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Sea Level Rise During Past 40
Years Determined from

Satellite and in Situ
Observations

Cecile Cabanes, Anny Cazenave, Christian Le Provost

The 3.2 6 0.2 millimeter per year global mean sea level rise observed by the
Topex/Poseidon satellite over 1993–98 is fully explained by thermal expansion
of the oceans. For the period 1955–96, sea level rise derived from tide gauge
data agrees well with thermal expansion computed at the same locations.
However, we find that subsampling the thermosteric sea level at usual tide
gauge positions leads to a thermosteric sea level rise twice as large as the “true”
global mean. As a possible consequence, the 20th century sea level rise esti-
mated from tide gauge records may have been overestimated.

Coastal tide gauges have provided the main
technique by which sea level change has been
measured during the past century. For about a
decade, sea level has been monitored world-
wide by altimeter satellites, in particular by
Topex/Poseidon, with global coverage, high
spatio-temporal resolution, and direct tie to
Earth’s center of mass (1). The global mean sea
level rise observed by Topex/Poseidon amounts
to 2.5 6 0.2 mm/year between January 1993
and December 2000 (2). On time scales longer
than 1 year, global mean sea level change re-
sults from two main causes: (i) volume change
due to seawater density change in response to
temperature and salinity variations (the two pa-
rameters having opposite effects on sea level)
and (ii) mass change due to exchange of water
with atmosphere and continents, including gla-
ciers and ice sheets, through precipitation, evap-
oration, river runoff, and ice melting. The re-
cent availability of long time series of global
ocean temperatures down to 3000 m, for the
period 1945 through 1998 (3), has made it
possible to quantitatively estimate the thermal
contribution to the sea level change observed
during the 1990s.

We used the yearly mean temperature data
(available for the upper 500 m only) to com-
pute the thermosteric sea level (4) and com-
pared it with the yearly averaged sea level
derived from Topex/Poseidon (Fig. 1). The
thermosteric sea level rise for 1993–98
amounts to 3.1 6 0.4 mm/year, in agreement
with the 3.2 6 0.2 mm/year rate measured by
Topex/Poseidon over the same time span (5).
The residual sea level (observed minus ther-
mosteric sea level; also shown in Fig. 1)
presents a small, not significant, trend of
0.2 6 0.2 mm/year. Apart from uncertainties
in observed and computed sea level rise, the

residual trend would reflect unknown contri-
butions from three sources: deep (500 to
3000 m) thermosteric change, water mass
addition to the oceans due to exchange with
atmosphere and continents, and halosteric
(i.e., due to salinity change) variations. The
above results suggest that these components
contribute negligibly (less than 5%) to the
observed sea level rise. The agreement be-
tween the Topex/Poseidon-observed and
thermosteric sea level trends (2, 4) for 1993–
98 is striking, particularly in the tropics and
Northern Hemisphere (Fig. 2). The ther-
mosteric trend map reproduces well the East-
ern Pacific sea level rise associated with the
1997–98 El Niño–Southern Oscillation
(ENSO) event, as well as the Western Indian
Ocean rise. Sea level patterns in the equato-
rial and Northern Atlantic also are well re-
produced in shape and magnitude by the ther-
mosteric map. Some discrepancy is observed
in the southern oceans, where the positive
trends observed by Topex/Poseidon (6) are
larger than the thermosteric contribution, a
likely consequence of sparse temperature
coverage in remote southern regions. The
quantitative comparison presented here
shows that, for recent years, warming of the
upper oceans almost fully accounts for the
global mean sea level rise observed by
Topex/Poseidon. Thus, other climatic contri-

butions to the 1993–98 observed sea level
rise, due to water mass exchange with the
atmosphere and with continental reservoirs as
well as deep ocean (below 500 m) thermal
effects and salinity contribution, may global-
ly counterbalance each other.

The third assessment report of the Intergov-
ernmental Panel on Climate Change (IPCC) (7)
estimates the various factors that have contrib-
uted to the 20th century sea level rise. The
largest contribution (0.7 mm/year sea level rise)
arises from thermal expansion due to warming
of the oceans that mainly occurred since the
1950s (8). Melting of continental glaciers pro-
duces 0.2 to 0.4 mm/year sea level rise (7).
Estimated Greenland and Antarctica mass im-
balance (accounting for a long-term readjust-
ment since Last Glacial Maximum plus a cli-
mate-related response) contributes –0.2 to 0.6
mm/year (7). The least certain contribution is
the change in terrestrial water storage that re-
sults partly from human activities, which is in
the range of –1.1 to 1 0.4 mm/year with a
median value of 20.35 mm/year (i.e., corre-
sponding to sea level drop) (7). The sum of
these contributions ranges from 20.8 to 2.2
mm/year, with a median value of 0.7 mm/year
(7). Values for the 20th century sea level rise
based on tide gauges records, published during
the 1990s, are in the range 1 to 2 mm/year (7).
The most recent global analyses (9, 10), which
use the longest tide gauge records available
($70 years), report a rate of rise closer to 2
mm/year: 1.71 6 0.55 mm/year (9) and 1.84 6
0.35 mm/year after correcting for postglacial
rebound (10). The third IPCC report (7) adopts
a best estimate of 1.5 6 0.5 mm/year for the
observed 20th century sea level rise and notes
that the sum of climate-related components is
low compared with the observational estimates.
In effect, these observed values (1.5 mm/year or
1.8 mm/year) are more than twice as large as
the revised estimate of total climate contribu-
tions, although there is complete overlap be-
tween the range of the sum of contributions (7)
and the observed range. It would appear that
either the climate-related processes causing sea
level rise have been underestimated or the sea
level rise observed with tide gauges is biased
toward values too high. The latter possibility
may arise from the fact that tide gauges are
located at continents or island coastlines and

Laboratoire d’Etudes en Géophysique et Océano-
graphic Spatiales, Centre Nationale d’Etudes Spatia-
les, 18 Avenue Edouard Belin, Toulouse 31400, France.

Fig. 1. Global mean sea level
curves. Dotted curve, observed
at 10-day interval by Topex/Po-
seidon for 1993–2000. Solid
curve, yearly averaged sea level
from Topex/Poseidon. Dashed
curve, thermosteric component
computed from global tempera-
ture data (3) down to 500-m
depths for 1993–98. Dashed-
dotted curve, residual (Topex/
Poseidon minus thermosteric)
sea level.
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hence do not globally sample the spatial varia-
tions of the sea level change. The recent avail-
ability of global sea temperature data (3) can
help address the second possibility.

We computed the thermosteric sea level,

for the period 1955–96, using the 5-year
mean temperature data over the depth range 0
to 3000 m (3). The 60°S to 60°N average
shows a mean thermosteric trend of 0.50 6
0.05 mm/year (Fig. 3). To test the agreement

between this average and the value that
would be calculated by using only data from
tide gauge positions, we computed a pseudo
“global mean” steric sea level time series by
subsampling the global thermosteric sea level
grid at locations close to tide gauge sites (11),
using 25 of the 27 stations selected by Doug-
las (9). The pseudo global mean thermosteric
sea level time series, superimposed to the
“true” global mean in Fig. 3, is 1.4 6 0.10
mm/year, a value more than two times as
large as the true global mean trend (0.5 6
0.05 mm/year). Twenty-three out of the 25
sites are located in positive trend regions
(Fig. 4). Considering the substantial regional
variations in thermosteric trends, it appears
clear that these sites fail to correctly sample
the global variation and that averaging ther-
mosteric sea level at these sites is not repre-
sentative of the global mean.

We further checked whether the computed
thermosteric sea level rise correctly reproduces
the tide gauge–derived sea level rise. For that
purpose, we considered tide gauge records from
the Permanent Service for Mean Sea Level
(PSMSL) (12) at the 25 sites. The “average”
tide gauge–derived sea level curve over 1955–
96, after performing regional grouping (13), is
shown in Fig. 3. The observed (i.e., tide gauge–
derived) mean sea level rise for 1955–96 is
1.6 6 0.15 mm/year, a value that agrees well
with the pseudo global mean thermosteric rise
(1.4 6 0.10 mm/year). The tide gauge–derived
sea level curve displays decadal oscillations that
are smaller in the thermosteric sea level curve.
Inspection of individual tide gauge records in-
dicates that stations of the northeast U.S. coast
are largely responsible for the observed decadal
variability, which originates from North Atlan-
tic wind forcing (14). In our computation, we
did not account for the halosteric component
because global gridded salinity data are not yet
available. Antonov et al. (15) showed that the
halosteric contribution is quite substantial in the
subpolar part of the North Atlantic, especially
in the Labrador Sea, where it nearly counteracts
the thermosteric contribution. However, in
terms of global mean, the halosteric sea level
rise has not exceeded 0.05 mm/year over the
past 40 years (15). We checked whether neglect
of the haline component when computing the
steric sea level at the tide gauge sites would
change our results. At each of the 25 stations,
we computed difference time series of the tide
gauge–derived minus thermosteric sea level
and fitted a linear trend to these difference time
series. The mean difference trend is 0.25 6
0.14 mm/year, a value that represents an upper
bound of the neglected halosteric and other
climatic contributions.

Our study has demonstrated that the glob-
al estimate of the thermal expansion compo-
nent is substantially smaller than the value
obtained if the same field is subsampled at
the tide gauge positions used to compute the

Fig. 2. Map of the geographical distribution of sea level trends over 1993–98 computed from
Topex/Poseidon altimetry (A) and from the thermosteric sea level data (B).

Fig. 3. Mean sea level curves for
1955–96. Dashed curve, global
mean thermosteric component
computed with data from (3)
down to 3000-m depths. Dotted
curve, pseudo global mean ther-
mosteric sea level computed by
subsampling the global data set
at the 25 tide gauge sites. Solid
curve, observed sea level curve
based on the PSMSL records at
the 25 tide gauge sites.
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20th century global mean sea level rise. It is
generally assumed that spatial variation of
sea level rise is caused by nonuniformity in
thermal expansion, other contributions lead-
ing rapidly to uniform sea level change. Thus,
the reported difference may reflect an over-
estimate of the sea level rise for the past
decades, caused by the uneven distribution of
the tide gauges and limited geographical sam-
pling available from historical records. Even
though the global tide gauge network has
been considerably extended during the 1990s
(16), recent sea level rise estimates based on
the tide gauges still substantially depart from
the global mean measured by Topex/Posei-
don (17). Because of temperature data avail-
ability, we limited our analysis to the second
half of the 20th century, but it should be
noted that the mean sea level rise computed
with this 40-year-long tide gauge record
agrees well with values based on longer
records (9, 10). Thus, our conclusion that the
tide gauge–derived sea level rise for the past
few decades has been overestimated possibly
holds for the whole 20th century. This would
reconcile observed sea level rise and estimate
of climate-related contributions (on the order
of 0.7 mm/year) as reported by the third IPCC
assessment report (7).
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Fig. 4. Map of the geographical distribution of thermosteric sea level trends for 1955–96 computed
with temperature data from (3) down to 3000-m depths. Black triangles show the locations of the
25 tide gauges.
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