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[1] Significant wave height and wind speed fields from ERA-40 are validated against
buoy, ERS-1, and Topex altimeter measurements. To do so, we propose and apply a triple
collocation statistical model. The model takes into account the random errors in
observations and model results and allows the estimation of the variances of the errors. We
first examine the case where the random errors of the different systems are independent,
but situations where independence is not strictly observed are also considered. The results
show that the ERA-40 predictions underestimate high values of significant wave height
and, contrary to what would be obtained by less sophisticated statistical methods, wind
speed, that the variance of the errors associated with the ERA-40 system is much higher
than that of the errors of the measurements, and that the former shows a dependence on the
value of the observations not present in the latter. The altimeter measurements of
significant wave height are very precise, in contrast to the large uncertainty associated
with the altimeter retrieved wind speeds. INDEX TERMS: 3299 Mathematical Geophysics:
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1. Introduction

[2] Currently, the European Centre for Medium-Range
Weather Forecasts (ECMWF) is conducting ERA-40, a
reanalysis of global meteorological wind, temperature and
humidity fields, stratospheric ozone, deep water sea states
and soil conditions from 1957 to 2002. The reanalysis uses
ECMWF’s Integrated Forecasting System (IFS), a coupled
atmosphere-wave model with variational data assimilation.
This is a state-of-the-art model very similar to the one used
operationally, although with lower resolution. The aim of this
reanalysis is to produce a data set with no inhomogeneities as
far as the technique of analysis is concerned, by using the
same numerical model throughout. However, since the avail-
ability of the observations to be assimilated varies in time and
space, a certain amount of inhomogeneity will result. The
assimilation of data also reduces the number of independent
data sets available to validate the results. On the other hand,
these two shortcomings are countervailed by the increase in
the quality of the data provided by the assimilation; most of
the reliable data sets of observations will be used in the
assimilation, leading to the best reanalysis possible.
[3] This is the fourth reanalysis project performed, but the

first in which a wave model is coupled to the atmosphere
model. For previous reanalysis, wave data had to be
generated off-line by forcing a wave model by the rean-
alyzed winds. An overview of these efforts is given by

Caires et al. [2002]. In terms of the ocean-wave data, the
present reanalysis will be the most complete and consistent
reanalysis data set available. It will be the most complete
because it will cover more than 40 years of data on a global
1.5� by 1.5� latitude/longitude grid, and the most consistent
since the atmosphere model is coupled with the wave
model, allowing the atmosphere to react to the waves. If
successfully validated, this data set could be used to study
the climatology of ocean waves and to compute extreme
wave statistics over the whole globe. This would be a
valuable outcome of the project, since studies of this kind
are usually confined to the Northern Hemisphere [e.g.,
WASA Group, 1998; Wang and Swail, 2001].
[4] Validation is possible only if good independent (i.e.,

not used in the assimilation) wave and wind measurements
are available. For a short period of time, from June to
December 1993, the period considered here, the ERA-40
significant wave height data can be assessed against inde-
pendent altimeter data from two distinct satellites, the
Topex/Poseidon and the ERS-1, as well as against inde-
pendent buoy measurements. The wind speed ERA-40 data
for this period can also be assessed, but only against
altimeter-derived data, because some of the buoy wind
speeds are used in the assimilation. After this period, the
ERS-1 altimeter wave heights are no longer independent
because they are assimilated from January 1994 until May
1996. Topex and ERS-1 measurements are available since
the beginning of 1992, but erroneous Fast Delivery Product
(FDP) ERS-1 significant wave height measurements were
assimilated into ERA-40 from January 1992 until May
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1993. This period will be rerun with no data assimilation,
but the data was not yet available for this study.
[5] Since all the observing systems (numerical models

included) describe the reality not only with some offsets but
also random errors, comparison between systems is possible
only using errors-in-variables models. In this paper we
propose an errors-in-variables model to make triple data
set comparisons. The model assumes that each data set
corresponds to observations of a linear systematic deviation
from the underlying reality plus a random error and allows
one to estimate the variances of the errors and the coef-
ficients of the linear functional relationships relating the
three data sets. Initially, we assume that the errors of the
data sets are independent. But we also consider cases where
the errors of two of the systems are dependent, in which
case the problem is no longer closed, and the covariance of
the two systems’ errors needs to be known.
[6] This paper is divided into five sections. Section 2

describes the data sets and their collocation. There are
several algorithms available to obtain wind speed measure-
ments from the radar backscatter; three of these will be
considered in this paper, and their description is also given
in section 2. The errors-in-variables model used in the
comparisons is presented in section 3. Section 4 presents
the significant wave height and wind speed comparisons.
We finish in section 5 with some conclusions.

2. Data Description and Preparation

[7] The buoy, satellite and ERA-40 data represent different
time and space scales. The ERA-40 reanalysis data comes on
a 1.5� by 1.5� grid at synoptic times. The data is representa-
tive of the average condition in the area occupied by a grid
box. Buoymeasurements are available hourly and come from
the processing of single location 20-min records. Altimeter
measurements are available every second and at distances of
about 7 km apart. In the following we will describe the data
sets used in this paper and explain how the data was
processed in order to make the time and space scales of the
different systems compatible and how they are collocated.

2.1. ERA-40

[8] After the success of ERA-15 [Gibson et al., 1997;
Sterl et al., 1998], ECMWF is now performing their second
reanalysis, ERA-40. It will span the time from 1957 until
now. The computations are divided into three partially
overlapping streams (1957–1972, 1972–1987, 1987–
now) that are run in parallel. Only for the last stream do
enough independent measurements of wave height and
surface wind exist to make a thorough validation possible.
At the time of preparation of this paper, data from 1987 to
1996 were available.
[9] The ERA-40 output comprises the full directional

wave spectrum. However, as the spectrum is rarely meas-
ured we will concentrate on significant wave height (Hs)
and 10-m wind (U10). (It should be noted that there is more
than one 10-m wind speed parameter available from the
ERA-40 reanalysis, namely the ‘‘10-m atmospheric wind
speed’’ and the ‘‘10-m wave model wind speed,’’ the one
used in this study. The differences between these two U10

products have to do with way the coupling of the wave
model with the atmosphere is done and with the 3D-var

assimilation scheme used in ERA-40. Roughly speaking,
the wave model is forced by hourly winds from the latest 6-
hour forecast instead of by the analyzed winds [see Janssen
et al., 2002].) Most observations of these quantities are used
in the assimilation process of ERA-40 and are therefore not
suited for a validation of the results.
[10] In situ wind measurements from ships are used

throughout the whole ERA-40 period. In July 1987 the
use of SSM/I 1D-Var winds starts. From June 1990
onwards, buoy winds are used, and scatterometer winds
over the ocean are used from April 1992 onwards. For wind,
the only large data set remaining for the first half of the
1990s are winds derived from altimeter measurements.
[11] Wave height measurements are available from a few

buoy locations from 1977 onward, and from the altimeters
flown onboard GEOSAT (1985–1989), ERS-1/2 (Decem-
ber 1991 onward), and Topex (October 1992 onward). Buoy
and GEOSAT waves are not assimilated in ERA-40 and can
be used to validate the results. However, for the GEOSAT
period no independent wind measurements exist. Therefore,
as we are interested in both winds and waves, the GEOSAT
measurements will not be considered here. Wave height
measurements from ERS-1 were assimilated in ERA-40
starting in December 1991. However, Fast Delivery Product
(FDP) data were used. These data are faulty due to a
processing error [Bauer and Staabs, 1998]. When this error
was recognized, assimilation of the FDP data was halted in
May 1993 and the rest of 1993 was run without wave height
assimilation. Assimilation was resumed in January 1994
with good data, and the period December 1991 to May 1993
will be rerun later. Thus there was a 7-month period (June
1993 through December 1993) in which no wave height
data were assimilated, but altimeter-derived wave heights
are available. Note that only the FDP data contain an error,
while the original altimeter measurements do not. Correctly
reprocessed wave height data for this period are available
and are used in this study. Finally, the Topex altimeter
measurements are not used in ERA-40 and are also used in
this study.

2.2. Buoy

[12] The buoy data to be used in this study come from
the NOAA database (National Data Buoy Center, http://
seaboard.ndbc.noaa.gov/). This data set was selected
because its quality is quite high and it is freely available
on the internet. From all the NOAA data buoy locations
available during this period, we have selected a total of 17
for these comparisons. The selection of the locations took
into account their distance from the coast and the water
depth. Only deep water locations can be taken into account
since no shallow water effects are accounted for in the wave
model, and the buoy should not be too close to the coast in
order for the corresponding grid point to be located at sea.
The buoy significant wave height measurements are avail-
able hourly from 20-min-long records. These measurements
have gone through some quality control; we do, however,
still process the time series further using a procedure similar
to the one used at ECMWF [Bidlot et al., 2002]. All the
observations for which Hs > 25 m or Hs < 0.15 m are
discarded. Observations that deviate more than 6 times the
standard deviation of the monthly data from its mean, or
more than 2 times the standard deviation of the monthly
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data from the previous observation, are identified as outliers
and removed from the data. This procedure is executed
three times. Sometimes buoys report every 2 or 3 hours
rather than hourly. When such gaps occur they are filled in
by linear interpolation. The hourly time series resulting
from the application of the three above procedures are used
to produce a new time series at synoptic times by averaging
the data over 3 hours around synoptic times. This averaging
over time is expected to bring the temporal and spatial
scales closer to each other: The model output at a given
synoptic time is an estimate of the average condition at a
grid cell of 1.5� by 1.5� (the wave model resolution), which
long waves take an average 3 hours to cross. The synoptic
time series still goes through another quality control: the
removal of measurements corresponding to the 24 hours
immediately preceding a gap of 18 hours or more. Experi-
ence has shown that before these gaps occur there is usually
a sudden and unrealistic increase in wave height.

2.3. Satellites

[13] The Topex and ERS-1 along track quality checked
deep water altimeter measurements of significant wave
height (Hs) and the normalized radar cross section (s0)
were obtained from Southampton Oceanography Centre
(SOC) (GAPS interface, http://www.soc.soton.ac.uk/
ALTIMETER/ [Snaith, 2000]). Although altimeters do not
measure wind speeds directly, the altimeter backscatter
depends on and correlates highly with the sea surface wind
speed. There are several empirical algorithms available to
compute the wind speed from s0. Three of them will be
considered here and are presented next.
[14] The most widely used algorithm to compute the wind

speed from s0 is the Witter and Chelton [1991] tabular
algorithm, which is the operational altimeter wind speed
algorithm for the Topex/Poseidon satellite altimeters. This
algorithm was devised by modifying the Chelton and Wentz
[1986] Seasat altimeter wind speed model. AVISO [1996]
obtained a least squares fit of a degree 4 polynomial to the
Witter and Chelton [1991] wind speed tabular model, given
by

U10 ¼ c0 þ c1s00 þ c2s020 þ c3s030 þ c4s040 ; ð1Þ

where the polynomial coefficients are given in Table 1, and
s0
0 is equal to s0 for the ERS-1 data and to s0 � 0.63 for the

Topex data [Cotton et al., 1997].
[15] Gourrion et al. [2002] have devised a new algorithm

for the computation of wind speed altimeter measurements.
It is the operational algorithm for the recently launched
JASON-1 satellite. The method was devised by training an
artificial neural network with collocated Topex/Poseidon
altimeter observations and wind estimates of NASA scatter-
ometer (NSCAT) data from September 1996 to June 1997.
The devised algorithm not only takes into account the
altimeter normalized radar cross section measurements,
but also the altimeter significant wave height measurements.
The reason for accounting also for significant wave height is
that swell, which is not closely coupled the local wind field,
also influences the backscatter measurements. The Gour-
rion et al. [2002] algorithm is given by

U10 ¼
U � 0:1

0:0284394
; ð2Þ

where

U ¼ 1þ exp �W2 *X þ 2:2838729ð Þð Þ�1;

W2 ¼ 0:541201 10:4048140½ �;

X ¼ 1þ exp �W11 *P � 18:0637810ð Þð Þ�1

1þ exp �W12 *P þ 0:3722814ð Þð Þ�1

� �
;

W11 ¼ �33:9506170 � 11:0339400½ �;
W12 ¼ �3:9342847 � 0:058344½ �;

P ¼ 0:0690915 *s0 � 0:3433598
0:0637450 *Hs þ 0:0872510

� �
:

This algorithm was devised using the Topex data, and a
correction of +0.63 dB should be applied to the ERS-1 s0
data when applying this method. Both methods presented
above were devised to estimate wind speeds ranging for 0–
20 m/s. For higher wind speeds Young [1993] provides the
following equation,

U10 ¼ �6:4s0 þ 72: ð3Þ

This equation was derived using Geosat data from passes that
transverse the eyes of mature, stable tropical cyclones and a
‘‘ground truth’’ being inferred from model cyclone winds.
[16] Since equation (3) was devised using Geosat data, in

principle a �0.63 dB correction should be applied to the
Topex s0 measurements. However, Gourrion et al. [2002]
have shown that this equation fits the data quite well for
wind speeds above 18 m/s with no s0 correction. This
equation will therefore be here applied to ERS-1 and Topex
data for wind speeds above 18 m/s without any s0 correc-
tion. Since both Witter and Chelton [1991] and Gourrion et
al. [2002] are used operationally, they will be also used in
the comparisons.
[17] Figure 1 shows for 1 month of Topex data the wind

speeds obtained by equation (1) (thick black line), the
corresponding wind speeds obtained by applying equation
(2), where the shading scale corresponds to Hs, and equation
(3) (thin black line). The wind speeds obtained by equa-
tion (1) are close to the ones obtained using equation (2) for
low values of Hs, while for higher Hs values equation (2)
provides lower U10 estimates. Note that, although this is not
clear from the plot, occurrences of high HS in conjunction
with low U10 are not very common.

2.4. Data Collocation

[18] The satellite measurements are performed about
every second with a spacing of about 5.8 km for Topex
and 6.7 km for ERS-1. From these we form satellite ‘‘super
observations’’ by grouping together the consecutive obser-
vations crossing a 1.5� by 1.5� latitude-longitude region
(observations at most 25 s for ERS-1 and 30 s for Topex or
1:5

ffiffiffiffiffi
2	

p
apart).The satellite super observation is the mean of

Table 1. Polynomial Coefficients to be Used in Equation (1)

c0 c1 c2 c3 c4 s00 Limits, dB

51.04531 10.98280 1.89571 �0.17483 0.00544 s00 < 10.8
317.47430 �73.50790 6.41120 �0.24867 0.00361 10.8 � s00 � 19.6
0 0 0 0 0 s00 > 19.6
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these grouped data points after a quality control similar to
the one applied to the buoy data is run through the data.
[19] When collocating buoy, satellite and ERA-40 data, we

chose the satellite super observations created from altimeter
observations within a 1.5� by 1.5� latitude-longitude region
centered at the buoy location. The ERA-40 data at the
synoptic times before and after the time of the satellite super
observation is interpolated bilinearly to the buoy location and
these two data points are then linearly interpolated in time to
the time of the super observation. The buoy synoptic data is
also linearly interpolated to the time of the super observation.
The top panel of Figure 2 shows, for the period from June to
December 1993, the locations and the number of observa-
tions per location of the triple collocated ERA-40, buoy and
Topex data set; the bottom panel gives the same information
for the ERA-40, buoy and ERS-1 data set.
[20] For the Topex, ERS-1 and ERA-40 collocation,

satellite super observations are collocated if they are less
than 0.75� and 1 hour apart. The ERA-40 data is interpo-
lated to the mean space and time location of the two satellite
super observations. The locations at which these triple
collocations were found, for the period from June to
December 1993, is presented in Figure 3. The number of
observations per location is five at most, but in most of the
locations only one observation is found.
[21] Having explained how the buoy and satellite ‘‘super

observations’’ are obtained, in the rest of this article we will
refer to them merely as observations.

3. Triple Collocation FR Model

[22] There are several published studies comparing model
results with measurements. In such works, the measure-

ments are usually considered to represent ‘‘physical truth’’;
that is, all discrepancies between the measurements and the
model data are assumed to be attributable to the model, and
standard statistical methods and concepts, such as linear
regression analysis (LR), scatter-indices, mean errors, corre-
lation coefficients, etc., are used to study the relationship
between the two [e.g., Cox and Swail, 2001]. There are also a
few papers comparing different measuring instruments, and
in these the choice of the ‘‘physical truth’’ depends on which
instrument is thought to be more reliable, usually buoys.
[23] The limitations of using standard statistical methods

for comparing data with inherent random errors has been
acknowledged in several works [e.g., Bauer and Staabs,
1998; Sterl et al., 1998] where authors have resorted to
variations of the classical linear regression model, estimat-
ing ‘‘symmetric regression slopes’’ or principal component
analysis (PCA) slopes. Although these methods take into
account the fact that the variables have inherent random
errors, they do not account for the fact that they may have
different error magnitudes.
[24] Analyses of this type are adequate for calibrating one

measuring/hindcasting system relative to the other, but
inappropriate for comparing them irrespective of which (if
any) is the ‘‘physical truth’’ and of their noise levels, which
are in principle different. The inadequacy of the above
mentioned approaches is due to the fact that both measure-
ments and numerical model predictions are subject to errors,
and possibly offsets, and none of them can be considered
‘‘truth.’’ More formally, each of the observations/predic-
tions corresponds to the measurement of an unobserved or
underlying quantity, the ‘‘reality’’ of the measurements and
the ‘‘reality’’ of the model. Equivalently, each of the
observations/predictions is subject to an unobserved error.

Figure 1. Comparison between different wind speed altimeter algorithms: Young [1993] (thin black line),
Witter and Chelton [1991] (thick black line), andGourrion et al. [2002] (Hs values in m given by shading).
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In this context, classical linear regression and similar meth-
ods are not appropriate, and more sophisticated tools are
required. The theory of errors-in-variables models provides
an appropriate (and, up to now, possibly the only) method.
[25] The application of errors-in-variables models is,

however, difficult, when only two sets of data are available.
This is because the functional relationship between the
variables and the variances of their associated random errors

can only be estimated once the ratio of these variances is
known, which is often not the case. In some applications it
is assumed that this parameter, which some authors (such as
Tan and Iglewicz [1999]) refer to as the precision ratio, is 1,
i.e., that the errors of the two variables have equal variances,
but this is often an unreasonable assumption. In other cases
numerical methods are used to estimate its value [e.g.,
Caires, 2000]; however, our experience is that such meth-

Figure 2. Locations and number of observations per location for triple altimeter, buoy and ERA-40
collocation. (top) ERA-40, buoy and Topex. (bottom) ERA-40, buoy and ERS-1.
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ods are only valid for precision ratios close to one and will
do a poor job when the magnitudes of the errors of the two
system are very different.
[26] These problems can be solved when triple colloca-

tion observations are available, and that is the case we will
be considering here.
[27] Assume that we are given three sets of n observations

(xi, yi, zi), i = 1, . . ., n, and that these observations
correspond to measurements of certain deterministic under-
lying variables Ti, i = 1, . . ., n, made with certain systematic
deviations and subject to zero mean random errors (exi, eyi,
ezi), i = 1, . . ., n. More precisely, we assume that (in what
follows we drop the subscripts of the variables, the averages
of which are denoted by hxi, hxyi, etc.)

x ¼ X þ ex � T þ ex
y ¼ Y þ ey � a1 þ b1T þ ey
z ¼ Z þ ez � a2 þ b2T þ ez;

ð4Þ

and we want to estimate the unknown parameters a1, a2, b1
and b2, and the variances of the errors. Having computed b1
and b2 (see below), we can go back to equation (4) and
compute the constant coefficients a1 and a2 by taking
averages,

a1 ¼ h yi � b1hxi ð5Þ

a2 ¼ hzi � b2hxi: ð6Þ

Removing the mean from each of the variables and denoting
the result by x*, y*, z*, and T*, we can simplify our model
to

x* ¼ T*þ ex
y* ¼ b1T*þ ey
z* ¼ b2T*þ ez:

Computing the cross correlations, we have, on noting that
hTexi = hTeyi = hTezi = 0 (the true observation is
deterministic), and assuming that the errors are independent,
so that hexeyi = hexezi = heyezi = 0,

b1 ¼ h y*z*i=hx*z*i; ð7Þ

b2 ¼ h y*z*i=hx*y*i: ð8Þ

Using equations (7) and (8), we obtain the variances of the
errors,

he2xi ¼ hx*2i � hx*y*ihx*z*i=h y*z*i

he2yi ¼ h y*2i � hx*y*ih y*z*i=hx*z*i

he2z i ¼ hz*2i � hx*z*ih y*z*i=hx*y*i:

ð9Þ

[28] One feature of this type of errors-in-variables models
is their symmetric nature: The result of applying the model
to data is independent of which variables are chosen to be x,
y or z. This implies, in particular, that one can compute from
the above expressions the coefficients in the relationship
between Y and Z, Y = a3 + b3Z, as a3 = a1 � a2b1/b2 and
b3 = b1/b2.
[29] An errors-in-variables model in which the underlying

variables T are deterministic (or fixed) is called a functional
relationship (FR) model; otherwise the model is referred to
as a structural relationship model.
[30] In the above calculations we consider the underlying

physical parameters T as deterministic variables, and hence
use a FR model. This option demands some justification.
Although the underlying physical parameters are random
variables, in the sense that they correspond to observations
from a hypothetical population of physical scenarios (imply-
ing a structural relationship model), we are not interested in

Figure 3. Locations for triple ERA-40, Topex and ERS-1 collocation.
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their statistical behavior. Instead, we are interested in study-
ing the relationship between the outcomes, that is, between
the x, y and z that happened to occur. In statistical language,
we are interested in studying the relationship between what
the instruments and the numerical model observe (each with
its inherent errors) conditionally on a specific ‘‘physical
scenario’’ (the particular occurrence of environmental pro-
cesses in which measurements took place). A more formal
justification can be given on the basis of the conditionality
principle [Cox and Hinkley, 1974, p. 38], according to which
we should condition on the actual observations (‘‘physical
scenario’’), and thus regard them as fixed (though unknown),
and hence use a functional model.
[31] If we had taken T as a random variable, we would

have to impose extra conditions, namely that the correla-
tions between T and the errors ex, ey and ez are zero, in order
to obtain equations (7) and (8). For the FR model, the
disappearance of the correlations is a natural property.
[32] When fitting our model to the collocated data, sets

were formed by pooling space and time data together. This
is a way of reducing a problem that is originally multivariate
(multiple time-space dimensions) to a bivariate problem. An
objection that may be raised to the pooling of data from all
space-time locations is the possible dependence between
measurements at neighboring points and the lack of homo-
geneity in measurements that are too distant in time or
space. However, what our functional relationship model
requires is that the errors be independent and homogeneous,
not the measurements themselves.
[33] The assumption of independent and homogeneous

errors is still strong and will not always be tenable. The
violation of the homogeneity assumption (i.e., that the errors
exi have all the same variance, and similarly for eyi and ezi)
can be detected by dividing the original data sets into
subsets and checking whether the variance estimates
obtained with the subsets are compatible with those
obtained with the whole data set. We will return to this
point when presenting the results.
[34] Another of the assumptions used above is that the

errors associated with the different systems are uncorrelated.
This is, however, not always the case. The model can be
reformulated to account for dependence between the errors
of different data sets, but this requires the covariance
between the errors of the different data systems to be
known. The system is no longer ‘‘closed.’’
[35] If the errors between two of the data sets are

correlated, say heyezi 6¼ 0, the value of which is known,
we obtain

b1 ¼ h y*z*i � heyezi
� �

=hx*z*i; ð10Þ

b2 ¼ h y*z*i � heyezi
� �

=hx*y*i; ð11Þ

and then, using equations (10) and (11),

he2xi ¼ hx*2i � hx*y*ihx*z*i= hy*z*iheyezi
� �

he2yi ¼ h y*2i � hx*y*ih y*z*i � heyezihx*y*i
� �

=hx*y*i

he2z i ¼ hz*2i � hx*z*ih y*z*i � heyezihx*z*i
� �

=hx*y*i:

ð12Þ

[36] Besides obtaining point estimates of the parameters,
we are interested in determining (estimates of ) their stand-
ard errors, as these reflect their range of variability. Thus,
we require estimates of the variances of our estimators.
[37] Although in some cases the delta method (which is

based on Cramér’s theorem [see Ferguson, 1996, p. 45]) can
be used to find explicit expressions for the variances of the
estimators, it often appears that such a task is extremely
complicated or even impossible to carry out. In situations
like this, resampling methods like the bootstrap offer a
simple and reliable alternative for estimating standard errors
of estimators.
[38] We will now briefly explain how the bootstrap

method can be used to estimate the variance of the above
estimates. The reader is referred to Efron and Tibshirani
[1993] for an explanation of how and why the method
works.
[39] In many situations, we have a random sample x =

{xi, i = 1, . . ., n} of observations of some random variable
or population X, and we wish to estimate a population
parameter q by an estimator q̂ � q̂ x1; . . . ; xnð Þ � q̂ xð Þ
based on x. For instance, q might be the median of the
population (the quantile of probability 0.5), the population
mean (the expectation of X ), or a functional relationship
estimator. If q̂ has a simple expression and the distribution
of X has simple mathematical properties, one can deter-
mine the variance of q̂, or at least an approximation to it.
In those cases where this is not possible, one can estimate
(rather than determine exactly) Var {q̂} (the variance of q̂)
by the bootstrap method.
[40] The bootstrap method consists of creating bootstrap

samples x*, each obtained by randomly sampling n times,
with replacement, from the original sample x. Given B
bootstrap samples, which we denote by xb*, b = 1, . . ., B,
we can calculate a set of estimates q̂b* ¼ q̂ xb*

� �
, each

obtained in the same way q̂ was obtained, but based on
x* in place of x. Then the bootstrap estimate of the standard
error of the estimate q̂ is given by

ŝB q̂
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB
b¼1

q̂b*� q̂*
� �2

vuut ; with q̂* ¼ 1

B

XB
b¼1

q̂b*:

The ideal bootstrap estimate would be ŝ1 (q̂), but of course
this is not possible to achieve; a limit on B must be
stipulated. According to Efron and Tibshirani [1993, pp.
50–53], very seldom more than B = 200 bootstrap repli-
cations are needed for estimating the standard error. This is
the value that we have used here.
[41] Estimates of the standard error of the estimate are

useful for establishing confidence intervals or regions for
the unknown parameters. We will obtain 95% confidence
intervals for a parameter q, by calculating upper and lower
limits of the form q̂� 1:96� ŝB

�
q̂
�
.

4. Validation

4.1. Wave Data

4.1.1. ERA-40, Buoy and Topex
[42] We start by looking at the comparisons between

ERA-40, buoy and Topex significant wave height observa-
tions. The scatter diagrams of the comparisons between the
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three data sets from June to December 1993 are presented in
Figure 4. Superimposed are the functional relationship lines
resulting from the application of the method proposed above
and assuming no correlations between the errors. The
parameters estimated along with their confidence intervals
(estimated using the bootstrap method) are given in the first
row of Table 2. The results give an underestimation of

significant wave height by the wave model when compared
with the measurements for high values of Hs and a small
overestimation of wave heights below 1 m. The buoy and
Topex measurements compare much better (Y = �0.11 +
1.05 * Z ). Another thing to notice is that the estimate of the
variances of the random errors in the model is much higher
than those for the buoy and satellite, which can be con-
firmed by the scatter of the plots. The scatter of the buoy-
Topex comparison (Figure 4c) is much smaller than those in
the comparisons with the model (Figures 4a and 4b).
[43] To get an idea on how different statistical methods

(assumptions) influence the results, we also have performed
linear regression and principal component analysis. The
results are given in Table 3 and the corresponding lines
are drawn in Figure 4. As expected, differences are larger
between the triple method and the linear regression and
when the random errors are high (comparisons involving the
ERA-40 data). The differences between the PCA estimate
and the triple method are higher for higher ratios of
variances of the errors. This is normal since in the PCA it
is assumed that the ratio between the variances of the errors
is 1.
[44] It is also interesting to know how dependent these

results are on the particular sample we are studying. For this
reason we repeated the calculations for 1994 and 1995,
during which ERS-1 wave heights were assimilated into
ERA-40. The results are also presented in Table 2 along
with the results for 1993. The data for 1993 are only from
June to December and those for 1994 and 1995 cover the
whole year. The variance estimates are mainly the same
(comprising confidence intervals), for buoy and Topex, but
for the wave model they change from 0.08 to 0.06. This is a
consequence of the assimilation of the ERS-1 data in ERA-
40, which started in January 1994. Another thing to notice is
that the underestimation of high wave heights by the model
did not improve, which may be an indication that the data
being assimilated are too low.
[45] In order to have a larger sample to obtain more

precise estimates, we have pooled the data from June 1993
to December 1995. The results, which are not shown here,
are similar to those presented in Table 2, the confidence
intervals naturally being narrower; in the case of the
altimeter the estimate of the variance of the errors is of
0.01 with confidence interval limits 0.00, 0.01, and in the
case of the buoy the estimate of the variance of the errors is
of 0.02 with confidence interval limits 0.02, 0.03.
4.1.2. ERA-40, Buoy and ERS-1
[46] We now look at the comparisons between buoy,

ERA-40 and ERS-1 data from June to December 1993.
The triple collocation estimates are presented in Table 4,
and the scatter diagrams are in Figure 5. The results reveal,
more pronouncedly than in the previous comparisons, the
underestimation of high wave heights by the model when
compared with the buoy measurements. Note, however, that
the significant wave height average is also higher. The
model predictions also underestimate the ERS-1 measure-
ments of high Hs, while the ERS-1 measurements show a
negative bias for all values of Hs when compared with the
buoy measurements. Since such negative offset is not
observed between the buoy and Topex data, and since the
offsets we obtained agree with those obtained by Young
[1999b], we must conclude that the bias is in the ERS-1 data

Figure 4. Scatter diagrams with estimated FR, LR and
PCA lines for significant wave height triple ERA-40, buoy
and Topex collocated data from June to December 1993. (a)
ERA-40 versus buoy. (b) ERA-40 versus Topex. (c) Topex
versus buoy.
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and not in the buoy data. This underestimation of the wave
height by ERS-1 is the reason why the assimilation of ERS-
1 in ERA-40 did not improve the ERA-40 underestimation
(see Table 2).
[47] The estimate of the variances of the errors in the

buoy measurements remains the same as in the comparisons
with Topex. The variance of ERS-1 is found to be around
0.01, slightly lower than the values obtained for Topex. The
estimate of the variance of the errors in the ERA-40 data is
here higher than the one obtained in the Topex comparisons.
This may be an indication that the variance of the errors of
the wave model is wave height or location dependent. For
this data set the average Hs of the model hindcasts is 2.16 m
while in the Topex comparisons it was 1.83 m, and there are
more northern buoy locations in these comparisons than
there were in the Topex comparisons (see Figure 2). How-
ever, the results are not conclusive since the confidence
intervals of the estimates obtained here comprise the pre-
vious value.
4.1.3. ERA-40, ERS-1 and Topex
[48] The possible sea state or location dependence of the

data will be analyzed in more detail in the ERS-1, Topex
and ERA-40 global comparisons. Figure 6 shows histo-
grams of the ERA-40, ERS-1 and Topex data from June to
December 1993. The ERS-1 and Topex histograms seem to
have the same shape, but with the former being shifted to the
left relative to the latter. The ERA-40 histogram indicates
that the ERA-40 predictions compare well with the Topex
measurements for values up to 1.5 m. For higher Hs ERA-
40 predictions are mainly concentrated around 2.2 m with
less high wave height values than in the Topex observations.
[49] The scatter diagrams of the triple Topex, ERS-1 and

ERA-40 comparisons are presented in Figure 7. The triple
collocation estimates for the data plotted in the figure are
presented in the first line of Table 5.
[50] Qualitatively, the results obtained here are consistent

with those obtained at the buoy locations. The model results
underestimate the Topex measurements of high significant
wave height. This underestimation is not present in the
comparisons with ERS-1 data. However, the comparisons
between Topex and ERS-1 measurements show negatively
biased measurements by ERS-1. Again, the variance of the
random errors associated with the ERA-40 significant wave
height predictions is much higher that the equivalent satel-
lite variances (about 16 times higher), and this is again
clearly visible in the scatter diagrams: the scatter of the
ERS-1 versus Topex comparisons is much lower than the
scatter of the ERA-40 versus any of the altimeters. How-
ever, the estimated variance of the errors of the model
prediction (0.16) is higher than the value obtained in the

previous comparisons (0.08 and 0.11). This may again be an
indication of variance being dependent on the value of Hs.
Here the average is 3 m, while in the buoy comparisons it
was around 2 m. Indications for an Hs dependence of the
random errors in ERA-40 are also present in the scatter
diagrams of Figure 7. The scatter diagrams comparing
ERA-40 with the altimeter data have a ‘‘megaphone shape’’
with higher scatter for higher values of Hs, while Figure 7c
shows no such behavior for the random errors associated
with the altimeters measurements.
[51] In order to look further into this dependence, we

have divided the original global data set of triple collocated
ERA-40, ERS-1 and Topex data into subsets according to
latitude strips and obtained the functional relationship
estimates for each data set. These results are also presented
in Table 5. They are indicative of a dependence of the error
variance on the average values of Hs, and possibly also on
location, as the results obtained for the region between
20�S–20�N seem to have different characteristics than those
of the others.
[52] The estimates of the variances of the random errors

associated with the altimeters in Table 5 tend to be lower
than those obtained from the comparisons at the buoy
locations (Tables 2 and 4). This may be a consequence of
some covariance between the random errors of the two
altimeters that is not being taken into account. The random
errors associated with altimeter measurements of sea surface
height are assumed to be dependent due to common
corrections applied Tokmakian and Challenor, 1999]. Since
the Hs altimeter values are obtained from slopes of the
received signal [see Young, 1999a, pp. 247–252], there is
no direct dependence on ionospheric or other such correc-
tion, that could be common to both altimeters, and thus we
think that in the case of significant wave height measure-
ments this is not a source of error dependence. A source of
dependence could, however, be an altimeter error depend-
ence on the type of sea being observed, such as pure wind
sea, sea or mixed wind sea and swell. So, let us assume that
there is some dependence, although we cannot quantify it.

Table 2. Estimates, for Different Years, of the Functional Relationship Coefficients Between ERA-40(x), Buoy( y), and Topex(z)

Significant Wave Height Observations, and of the Variances of the Errorsa

Year n hxi a1 b1 a2 b2 b3 hex2i hey2i hez2i
1993 314 1.83 �0.27 1.26 �0.19 1.20 1.05 0.08 0.00 0.02

(�0.37, �0.16) (1.21, 1.31) (�0.30, �0.07) (1.14, 1.27) (1.01, 1.08) (0.07, 0.10) (0.00, 0.01) (0.01, 0.03)
1994 497 1.95 �0.22 1.27 �0.10 1.20 1.06 0.06 0.01 0.02

(�0.31, �0.13) (1.22, 1.33) (�0.20, �0.01) (1.14, 1.26) (1.04, 1.09) (0.04, 0.07) (0.00, 0.02) (0.01, 0.03)
1995 442 1.82 �0.11 1.24 0.01 1.16 1.07 0.06 0.01 0.03

(�0.19, �0.04) (1.19, 1.28) (�0.08, 0.09) (1.10, 1.21) (1.04, 1.10) (0.05, 0.07) (0.00, 0.01) (0.02, 0.0)
aThe limits of the confidence intervals are given in parentheses below the estimates. The sample size, n, and the average of the ERA-40 data, hxi, are also

included. Here, 1993 only comprises data from June to December.

Table 3. Estimates of the Relation Between ERA-40(x), Buoy( y),

and Topex(z) Significant Wave Height Data Obtained by the FR,

LR and PCA Modelsa

y = a + b * x z = a + b * x y = a + b * z

FR LR PCA FR LR PCA FR LR PCA

a �0.27 �0.05 �0.18 �0.19 0.01 �0.12 �0.11 �0.03 �0.05
b 1.26 1.15 1.21 1.20 1.09 1.17 1.05 1.03 1.04

aData from June to December 1993.
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From the Cauchy-Schwartz inequality (jhxyij2 � hx2ihy2i)
the covariance between the two variables can at most be
equal to the square root of the product of the two variances.
From the comparisons with buoy data we have that the
variances of the errors of Topex and ERS-1 are about 0.02,
which means that its covariance can at most be 0.02. Taking
into account a covariance of 0.02 between the ERS-1 and
the Topex Hs errors (heyezi = 0.02) we have obtained new
estimates of the FR parameters using equations (5), (6), and
(10)–(12). They are given in Table 6.
[53] Assuming that heyezi = 0.02 has the effect of increas-

ing the variance of the errors associated with the altimeter
measurements, decreasing the variance of the errors asso-
ciated with ERA-40, although not significantly, and has
barely any effect in the estimates of the functional relation-
ship slopes and constants. The increase in the variances of
the errors associated with the altimeter measurements is,
however, too high. The values now are about 0.03, while
0.02 was the value obtained in the buoy comparisons and
0.01 assuming that there was no correlation between the
errors. Thus, while there are indications of covariance
between the random errors of the two altimeters, its value
is certainly lower than 0.02.

4.2. Wind Data

[54] Having analyzed the ERA-40 significant wave height
predictions we will now look at the wind speed values.
Unfortunately, the ERA-40 predictions can only be assessed
against the altimeter measurements, since the buoy meas-
urements are used in the assimilation. We do not exclude the
hypothesis that there is some covariance between the errors
associated with the different altimeters. However, we cannot
take it into account as we have no idea of how large that
covariance can be, and no independent estimates of the
variance of the errors associated with each altimeter are
available. The reader should be aware that a non-zero
covariance between the two would affect results in the same
way as it did in the Hs comparisons, i.e., increase of the
variance of the altimeter errors and decrease in the variance
of the ERA-40 system.
[55] Figure 8 shows the histograms comparing the wind

speed of ERA-40 and of the altimeter data using the
Gourrion et al. [2002] and the Witter and Chelton [1991]
algorithms as presented in section 2.3. While these histo-
grams are not as smooth as those for Hs, they seem to
indicate a better correspondence between the three data sets,
especially between the ERA-40 and the Topex data. The
ERS-1 histograms have a more pronounced peak than those
of ERA-40 and Topex and seem to have a couple of other
smaller modes. The wind speeds produced by the Gourrion
et al. [2002] algorithm are generally lower than those
produced by the Witter and Chelton [1991] algorithm, their
histograms possessing broader peaks. Comparison of the

Table 4. Estimates of the Functional Relationship Coefficients Between ERA-40(x), Buoy(y), and ERS-1(z) Significant Wave Height

Observations, and of the Variances of the Errorsa

n hxi a1 b1 a2 b2 b3 hex2i hey2i hez2i
Estimate 237 2.16 �0.67 1.39 �0.96 1.27 1.09, 0.11 0.01 0.01
Limits (�0.87, �0.48) (1.30, 1.49) (�1.16, �0.77) (1.18, 1.37) (1.06, 1.13) (0.07, 0.15) (0.00, 0.02) (0.00, 0.02)

aData from June to December 1993. The limits of the confidence intervals are given in parentheses below the estimates. The sample size, n, and the
average of the ERA-40 data, hxi, are also included.

Figure 5. Scatter diagrams with estimated functional
relationships for significant wave height triple ERA-40,
buoy and ERS-1 collocated data from June to December
1993. (a) ERA-40 versus buoy. (b) ERA-40 versus ERS-1.
(c) ERS-1 versus buoy.
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histograms does not indicate a better performance of one
relative to the other.
[56] The triple collocation functional relationship com-

parisons are also not conclusive. Figure 9 shows the com-
parative scatter diagrams of the ERA-40 wind speeds and
Topex and ERS-1 winds speeds obtained using the Gour-
rion et al. [2002] algorithm. Figure 10 shows the corre-
sponding diagrams when the altimeter wind speeds are
computed using the Witter and Chelton [1991] algorithm.
Table 7 shows the corresponding triple collocation func-
tional relationship estimates. The top half of the table gives
estimates for data obtained using the Gourrion et al. [2002]
algorithm, and the bottom half using the Witter and Chelton
[1991] algorithm. As we did for the Hs comparisons, the
original data set was divided into subsets according to
latitude strips.
[57] The ERS-1 wind speed obtained with the Witter and

Chelton [1991] algorithm seems to compare worse with the
ERA-40 predictions than those obtained with the Gourrion
et al. [2002] algorithm (b1 values in Table 7 closer to 1).
However, the ERS-1 and Topex wind speeds obtained with
the Witter and Chelton [1991] algorithm compare better
with each other (less overestimation of Topex) than do those
from the Gourrion et al. [2002] algorithm. This is because
the Gourrion et al. [2002] algorithm depends on the
altimeter significant wave height, which, as we saw in the
comparisons of the Hs ERS-1 measurements, is biased
relative to those of Topex.
[58] Independently of the wind speed algorithm used, the

FR estimates indicate an underestimation of the high wind
speeds by the ERA-40 system. This underestimation would
partly explain the underestimation produced by the ERA-40
wave model.
[59] The point estimates of the variances of the ERA-40

wind speed random errors are not exactly the same when
comparing them with the altimeter wind speed from the
different algorithms, but the differences are not statistically
significant. These values testify to the robustness of the
model and give an idea of how sensitive the results are to

the choice of the comparing sets. The estimates of the
variances of the ERA-40 wind speed random errors are
different for the different latitude regions considered. They
suggest a wind speed dependence as observed also for the
wave height data. This is expected since the noise inherent
to the wave model predictions can be regarded as a result of
the integration of the input geophysical quantities (in this

Figure 6. Histograms of ERA-40 (solid line), ERS-1
(dashed line) and Topex (dotted line) significant wave
height observations from June to December 1993.

Figure 7. Scatter diagrams with estimated functional
relationships for significant wave height triple ERA-40,
ERS-1 and Topex collocated data from June to December
1993. (a) ERA-40 versus ERS-1. (b) ERA-40 versus Topex.
(c) ERS-1 versus Topex.

CAIRES AND STERL: DATAVALIDATION USING TRIPLE COLLOCATION 43 - 11



case the wind speed) and of the choice of certain empirical
coefficients. Thus, if there is such an error structure in the
wind speed, it is to be expected that it will also be present in
the wave model results.
[60] The variance estimates of wind speed altimeter

measurements for the different wind speed algorithms are
statistically the same, indicating that each algorithm has the
same associated random uncertainty. The error variance
estimates, however, do not exclude a dependence of the
random error on the geographical location. For the ERS-1
measurements the values obtained in the 40�S–20�S region
are statistically different from the estimates in other regions
and the same is true for the Topex measurements in the
20�S–20�N region. There is, however, no evidence of a
dependence on the values of U10.
[61] It is interesting to see what would result from these

wind speed comparisons if the variances of the random
errors were not taken into account. In Table 8 we compare
the slopes obtained in the comparisons between the ERA-40
wind speeds and the altimeter wind speeds resulting from
the application of the Gourrion et al. [2002] algorithm using
the FR, LR and PCA models. In the scatter diagrams
comparing the ERA-40 predictions with the altimeters
measurements (Figure 9), we have superimposed the esti-
mated FR, LR and PCA lines. As expected, the larger
discrepancies are between the estimates of the linear rela-
tionship model and those of the functional relationship
model. Both the LR and PCA estimates, contrary to the
FR estimates, indicate an overestimation of the high wind
speeds by the ERA-40 system when compared with ERS-1.

For the ERA-40/Topex comparisons the FR estimate gives
an underestimation of about 17% by ERA-40, while accord-
ing to the PCA estimate it is only 8%, and according to the
LR estimate ERA-40 overestimates the measured wind
speed by 4%. No differences between the statistical proper-
ties occur in the altimeter comparisons. This is due to the
fact that the variances of the errors of the altimeter data sets
are small and the ratio between the variances is close to 1.

5. Conclusions

[62] We have proposed a functional relationship model
for comparing three data sets which allows the estimation of
the parameters of the functional relationship and of the
variances of the random errors of the three systems. Two
situations were considered: a situation where the random
errors of the three systems can all be assumed independent,
and a situation where random errors of two of the three
systems are dependent with known covariance.
[63] The model was used to compare Hs data from ERA-

40, buoy, ERS-1 and Topex, covering the period from June
to December 1993. For the comparisons of triple collocation
ERA-40, buoy and Topex data additional results for 1994
and 1995 were also presented. Comparisons were also made
between U10 data from ERA-40, ERS-1 and Topex of the
7-month period in 1993.
[64] There are several algorithms available to compute

wind speeds from altimeter s0 measurements for low to
moderate wind speeds. Two of those used operationally, of
Witter and Chelton [1991] and Gourrion et al. [2002], have

Table 5. Estimates, for Different Latitude Strips, of the Functional Relationship Coefficients Between ERA-40(x), ERS-1(y), and

Topex(z) Significant Wave Height Observations, and of the Variances of the Errorsa

n hxi a1 b1 a2 b2 b3 hex2i hey2i hez2i
80�S–80�N 1694 2.95 �0.70 1.12 �0.46 1.24 0.90 0.16 0.01 0.01

(�0.76, �0.63) (1.09, 1.14) (�0.54, �0.39) (1.21, 1.26) (0.90, 0.91) (0.14, 0.17) (0.00, 0.01) (0.01, 0.02)
80�S–40�S 893 3.60 �0.90 1.15 �0.81 1.30 0.88 0.19 0.01 0.01

(�1.01, �0.78) (1.11, 1.18) (�0.94, �0.68) (1.25, 1.34) (0.87, 0.90) (0.17, 0.22) (0.00, 0.02) (0.00, 0.02)
40�S–20�S 226 2.60 �0.82 1.24 �0.65 1.39 0.89 0.09 0.01 0.01

(�1.00, �0.65) (1.17, 1.32) (�0.84, �0.47) (1.32, 1.47) (0.87, 0.91) (0.07, 0.12) (0.00, 0.02) (0.00, 0.02)
20�S–20�N 279 2.01 �1.10 1.36 �0.76 1.43 0.95 0.06 0.00 0.01

(�1.26, �0.95) (1.28, 1.44) (�0.93, �0.58) (1.34, 1.52) (0.92, 0.98) (0.04, 0.07) (0.00, 0.01) (0.00, 0.02)
20�N–40�N 138 1.91 �0.91 1.27 �0.48 1.31 0.97 0.10 0.00 0.01

(�1.31, �0.51) (1.06, 1.49) (�0.88, �0.08) (1.10, 1.53) (0.93, 1.01) (0.07, 0.13) (0.00, 0.01) (0.00, 0.03)
40�N–80�N 158 2.41 �0.84 1.21 �0.61 1.35 0.90 0.13 0.01 0.01

(�1.05, �0.63) (1.10, 1.32) (�0.84, �0.38) (1.23, 1.47) (0.87, 0.93) (0.10, 0.17) (0.00, 0.02) (0.00, 0.03)
aData from June to December 1993. The limits of the confidence intervals are given in parentheses below the estimates. The sample size, n, and the

average of the ERA-40 data, hxi, are also included.

Table 6. As in Table 5, but Assuming a Covariance Between the Errors of ERS-1 and Topex of heyezi = 0.02

n hxi a1 b1 a2 b2 b3 hex2i hey2i hez2i
80�S–80�N 1694 2.95 �0.66 1.11 �0.42 1.22 0.90 0.14 0.02 0.04

(�0.72, �0.59) (1.08, 1.13) (�0.50, �0.35) (1.20, 1.25) (0.90, 0.91) (0.13, 0.16) (0.02, 0.03) (0.03, 0.04)
80�S–40�S 893 3.60 �0.85 1.13 �0.75 1.28 0.88 0.18 0.03 0.04

(�0.96, �0.74) (1.10, 1.17) (�0.88, �0.62) (1.24, 1.32) (0.87, 0.90) (0.15, 0.20) (0.02, 0.04) (0.03, 0.05)
40�S–20�S 226 2.60 �0.76 1.21 �0.58 1.36 0.89 0.08 0.02 0.03

(�0.93, �0.58) (1.14, 1.29) (�0.76, �0.40) (1.29, 1.44) (0.87, 0.91) (0.05, 0.11) (0.01, 0.03) (0.02, 0.04)
20�S–20�N 279 2.01 �0.97 1.29 �0.62 1.36 0.95 0.04 0.02 0.03

(�1.13, �0.82) (1.22, 1.37) (�0.80, �0.43) (1.27, 1.46) (0.92, 0.98) (0.02, 0.06) (0.01, 0.03) (0.02, 0.04)
20�N–40�N 138 1.91 �0.82 1.23 �0.38 1.26 0.97 0.09 0.02 0.03

(�1.19, �0.45) (1.02, 1.43) (�0.76, �0.01) (1.06, 1.47) (0.93, 1.01) (0.06, 0.11) (0.01, 0.03) (0.02, 0.05)
40�N–80�N 158 2.41 �0.81 1.20 �0.58 1.33 0.90 0.12 0.03 0.04

(�1.02, �0.60) (1.09, 1.31) (�0.80, �0.35) (�0.80, �0.35) (0.87, 0.93) (0.08, 0.16) (0.01, 0.04) (0.02, 0.05)
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been considered here. For high wind speeds (U10 > 18 m/s)
we have considered the algorithm of Young [1993].
[65] Care was taken so that the collocated data had

compatible time and space scales by averaging the buoy
measurements in time and the altimeter measurements in
time and space. The results show that in terms of significant
wave height the Topex and buoy observations compare well
with each other. The ERS-1 measurements are lower than
the buoy and Topex observations. This is in line with linear
corrections obtained by calibrating ERS-1 data proposed in
the literature and that were not applied here. The ERA-40
values of Hs slightly overestimate low (<1.5 m) values of
Topex and buoy, and underestimate high values by more
than 20%. The estimated variances of the random errors

associated with the ERA-40 Hs observations are much
higher than those of the measuring instruments. The stand-
ard deviation of the ERA-40 Hs random errors vary, depend-
ing on Hs, from about 30 cm for Hs � 2m to 45 cm for Hs �
3.5 m. The standard deviations of the errors of the measur-
ing instruments do not seem to depend on the value of Hs

Figure 8. (top) Histograms of ERA-40 wind speed
estimates (solid line), Topex altimeter wind speed estimates
using the Witter and Chelton [1991] algorithm (dashed
line), and using the Gourrion et al. [2002] algorithm (dotted
line). (bottom) Histograms of ERA-40 wind speed estimates
(solid line), ERS-1 altimeter wind speed estimates using the
Witter and Chelton [1991] algorithm (dashed line), and
using the Gourrion et al. [2002] algorithm (dotted line).
Data are from June to December 1993.

Figure 9. Scatter diagrams with estimated FR, LR and
PCA lines for wind speed triple ERA-40, ERS-1 and Topex
collocated data from June to December 1993. (a) ERA-40
versus ERS-1. (b) ERA-40 versus Topex. (c) ERS-1 versus
Topex. The altimeter wind speed estimates were obtained
using the Gourrion et al. [2002] algorithm.
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and are lower than 15 cm. Our results indicate a positive
correlation between the random errors associated with the
two altimeter measurements.
[66] The comparisons of wind speed are inconclusive

about which of the two altimeter algorithms for low to
moderate wind speeds behaves better, since they do not alter
the error structure or calibration of the data. Compared with
the ERS-1 data, the Topex wind speed observations show a
positive bias, increasing with U10 and of about 2 m/s for
U10 � 22 m/s. The ERA-40 data show a positive bias when
compared with ERS-1 data below about 8 m/s and a

negative one above it. Again, in these comparisons the
random errors associated with the ERA-40 observations are
higher than those of the measuring instruments, and show a
dependence on the value of U10. For ERA-40 the standard
deviations of the errors vary from 1.1 to 1.6 m/s. For the
altimeters the value is of about 0.5 m/s.
[67] The ERA-40 overestimation (underestimation) of

low (high) wave heights can be partially explained by the
corresponding overestimation (underestimation) of low
(high) wind speeds. There are, however, other factors, such
as resolution and model deficiencies, contributing to these
mismatches. In this respect our assessment of the ERA-40
data is in line with those of Sterl et al. [1998] and Bauer and
Staabs [1998], where WAM predictions forced with
ECMWF winds were thoroughly assessed; of course no
such detailed study was intended nor possible here. Other
wave validation studies (such as those of Bauer and
Heimbach [1999] and Heimbach et al. [1998]) manage to
divide the samples into pure wind sea and swell cases; the
sample sizes used here do not allow such a distinction.
However, in order to get an idea of how the quality of the
ERA-40 Hs data depends on the mean wave period we have
computed the bias between the ERA-40 and the Topex Hs

data as a function of the ERA-40 mean wave period. The
plot (not shown here) has a small trough of �0.25 m for a
mean wave period of about 4.5 s, and the bias decreases
uniformly from �0.12 m for 5.3 s to about �0.48 m for a
mean wave period of 12 s. This allows no deductions in
terms of wind sea and swell, since most of the sea states
considered here are mixed, but allows us to say that the
underestimation of the ERA-40 wave height tends to
increase with the mean wave period.
[68] The estimates of the triple collocation model were, in

some cases, compared with the corresponding PCA and LR
estimates. As expected, the larger differences were found
between the FR and LR estimates. In the case of wind
speed data a comparative study based on LR estimates
would lead to the conclusion that there is no underestima-
tion of the high wind speeds by ERA-40, in contrast with
our conclusions.
[69] Let us note that our estimates of the variances of the

errors in the measurements naturally depend on our way of
collocating the data. If instead of considering a 1.5� by 1.5�
square region centered at the buoy location we use, for
example, a circular region of 200 km radius centered at the
buoy location, the estimates for the variance of the altimeter
errors are about 3 times as large as those shown here, while
those of the variances of the buoy and model errors would
remain the same. This is understandable because an
increase in the collocation area represents an increase in
the sampling variability of the altimeter data. Also, if
instead of computing the buoy super observations by
averaging 3-hourly observations, we average over 1 (5)
hours, the estimates of the buoy errors would be closer to
zero (respectively closer to 0.01). Finally, if instead of
interpolating the ERA-40 data to the buoy location we
interpolate it to the midpoint between the buoy and the
altimeter observation, we slightly increase (decrease) the
variances of the errors of the buoy (respectively altimeter)
measurements.
[70] Although fulfilling the objectives of our study, this

assessment of ERA-40 data provides no guidelines on the

Figure 10. The same as Figure 9, but for winds obtained
using the Witter and Chelton [1991] algorithm.
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use of climatology statistics, such as return values, that may
be computed from the ERA-40 data. To obtain these, a more
extensive assessment of the data for different periods, not
restricted to locations with at least two measurements from
different instruments available, is needed, together with an
in-depth extreme values analysis. The results of this study
do, however, give a good measure of the characteristics of
the ERA-40 data for the period without altimeter assimila-
tion. In principle, the fact that the statistical method we
propose is able to account for dependence between the
random errors of different data sets suggests that triple
collocation of ERS, Topex and ERA-40 data could also
be used to assess the ERA-40 data in the periods when ERS
data is assimilated into ERA-40. Such a study, however,
requires a reliable estimate of the correlation between the
ERA-40 data and the ERS data, which we are not able to
provide.
[71] The statistical method developed and applied here

helps give insight into the way random errors in the data
affect comparative linear functions. The fact that estimates of
the variances of the random errors can also be estimated

suggests other areas of applicability, as, for instance, data
assimilation. Most of the assimilation techniques require
estimates of the variance of the random errors for both model
data and measurements, and so far there is no method to
provide such estimates, most of data assimilation applica-
tions using ad hoc estimates of variances, especially for the
model data.
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