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ABSTRACT

The nonhomogeneous Poisson process is used to model extreme values of the 40-yr ECMWF Re-Analysis
(ERA-40) significant wave height. The parameters of the model are expressed as functions of the seasonal
mean sea level pressure anomaly and seasonal squared sea level pressure gradient index. Using projections
of the sea level pressure under three different forcing scenarios by the Canadian coupled climate model,
projections of the parameters of the nonhomogeneous Poisson process are made, trends in these projections
are determined, return-value estimates of significant wave height up to the end of the twenty-first century
are projected, and their uncertainties are assessed. The uncertainty of estimates associated with the non-
homogeneous Poisson process estimates is studied and compared with the homologous estimates obtained
using a nonstationary generalized extreme value model.

1. Introduction

Ship design depends crucially on the knowledge of
the most severe significant wave height (SWH) condi-
tions that ships need to withstand during their lifetime,
and thus requires reliable estimates of return values.
The m-year return value of SWH is defined loosely as
the value of SWH that is exceeded on average once
every m years; typically of interest is the 20-yr return
value, denoted by SWH20, because ships are usually
designed to last at least 20 yr. In addition to estimates,
it is also important to obtain measures of their accuracy
as well as projections as to how they may be affected by
future climate changes.

Caires and Sterl (2005) have obtained return-value
estimates of SWH data from the 40-yr European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA-40) (Uppala et al. 2005), a global
reanalysis of meteorological variables from 1958 to
2001. The estimates were obtained by fitting a general-
ized Pareto distribution (GPD) and a Poisson model to
data sampled using the peaks-over-threshold (POT)

method. The annual maxima (AM) method (see, e.g.,
Coles 2001), another statistically sound approach to re-
turn-value estimation in which the generalized extreme
value (GEV) distribution is fitted to sample annual/
seasonal maxima, was not considered by Caires and
Sterl (2005) on the grounds that the rather small sample
sizes it deals with yield less precise inferences.

Both of these methods assume the stationarity of ex-
treme values. However, the results of Caires and Sterl
(2005) show that return-value estimates based on data
from different decades are not compatible with each
other, particularly in certain regions of the North At-
lantic (NA) and North Pacific (NP) oceans. The incom-
patibilities in the NP estimates point to a positive trend,
and those in the NA estimates to decadal variability.
This suggests that the estimation of return values of
SWH with data from several decades should be based
on a nonstationary model. The realization that the ex-
treme wave climate is nonstationary also implies that
current climate alone cannot be used to estimate future
return values of SWH.

Another problem involved with the estimates of fu-
ture SWH return values is that no projections of future
SWH fields are available. Although different climate
models have been run in various research and meteo-
rological institutes to compute the evolution of the
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present climate under different assumptions about the
future rates of emission of greenhouse gases (GHGs),
that is, under different future forcing scenarios, these
models do not have coupled wave models and therefore
provide no future SWH values. Furthermore, the reso-
lution of the grids on which the computations are done
is too low to enable the reliable use of the resulting
wind fields to directly force wave models and eventu-
ally obtain SWH climate projections offline.

The reasonable reliability of climate projections of
sea level pressure (SLP) provided by climate models
and the knowledge (e.g., Wang and Swail 2001) that the
SWH fields are highly correlated with SLP fields and
can be reliably used to regress SWH fields on SLP
fields, led Wang and Swail (2005, 2006) and Wang et al.
(2004) to project return values of SWH, using a non-
stationary generalized extreme value (NS-GEV) model
with the parameters being dependent on covariates de-
rived from climate model estimates of future SLP fields
under different future forcing scenarios (Wang et al.
2004; Wang and Swail 2005, 2006).

There were three future forcing scenarios considered
in the studies by Wang and Swail (2005, 2006) and
Wang et al. (2004): a modified version of the Intergov-
ernmental Panel on Climate Change (IPCC) IS92a sce-
nario (Boer et al. 2000), from now on referred to as the
IS92a forcing scenario, in which the emissions of GHG
correspond to those observed up to 1990 and are then
increased at a rate of 1% yr�1, and the Special Report
on Emission Scenarios (SRES; Nakicenovic and Swart
2000), the A2 and B2 forcing scenarios, which also in-
clude aerosol forcings. The A2 scenario is similar to the
IS92a scenario and the B2 scenario describes a slower
future increase of GHG emissions.

Wang et al. (2004) fitted a NS-GEV model with pa-
rameters depending on SLP-derived variables to the
1958–97 SLP reanalysis dataset of the National Centers
for Environmental Prediction–National Center for At-
mospheric Research (NCEP–NCAR, Kalnay et al.
1996) and SWH data for the NA from the Swail and
Cox (2000) wave dataset. Wang and Swail (2005) did
the same analysis for the NP using the Cox and Swail
(2001) SWH dataset. Assuming that the fitted model in
each case is also valid under different climate scenarios,
these authors used projections of SLP fields under the
IS92a, A2, and B2 scenarios by the Canadian second
Coupled Global Climate Model (CGCM2) from 1990
to 2100 to obtain estimates of SWH20 up to 2100 for the
NA (Wang et al. 2004) and NP (Wang and Swail 2005).

Using the “observed” (i.e., ERA-40) relationship be-
tween SWH20 and SLP fields represented by a NS-GEV
model, along with projections of SLP fields made with
three climate models under three different forcing sce-

narios, Wang and Swail (2006) quantified the uncer-
tainty in projections of SWH20 that arise from the dif-
ferences among the climate models and among the forc-
ing scenarios. They also estimated the multimodel
mean projection of changes in SWH20.

The objective of this work is to compare the results
obtained using the nonstationary analog of the POT
GPD approach with those obtained by Wang and Swail
(2004, 2006) and Wang et al. (2004) using a NS-GEV
approach. As hinted above, when modeling extremes in
the stationary setting the POT GPD approach is often
preferable to the AM GEV approach. This seems to be
even more so the case in nonstationary settings, be-
cause we are dealing with even more parameters. As-
ymptotically the results should be the same, but be-
cause we are dealing with short time series it is impor-
tant to compare and assess the relative uncertainty of
the two approaches.

The datasets we will be using here are the global
ERA-40 SWH and SLP descriptions of the present cli-
mate and the global CGCM2 SLP projections of future
climate scenarios. Because Wang and Swail (2006) ana-
lyze only briefly the future global changes in values of
SWH20 under different forcing scenarios, and only
those based on the multiclimate model results, we will
analyze here in some detail global changes in SWH20

under different forcing scenarios based on the CGCM2
projections.

In section 2 of this article we will describe the
datasets used. In sections 3 and 4 we will present the
nonstationary models for extremes and other statistical
methods used in our analysis. In section 5 we analyze
the results, and we finish with conclusions in section 6.

2. Datasets

In this work we shall assume that the ERA-40 dataset
correctly describes the present climate, and that the
relationships found between its SLP and extremes of
SWH are also valid in the future, irrespective of forcing
scenario. It should be pointed out that our conclusions
are likely to be very sensitive to a departure from these
assumptions; also, because the uncertainty resulting
from any possible departure cannot be quantified, it is
expected that the uncertainty in estimates of future re-
turn values of SWH will be underestimated.

From the ERA-40 dataset we will be using SWH and
SLP from 1958 to 2001. The SWH data consist of fields
of 6-hourly “observations” on a global 1.5° latitude �
1.5° longitude grid. The SLP data consist of fields of
monthly and seasonal means (computed from 6-hourly
observations) on a global 2.5° latitude � 2.5° longitude
grid (which is the resolution of the grid on which a large
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subset of the ERA-40 data is available online at http://
data.ecmwf.int/data/d/era40_daily/). Squared gradients
of monthly mean SLP fields were computed and aver-
aged seasonally. Both the seasonal mean SLP and sea-
sonally averaged squared gradients were reexpressed as
anomalies relative to their 1961–90 baseline climates,
the ERA-40 baseline climates; the resulting fields will
be referred to as the seasonal mean SLP anomalies and
seasonal SLP gradient indices and denoted by P and G,
respectively.

Projections of future monthly and seasonal means of
SLP were obtained from CGCM2 (Flato and Boer
2001) simulations for the IS92a scenario from 1961 to
2099, and for the A2 and B2 forcing scenarios from
1990 to 2099. For each scenario, an ensemble with three
members is available, that is, for each scenario, three
integrations with the same forcing but different initial
conditions were run; the differences between the indi-
vidual members of an ensemble are supposed to be
entirely due to natural variability, meaning that each
member can be considered as an independent realiza-
tion of the same stochastic process. The data are on a
global 96 � 48 Gaussian grid (�3.75° � 3.75°). Sea-
sonal mean SLP anomalies relative to the IS92a sce-
nario simulations of the 1961–90 baseline climate, the
“simulations baseline climate,” were computed.
Squared gradients of monthly mean SLP fields were
computed from monthly mean SLP fields adjusted to
the ERA-40 baseline climate (replacing the simulated
baseline climate by the ERA-40 baseline climate) and
averaged seasonally.

The P and G fields were calculated for each ERA-40
SWH 1.5° latitude � 1.5° global longitude grid point
from values at the four nearest SLP grid points using
weights proportional to the inverse of the distance.

3. Nonstationary models for extremes

In this section we outline the two approaches to mod-
eling extremes of nonstationary time series as well as
the methods used for estimating model parameters.
The first two subsections deal with the nonhomoge-
neous Poisson process (NPP) and NS-GEV models; the
other two are about model choice/testing and confi-
dence intervals. This section is more demanding, but
the concepts introduced are indispensable to the under-
standing of our analyses.

a. The nonhomogeneous Poisson process

In the point process approach to modeling extreme
values (Smith 1989; Anderson et al. 2001), one looks at
the times at which “high values” occur and at their

magnitudes. If t1, t2, . . . denote the times at which high
values occur and x1, x2, . . . denote the corresponding
magnitudes of the variable of interest, then the point
process consists of a collection of points {(ti, xi)} in a
region of the positive quadrant of the plane. In practice,
such a collection of points has first to be extracted from
the original time series in such a way that the xis can be
modeled as independent random variables. The way
this is usually done with wave and similar data is by a
process of “declustering” in which only the peak (high-
est) observations in clusters of successive exceedances
of a specified threshold or level are retained and, of
these, only those that in some sense are sufficiently
apart (so that they belong to more or less “independent
storms”) will be considered as belonging to the collec-
tion of points of the point process. Specifically, in the
present application we have treated cluster maxima at a
distance of less than 48 h apart as belonging to the same
cluster (storm) and hence use only the highest of the
cluster excesses.

The process of declustering is thus based on fixing a
threshold over which one can consider exceedances and
hence define the cluster peaks. This threshold is a num-
ber a � a(t), which may depend on time t. For the
moment we will assume that a(t) has been chosen, and
that the collection of points (obtained by some declus-
tering procedure) representing our point process is
given. Although the threshold used for declustering
need not be the same as the threshold used for estimat-
ing the parameters of the NPP model (it could be
lower), in this paper we will always use the same thresh-
old and hence will not distinguish between the two.

Thus, our point process, or rather its “realization,”
consists of a collection of points belonging to the plane
set C � {(t, x): x � a(t), 0 � t � T }, where T is the
number of years (in our case) over which observations
are available and a(t) denotes the threshold at time t.
The NPP model of extremes has the following property.
If A is a subset of C, then the number of points occur-
ring in A, which we denote by N(A), is a random vari-
able with a Poisson probability function with mean
�(A)��A �(t, x) dt dx, where

�	t, x
 �
1

�	t
 �1 � �	t

x � �	t


�	t
 �
�

�	1��	t

�1

for 	t, x
 ∈ C. 	1


Respectively, �(t), (t), and �(t) are the location, scale,
and shape parameters, or rather “parameter functions,”
that may depend on time and need to be specified and
estimated in practice. In particular, N(C), the total
number of points in the whole region C in which we are
interested, is Poisson distributed with mean �(C).
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The function in (1) is called the intensity density of
the process. Essentially, �(t, x) regulates the abundance
of points around the location (t, x) of the region C in the
sense that the larger (smaller) � is around a neighbor-
hood A of (t, x), the larger (smaller) the average num-
ber of points is in that neighborhood, �(A).

In (1), the subscript � is used to mean that �(t, x) is
zero unless the expression in parenthesis is �0. Thus,
given t ∈ (0, y), if �(t) � 0 then the range of x values for
which �(t, x) is not zero is max[a(t), �(t) � (t)/�(t)] �
x � �, while if �(t) � 0 this range is a(t) � x � �(t) �
(t)/�(t). Consequently, if A is a plane set of points (t, x)
that does not satisfy these restrictions, then �(A) � 0
and hence N(A) � 0 with probability one.

The integration of �(t, x) in x can be carried out
analytically, and to compute �(C) it remains to inte-
grate the result in t,

�	C
 � �
C

�	t, x
 dx dt

� �
0

T �1 � �	t

a	t
 � �	t


�	t
 �
�

�	1��	t



dt. 	2


To incorporate nonstationarity into the process we
shall consider the following models for its parameters:

�	t
 � �0 � r1P	t
 � r2G	t
,

log��	t
� � b0 � q1P	t
 � q2G	t
,

�	t
 � �, 	3


t � 1, 2, . . . , T, where r1, r2, etc., are constants and P(t)
and G(t) are covariates, that is, observations from a
time series that for each time t are to a certain degree
related to the peak x occurring at t.

Applying such a nonhomogeneous Poisson process
model to data requires estimating the parameters in-
volved in (3). For this purpose we will use the maximum
likelihood method (Smith 1989; Anderson et al. 2001).
We let [ti,j, x(i, j)], j � 1, 2, . . . , ni, i � 1, 2, . . . , T,
denote the collection of points obtained from the de-
clustering procedure, where T is the number of years of
data being analyzed and ni is the number of peaks ob-
served in (a specified season of) year i.

The likelihood function based on this sample is given
by L � exp���C �(t, x) dt dx] �i,j �[ti,j, x(i, j)]. The
maximum likelihood estimates are the values of the
parameters [�0, r1, etc., in the case of a Poisson model
specified by (3)] that maximize this expression, and
they usually have to be determined numerically. In-
stead of maximizing L it is convenient to maximize its
logarithm, the log-likelihood function,

l � ��
C

�	t, x
 dt dt � �
i,j

log��ti,j, x	i, j
�. 	4


The covariates P and G in terms of which the param-
eters of the Poisson process will be modeled vary only
from year to year, and so [see Eq. (3)] the parameter
functions �(t), (t), and �(t) will be constant within each
year.

The threshold a(t) is taken as a constant, that is,
a(t) � a; it is defined as the 97th percentile of the em-
pirical distribution of the 6-hourly ERA-40 SWH series
for a given season. This specification is based on pre-
vious studies with the stationary approach (Caires and
Sterl 2005), where it was found that the 97th percentile
provided a reasonable threshold value (over which
the asymptotic models of extreme value theory were
thought to provide a good approximation), and on ex-
perimenting with the present model.

The choice of the threshold is usually a problematic
aspect of extreme value analyses. If the threshold is too
high, very few extreme values will actually contribute to
the fitting of the model, which will result in uncertainty
in the estimates (e.g., too large confidence intervals).
On the other hand, if the threshold is too low there may
be too many values in the sample that are not compat-
ible with the asymptotic distribution of extremes, and
this may result in biased estimates. To overcome this
“variance-bias dilemma,” one has to somehow choose a
threshold “in the middle,” and that is the difficult part.
In the case of the NPP model the choice of the thresh-
old seems to be even less obvious than in the POT GPD
approach, where some experience and empirical rules
exist.

Our choice of a constant threshold is based on the
assumption that even if the choice of an appropriate
threshold would vary in time, such variation should be
negligible with respect to the time periods considered
and to realistic climatic trends. This assumption has not
been checked but seems very plausible to us. Also, we
have taken the threshold a little above the threshold
used by Caires and Sterl (2005) in the stationary ap-
proach, which should compensate for an eventual need
for using an increasing threshold.

What usually happens is that the results do not vary
much if one varies the threshold in an interval. This is
also the case in our application: varying the threshold
between the 95th and 98th percentiles yields compat-
ible estimates. On the other hand, considering thresh-
olds above the 93th percentile seems, according to our
and other authors’ experience, high enough a threshold
for extremes of SWH to follow approximately a GPD
distribution.

The peak exceedances and their times are, as above,
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represented by [ti,j, x(i, j)], j � 1, 2, . . . , ni, i � 1, 2, . . . ,
T. They correspond to the seasonal peaks of cluster
exceedances above the threshold a and the times in
which they occur as obtained from the 6-hourly time
series of ERA-40 SWH. The declustering method we
use in order to arrive at this sample is the one explained
earlier.

Because the parameters are constant within each
year, it will be convenient to denote the �(t), (t), and
�(t) by �i, i, and �i, respectively, when t falls in year i.
In this way, taking into account the piecewise constancy
of the parameter functions, using (2) to compute the
integral in (4) and (1) to write the expression for �[ti,j,
x(i, j)], we can write the log likelihood function as

l � ��
i�1

T �1 � �i

ai � �i

�i
�

�

�
1

�i

� �
i�1

T

�
j�1

ni

log� 1
�i
�1 � �i

x	i,j
 � �i

�i
�

�

�	1��	i

�1�. 	5


The within-year constancy of the parameters and co-
variates allows us to write model (3) as

�i � �0 � r1Pi � r2Gi,

log	�i
 � b0 � q1Pi � q2Gi,

�i � �, 	6


where again i � 1, 2, . . . , T denotes the year, and Pi and
Gi denote the values of the covariates in year i. The
models we shall use for the parameters will always be
submodels of the “full model” (6), that is, they will be
as in (6) except that some of the parameters may be
taken as zero from the outset.

If we substitute the right-hand sides of the Eqs. (6)
into the log likelihood (5), we obtain an expression
depending on several parameters (seven in the case of
the full model); it is such an expression that we will
have to maximize. The maximization will be carried out
numerically using the downhill simplex method (Press
et al. 1992).

The m-year return value xm is obtained from the fact
that the mean number of points whose vertical coordi-
nate exceeds a value xm in m years is �m

0 ��
xm

�(t, x) dx dt.
Setting this equal to 1 and using (2) with T � m and
a(t) � xm, we see that the m-year return value is the
solution xm to the equation

�
0

m �1 � �	t

xm � �	t


�	t
 �
�

�	1��	t



dt � 1. 	7


The above expression incorporates the time variability
of the parameter estimates in the particular return-
value estimate. However, in this study we will be mainly

interested in the yearly variation of return-value esti-
mates because of the time changes in the parameters,
that is, in the variation of the return values once the
estimates of the parameters for a given time are fixed.
Treating the parameters in (7) as constant in t and solv-
ing for xm, we find that the m-year return value based
on the NPP parameters at a fixed time t is

xm	t
 �
�	t


�	t
 �� 1
m���	t


� 1�� �	t
. 	8


b. The nonstationary generalized extreme value
model

In the NS-GEV approach to extremes (see, e.g.,
Coles 2001), the maxima of a process over n times of
observation within year/season t is assumed to have a
NS-GEV distribution function,

Gt	y
 � exp���1 � �	t
�y � �	t


�	t
 ��
�

�1��	t
	, 	9


for �� � y � �, where the parameters satisfy �� �
�(t), �(t) � �, and (t) � 0. In the traditional stationary
setting the parameters are constant in time, and (9) is
just the GEV distribution function.

In the stationary case the parameters of the GEV
distribution and Poisson models are related in the fol-
lowing way. Suppose that the sequence of observations
above a certain level satisfies the model specified by
(1). Then, the probability that the maximum in a se-
quence of T observations does not exceed a large value
y equals the probability that the number of points in the
region Cy � {(t, x;): x � y, 0 � t � T } is zero, and thus
equals (recall the form of the Poisson probability func-
tion) e��(Cy), which can be seen to equal (9) by a com-
putation like that in (2). Thus, in situations where both
stationary versions of the methods are applied one ex-
pects the parameter estimates to agree, though of
course the methods do not use the same amount of data
and therefore have somewhat different statistical prop-
erties. In the nonstationary case, however, this corre-
spondence between the parameters in the NPP and NS-
GEV models is lost to a certain extent, which is just a
reflection of the fact that each of the nonstationary
models is a rather particular extension of a stationary
model (see Anderson et al. 2001, p. 59, for further de-
tails on this matter). One of our aims in this work is to
study and quantify the differences between the two ap-
proaches in terms of the return values rather than the
differences between parameters, because these are not
really comparable.

We shall apply the NS-GEV distribution to model
seasonal annual maxima as in Wang and Swail (2006),
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and, just as in the case of the NPP model, model the
parameters of the NS-GEV distribution in terms of the
covariates P and G using model (6). The parameters of
the NS-GEV distribution can also be estimated by the
maximum likelihood method (e.g., Coles 2001). We let
[ti, y(i)], i � 1, 2, . . . , T, denote the collection of sea-
sonal annual maxima, where again T is the number of
years of data. The log-likelihood function based on this
sample is then given by

l � ��
i�1

T �log�i � 	1 � 1��i
 log�1 � �i�y	i
 � �i

�i
��

� �1 � �i�y	i
 � �i

�i
�

�

�1��i�	. 	10


Again, the maximization will be carried out numerically
using the downhill simplex method (Press et al. 1992).

The m-year return value ym is obtained numerically
by solving �m

t�11 � Gt(y) � 1 for y. The m-year return
value computed with the parameters at a fixed time t,
denoted by ym(t), is defined as the quantile of probabil-
ity 1 � 1/m of the NS-GEV distribution, which is ob-
tained by inverting (9),

ym	t
 � �	t
 �
�	t


�	t

�1 � �� log	1 � 1�m
���	t
�. 	11


c. Model choice and testing

We end this section by specifying the models [(3)]
describing the temporal variation of the parameters of
the NPP and NS-GEV models that we will be interested
in estimating, and by stating the method we use to com-
pare two different models.

Ordered in degree of complexity and in the notation
of (6), with i indicating the year, the models we shall
consider are as follows:

• PM0: �i � �0, i � , �i � �, i � 1, 2, . . . , T; all
parameters are constant;

• PM1: �i � �0 � r1Pi, i � , �i � �, i � 1, 2, . . . , T;
the location parameter is a function of the time-
dependent covariate P, and the other parameters are
constant;

• PM2: �i � �0 � r1Pi � r2Gi, i � , �i � �, i � 1,
2, . . . , T; the location parameter is a function of both
time dependent covariates, and the other parameters
are constant;

• PM3: �i � �0 � r1Pi � r2Gi, log(i) � b0 � q1Pi, �i �
�, i � 1, 2, . . . , T; the location parameter is a function
of both time-dependent covariates, the scale param-
eter is a function of the time-dependent covariate P,
and the shape parameter is constant; and

• PM4: �i � �0 � r1Pi � r2Gi, log(i) � b0 � q1Pi �
q2Gi, �i � �, i � 1, 2, . . . , T; both location and scale
parameters are functions of the two time-dependent
covariates and the shape parameter is constant.

To compare any two of the above models and to
decide which is “the best,” we use the likelihood ratio
principle (e.g., Coles 2001). The set of models is the
same as that considered by Wang and Swail (2001, 2004,
2006) and Wang et al. (2004).

d. Confidence intervals

A common approach to the computation of confi-
dence intervals based on maximum likelihood estimates
is that based on the delta method, with either the in-
formation matrix or the observed information matrix.
A method that is usually more accurate (e.g., Coles
2001), especially when the distribution of estimates is
skewed, is the profile likelihood method. In this work
we use the latter method, but will not explain it here
because of its rather technical nature; see Coles (2001)
and references therein.

4. Methods of analysis

a. Trend analysis

Once the dependence of the parameters of the NPP
or NS-GEV model on the two covariates (P and G) has
been established and estimated, projected time series of
these parameters, that is, forecasts of their values in the
future, can be obtained from available projections or
forecasts of the covariates. In this work we obtain such
projected series of parameters on the basis of three
ensembles of projections of the covariates, each of
which was obtained under one of three different cli-
mate-forcing scenarios. We will therefore have to con-
sider three time series of projections for each of the
parameters under each forcing scenario. The three en-
semble members within each climate scenario will be
regarded as “replicates,” that is, as three sets of inde-
pendent time series governed by the same law. As in
Wang et al. (2004) and Wang and Swail (2006), the
projected time series of parameters will then be ana-
lyzed for trends by combining the three members of
each ensemble into a single sample, and regression
models will be fitted and chosen to represent them.

More specifically, let (�i
t) (i � 1, 2, 3) denote the

projected time series of a given parameter of the NPP
model obtained in a given scenario and corresponding
to the ensemble member i. We consider the following
regression models (RM):
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RM0:	t
i � 
0 � �t

i,

RM1:	t
i � 
0 � 
1t � �t

i,

RM2:	t
i � 
0 � 
1t � 
2t2 � �t

i,

where the errors �t are assumed normal. Using the
three ensemble members, the parameters in these mod-
els are estimated, and the F test is used to check which
of the three RM fits the data better (see, e.g., Jorgensen
1993).

Once a RM is chosen and fitted to the projected time
series of parameters, projected return-value estimates,
that is, i.e., time series of return values computed from
the projected time series of parameters, can be ob-
tained.

In addition to the above three models, we have also
considered more complicated models, such as cubic
polynomials; however, in no case have we found, on the
basis of the F test, the need to fit more than a quadratic
model; that is why we restrict ourselves to linear and
quadratic models throughout the paper.

The motivation for using regression models instead
of the “raw” series of parameters is to obtain a sum-
mary of their evolution in terms of a simple parametric
form containing only a couple of parameters. This fa-
cilitates the interpretation of trends, but naturally has
the effect of smoothing the raw series, which might be
subject to some criticism. Our justification for this ap-
proach is that fitting a regression model to these data
should not influence the results as compared to using
the raw series. The assumptions behind regression
models might also be questionable in our case, but our
approach hardly depends on them because our objec-
tive is simply to obtain a smoothed representation of
the series, rather than a statistical model capable of
describing it; also, the use of the F test mentioned
above should be seen more as a device for getting a
simple and still sufficiently flexible model than as a
formal procedure of validating a model.

b. Identifying sources of variability

The projected return-value estimates are determined
by several factors: the nonstationary extreme value
model (NPP or NS-GEV) used; the climate change sig-
nal of the covariates within a certain scenario, which we
refer to as the prescribed forcing or forcing-induced
variability; and the forcing scenario. To assess the con-
tribution of these factors to the uncertainty of return-
value projections, we use the same technique as Wang
and Swail (2006): analysis of variance (ANOVA). We
consider both one- and two-way ANOVA for studying
the uncertainty resulting from one factor or two simul-
taneously. For the sake of clarity of the analysis of re-

sults, we outline the assumptions, models, and methods
used (for more details see, e.g., Rice 1995; Seber and
Lee 2003; Jorgensen 1993; Storch and Zwiers 1999). It
should be pointed out, however, that the ANOVA pro-
cedures do not take the uncertainty in the projected
return-values estimates into account, which restricts
their utility.

1) ONE-WAY ANOVA

The application of one-way ANOVA we will con-
sider is exactly the same as that in Wang and Swail
(2006) but applied to the SWH20 projection made with
the NPP model rather than the NS-GEV model.

Let Xij, i � 1, . . . , k, j � 1, . . . , n represent k groups
of n random variables such that Xij � � � �i � �ij,
where the parameter � is called the overall mean, the
parameter �i is called the effect of the ith group or level
of the factor under consideration, and �ij is a zero mean
random variable called the error of the jth observation
in group i. In checking whether in a particular scenario
the forcing-induced variability influences the series of
projected return values, the factor “prescribed forcing”
has k � 110 levels (1990, 1991, . . . , 2099) and n � 3
random variables corresponding to the three runs in an
ensemble.

It is assumed that the errors �ij are independent and
identically distributed (i.i.d.) zero mean normal vari-
ables with variance 2.

The main purpose of a one-way ANOVA analysis is
to test the hypothesis that all of the �i parameters are
zero, that is, that the factor being considered has no
effect. If this null hypothesis is true, then the F ratio

F �
SSB�	k � 1


SSW��k	n � 1
�
,

where SSB � n�k
i�1(Xi. � X . .)2, SSW � �k

i�1�
n
j�1(Xij �

Xi.)
2 and the dot denotes averaging over the missing

subscript, has an F distribution with (k � 1) and [k(n �
1)] degrees of freedom, denoted by F[k � 1, k(n � 1)].
Respectively, SSB and SSW are called the between- and
within-groups sum of squares. They reflect the amount
of variability resulting from differences between groups
and between observations within the same group, and
partition the total sum of squares SST � �k

i�1�
n
j�1(Xij �

X . .)2 in the sense that SST � SSB � SSW with SSB and
SSW independent.

The proportion of total variance resulting from the
factor is defined by

p �
	F � 1


SST
SSW

	k � 1


k	n � 1


� �SSB �
	k � 1


k	n � 1

SSW��SST.
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Because the number of runs in an ensemble is small,
the power of the one-way ANOVA will be small for
low values of p; for example, it can be seen that the
power is 0.5 when p � 0.1 and close to I when p � 0.2.

2) TWO-WAY ANOVA

The application of two-way ANOVA that we will
consider is exactly the same as in Wang and Swail
(2006) but with the three climate models being replaced
by the two nonstationary models of extremes.

Let Xijt, i � 1, . . . , I, j � 1, . . . , J, t � 1, . . . , T,
be random variables classified into I levels of factor A
(I � 2 nonstationary models of extremes) and J levels
of factor B (J � 3 forcing scenarios), with T observa-
tions on each (T � 110 projected return values from
1990 to 2099), and such that Xijt � � � �i � �j � �ij �
�ijt, where � is an overall mean level, �i and �j are
parameters accounting for the influence of factors A
and B, respectively, �ij is a parameter expressing the
interaction of the two factors, and �ijt are i.i.d. zero
mean normal variables with variance 2.

In our application we are interested in testing the
hypothesis that the choice of the nonstationary models
of extremes or forcing scenario has no effect, that is,
that the �is are all zero or that the �is are all zero, and
that there is no interaction between these factors (i.e.,
the contribution, if any, of the extreme value model
used does not change across climate scenarios). Simi-
larly to what happens in one-way ANOVA, the total
sum of squares of the errors is partitioned into inde-
pendent components reflecting the presence/absence of
effects, namely, as SST � SSA � SSB � SSAB � SSE,
where the terms on the right are defined in Table 1, and
the tests of the above hypotheses are carried out
through F ratios with SSE in the denominator. These
are also given in Table 1, along with the degrees of
freedom and proportion of the total variance resulting
from each factor.

3) CHECKING HOMOGENEITY OF THE VARIANCES

Before applying ANOVA to the data we will be test-
ing the assumption that the errors have equal variances
using the Barlett test (e.g., Storch and Zwiers 1999, p.
180); but, keep in mind that the test is very sensitive to
nonnormality. Fortunately, the analysis of variance for
equal-sized samples (the cases we will be considering
here) is robust even under considerable heterogeneity
of variances, and the validity of results is affected only
slightly even under considerable deviations from nor-
mality, especially as the sample sizes increases (Rice
1995; Seber and Lee 2003).

5. Results

The methods described in section 3 were applied to
data at each grid point of the ERA-40 SWH grid for
each of the following four seasons: January–February–
March (JFM), April–May–June (AMJ), July–August–
September (JAS), and October–November–December
(OND). Extreme value analyses were carried out sepa-
rately for each of the four seasons. The NPP model was
applied to each set of declustered peak excesses of
SWH above the 97th percentile of the whole (seasonal)
SWH dataset, and the NS-GEV model was applied to
each set of seasonal maxima of the 6-hourly ERA-40
SWH series; in each case, the estimates and inferences
produced are based on the fitting of the NPP and NS-
GEV models to the SWH data (peak excesses or
maxima) and associated ERA-40 SLP covariates P and
G from 1958 to 2001.

Before we begin the analysis of the results, we try to
give a physical interpretation of the models considered.
Waves are created by wind and wave heights are
roughly proportional to the squared wind speed, which
in turn is proportional to the pressure gradient. Pres-
sure systems have marked spatial patterns, and in prin-

TABLE 1. Expressions involved in the two-way ANOVA.

F ratio Degrees of freedom Proportion of total variance

Factor A SSA�	I � 1


SSE��IJ	T � 1
�
I � 1, IJ(T � 1) �SSA �

	I � 1


IJ	T � 1

SSE��SST

Factor B SSB�	J � 1


SSE��IJ	T � 1
�
J � 1, IJ(T � 1) �SSB �

	J � 1


IJ	T � 1

SSE��SST

Interaction SSAB��	I � 1
	J � 1
�

SSE��IJ	T � 1
�
(I � 1)(J � 1), IJ(T � 1) �SSAB �

	I � 1
	J � 1


IJ	T � 1

SSE��SST

Sums of squares SSA � TJ �i�1
I 	Xi.. � X. . .
2, SSB � TI �j�1

J 	X.j. � X. . .
2,

SSAB � T �i�1
I �j�1

J 	Xij. � Xi.. � X.j. � X. . .
2,

SSE � �i�1
I �j�1

J �t�1
T 	Xijt � Xij.


2, SST � �i�1
I �j�1

J �t�1
T 	Xijt � X. . .
2
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ciple a mean SLP anomaly at a certain location could
give an indication of the spatial pattern present. Thus,
measures of pressure and of its gradient give informa-
tion about wind velocities and consequently about wave
height. By choosing P and G as covariates explaining
the time variability in the parameters of the extreme
value models we are trying to establish how changes in
local and spatial pressure/wind influence, if at all, the
extremes of SWH. Note that these covariates incorpo-
rate not only possible time trends but also decadal and
other scales of variability. Also, their influence may be
felt in the form of shifts (models PM1 or PM2) and/or
changes in spread (models PM3 or PM4) in the distri-
bution of extremes, which can be interpreted as in-
creases/decreases in severity and/or variability in ex-
treme wave systems, respectively.

In regards to the choice of the model (6) describing
the dependence of the parameters on the covariates,
the results of the likelihood ratio tests show that the
location parameter is significantly correlated with both
P and G, and the scale parameter is not significantly
correlated with either P or G. That is, the time variation
of the P and G covariates influences the distribution of
extremes in the form of shifts but not in the form of
changes in spread. This is the case in both the NPP and
NS-GEV models. Thus, model PM2 (section 3c) is the
one fitting the data best; this is the model we used to
compute the projections of SWH 20-yr return values.
This choice of model PM2 is consistent with what was
reported by Wang et al. (2004) and Wang and Swail
(2006), and implies that the changes in the m-year re-
turn values of SWH resulting from future climate
changes are in absolute value independent of m [cf.
Eqs. (8) and (11)].

Having adopted model PM2 to describe the NPP and
NS-GEV parameters in terms of the covariates and
having estimated its coefficients, we have then com-
puted projections of the location parameter and of the
SWH 20-yr return values from 1990 to 2099 based on
each ensemble member and under each scenario using
the CGCM2 projections of P and G, obtaining a total of
nine time series of projections corresponding to three
forcing scenarios with three ensemble members each on
a global 1.5° latitude � 1.5° longitude grid, for each
nonstationary model of extremes.

Next, we have analyzed the time variability of the
projected series of the location parameter from 1990 to
2099 for each climate scenario using the RM presented
in section 4a. In each case, the coefficients of the RM
were estimated by combining the three members of
each ensemble into a single sample. In both the NPP
and NS-GEV models the quadratic component of the
trend is significantly different from zero at the 5% level

in some regions (typically more than 15% of the loca-
tions), especially in JFM and JAS and under the IS92a
and A2 scenarios. Because RM2 is the most general
model we consider this is the model we have chosen to
estimate the projected location parameter �t in order to
analyze changes in SWH20 under a particular future
climate scenario. Wang et al. (2004) and Wang and
Swail (2005) have equally analyzed the trends in their
projections of the location parameter and have also de-
tected the presence of significant quadratic terms in the
trends. This is in contrast to the present climate, where
only linear trends were detected (Caires and Swail
2004; Wang and Swail 2005).

To recap, we have established that the best model for
describing the dependence of the NPP or NS-GEV pa-
rameters on the SLP covariates is model PM2, and if
such a model is used to obtain projections of the loca-
tion parameter �t from 1990 to 2099, then the model
best describing the time trends of these �t time series,
or equivalently the SWH20(t) time series [see expres-
sions (8) and (11)], is quadratic. In the following sub-
section we look at the NPP estimates in detail and ana-
lyze the estimated future changes of SWH20 and the
influence of the prescribed forcing on the results. After
that we will look at the differences between the NPP
and NS-GEV estimates and analyze the uncertainty
that results from choosing a particular nonstationary
model of extremes.

a. Results of the NPP model

The estimates of the parameters r1 and r2 are pre-
sented in Fig. 1 for each season; the regions in which the
parameters are significantly different from zero (ac-
cording to the likelihood ratio test comparing PM1 with
PM0 in the case of r1, and PM2 with PM1 in the case of
r2) are hatched.1 The parameter estimates are season-
ally dependent. The estimates of r1 are mostly negative
in the high latitudes and positive in parts of the Tropics.
Those of r2 have large magnitudes close to the equator
and comparatively low magnitudes at high latitudes,
though they are also statistically significant in those re-
gions. These differences between the values of the pa-
rameter estimates in the Tropics and at high latitudes
express differences in the roles played by P and G in
each case, and thus suggest differences in the type of

1 Statistical significance is evaluated on a grid point–by–grid
point basis. It should be pointed out that regional or global inter-
pretations of the results of multiple testing—tests carried out si-
multaneously at a large number of locations—are not straightfor-
ward. We should expect false detections of statistical significance
at some grid points for which spatial dependence makes it very
difficult to properly correct.
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FIG. 1. Estimates of the coefficients r1 and r2 linking the location parameter of the NPP model to
(left) P and (right) G. Hatching indicates locations where the coefficients are significantly different
from zero at a 5% level.
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processes contributing to the generation of extremes of
SWH in the Tropics and at high latitudes. The differ-
ences could mean that changes in the spatial pressure
modes play the most important role in the changes of
extremes at high latitudes, while in the Tropics changes
in the intensity of local winds are the most important
factor influencing the changes in extremes.

The RM2 model was chosen to estimate changes in
the projected time series of �t, which in turn was used
to estimate 20-yr return values of SWH for 1990, 2020,
2050, and 2080. The percentage changes between the
SWH20 estimates for 1990 and 2080 are presented in
Figs. 2, 3, and 4 under the IS92a, A2, and B2 scenarios,
respectively.

The changes in estimates of SWH20 are season and
location dependent. The spatial patterns of the esti-
mated changes are very similar under all scenarios. The
magnitude of the changes under the IS92a and A2 sce-
narios are similar, although bigger changes are to be
expected in the NP under the IS92a scenario. Differ-
ences of magnitude in the changes under the A2 and
the IS92a scenarios are probably due to the fact that in
the A2 scenario aerosol forcing is also considered. The
changes predicted under the B2 scenario are smaller
than in the other two, which was already to be expected
because of the lower GHG forcing. Thus, the different
climate scenarios affect the magnitude of the changes
but not their spatial pattern. The region where bigger

FIG. 2. Percentage changes in the indicated seasonal SWH20 from 1990 to 2080 (the estimate of 2080 SWH20 � 1990 SWH20/1990
SWH20), as estimated by combining the three projections under the IS92a forcing scenario. Hatching as in Fig. 1.
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changes are expected to occur is the North Pacific.
Analyzing the results presented in Figs. 2–4 season by
season, we can summon up the following conclusions:

• In the JFM season there will be statistically signifi-
cant decreases in the Southern Ocean (SO), mainly in
the band between 40° and about 55°S, and increases
at higher latitudes. In the Indian Ocean (IO), in-
creases are expected in the northwest region and de-
creases in the southeast region, as well as around the
Gulfs of Aden and Oman. All forcing scenarios show
significant decreases in the central NA and increases
in the southwest NA. The changes in the NP are char-
acterized by strong increases (of up to 25%) in its
central-east region, and by decreases south of the

Gulf of Alaska and the Bering Sea and westward
from the South China Sea. Significant increases are ex-
pected in the tropical and central South Pacific (SP) and
decreases in the tropical and South Atlantic (SA).

• In AMJ the pattern of changes in the SO and NA is
the same as in the previous season. The expected
changes in the SA seem to mirror those in the NA; to
a lesser extent the changes in the SP mirror those in
the NP.

• The most striking feature in JAS is an increase in the
central-west NP and a decrease further west and on
the Bay of Bengal. This is the season of the austral
winter and under both the IS92a and A2 forcing sce-
narios significant increases are to occur in the SO
south and around the southern half of New Zealand.

FIG. 3. The same as Fig. 2, but under the A2 scenario.
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• In OND the changes are very similar to those in the
JFM season except that their magnitude is smaller.

Although the total relative changes from 1990 to
2080 show similar patterns under all scenarios, the rate
at which the changes occur within the period, especially
in the initial decades, depends on the scenario. Specifi-
cally, changes occur more slowly and sometimes in the
opposite direction in the initial decades under the
SRES climate scenarios. These differences in the time
evolution of the projections may be because, contrary
to aerosols, GHGs have a cumulative effect in the cli-
mate, and once certain concentrations are reached their
effects dominate, implying that although the presence
of aerosols may initially slow down the changes under

the SRES scenarios, the effect of the GHG forcing
would eventually become dominant.

Figures 5 and 6 show, for JFM and JAS, respectively,
the projected changes in the SWH20 from 1990 to 2020,
from 2020 to 2050, and from 2050 to 2080, under the
IS92a and A2 forcing scenarios, obtained from the NPP
model. Looking at Fig. 5 we see, for example, that in
the central-east NP under the IS92a forcing scenario
there is an increase in the projections of SWH20 from
1990 to 2020, whereas under the A2 forcing scenario
there is a decrease. In the same region the increases are
similar under both scenarios from 2020 to 2050, and
they are bigger under the A2 scenario in the 2050–80
period. These differences are a reflection of the differ-
ent quadratic trends in �t under each scenario. For this

FIG. 4. The same as Fig. 2, but under the B2 scenario.
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FIG. 5. Changes in the NPP estimates of SWH20 (top) from 1990 to 2020 (2020 � 1990), (middle) from 2020 to 2050, and (bottom)
from 2050 to 2080 estimated by combining the three projections for the (left) IS92a and (right) A2 forcing scenarios for JFM. Hatching
as in Fig. 1.
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FIG. 6. The same as Fig. 5, but for JAS.
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region, the linear term of the trend associated with the
A2 time series is negative while that associated with the
IS92a time series is positive, but under both scenarios
the associated quadratic term is positive (the ones as-
sociated with the A2 time series being bigger); that is,
under the A2 scenario there is first a decrease and then
a quadratic increase with a higher rate as compared to
what happens under the IS92a scenario, where there is
always an increase. Other examples of different rates of
change can be seen in Fig. 6, for instance, in the NA
southeast of the American coast and south of New
Zealand.

Both the patterns of change and the temporal varia-
tions of trends shown here are very close to those ob-
served by Wang and Swail (2005) in projections for the
NA and NP based on the NS-GEV model using SLP
projections from the CGCM2 climate model and with
model parameters inferred from present SWH and SLP
fields other than ERA-40. The agreement indicates that
the choices of dataset to describe the present climate
and nonstationary model for extremes are not very
critical.

The patterns of the global changes in projected val-
ues of SWH20 summarized here are in many aspects
similar to those observed by Wang and Swail (2006) in
projections obtained with the NS-GEV model on the
basis of SLP projections produced by three different
climate models combined, and with the model param-
eters inferred from present climates of ERA-40 SWH
and SLP fields. However, the magnitude of the changes
predicted by Wang and Swail (2006) is smaller than
ours. This is not necessarily due to the choice of the
NS-GEV in place of the NPP approach; Wang and
Swail (2006) noted than their multimodel projected
changes in SWH20 are smaller than those based only on
CGCM2 projections. Also, in the case of Wang and
Swail (2006) there is no big asymmetry between the
changes in the NH and SH; their estimated changes in
the high latitudes of SH are about as big as those in the
NP. These differences between their results and ours
indicate that the projections under CGCM2 are more
extreme than those under other climate models, and
that the former have a NH/SH asymmetry that is not
present in the other climate models.

We now proceed by analyzing the uncertainty result-
ing from the prescribed forcing in the projections of
SWH20 from 1990 to 2099 obtained with the NPP model
using the one-way ANOVA model. We look at the
projections of SWH20 for 1990–2099 with three inde-
pendent observations per year [one for each ensemble
member, i.e., k � 110 and n � 3 in the notation of
section 4b(i)] under each climate scenario. The Barlett
test detects significant differences between the vari-

ances of the errors across the years at a 5% significance
level in about 10% of all locations, which suggests no
serious violation of the assumptions required by
ANOVA; accordingly, we proceed by assuming that the
slightly higher proportion of significant results does not
have a serious effect on our analysis. Figure 7 shows the
seasonal proportion of the total variance resulting from
the prescribed forcing under the A2 scenario and the
regions where the effect of the prescribed forcing is
statistically significant at a 5% level. The effect of the
prescribed forcing is statistically significant mostly in
the regions where bigger future changes of SWH20 are
to be expected, and the proportion of the total variance
resulting from this effect can be up to 50%. The esti-
mates presented in Fig. 7 are almost identical to those
presented by Wang and Swail (2006) in the setting al-
ready described, but using A2 SLP projections only
from the CGCM2 climate model (see their Fig. 7). The
power of ANOVA in this analysis is rather low when
the proportion of the total variance resulting from this
effect is below 10% and so many regions with statisti-
cally significant prescribed forcing may have been
missed by this analysis. The prescribed forcing effect on
the projections under the IS92a scenario are similar to
that observed under the A2 scenario, but under the B2
scenario the proportion of variance resulting from the
prescribed forcing is lower and the areas with statisti-
cally significant results are smaller (these results are not
shown here).

b. Comparisons between the results of the NPP and
NS-GEV models

One of our main objectives is to study the uncertainty
in projections of SWH20 based on the NPP and NS-
GEV models. We have already established that both
approaches support the same dependence between
model parameter estimates and the covariates (viz.,
that described by the PM2 model), and that projections
based on each of the models yield statistically signifi-
cant quadratic trends in the time evolution of the pro-
jected time series. We now look at the differences be-
tween return-value estimates obtained from the two ap-
proaches.

We start by looking at how the models fit to the
present climate data in terms of error and uncertainty,
and at how the estimates of the two compare.

As a way of quantifying the error in the model esti-
mates of return values we have extracted the 25
maxima from the 25 successive 20-yr subsets of the
ERA-40 dataset, namely, those of the periods 1958–77,
1959–78, . . . , 1982–2001. We have then computed the
corresponding 20-yr return-value estimates for each of
these periods from the NPP and NS-GEV models, tak-
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ing into account the time variability of the location pa-
rameter, thus making use of the definitions of return
value presented in (7) and just before (11), and in each
case computed the relative root-mean-square error
(rmse) between the 20-yr maxima and the 20-yr return-
value estimates.2 Figure 8 presents the relative rmse of
the seasonal 20-yr return-value estimates based on the
NPP and NS-GEV models. In most of the cases the
relative rmse is below 20% and there seems to be no

clear spatial pattern of regions where the fits are poor.
Both models seem to fit the data equally well, that is,
differences between the relative rmses in the two ap-
proaches are negligible. This indicates that in terms of
relative rmse the choice of the nonstationary extreme
value approach is not important.

We next compare the two approaches in terms of
differences between their estimates of SWH20. Figure 9
presents the percentage differences between the NPP
and NS-GEV seasonal estimates of SWH20 as for 2001
based on inferences from the ERA-40 data. (Any other
year could have been chosen in place of 2001; the con-
clusions that follow do not depend on the year chosen
for illustration.) In most of the regions the differences
between the estimates is less than 2.5%, but in some

2 We define the relative rmse as ��25
i�1(yi � xi)

2/x, where the xis
are the 20-yr maxima extracted from the 20-yr subsets of ERA-40,
the yis are the corresponding 20-yr return-value estimates ob-
tained from the nonstationary extreme value model (NPP or NS-
GEV), and x is the mean of the xis.

FIG. 7. The proportion of the total variance resulting from the prescribed forcing under the A2 scenario in the indicated seasonal
projections of SWH20 obtained with the NPP model. Hatching as in Fig. 1.
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FIG. 8. Relative rmse of the seasonal SWH20 ERA-40 estimates based on the (left) NPP and
(right) NS-GEV models.
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regions (mainly in the Tropics) these differences can be
as large as 20%. We have looked for regions where the
estimates from the models are incompatible in the
sense that their 95% confidence intervals do not inter-
sect, but there are no such regions; this suggests that
even differences as large as 20% between the NPP and
NS-GEV estimates of SWH20 are generally not statis-
tically significant. Figure 10 presents the width of the
confidence intervals of the seasonal SWH20 ERA-40
estimates from the NPP and the NS-GEV as for 2001 in
terms of percentage of the corresponding estimate.
From the figure we can see that the uncertainty of the
estimates is seasonally dependent, that the spatial pat-
terns of uncertainty coincide in the NPP and NS-GEV
estimates, and that uncertainty is generally larger in the

NS-GEV estimates (which was already expected be-
cause the NS-GEV model uses less data than the NPP
model). Comparing Figs. 9 and 10, it is clear that the
regions where large differences between the estimates
from the two models exist generally coincide with the
regions where their uncertainty is large.

We now investigate in a more formal way whether
the choice of the extreme value approach affects the
projections of SWH20. This is done by means of two-
way ANOVA by which we also assess the influence of
the choice of the forcing scenario. The time series we
consider consists of the changes from 1990 to 2099 in
the projections of SWH20 (with respect to the corre-
sponding estimate as for 1990). We have created a time
series combining all of the ensemble members under

FIG. 9. Percentage differences between the seasonal values of SWH20 based on the NPP and NS-GEV model applied to the
ERA-40 estimates as for 2001 [(NS-GEV SWH20 � NPP SWH20)/(NPP SWH20)].
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FIG. 10. Width of the 95% confidence intervals of the seasonal SWH20 ERA-40 estimates based on
the (left) NPP and (right) NS-GEV models as for 2001 in terms of percentage of the corresponding
estimate.

5600 J O U R N A L O F C L I M A T E VOLUME 19

Fig 10 live 4/C



each scenario by computing the ensemble mean at each
point in time.

The results of the two-way ANOVA are presented in
Figs. 11–13. Regarding differences in variances between
the time series of projected SWH20 values using the
NPP and the NS-GEV models, the Barlett test rejects
homogeneity of variances at a 5% significance level in
about 75% of the locations. This clearly suggests a sys-
tematic departure from the assumptions of the
ANOVA model. However, we know that the F tests in
the ANOVA model are robust against the inhomoge-
neity of variances if the sample sizes are large and simi-
lar in each group, which is so in our case, so we may still
trust the results of the F tests, keeping in mind that the
values given in Figs. 11–13 should not be read too lit-

erally. As a double check on the results of the F tests,
we have additionally applied the paired Student’s t test
(see, e.g., Rice 1995) to the time series of SWH20 pro-
jections based on the NPP and NS-GEV models, and
found that differences in mean are indeed significant at
the 5% level over roughly the same regions as those in
which the two-way ANOVA analysis detects significant
differences.

Figure 11 presents the seasonal proportion of the to-
tal variance resulting from the choice of the nonstation-
ary model for extremes and the regions where this ef-
fect is statistically significant at a 5% level. Statistically
significant results occur over large extents of the ocean
[i.e., is highly field significant (Livezey and Chen
1983)], and the proportion of variance resulting from it

FIG. 11. The proportion of the total variance in the seasonal SWH20 that is due to the choice of the nonstationary models of
extremes. Hatching as in Fig. 1.
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can be quite large in the regions where the uncertainty
of the NPP and NS-GEV estimates was large. However,
in most of the regions where larger changes of SWH20

are to be expected, the uncertainty resulting from the
choice of the NPP or NS-GEV model is often small and
in some cases is even statistically insignificant.

Figure 12 presents the seasonal proportion of the to-
tal variance resulting from the choice of the future forc-
ing scenario and the regions where this effect is statis-
tically significant at a 5% level. The effect is statistically
significant in large extents of the oceans and the pro-
portion of variances resulting from it can go up to 50%
but is in most of the oceans below 10%. The proportion
of the total variance resulting from this effect is large,
especially in the regions where higher changes in the

projections of SWH20 are to be expected. Wang and
Swail’s (2006) estimates of the total variance resulting
from the choice of the future forcing scenario, which
were presented only for JFM and JAS, are also mostly
10% but have a spatial pattern not fully coinciding with
ours (cf. their Fig. 8).

Figure 13 shows the seasonal proportion of the total
variance resulting from the interaction between the
choice of the nonstationary model for extremes and the
forcing scenario and the regions where this effect is
statistically significant at a 5% level. The proportion of
the total variance resulting from the interaction is much
smaller than that from each of the effects, in most cases
below 10%. The regions where the interaction effect is
statistically significant are small and mainly in the Trop-

FIG. 12. The proportion of the total variance in the seasonal SWH20 that is due to the effect of the forcing scenario. Hatching as in
Fig. 1.

5602 J O U R N A L O F C L I M A T E VOLUME 19

Fig 12 live 4/C



ics, especially in the IO. These regions often coincide
with regions where the proportion of the total variance
resulting from each of the effects is larger.

Recapping, in this section we have seen that although
the results of the extreme value analyses show that the
NPP and NS-GEV time series of projected SWH return
values are highly correlated and seem statistically com-
patible, their differences in means and variances are
statistically significant when comparing the NPP and
NS-GEV projected time series of SWH return values as
point estimates (without taking into account their un-
certainty) by means of an ANOVA analysis.

6. Conclusions

We have found that a NPP model with a location
parameter depending on SLP-derived covariates,

namely, the seasonal mean SLP anomaly and the sea-
sonal SLP gradient index, can be used to describe the
present climate of extremes of SWH, as given by the
ERA-40 dataset. The spatial pattern of the coefficients
linking the location parameter with the SLP-derived
covariates seems to suggest that the generation of ex-
treme values of SWH involves different processes in the
Tropics and at high latitudes.

The NPP model with parameters estimated from
present climate data was then used to compute seasonal
projections of SWH20 from 1990 to 2099 under the
IS92a, A2, and B2 future forcing scenarios using
CGCM2 SLP data. Under all forcing scenarios, signifi-
cant changes in SWH20 are to be expected in different
regions of the globe with the larger and more significant
changes occurring under the more severe GHG emis-

FIG. 13. The proportion of the total variance in the seasonal projections of SWH20 resulting from the interaction between choice of
nonstationary model of extremes and climate scenario. Hatching as in Fig. 1.
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sion scenarios, namely, the A2 and IS92a scenarios. In
some cases the rate of future changes depends on the
scenario with, for instance, the A2 projections showing
a slower rate of change in the initial decades and a
higher rate in the later decades when compared with
the rates of change in the IS92a projections. It is inter-
esting to note that under all of the future scenarios
considered significant positive trend are to be expected
in the NP. Positive trends are also present in the present
climate of extremes in the NP (Wang and Swail 2005;
Caires and Swail 2004), which maybe are already a con-
sequence of increased GHG emissions.

The uncertainty resulting from the choice of nonsta-
tionary model for extremes was assessed by obtaining
estimates based on the NS-GEV model and comparing
them with those based on the NPP model. The esti-
mates from the two models are compatible in the sense
that the same dependence on the parameters on the
covariates is found, that both projections exhibit the
same type of trends, and that estimates at a fixed time
point have intersecting 95% confidence intervals. How-
ever, the width of the confidence intervals can be quite
large—larger than the projected changes—especially in
the case of the NS-GEV estimates. The rather large
width of the confidence intervals, that is, the rather
large uncertainty in the estimates, largely explains the
significant differences between changes detected by
ANOVA in the time series of SWH20 projections ob-
tained from the NPP or the NS-GEV models. These
differences occur mainly in the Tropics.

We have measured the effect of the prescribed forc-
ing, forcing scenario, and choice of nonstationary
model for extremes in the projected SWH20 time series
and found that all effects are significant in certain re-
gions. The prescribed forcing and forcing scenario ef-
fects are especially large in the regions where larger
SWH20 changes are expected to occur, and the choice
of nonstationary model for extremes is large where the
confidence intervals of the NPP and NS-GEV estimates
are large, which often do not coincide with the regions
where larger SWH20 changes are expected to occur.

There are some caveats about the results presented
here:

• The projected future changes in SWH20 presented
here are based only on SLP projections under future
forcing scenarios produced by CGCM2. The uncer-
tainty resulting from the choice of climate model was
studied by Wang and Swail (2006), whose results
show that the uncertainty resulting from the climate
model used can be large, especially in the Tropics,
where differences between different reanalysis data-
sets were also found to be large (Caires et al. 2004).

• Certain climate scenarios predict a retreat of the sea
ice cover and therefore the estimates we provide
around the sea regions presently covered with ice
must be interpreted with care. In our analysis for
ERA-40 grid points located in presently partially ice
covered regions, observations at times when the grid
points are covered were treated as exception/missing
values. Eventual waves in grid points at which the sea
ice cover may disappear in the future were not con-
sidered in this analysis because no present climate
wave data in those regions is available. Our opinion is
that, because no strong storms originate in those re-
gions, except for the appearance of low waves and
associated low extremes in the grid points that even-
tually may no longer be covered by ice, the effect on
the remaining grid points will be negligible.
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