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ABSTRACT

A general method for representing and interpreting the spectra of three-dimensional vector time series
is outlined. Part I contains the formalism for the kinematic interpretation of a single vector time series.
Based on the spectrum density matrix, the formalism unifies and extends to three dimensions several
descriptions of a vector process. These are the Cartesian, rotary, rotational invariant and hodograph
spectrum representations. Empirical modes, which are properties of the measured time series (not of any
geometrical or dynamical assumptions) are introduced. These allow independent orthogonal motions
at the same frequency to be separated. Finally the notion of a prespecified spectrum, which
automatically picks out that part of the measurement which is consistent with all imposed dynamical
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assumptions, is advanced.

1. Introduction

As oceanic and atmospheric measurements be-
come more elaborate and expensive, it becomes
important to develop and apply methods of analysis
which can extract maximum information from the
data. Similarly, as theories attempt to explain more
details of the motion of the atmosphere and ocean,
it becomes more important to make rigorous com-
parisons between theory and observations. Because
physical phenomena vary as a function of frequency,
measurements are usually described in the fre-
quency domain where different theories apply in
different frequency ranges. However, the fact that
the velocity of the fluid is a vector is usually given
minimal attention; the discussion is often confined to
the rectangular components of the vector and their
coherences with each other. The methods to be
described exploit the fact that the velocity is a vector
in the frequency domain (as opposed to progres-
sive vector, stick diagrams and scatter plots, which
are all in the time domain). This treatment gives
much insight into the answers to the two funda-
mental questions—how is the fiuid moving around?
and why is it moving that way?

The standard decomposition of a vector into its
Cartesian components and corresponding spectra
can suffer from sensitivity to errors in the co-
ordinate system orientation and from difficulty in
deducing the kinematics of the motion for anything
much more complicated than rectilinear motion.

! Present affiliation: Environmental Research and Tech-
nology, Inc., Concord, MA 01742.

0022-3670/78/0627-0643$08.50
© 1978 American Meteorological Society

Because of these drawbacks, spectrum descriptions
which do not depend on the orientation of the
coordinate system, and which simply represent mo-
tions other than rectilinear oscillations have been
developed.

One vector spectrum technique which has proven
useful (see, e.g., Gonella 1972; and Mooers, 1973)
treats the motion as being due to counterrotating
waves. Current ellipses also give good insight into
the nature of the motion (see, e.g., Thompson and
Luyten, 1976). Certain spectrum quantities which
are independent of coordinate system, the spec-
trum invariants, have also proven useful (Fofonoff,
1969).

In Part 1 a unified generalized Fourier repre-
sentation of the vector spectra is developed in
which each of the examples mentioned above ap-
pears as a particular case. All the representations
are extended to three dimensions. A new represen-
tation for vector spectra is also introduced. At each
frequency three empirical modes (for three dimen-
sions) can be found which represent motions oc-
curring simultaneously but independently. By
means of these modes different physical processes
may become distinguishabie.

In Part 2, three different dynamical examples
are chosen to illustrate some ways in which the
various spectrum representations may be used to
make tests of whether a set of measurements and
a proposed theory are consistent. The three ex-
amples are wind forced surface currents (Pollard
and Millard, 1970), internal waves (Fofonoff, 1969),
and bottom-trapped topographic Rossby waves
(Thompson, and Luyten, 1976).
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FiG. 1. Cartesian components of a typical three-dimensional

vector time series measurement.
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A discussion of the distribution theory for the
various spectrum parameters is included, so that the
problem of confidence limits can be approached.
The paper concludes with some speculation about
further developments and uses of these spectrum
techniques.

2. Fundamentals
a. The Cartesian spectrum density matrix

In this section the basic definitions and notations
for the standard Cartesian spectral representation
of a vector time series are established. Suppose .
the typical quantity of interest is an ocean current—
a three-dimensional vector which varies continu-
ously for all time. The instrument will measure
(with modifications due to its own sensitivity,
response time, etc.) a sequence of numbers
describing the magnitude and direction of the cur-
rent vector at (usually) equally spaced intervals of
time. If the three-dimensional vector is specified by
a magnitude V(¢) and two directions 6(¢r) and
¢(t), where —o < ¢ < o, the measurement con-
sists of the set of N numbers

{Visbnsbn} n=1,2,3,...N,

where V, = V(nAt), 0, = 0(nAt), ¢, = d(nAt),
and At is the time sampling interval. Following the
usual procedure, these three numbers are immedi-
ately transformed into components of the velocity
vector (u,v,w) along the three mutually orthogonal
axes (x,y,z). (Hence the name Cartesian repre-
sentation.) The measurement of the velocity vector
is now given by three discrete time series and two
parameters
{tn,v,w,}, N, At

which are shown for a typical measurement in Fig. 1.
(For the purposes of this paper it does not matter
whether the vertical velocity component is meas-
ured directly or derived from temperature measure-
ments.) The data shown in Fig. 1 were acquired
in 85 m of water, 5 m above the bottom of New
England’s continental shelf, during the passage of a
hurricane.

The distribution of power with frequency is most
directly (though, as will be seen, not necessarily
most simply or effectively) described by the power
spectra of the three vector components. These
spectra are derived from the Fourier series repre-
sentation of the time series, which can be written as

V(t) = Re mz_l Ve, (1a)
where
/ u(t) )
V(1) = v(r) , (1b)
w(t)
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7. o, u et
Vp = D = iy uze’® , (o)
W ity uzet®

fn = 27wm/NAt and V,, denotes the complex Fourier
coefficient at frequency f,,. The actual Fourier co-
efficients are given by

Vo = [2/(NAD] S AtV,(1) exp(—i2wmk/NA?)

but the computation of these coefficients is only of
minor interest here. The Fourier coefficients will
therefore be assumed known. The power spectra of
the vector time series are given by the elements of
the Cartesian spectrum density matrix which is

defined by
Sy = (bfiy) (2)

where the asterisk denotes complex conjugate and
the angle braces denote ensemble average. (In
practice the ensemble average is often estimated
by a frequency band average, which equivalence is
allowed by the ergodic hypothesis.) The subscript
m has been dropped, it being understood that all
spectrum quantities are functions of frequency. The
off-diagonal elements of §;; are complex whose real
and imaginary parts are more conveniently inter-
preted separately:

Sy = Cy — iQy, (3)

where C; and Q;; are the co- and quadrature-
spectra, respectively. The normalized form of the
off-diagonal elements of the SDM (spectrum density
matrix) is the most common and convenient de-
scription of the relation between components.
These are the complex coherences

_ Sy
[SuSyl?

Yii 4
The amplitude and phase of vy;; is often used in
dynamical hypotheses testing, examples of which
will be given in Part 2. So far, the SDM S has
been described for a single 3-D vector. S is then
a 3 x 3 Hermitian matrix, with three real and three
complex independent elements. The three-dimen-
sional Cartesian SDM for the data of Fig. 1 is
shown in Fig. 2. Since the SDM is Hermitian the
off-diagonal elements in the lower left of the ma-
trix are complex conjugates of those in the upper
right and therefore need not be shown. Gen-
eralizations to more than one vector are easily
made. For Fourier component vectors from two dif-
ferent measurements,

amw
aw = g . k=
g

the cross-spectral density matrix (CSDM) is
defined by

1, 2, 5)
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Sgcl) = (agk)aj(l)) (6)

In three dimensions it is now a 6 X 6 Hermitian
matrix. The information contained in the 2-vector,
three-dimensional CSDM is pictured schematically
in Fig. 3. An example of the use of this ap-
proach (in a spectrum representation yet to be
described) is given in Part 2.

b. Simple motions in the Cartesian representation
1) RECTILINEAR MOTION

Suppose, at some particular frequency, the mo-
tion is oscillatory along some arbitrary line (per-
haps determined by local topography) whose di-
rection is given by r = ai + Bj + yk. The Fourier
component velocity vector is & = aay, D = Ba,,
W = ya,, and 6, = 8, = 6;. The SDM is then

o afl ay
S = (a®) ( B® B’Y) .
,),2

If a measured SDM is real, the motion is recti-
linear and the direction of r may be deduced. In
particular, if the motion is rectilinear along one of
the coordinate axes, say the x-axis, then « = 1
and B8 =y = 0, so that S contains only one non-
zero element Sy,. In this case the physical interpre-
tation is easy. Different spectrum representations
allow similar simplifications for different types of
motions.

Q)

2) ELLIPTIC MOTION

Suppose the motion is elliptical in a vertical
plane (as is the case, for example, for surface
waves), which for simplicity may be taken as the
y—z plane. Then

’2 = 0, 1") — aaoe“’, W= Baoeiwiﬂ'ﬂ)
(The = in the phase of w is for rotation in either
direction). The SDM is

(0 0 0 )
S = (a¢®) o? *iaf
BZ
If « = B, the motion is circular. The signature for
this type of motion is seen to be a pure imaginary
off-diagonal element. Note that even for the simple
case of elliptic motion, three nonzero elements are
present. It will be shown below that a more
appropriate representation can reduce the number of
nonzero elements to unity in this case also. In
general, as shown in Fig. 2, all the elements are
nonzero, making the Cartesian spectrum represen-
tation not one of the simplest to interpret. Another
drawback of the Cartesian representation is the fact
that the elements S;; change when the coordinate

(®)
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F1G. 2. The Cartesian spectrum density matrix for the data shown in Fig. 1.

system is rotated. If topography is poorly known or
navigation is poor, unnecessary errors will con-
taminate the description of the measurement.

3. The generalized spectrum density matrix

The description of a vector time series measure-
ment given above has been in terms of a two-fold
decomposition. The first was a frequency de-

composition—the standard Fourier series repre-
sentation. The second decomposition was in the
representation of the Fourier component vector at
a given frequency in terms of its components along
three mutually orthogonal coordinate axes—a
standard Cartesian representation. The Fourier com-
ponent vector need not be described by its com-
ponents along orthogonal axes, however, but can
be represented by any basis set of motions which
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span the three-dimensional space. Let the Fourier
component vector be represented by

©)

The unit vectors e; each represent a particular type
of motion. For the Cartesian spectrum representa-
tion, the unit vectors are chosen to be

1 0 0
€, = 0 , € = 1 s €3 = 0 , (10)
0 0 1

representing rectilinear motion along the x, y and z
axes, respectively. The (complex) amplitudes a; tell
how much motion (and of what phase) of the type
represented by e; is present as a function of fre-
quency. It may be thought of as a generalized
Fourier coefficient. The amplitudes a; are found
by projection onto the corresponding unit vector, thus

an

Generally the unit vectors are chosen to be ortho-
normal, e} -e; = §;, to simplify the calculations and
interpretations. In the case of the Cartesian repre-
sentation, the generalized amplitudes reduce to the
previous case, viz., a; = ii;. A generalized spectrum
density matrix can now be defined by

V = a,e, + ase; + ases.

a; =ef'V.

Sy = (afay) (12)
and generalized coherences are given by
(ala;)
Yi = . > (13)
[{afa;)(afa;) ]

If a Cartesian spectral representation S’ has been
computed, one need not start all over with dif-
ferent unit vectors to find the generalized Fourier
coefficients and then the generalized SDM. Instead,
it can be shown that any generalized SDM can be
found from the Cartesian SDM, by using the ap-
propriate (orthonormal) unit vectors to transform
the spectrum

Sij = (a;"a,- = ei*'S(C)'ej, (14)

thereby providing a saving in computer time. (The
generalized Fourier amplitudes are still needed to
compute coherences with components of a different
vector time series, however.) For a multiple-vector
time series, the cross-spectrum density matrix
generalizes in the same way. If, for example, two
Fourier component vectors are represented by

n 3 u 3
V=73 aVe” and U =3 a®e®, (15
i=1 i=1
where e’ and e® are (possibly) different unit
vectors, the elements of the generalized CSDM
are given by
S}J,Z — <&1{1)*&l§2)>

(16)
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Fi1G. 3. The two-vector three dimensional cross-spectrum
density matrix in the Cartesian representation.

with obvious extensions to more than two vectors.
Most often, the unit vectors will be chosen to be
the same, viz., e{'’ = e,

4. Rotational invariants

Before proceeding with the development of gen-
eralized spectrum representations, it is useful to
exploit some special properties of the Cartesian SDM.

The actual measurements made by a current
meter are referred to a particular coordinate sys-
tem. It is useful to find spectrum quantities which
are independent of the orientation of the coordinate
system. Such quantities would then be unaffected
by errors in the coordinate orientation caused by
compass and navigational errors, poorly defined
topography, etc. Since the elements of the Cartesian
SDM are defined in terms of vector components,
this SDM is actually a tensor and automatically
has properties which are independent of coordinate
system rotation.

Simple versions of the invariants hold true for
rotations in a plane, for example, those rotations
about a fixed vertical axis. Fofonoff (1969) looked
for these latter invariants by actually rotating the
coordinate system and combining quantities ap-
propriately. The usefulness of any spectrum in-
variant depends on how it can be related to
quantities of physical interest. The spectrum in-
variants and their interpretations are as follows:

a. The trace

The trace of the Cartesian spectrum density
tensor is the most easily computed and inter-
preted of the spectral invariants. The trace is
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e

TrS = Si = 2 X total kinetic energy, (17a)

T

e

TrS =

where the identification with kinetic energy has
been made on the basis of S, = (4f#;) = |1‘4i|2 and
kinetic energy = 1/2[i4,~|2. ‘

S = 2 X horizontal kinetic energy, (17b)

it

i=1

b. The determinant

The determinant of the three-dimensional SDM
can be written as

,SI = 811822 855(1 — |512|2 - ,823|2
— |8;,|2 + 2 Rel), (18a)

where I' = y,,7,3y5; and vy; are the complex co-
herences. In 2-D this reduces to

IS,H = 8181 — |712|2).

It can be seen that the determinant is in some sense
a measure of incoherent noise. By analogy with the
description of partially coherent light (Born and Wolf,
1970), a measure of the fraction of nonrandom
and non-isotropic energy, called the degree of
polarization P may be defined by

S|
(% TrgS)

which is also exactly the same as Fofonoff’s
maximum coherence parameter. P is real and varies
between zero and unity. A related parameter giv-
ing the ratio of nonrandom non-isotropic to random
and isotropic energy (which may be thought of as a
signal to noise ratio), is called the anisotropy
ratio A, where

(18b)

Pr=1 - (19)

P

A= .
1-P

(20)

The anisotropy ratio may be much greater than
unity at a tidal frequency, for example.

c. The sum of principal minors

The sum of principal minors can be written as
. 3
M=% Mi=1s 3 SuSi(l - lvul®. @D
i= i#j

Each principal minor is recognized as a 2-D deter-
minant in one of the coordinate planes. An interpre-
tation can be attached to M relating it to P defined
above. A mean degree of polarization P (and cor-
responding mean anisotropy ratio) in the coordinate
planes may be defined

M

Pz —_
(TrS)?

1

; (22)
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which is still invariant, though perhaps not as useful
as P itself.

d. The total squared quadrature spectrum

The last of this class of spectrum invariants is
Q*=1 3 (S — Sy =% Y O (23)
i i

Suppose for the moment that a 2-D spectrum has
been measured. It is shown in the next section that
the quadrature spectrum describes the nef amount of
rotating energy in a plane. A ‘‘rotary coefficient”
giving the fraction of net rotating energy is defined by

= (24a)

=% TryS
where the subscript H refers to, say, the horizontal
plane. This rotary coefficient is invariant to rota-
tions of the coordinate system in that plane. In
general, there is a different rotary coefficient for
each coordinate plane. For general rotations the
mean rotary coefficient defined by

¢ Q
15 TrS

i

(24b)

is invariant.

e. Multiple coherence

A measure of the total coherence between the
vertical and both horizontal velocity components is
the ordinary multiple coherence +y,,, which can be
written as

S|
SS3M33

where Mj; is the third principal minor. Since Sj;
and Mg, are invariant only for rotations about the
vertical axis, the multiple coherence will only be in-
variant in that case. [The partial coherence and
partial phase can easily be written in terms of the
elements of the Cartesian SDM, however, they are
not invariant under coordinate rotations. For further
discussion of these parameters see for example,
Jenkins and Watts, (1968).] Some of the spectrum
invariants for the data of Fig. 1 are shown in Fig. 4.
We return now to the discussion of the generalized
spectrum density matrix.

25)

Ysz =1 —

5. Rotary spectra
a. The rotary representation

A common alternative to the Cartesian spec-
trum representation described above is the rotary
representation. In this representation the Fourier
vector is decomposed into two counterrotating
circular motions in a plane, usually (though not
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Fi1G. 4. Rotational invariants for the data shown in Fig. I.
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always the best choice) taken as the horizontal
plane. In three dimensions a linear oscillation
normal to the plane of the rotary vectors is added.
Writing out the decomposition directly gives

ulei01 uleiﬂl
Vm — u2e10z = Cl ulel(01+7r/2>
uselas 0

uleiax 0
+ Co | u, "™ | + G, 0 . (26)
0 u3ei93

By the general formalism of the previous section
this decomposition can be written as in Eq. (9),
where the unit vectors e correspond to those on
the right side of Eq. (26), viz.,

1 1
=z() e2=z—u2(_,-) ,
0 0
0
-= (¢}
1

and represent counterclockwise and clockwise
circular motion in the horizontal plane and vertical
motion, respectively. Note that these unit vectors
form a complete orthonormal set for the three-
dimensional space. The generalized Fourier coef-
ficients are found by projecting the unit vectors onto
the original Cartesian Fourier component vector

27

a, = a, = eV =272, — i), (28a)
a, = a- = e5-V = 2712(f, + ii,), (28b)
a; = ef-V = i, (28¢)

where ir, = u,e'®, etc.

The elements of the generalized SDM can be
found either from the rotary Fourier coefficients
given above, using (12), or directly from the
Cartesian SDM and the rotary unit vectors, using
Eq. (14). The results are often conveniently written
in terms of the spectrum invariants. In any case
the rotary spectrum elements are found to be given by

Su = 84 = (afa,) = Vo[({afi,) + <[‘§k’22> - 2Q12]
=15 Tr,S(1 — C,), (29a)

where C, = Q,,/Tr,S and all the elements in the last
two expressions on the right are computed from the
Cartesian SDM. Similarly, -

522 =5_= <a§ka2> =15 TrHS(l + Cr), (29b)
S33 = (afas) = {4fiy) = S, (29¢)

Here S. are the rotary spectra (corresponding to
the ““inner autospectra’ of Mooers). The interpre-
tation of the rotary coefficient as the fraction of net
rotating energy comes from the fact that it can be
written as
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S, —S_
C, = +_S_ . (30)

The normalized cross-spectrum element is the
rotary coherence,

Y= 2
FSusw® T
_ 1o (Suu — va) —iCy

LA—

|lys-lei® (3la)

Y(TryS)(1 — C2)'"
(where C,, is the cospectrum of « and v,
C, is the rotary coefficient, etc., all from the
Cartesian SDM). We find that

lys-[t= (P2 = A/ - C?), (b
tan¢+— = 2Cuv/(va - Suu) (310)

Gonella called ['y+_| the ‘‘stability’” and related it to
the vector hodograph (discussed below). Mooers
called the cross-spectrum element S, = S,_
= (a¥a_) the ‘‘outer-autospectrum’’ and identified
its relation to the coherence between counter-
rotating wave components. In three dimensions the
remaining spectrum elements describe the co-
herence between the vertical and each of the ro-
tating components:

<aﬂ*_<-a3) - L (Suu. * iva) (32)
[(ata.)(afas)]'?

V2 (8.8,)"

In principle these coherences can be related to the
three-dimensional hodograph, but the hodograph is
more simply described by other parameters which
will be introduced. The rotary representation of
the data of Fig. 1 is shown in Fig. 5.

Like the rotational invariants, the rotary repre-
sentation shares in the advantage of being insensitive
to errors in coordinate system orientation (for
rotation in the plane of the rotary unit vectors).
There are situations in which it is advantageous to
take the rotary spectra in a different plane. For
example, one expects internal waves propagating
into shallower water will increase in amplitude
until they overturn and break. Rotary unit vectors
in a vertical plane aligned perpendicularly to the
topography will be the most sensitive way of picking
out that particular type of motion. These unit
vectors can be obtained from the ones given above
by an appropriate rotation of the coordinate system.
Similarly, the rotary spectra can be made into
elliptical spectra of any aspect ratio by changing
the relative amplitude of the components if there is
reason to want to identify motions of that type
(surface waves over a flat bottom, for example).

Yiu =

b. Simple motions in the rotary representation

Before moving on to other spectral representa-
tions it is instructive to look at the same two simple
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Fi1G. 5. Rotary representation of the data shown in Fig. 1.
motions used to illustrate the Cartesian SDM, to see a, = (ay/V2)(a + iB), a = (ay/V2)(e — iB),

what the rotary representation looks like in these
cases.

as = ayY, (33a)

which give matrix elements

1) RECTILINEAR MOTION

If the motion is rectilinear alongr = ai + Bj + ¥k
with V = a,e'®(aBy)T, the rotary Fourier amplitudes

are found to be Sy

= Y2a4’(o® + B7), S = V2aly(a

Su = S+ = 1/2(1()2((x2 + BZ) = S22 = S—’
Sz = Su = ag*y?, (33b)
iB). (33¢)

I+
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We see that the rotary representation for linear
motion is inefficient in the sense that many spectral
elements are nonzero and complex even for this
simple motion. Compare the cartesian representa-
tion [Eq. (7)] for general linear motion given above.

2) CIRCULAR MOTION

Suppose the motion is clockwise and circular in
the horizontal plane (as in the case for inertial
motion, for example). The rotary SDM is then

0 00
S=l102 1 0 ’
0

where g, gives the strength of the motion. Compare
the Cartesian representation (8) of this motion given
above.

These two examples have hinted at the importance
of using a good representation to pick out motions
of interest. The appropriate representation can
simplify the task of interpretation considerably. In
more complicated or unknown motions different
representations are more appropriate, and can be
found a posteriori or specified a priori.

(34)

6. Empirical eigenmode spectra
a. Empirical kinematic normal modes

The Cartesian and rotary representations of the
vector spectrum described above were chosen
a priori and arbitrarily for ease of interpretation.
In principle, any set of unit vectors (i.e., wave
types) which span the space may be chosen as the
basis set for the spectrum representation. A natural
set to use is the orthonormal set of eigenvectors
g; of the Cartesian SDM, which are obtained
from the eigenvalue equation

Sg; = g (35)

These eigenvectors form a complete orthonormal
set and can be thought of as the kinematic normal
modes for the time series measurements. The eigen-
vectors change with frequency, so the type of mo-
tion each represents must be interpreted (by study-
ing ‘‘behavior’’ of the vector hodograph, discussed
below) for each frequency (unlike the Cartesian or
rotary unit vectors which have the same ampli-
tude and phase relations at all frequencies). As in
the Cartesian and rotary representations [Egs.
(9), (10) and (27)] the Fourier component vector is
now expanded in the eigenvectors

(36a)

By using the orthonormal property of the eigenvec-
tors, and the eigenvalue equation, it can be shown
that the coefficients in Eq. (36a) are the eigenvalues.
Thus

V = ag, + asg, + asg,. _
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A

V= A+ AP, + NPg,,  (36b)

a result known as Mercer’s theorem. Since the
SDM is Hermitian, all the eigenvalues are real. In
the empirical eigenmode representation spectrum
amplitudes are given by the diagonal elements, .
S:; = N\;. The coherences between modes are ob-
tained from Eq. (14), but in the case of an empirical
eigenmode representation there is an important
simplification. Suppose e; = g; and we use the
eigenvalue equation (35) in Eq. (14). Then {(afq;)
= g#-S©-g; = \;§;, and it follows that all the co-
herences between eigenvectors are zero. The three
modes are independent and therefore only the three
real diagonal elements of the SDM are nonzero. The
empirical mode spectra for the data of Fig. 1 are
shown in Fig. 6. This is indeed a simple char-
acterization of a vector spectrum. This simplifica-
tion is at the expense of a more complicated
hodograph associated with each eigenvector, both of
which are now functions of frequency. The eigen-
vector hodographs will be discussed in the next
section. These eigenvector hodographs which
would be similar in appearance to those of Fig. 7
are not shown. It is important to recognize that
these empirical modes are not a property of any
geometry (as in the case of normal modes of a
basin) nor do they depend on any dynamical as-
sumptions (as in the case of ‘‘empirical modes’’ for
vertical structure when stratification varies) but
rather they are a property of the time series itself.
Wallace and Dickenson (1972) also discuss this type
of spectral representation.

b. Simple examples of empirical modes
1) LINEAR MOTION

Suppose, as in the previous,éxamples, the motion
is linear along an arbitrary direction given by
I' = ai + Bj + yk. Then the Cartesian SDM is

o af ay
S:(a(?)( )

B* By
,Y2
where q, is the amplitude of the motion. What are
the empirical modes? The secular equation resulting
from Eq. (37) leads to eigenvalues

A= (alf)(@® + B2+ v, A=A =0. (38)

The unit magnitude eigenvector for A, turns out to be

o
g1=N1 (B) ’
Y

where N, = (o + 82 + v?)™'2 and it represents
linear motion along r. The other two eigenvalues
are degenerate, so their eigenvectors -are inde-

(37

(39)
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terminate. These two eigenvectors must satisfy the
eigenvalue equation, which leads to

where

(40)

which implies, by Eq. (39), that gf-g, = 0 and
gigs=0.

The other two eigenvectors represent motion in a
plane perpendicular to r. They may be chosen so
that g,-g; = 0 as well. All of the energy is contained
in the first eigenmode.

2) ELLIPTIC MOTION

Suppose, as in the case of plane surface waves
over a flat bottom, the particle motion is elliptical
in a vertical plane. Suppose also, for generality,
that this vertical plane makes an angle s with the
u axis. The Fourier component velocity vector

is then
X uy cosye?
V = | u,sinfe®

woei(et‘nﬂ)

(41)

where the + sign in w indicates the two senses of
rotation. (If ¢ = 0, uy, = wy and the — sign is chosen
in w, then the motion is circular in the w—z plane
and is clockwise looking toward the origin from
+v). The Cartesian SDM resulting from the above
measurement is [by Eq. (2)]

(uo? cos?yP) (u,? cosy sings) Fi{ugw, cosy)
S = (uy? sin*r) :i(uz,w0 sings) |.
Wo’)

(42)
The eigenvalues in this case turn out to be

A= (U +we?), A=0, A= 43)

The first unit eigenvector is found to be by the

secular Eq. (35)
Uy cosy
g, = N, | uysingg | , where 1\?}\\5 ATV (44)
*iw, -

The other two eigenvectors must satisfy (by the
secular equation)

Yi _ Eiwy z;  cosy
Xi U SINY x; sings
where
Xi
gi = Yi ’ l = 29 3' (45)
Z;

They may be chosen so that the three form an
orthonormal triad:
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gig=0 gig-0 gig=0 (46

which, because of the degeneracy, is not unique.
For example choosing y,/x, = tany;, the second
unit vector is

Uy COSY

g2=N2( Uy siny ) >
Fi(ug®/wo)
Ny = [u*(1 + ug®/wo?)] 72 47)

which is the oppositely rotating wave in the same
plane as g,. When u, = v, these two unit vectors are
the rotary spectra in the plane of rotation. The third
unit vector, chosen to be orthogonal to the first two
and to satisfy (45) is

1 .
g =N, (—cotd;) , Ny=[ul(l+ cot?y)]~12 (48)
) 0

which represents horizontal rectilinear motion along
the normal to the plane in which the rotation is -
occurring.

These two examples illustrate the nature of the
eigenvector representation in simple cases. In
general, the motion does not occur in a plane, there
is neither degeneracy nor eigenvalues equal to zero,
and all empirical modes are important. The general
case is discussed after the next section, in which
hodographs are introduced.

7. Hodograph spectra
a. The vector hodograph

The hodograph is the curve traced out by the
velocity vector as time progresses. Each Fourier
component velocity vector, which in Cartesian form
can be written as

uoei(fmt+0l) I’:ll
Vi = | veelfm+® | = | i, |, 49)
woel(me-oa) ity

traces out its own hodograph with frequency f,.
For a given set of data, u; and 0; are fixed (they are
coefficients in the Fourier expansion of the time
series), so that the second of the above equations is
a parametric representation of the hodograph, with
t as parameter, for a given frequency. In general,
the hodograph is a closed, three-dimensional curve.
A common use of the two-dimensional hodograph,
for example, is to characterize the tides by the
size, shape, orientation and variability of the tidal
ellipse. The properties of the hodograph depend only
on how the water is moving around, not on the
particular representation used to describe the spec-
trum. In other words, whether the motion is repre-
sented by Cartesian, rotary, empirical mode or other
spectra, the parameters specifying the properties of
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the hodograph must be equivalent. For convenience,
the description of the hodograph will be given in
terms of the Cartesian spectrum representation and
the rotational invariants.

b. The two-dimensional hodograph

-Since the two-dimensional hodograph (the
ordinary current ellipse) is simpler and more familiar
than its three-dimensional counterpart it will be
investigated first. Eliminating ¢ between the first
two components of Eq. (49), gives

)+ () -
Uy )

where 8 = 6, — 6,. This is the equation of a rotated
ellipse in the &, ¥ coordinate plane. This equation is

more conveniently manipulated in its matrix form,
viz.,

2 cosd .
i, — sin?d = 0,

(50)

UyVy

Z"-H'z =1, (51a)
where
2’ = (id) and H EBO( B‘_Bz) ., (51b)
_Bz Ba
1 1
 sin® B = u?

cosd 1
B. = s Be=—. (51c)

UpVy Vo

Now in a coordinate system (denoted by a prime)
aligned along the major and minor axes of the ellipse,
the equation of the ellipse would be

I’)l 2 i\)r 2
a b
where @ and b are the semi-major and semi-minor

axes of the ellipse. In matrix form this equation
can be written as

zTH -z =1,

(52)

(53)
where
2
ZITE(i‘li‘)I) and H' E(l/a 0 )
0 1/b?

A comparison of H and H' shows that if H is ro-
tated into diagonal form, the diagonal elements will
be reciprocals of the squares of the semi-major
and semi-minor axes. This rotation can be performed
in a standard way by using the unitary matrix T
which is composed of the eigenvectors of H, viz.,
T = (gilg¥) where Hg/ = Afigf. Then

H
A0 ) _w
0 M\

so that A/ = 1/a® and N = 1/b%. If M\ is the

smaller eigenvalue, the orientation of the major
axis is given by the angle ,

TT-H-T = ( (54)
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tany = y/x (55)

where the associated eigenvector is g} = (xy). All
that remains is to express the eigenvalue and eigen-
vectors of H in terms of the elements S;; of the
spectral density matrix, since it is these latter
elements which are computed from the data. Com-
paring S to H, and neglecting for the moment the
effect of averaging, i.e., ( ) in S, it turns out that

@ =% TiS[1 + (1 — C2)'"]

and (56)

b* =1 TrS[1 - (1 — C2)'7]

for the major and minor axes. Other useful param-
eters to describe the ellipse are

a® + b* = TrS = 2 X Kkinetic energy, (57a)
ab = |Q| = 1/m x area of ellipse, (57b)
—_ 2\1/2 1/2
=1 - pr/aryn = [ 2LZCD
: I+ (1 -CH)2
= eccentricity, (57¢)
1 — 1 —_ 2)1/2
b/a = —(-CL)—— = aspect ratio.  (57d)
1+ (1= C2)e

The principle axes of the ellipse are found from the
eigenvectors and eigenvalues of H which are

1
N1,2 (:3031 - }\1{,2) ,
BoBs

(1 =01 -G

I

H
gi.2

M = (58)

C2ATrS
where N, , are normalization factors. The direction
of the major axis is found by substituting for 3; and
\;, the equivalent terms of the SDM, giving

tany, = (S5, — Q%/a%)/C. (59)

An alternative form for i, can be found from the
above expression by using the trigonometric identity
tan26 = 2 tan6/(1 — tan?6) and the secular equation
for A = 1/a® to eliminate the eigenvalue from the
equation for {; to get the well-known expression
(Fofonoff, 1969),

tan2y, = 2C/(S11 — Sz). (60)

The angle s, is also equal to the phase of the
generalized complex coherence in the rotary repre-
sentation (Gonella, 1972).

In relating the matrix H to the SDM, the effect of
averaging was neglected. In addition to the three
parameters specifying the size, shape, and orienta-
tion of the two-dimensional hodograph ellipse, the
statistical variability of the hodograph must also be
specified. This description can be accomplished in
several ways. Gonella and Mooers took the mag-
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nitude of the rotary coherence |y..| as the sta-
tistical measure of variability of the major axis. The
degree of polarization P or anisotropy ratio A also
describe the variability. In principle the probability
distributions of all the hodograph parameters (in-
deed all spectrum parameters) can be worked out
(or at least approximated) -and error bars put on all
parameters. This distribution theory of spectrum
estimates is discussed in another section.

Before proceeding to the three-dimensional hodo-
graph, it is noted that a hodograph ellipse can be
described by the Stokes parameters used to describe
polarized light (Born and Wolf, 1970). These param-

cters are
=38, 1+38», a=5,+38,=2C 1)
=880, a3=i(8y —Sp)=-20
The ellipse size is then given by
oy = a® + b2 (62a)
The shape is given by
b/a = tany (62b)
where ) o
sin2y =
(a? + a? + ay?)'?
The orientation is
tan2y = a,/a;. (62¢c)
For incoherent, isotropic motion, a; = a, = a3 = 0

50 oy = a,> + a,> + a,® which can be related to the
degree of polarization by

P = (a2 + o + 05®)'? /ey < 1. (62d)
¢. Three-dimensional and empirical mode
hodographs

Fortunately, the three-dimensional hodograph is a
simple generalization of the two-dimensional one.
Although it may have been expected that in three-
dimensions the ellipse becomes an ellipsoid, this is
not the case. In fact, as discussed above, in three-
dimensions the hodograph remains a simple closed
curve. This curve is wrapped around an elliptic
cylinder, and it has the general appearance shown
in Fig. 7. The two dimensional hodograph dis-
cussed above can be drawn in any coordinate plane,
which has been taken as the horizontal in Fig. 7. Two
additional parameters are needed to characterize the
shape of the three-dimensional hodograph. If the
3-D Fourier vector is that of Eq. (49), the max-
imum departure from the horizontal plane is

Whax = Wo = Swuz' (63)
The second parameter describes the position of the
vertical maximum on the horizontal ellipse (see
Fig. 7). From (49), w is maximum when f,,t = —6;.
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Letting primes denote & and ? at the position of
maximum W, and substituting f,,z = —6; gives for
¥, (see Fig. 7),

¢ _ Red"  Rewgd’

e = R Rewed!
_ Rew,upe’®=%  ReW*d  C,y 64
B Rewglyei® =8 "~ Rew*n Cuw ©4)

where C;; are the cospectra. The hodograph repre-
sentation for the data of Fig. 1 is shown in Fig. 8.

Hodograph analysis is essential for understanding
empirical mode spectra. It was shown above that
the eigenvalues of the Cartesian SDM give the power
in the three independent empirical modes as a func-
tion of frequency (see Fig. 6). The empirical modes
correspond to the eigenvectors of the Cartesian
SDM. But what types of motion do the eigen-
vectors represent? Unlike the Cartesian or rotary
unit vectors, the eigenvectors change with fre- -
quency; at each frequency, the type of motion they
represent changes. To find out what this motion is,
the hodograph, as a function of frequency, must
be constructed for each eigenvector separately. The
general procedure is as follows: first construct the
Cartesian SDM and find its eigenvalues and eigen-
vectors, i.e., from V = (iiiii;)’ construct the
Cartesian SDM, S = (#f#;). Find the eigen-
values and eigenvectors

S = N (65)

where A, are eigenvalues and g, = (XX %;)' are
the eigenvectors. For each eigenvector construct
the Cartesian SDM, §©

S = (irx;) (66)

The hodograph of the eigenvector is now found
from S$© by the method described above. In short,
the eigenvector can be thought of as a Fourier com-
ponent vector whose hodograph is to be found.

8. Prespecified spectra

In all of the previous spectral representations, the
type of spectrum is either fixed and given (as in the
Cartesian or rotary descriptions, where the motion is
always linear or circular) or else the spectra change
with frequency (as in the hodograph or empirical
mode descriptions). This idea of a changing spec-
trum can be exploited to ease the task of inter-
preting the spectra. In all the cases just men-
tioned, the spectrum obtained from the measure-
ments must be interpreted kinematically and
dynamically. It is possible, in a sense, to reverse
this procedure by using unit vectors of prespecified
functional form. Thus instead of saying, ‘‘These are
the measured spectra (of a certain type), now what
do they mean?” one can say, ‘‘I am looking for
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FiG. 8. Hodograph representation for the data shown in Fig. 1.

motion of a certain type (consistent with certain
kinematic or dynamic assumptions); how much of
the measured spectrum can be interpreted this
way?”’ The unit vector e, = [a(HIIW(S)] is
constructed from theoretical arguments, two orthog-
onal unit vectors are found and the generalized
spectrum density matrix is computed. The diagonal
spectral element corresponding to e, tells how much
energy can be interpreted that way. This approach

will become clearer in Part 2 of this paper, in
which the general problem of dynamical testing
is addressed.

9. Discussion of statistical errors

Any measurement is incomplete without a
specification or at least a discussion of its accuracy.
Error bars can be put on spectrum estimates once
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their probability distributions are known. The ques-
tion of the convergence of the sample spectrum
to the ‘‘real’”” spectrum of the stochastic process
has been of central importance in time series analy-
sis (see, e.g., Jenkins and Watts, 1968). It is well-
known that if the original data are normally
distributed, the Fourier coefficients are normally
distributed also. The smoothed sample spectral
estimates (i.e., the diagonal elements of the
Cartesian SDM) do converge and are then distrib-
uted as x,%, a chi-squared variable with v degrees
of freedom (associated with the smoothing). Error
bars can then be put on these spectral estimates.

The distributions of the coherence amplitude and
phase are more complicated than x,2. Nevertheless
their distributions have been worked out (Amos and
Koopmans, 1963) and error bars can be found. In
the parameter range v > 20, 0.4 <y < 0.95 the
error bars on coherence amplitude can be approx-
imated by (Koopmans, 1974, p. 283)

Vi <Y<Y

Vie = tanh[tanh“&

U2

1
Q- 20 - 1)] ’

where uy;, is the a/2 percentage point of the normal
distribution and ¥ is the calculated coherence
amplitude. In addition a level of zero significance,
i.e., the coherence amplitude y, below which the
estimate is statistically indistinguishable from zero
is given by (Koopmans 1974, p. 284, Jenkins
and Watts 1968, p. 433).

N v = 1-) ]—1/2

2,2(v—-1)

(67)

Yo = [1 (68)
where F, .. is the F distribution. Tests to distinguish
values of coherence other than zero can also be
made (these are the ‘‘power tests’” of Amos and
Koopmans, 1963).

The error bars on coherence phase are (Koop-
mans, 1974, p. 285)

0—8<60=<0+89,

_ & 2
é = sin"[[-—l——f—J” t(z?nlzz—)n} )
2w — 1)

where 752 is the a/2 percentage point of the ¢-dis-
tribution with » degrees of freedom.

It can be shown that the rotary representation
spectrum parameters are distributed exactly as these
Cartesian parameters, so all the results just sum-
marized can be applied directly. Error bars in the
other representations are more difficult to compute.
Preliminary investigations show that the trace of the

(69)
where
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SDM may be approximated by x2, the rotary coef-
ficient related to ¢, and the angle i, of the three-
dimensional hodograph related to F distributions.
The other parameters may be characterized by their
lowest two moments-—their biases and variances.
However, more work is needed in this area before
standard results may be applied.

10. Summary

The concept of a unit spectrum vector repre-
senting a particular type of motion has been used to
relate and extend several approaches to the descrip-
tion of vector spectra. Each representation em-
phasizes different aspects of the flow and therefore
has its advantages and disadvantages in various
applications. The Cartesian representation best de-
scribes rectilinear motion and may be useful in
describing the flow near strong topographic vari-
ations, for example. The rotary representation,
rotational invariants and the shape of the hodograph
are unaffected by errors in coordinate system
definition. Using unit vectors, the rotary spectra
can easily be taken in any plane. The empirical
modes find independent orthogonal motions at the
same frequency. They may be useful in separating
motions at the same frequency which are due to dif-
ferent mechanisms or different waves, for example.
By specifying a unit vector as a function of fre-
quency, and constructing two other vectors orthog-
onal to it, the amount of energy consistent with
certain hypotheses is automatically picked out. If the
spectrum corresponding to the given unit vector con-
tains more energy than the spectra of the other unit
vectors, the motion has been largely ‘‘explained”
by the dynamics that went into constructing the
unit vector. ,

Any of the representations may be used for test-
ing any proposed dynamical balance from a given
measurement. The ‘‘best’’ representation depends
both on the proposed dynamics and on other
physical effects which may be present in the meas-
urement. Several examples of dynamical testing in
the different representations are given in Part 2.
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