖, j=1,..,M}, ‖‖ defines the Euclidean distance and vj
r

are the centroids on the r step. The centroid is updated as:

vr + 1
j = ∑

xi∈Cj

xi
nj

ð1Þ

where nj is the number of elements in the jth group and Cj is the subset
of data included in group j. The KMA iteratively moves the centroids
minimizing the overall within-cluster distance until it converges and
data belonging to every group are stabilized (more details in Hastie
et al., 2001).
ection algorithms for the study of multivariate wave climate, Coast.
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Fig. 2. SOM lattice of projection: rectangular (left) and hexagonal (right).
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The K-means algorithm has been applied to a sample of N=1000
two-dimensional data to obtain a number ofM=16 clusters. In Fig. 1,
the initialization of centroids {v10,…,v160 }, the updating (represented
by its tracks) and the final prototypes {v1,…,v16} are shown. The data
corresponding to each cluster is represented in the same color as its
prototype. The separation lines between different clusters correspond
to the Voronoi diagram associated with the centroid.

2.2. Self-organizing maps (SOM)

The SOM automatically extract patterns or clusters of high-
dimensional data and project them into a bidimensional organized
space, allowing an intuitive visualization of the classification and the
transformation of the distributions from the high-dimensional space
into Probability Density Functions (PDF) on the lattice (Kohonen,
2000).

The algorithm is similar to the KMA, starting from an initialization
of the reference vectors {v10,…,vM0 } and the prototypes are adjusted
iteratively to data trying to minimize an overall within-cluster
distance from the data vectors vj to the corresponding centroid vector
xi for each cluster j.

The training proceeds in cycles: during each training cycle, each of
the data vectors xi is considered, and the ‘winning’ centroid vector vw
(i) is found to be the one closest to the data vector:

‖vw ið Þ−xi‖ = min
j

‖vj−xi‖; j = 1;…;M
n o

ð2Þ

where 1≤w(i)≤M is the index of the winning reference vector.
The training procedure includes a neighborhood adaptation

mechanism in the lattice of projection, so not only the winning
centroid moves toward the data vector but also the neighboring
centroids in the lattice are adapted towards the sample vector:

vj = vj + αh w ið Þ; jð Þ xi−vj
� �

; j = 1;…;M ð3Þ

where 0≤α≤1 is the learning rate and controls the velocity of the
adaptation process. The function h(w(i), j) is a neighborhood kernel
on the SOM lattice, which determines the rate of change around the
winning centroid and which projects the topological relationships in
the data space onto the lattice. This means that similar clusters in the
multidimensional space are located together in the lattice of
projection. The self-organizing maps (bidimensional projections
with spatial organization) can be rectangular or hexagonal, the
Fig. 1.KMAclustering: initialization {v10,…,v160 }, updating tracks andfinal centroids {v1,…,v16}
with their corresponding clusters.

Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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number of neighbors being 4 or 6 respectively. Each cluster of a SOM is
defined by two vectors: one in the data space vj (prototype) and the
other one (mj,nj) describing the position on the lattice (Fig. 2). For a
given SOM of sizeM=A·B, the jth index of a cluster is related with the
lattice dimensions and its position in the lattice by the expression:
j=B⋅(m−1)+n.

In Fig. 3, the M=16 SOM centroids have been randomly initiated
over the bidimensional sample considered previously in the descrip-
tion of KMA. The initial centroids and their updating tracks are
represented in the same color as the corresponding final centroid. As a
consequence of the neighborhood kernel, the SOM behaves like a
flexible lattice folding onto the cloud formed by the data in the
original n dimensional space. The final centroids and lattice are also
shown in Fig. 3.

2.3. Maximum dissimilarity algorithm (MDA)

The aim of MDA is to select a representative subset of sizeM from a
database of size N. Therefore, given a data sample X={x1,x2,…,xN}
consisting of N n-dimensional vectors, a subset ofM vectors {v1,…,vM}
representing the diversity of the data is obtained by applying this
algorithm. The selection starts initializing the subset by transferring
one vector from the data sample{v1}. The rest of theM-1 elements are
selected iteratively, calculating the dissimilarity between each
remaining data in the database and the elements of the subset and
transferring themost dissimilar one to the subset. The process finishes
when the algorithm reaches M iterations. This algorithm was first
described by Kennard and Stone (1969). Many variants, depending
upon the precise implementation of the initialization and the
definition of the most dissimilar vector, are available (Willet, 1996).
In this work, the initial data of the subset is considered to be the vector
with the largest sum of dissimilarities relative to the others within the
data sample. In the selection process, the dissimilarity between each
remaining vector in the database and each vector in the subset is
calculated, and a unique dissimilarity between each vector in the
database and the subset is established to define the most dissimilar
one. In this work, the MaxMin version of the algorithm has been
considered.

For example, if the subset is formed by R (R≤M) vectors, the
dissimilarity between the vector i of the data sample N–R and the j
vectors belonging to the R subset is calculated:

dij = ‖xi−vj‖; i = 1;…;N−R; j = 1;…;R: ð4Þ

Subsequently, the dissimilarity di, subset between the vector i and
the subset R, is calculated as:

di;subset = min ‖xi−vj‖
n o

; i = 1;…;N−R; j = 1;…;R: ð5Þ

Once the N–R dissimilarities are calculated, the next selected data
is the one with the largest value of di,subset.
ection algorithms for the study of multivariate wave climate, Coast.
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Fig. 3. SOM technique: initialization {v10,…,v160 }, updating tracks, final centroids {v1,…,v16}
with its corresponding clusters and the final projection lattice.

Fig. 4. Maximum dissimilarity selection.
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MDA has an expected time complexity of O(M2N) for M-member
subsets from an N-member database. The more efficient algorithm O
(MN) developed by Polinsky et al. (1996) has been considered. In this
case, the definition of the distance di, subset does not imply the
calculation of the distance between the different vectors dij. For
example, in the selection of the (R+1) vector, the distance di, subset is
defined as the minimum distance between the vector i of the data
sample (consisting of N-(R) vectors at this cycle) and the last vector
transferred to the subset R, and the minimum distance between the
vector i and the R-1 vectors of the subset determined in the previous
cycle:

d min
i;subset = min di;R; d

min
i;subset R−1ð Þ

h i
: ð6Þ

The subset of size M=16 obtained by the maximum dissimilarity
algorithm applied to the same sample used with the classification
techniques is shown in Fig. 4. The subset vectors are represented by the
larger dots and have been numbered in the order of selection. The first
selected vector {v1} is the one that is most dissimilar to the rest of the
data, representing one of the points located on the edge of the data
space. Then thepoint {v2}is selected, representing the onewhich ismost
dissimilar from thefirst one, located on theopposite corner; it continues
selecting points {v3,v4,....} not only from the periphery but also from all
domain of the data sample, the final subset being quite uniformly
distributed. Although, this algorithm is not a clustering technique, each
data has been considered to be represented by the closest vector of the
selected subset and therefore they are shown in the same color.

2.4. Graphical comparison between algorithms

The three algorithms considered have been applied to a data
sample located in the space defined by a circle with a diameter equal
to one. In Fig. 5, the distribution of the KMA centroids (left panel), the
SOM centroids (middle panel) and the MDA subset (right panel) are
represented (blue points) over the data sample (red points). The
effect of the topology preserving projection in the SOM algorithm can
be observed in the distribution of the SOM centroids. KMA distributes
the clusters over the data covering a large area, but there are none on
the edge of the data domain. MDA begins by selecting one data on the
edge of the data space and continues extending over the data domain
until M vectors belong to the subset.
Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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The different density of information in the data space determines
the random initialization of the KMA and SOM classifications. This
initial distribution has a great influence on the final KMA centroids. In
the SOM algorithm, the flexible lattice folds withmore resolution onto
the data areas with more density of information. The MDA subset is
not influenced by a higher density in some regions of the data space.
Another difference between the clustering and selection techniques is
that the classification centroids are not vectors from the database. For
the clustering algorithms, the KMA and SOM centroids are defined as
an average of the corresponding data; however, in the selection
algorithm, the MDA subset is formed by vectors from the database.
3. Data

In order to apply the considered algorithms to analyze trivariate
wave climate at a specific location, the data used to define a typical
wave climate is described. A wave reanalysis time series located in
Galicia (NW Spain), see left panel of Fig. 6, is extracted from the
SIMAR-44 database, developed by Puertos del Estado (Spain) using
the WAM model and forced by 10-m winds from REMOmodel (Jacob
and Podzun, 1997). The temporal coverage spans 44 years (1958–
2001) with an hourly resolution and a spatial resolution of 1/12
degree. In this paper, the three main parameters: significant wave
height (Hs), mean period T02 (Tm) and mean direction (θm) are used in
the definition of each sea state. Therefore, the multivariate database is
defined as: {Hs,i, Tm,i, and θm,i}; i=1,…,N, where N is almost 400,000
sea states. In the right panel of Fig. 6, the empirical bivariate
distribution of significant wave height and mean direction is shown.
This directional distribution provides information about the direction
of the most frequent sea states as well as the largest significant wave
heights. Wave climate at this particular location is influenced by
waves from sectors SW to NE, with the most energetic sea states from
sectors W to NW.
4. Methodology to analyze the multidimensional wave climate

The three above-mentioned algorithms have been considered to
analyze wave climate. The purpose of this section is to establish which
technique is the most suitable to describe the multidimensional wave
climate or to select the most representative subset of sea states. Sea
states can be defined by different spectral scalar and directional
parameters which imply data pre-process and transformations of the
clustering and selection algorithms.
ection algorithms for the study of multivariate wave climate, Coast.
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Fig. 5. Distribution of the classified or selected data in the circle domain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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The conditioning factors imposed by the wave data and the steps
of the proposed methodology for the application of these techniques
to analyze multidimensional wave climate are described below.

4.1. Conditioning factors imposed by the wave data

The input data is defined by the multivariate time series of the sea
states defined in Section 3. The first two parameters (significant wave
height,Hs, andmean period, Tm) are scalar variables, and the third one
(mean direction, θm) is a circular variable.

The criterion of similarity implemented in the three considered
algorithms is defined by the Euclidian distance. The wave direction θm
is recorded on a continuous scale with 360° being identical to 0° while
the Euclidian distance is adapted to an open linear scale. Note, that the
circular variables entail a problem for the application of these
techniques. For example, the directions N1°W (1° respect to the
North) and N1°E (359° respect to the North) are supposed to be
completed differently (differences of 358° with the Euclidian distance
when the real distance is 2°). The problem is solved by implementing
the distance in the circle for the directional variables. Therefore, a
Euclidian-circular distance has been introduced into the clustering
and selection algorithms, namely EC distance (‘E’ for the Euclidian
distance in scalar parameters and ‘C’ for the circular distance in
directional parameters). Besides, the vector components are normal-
ized in order to be similarly weighted in the EC distance calculation.

Another conditioning factor is the redundancy of the average wave
climate conditions defined in the reanalysis database. The clustering
centroids depend on the distribution of the data to be classified, with
more groups in those areas with higher density of information. In the
SOM case, the neighborhood function produces a higher effect. A
Fig. 6. Localization, near Villano deep-water buoy, Galicia, NW Spain (

Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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representative sample of all the sea states of reanalysis data base must
be selected, trying to cover the range of the variable values without
repeated data. In the case of KMA, a pre-selection avoids a conditioned
initialization of the clusters in the data area with an excessive density
of information.

The pre-selection is not necessary in the MDA application because
the subset is selected independently to that of the different density of
information in the data space. Besides, the version developed by
Polinsky et al. (1996) is capable of working with high amounts of data
without an excessive computational effort.

Therefore, the methodology has been divided into several steps. In
the case of KMA and SOM, these are as follows: a) preselection of the
input data; b) normalization of the variables which define the sea
states; c) application of the clustering algorithm with the EC distance
implemented; and d) denormalization of the clusters obtained. In the
case of MDA the steps are: a) normalization; b) application of the
algorithm with EC distance implemented; and c) denormalization of
the subset. An explanatory sketch of the methodology is shown in
Fig. 7 and is explained below.

4.2. Steps of the methodology

The pre-selection step consists of a “cube sampling” scheme: from
the empirical 3-D histogram (composed of small cubic classes), we
select only one data per class. The resolution of the equispaced
division in all dimensions of data space has to assure that the
centroids with its corresponding probably enable reproduce themean
values and the extreme values of different sea states parameters (e.g.
Hs, and θFE). In the example, the Hs, Tm and θm dimensions are divided
in 50 segments, obtaining a sample of 10,000 data. The input data,
left panel). Empirical joint distribution of Hs and θm (right panel).

ection algorithms for the study of multivariate wave climate, Coast.
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Fig. 7. Methodology to analyze the multidimensional wave climate.
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composed of N tridimensional-vectors, Xi*={Hs, i,Tm, i,θm, i} ; i=1,..,N ,
is reduced to a set of P vectors X(i)* ={Hs(i),Tm(i),θm(i)} ; i=1,…,P.

The scalar variables are normalized by scaling the variables values
between [0,1] with a simple linear transformation, which requires
two parameters, the minimum and maximum value of the two scalar
variables.

Hmin
s = min Hsð Þ; Hmax

s = max Hsð Þ
Tmin
m = min Tmð Þ; Tmax

m = max Tmð Þ: ð7Þ

For the circular variables (defined in radians or in sexagesimal
degrees using the scaling factor π/180), taking into account that the
maximum difference between two directions over the circle is equal
to π and the minimum difference is equal to 0, this variable has been
normalized by dividing the direction values between π, therefore
rescaling the circular distance between [0,1].

After these transformations, the dimensionless input data X={H,
T,θ} are defined as:

H =
Hs−Hmin

s

Hmax
s −Hmin

s

; T =
Tm−Tmin

m

Tmax
m −Tmin

m

; θ =
θm
π

: ð8Þ

The clusters obtained by the KMA technique are defined as Kj=
{Hj

K,TjK,θjK } ; j=1,…,M, the centroids obtained by SOM Sj={Hj
S,

Tj
S,θjS} ; j=1,…,M, while the subset obtained by the MDA are Dj=

{Hj
D,TjD,θjD } ; j=1,…,M , where M is the number of centroids.
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The EC distance in the KMA, SOM andMDA, presents the following
expressions:

‖X ið Þ−Kj‖ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ið Þ−HK

j

� �2
+ T ið Þ−TK

j

� �2
+ min jθ ið Þ−θKj j;2−jθ ið Þ−θKj j

� �� �2
r

ð9Þ

‖X ið Þ−Sj‖ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ið Þ−HS

j

� �2
+ T ið Þ−TS

j

� �2
+ min jθ ið Þ−θSj j;2−jθ ið Þ−θSj j

� �� �2
r

ð10Þ

‖Xi−Dj‖ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hi−HD

j

� �2
+ Ti−TD

j

� �2
+ min jθi−θDj j;2−jθi−θDj j

� �� �2
r

: ð11Þ

Finally, the last step is the denormalization of clusters, applying
the opposite transformation of the normalization step:

HS
s;j = HS

j ⋅ Hmax
s −Hmin

s

� �
+ Hmin

s ; TS
m;j = TS

j ⋅ Tmax
m −Tmin

m

� �

+ Tmin
m ; θSm;j = θSj ⋅π

ð12Þ

HK
s;j = HK

j ⋅ Hmax
s −Hmin

s

� �
+ Hmin

s ; TK
m;j = TK

j ⋅ Tmax
m −Tmin

m

� �

+ Tmin
m ; θKm;j = θKj ⋅π

ð13Þ

HD
s;j = HD

j ⋅ Hmax
s −Hmin

s

� �
+ Hmin

s ; TD
m;j = TD

j ⋅ Tmax
m −Tmin

m

� �

+ Tmin
m ; θDm;j = θDj ⋅π:

ð14Þ
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5. Results

The proposed methodology has been applied to analyze the
multidimensional wave climate at the location in Galicia, in NW Spain
(shown in Fig. 6). In this section, we describe the centroids obtained
by KMA, SOM and MDA and we analyze the cluster variance within
and the representativeness of centroids.

5.1. Description of classifications and selection

The original data and the results of the three algorithms are shown
in Fig. 8 with a 3D representation in the upper panel and different 2D
projections in the rest of the panels. In the upper panel, the pre-
Fig. 8. Pre-selected wave climate data and centroids obtained by KMA (a), SOM (b) an
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selected data (gray points), the M=529 centroids (black points), six
selected centroids (black circles) and the corresponding data which
define the clusters (in different colors) are shown. The KMA centroids
(in the left upper panel) are expanded over the input data space, with
some centroids in areas with little information. These are areas with
the largest significant wave heights or southern sea states. In the case
of the SOM algorithm, most of the centroids (in the middle upper
panel) are located in the area with more density of information, and
no clusters are found around the data edges due to the topological
restrictions. The MDA subset (in the right upper panel) is distributed
over the data space, even at the edges.

The 2D projections of the six selected clusters (cyan, magenta,
green, red, yellow, and blue) allow us to analyze the differences
d MDA (c). Distribution of the six selected groups obtained by three algorithms.

ection algorithms for the study of multivariate wave climate, Coast.
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Fig. 10. Standard errors of Hs, Tm and θm of the corresponding data to each cluster
obtained by the KMA, SOM and MDA.
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between the three algorithms in more detail. The centroids (in cyan,
green, yellow and blue), which represent data located in the area with
higher density of information, are similarly classified by the three
techniques. However, SOM does not classify as well as it does the
others the cluster in red, which represents the wave data with the
largest significant wave height. The SOM centroids are not able to
expand over the whole data space. The SOM clusters located on the
edges are made up of a larger range of data variables. In the case of the
red MDA centroid, the amount of data represented by this vector is
smaller than that of the rest of the algorithms, and the variance of the
variable values are smaller than the corresponding KMA centroid.

An important property of the SOM algorithm is that it projects the
topological relationships of the high-dimensional data space onto a
lattice, providing an easy visualization of the classification. A hexagonal
SOMof 23×23 {Hs, Tm, and θm} clusters is shown in Fig. 9. The significant
wave heightHs, thewave period Tm and themeanwave direction θm are
represented by the size, the gray color intensity and the direction of the
arrow, respectively. The smaller hexagon, in a light yellow-dark red
scale, defines the Hs magnitude. The background of each hexagon has
been filled in shades of blue, showing the relative frequency. The input
data has been projected into a toroidal lattice which means that the
centroids located on the upper, lower and in lateral sides of the sheet are
joined in the toroidal projection, being similar in the data space.

As seen, this technique is capable of detecting all the possible sea
states, similar clusters are located together in the projection space,
and themagnitudesof theparameterswhichdefine thecentroids vary
smoothly from one cell to another. The value of the Hs varies from
1.22 m to 10.8 m, Tm has a minimum value of 4.66 s and a maximum
value of 13.8 s, and θm varies from 220° (SSW) to 45° (NE).

The clusterswith the largest significantwaveheights,with a range of
values between 9.01 m and 10.83 m, centered around the cluster
S⁎(18,15)=S⁎406 (=10.83 m), show high periods (values between
11.07 s and 13.26 s) and western directions (273.6°–310.6°).
Fig. 9. SOM of size 23×23, corresponding to the {Hs, Tm, and θm}

Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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The centroids with the largest period values, centered at the clusters
S⁎(21,12)=S⁎472, S⁎(21,13)=S⁎473, S⁎(22,12)=S⁎495 and S⁎(22,13)=S⁎496,
with periods around 13.7 s, present wave heights between 5.83 m and
9.14 mwith corresponding directions aroundW-NW (293.15°–315.9°).

The clusterswithdirections from thefirst quadrant are located in the
corners of the SOMmap. These clusters present low-average significant
wave heights and periods (range values between 1.35 m–6.19 m and
4.77 s–9.27 s), with a predominance of low energetic sea states.

Regarding the frequency (represented in a log-scale), we can
distinguish areas with very frequent sea states (around S⁎(8,3) and
time series of a reanalysis database in Galicia (NW Spain).
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Fig. 11.Mean quantization errors of every algorithm for a different number of centroids.
Standard errors for the 10 KMA and SOM trainings are also presented.
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S⁎(4,21)) but also very rare sea states (S⁎(15,6) and S⁎(16,11)) that help us to
fully visualize all thepossible 3D sea states at a particular location. Besides,
the probability density function on the lattice allows us to consider the
SOM as amultidimensional histogram, providing an interesting option to
aggregate coastal engineering parameters such as mean energy flux,
littoral sediment transport, port operability, etc.

5.2. Performance of the algorithms

We analyze how these techniques are able to describe wave climate
through a reduced number of sea states. Nine different classification
sizes have been considered (25, 49, 100, 196, 324, 400, 529, 625, and
1600) with 10 random initializations in the case of the KMA and SOM
techniques, and only 1 for the MDA deterministic algorithm.

The standard errors between the corresponding data of each
cluster and its centroid, for the three variables considered in the sea
Fig. 12. Errors of Hs90 (%)

Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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state definition of the KMA and SOM classifications and the MDA
selection of size M=529, are represented in Fig. 10. Although the
KMA and SOM algorithms are applied to the pre-selected reanalysis
data, the centroid corresponding to each reanalysis data is calculated
and the variance and the frequency of each cluster are obtained
considering the complete data time series. In the case of the SOM
classification, the mean standard errors are 0.33 m, 0.31 s, and 3.7° for
the variables Hs, Tm, and θm, respectively. In the case of the KMA
classification, these mean values are 0.29 m, 0.27 s and 3.74°. For the
MDA subset, the mean standard errors are 0.29 m, 0.27 s and 3.56°.

The quantization error is defined as the average distance between
each vector and its corresponding centroid, and represents a measure
of the SOM resolution (data far away in the high-dimensional space
are close in the projection lattice). In Fig. 11, the quantization error for
KMA, SOM and MDA algorithms are shown. The random initialization
has no influence on the results. The best results are always obtained
with KMA; for a number of centroids lower than 200 centroids, the
differences in the errors between the algorithms are greater; while for
sizes higher than 200 centroids, these differences are reduced, and in
the case of MDA, the results tend to be similar to KMA errors.

The 90 percentile (Hs90) and the 99 percentile (Hs99) of the
significant wave height statistical distribution and the mean energy
flux direction (θFE) are considered to analyze the representativeness
of the clusters or subset obtained to describe wave climate. We have
determined the error between the real value, calculated by the
complete reanalysis time series (Eq. (15)), and the estimated value,
calculated using the clustering centroids or selection centroids and
their frequency of occurrence (Eq. (16)). In Fig. 12, the errors (ΔHs90,

ΔHs99, εFE=θFE−θ⁎FE) are shown for each size of the classification and
selection considered. The exact, θFE, and the approximate, θ⁎FE,
definitions of the mean energy flux direction are defined as:

θFE = tan−1
∑
N

i=1
H2

s;iTm;i sinθm;i

∑
N

i=1
H2

s;iTm;i cosθm;i

0
BBB@

1
CCCA ð15Þ
, Hs99 (%) and θFE (°).
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Table 1
Goodness of the studied algorithms for different proposes (indicated by the number of
asterisks).

Visualization Statistical
description

Propagation

SOM *** ** *
KMA – *** *
MDA – ** ***
Achieved
objectives

Multivariate
histogram
(SOM)

Correct definition
of average wave
climate
(KMA, SOM,
and MDA)

Ability of finding
uncommon sea states (MDA)

Visualization
in the 2D
lattice of
parameters
derived from
{Hs,Tm,θm}
(SOM)

Useful for
defining port
operability,
longshore
drift, (KMA,
SOM, and
MDA)

Good performance defining the
boundaries of the data space (MDA)
Best option for a propagation
strategy including an
interpolation scheme (MDA)
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θ�FE = tan−1
∑
M

j=1
pjH

2
s; jTm; j sinθm; j

∑
M

j=1
pjH

2
s; jTm; j cosθm; j

0
BBBB@

1
CCCCA ð16Þ

where pj is the probability associated to the jth centroid.
In the case of the MDA selections, the errors ΔHs90 and ΔHs99 are

almost zero for every size considered. In case of the SOM and KMA
classifications, the error decreases when the number of clusters
increases, with values close to zero forMN200. The smallest errors εFE
(≤1°) are obtained by the KMA algorithm for sizesMb100; while for a
number of clusters M≥200, the errors are closer to zero when using
the KMA andMDA. For the SOM, the errors are around 5°–6° for a size
of M=25; they decrease to values close to zero for MN200.

Summing up, these algorithms are able to extract the main
features of the population data, each one showing different abilities
for solving several coastal engineering problems: the SOM is the best
algorithm to visualize multivariate data, the KMA is adequate to
synthesize the most representative sea states to define the average
wave climate, and the MDA is the algorithm that is able to explore the
boundaries of the data space, suggesting that it the best option to
define a wave propagation strategy.

6. Conclusions

The KMA and the SOM clustering techniques and the MDA
selection algorithm have been applied to analyze the multivariate
wave climate. The conditioning factors imposed by the wave database
characteristics imply several modifications and processes thereby
determining a methodology to analyze the multidimensional wave
climate. This methodology has been applied to describe the wave
climate defined by three spectral parameters (significant wave height,
mean period and mean direction).

The projection of the SOM classification ofmultidimensional data on a
lattice provides an excellent support to analyze the wave climate and to
visualize amultidimensional histogramon the lattice. The SOM is the best
technique to graphically characterize themultidimensional wave climate.
Theprojectionof the classification ina two-dimensional spacewith spatial
organization allows the visualization of patternswith high dimensionality
and simplifies the analysis of the multidimensional information.

The quantization error has proved that the best representation of
the average wave conditions is obtained by the KMA classification.
This algorithm can be adequate to study, for instance, port operability
or longshore drift which require the most representative catalog of
wave conditions without being interesting in the extreme situations.
Please cite this article as: Camus, P., et al., Analysis of clustering and sel
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TheMDAalgorithm is suitable for anautomatic selectionof a subsetof
sea states representative ofwave climate in deepwater in amethodology
to transfer the wave climate to coastal areas (Camus et al, 2010).

Regarding the initial objectives of this work, the conclusions about
the analysis of trivariate wave climate using the KMA, SOM and MDA
algorithms are summarized in Table 1 (the number of asterisks
indicates the goodness of the algorithm).

This work focuses on three parameters (Hs, Tm, and θm) and further
research is needed to apply the algorithms to more complex problems
taking into account, for instance, wind velocity and direction, sea and
swell components of the sea states, storm surge level, or even the
spatial variability of the met-ocean parameters.
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