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Abstract The inertial coupling approach for the mo-
mentum transfer at the ocean–atmosphere interface,
which is based on the assumption of a similarity hy-
pothesis in which the ratio between the water and air
reference velocities is equal to the square root of the
ratio between the air and water densities, is reviewed
using a wave model. In this model, the air and water
reference velocities are identified, respectively, with the
spectrally weighted phase velocity of the gravity waves
and the Stokes velocity at the water roughness length,
which are evaluated in terms of the dimensionless fre-
quency limits in Toba’s equilibrium spectrum. It is
shown that the similarity hypothesis is approximately
satisfied by the wave model over the range of wave ages
encountered in typical sea states, and that the predicted
values of the dimensionless surface drift velocity, the
dimensionless water reference velocity, and the
Charnock constant are in reasonable agreement with
observational evidence. The application of the bulk
relationship for the surface shear stress, derived from the
inertial coupling hypothesis in general circulation
modeling, is also discussed.

Keywords Air–sea momentum exchange �
Wave model � Surface shear stress � Inertial coupling

1 Introduction

The formulation of the momentum transfer process
across the air–sea interface is of central importance for

the study of the coupled ocean–atmosphere. Most ob-
servational programs have been made in the atmo-
spheric boundary layer, implicitly with the assumption
that the small current velocities, in comparison with
wind velocities, are of minor importance, serving only to
make a small change in reference velocity to the system.
This assertion was challenged by Bye (1995), who pro-
posed that the neglect of the near-surface ocean dy-
namics, which are dominated by the gravity wave
spectrum, may lead to a serious misrepresentation of the
momentum transfer process. The basic reason was that
the small surface current velocity used in the traditional
formulation varies in space and time, and hence the
surface shear stress which is obtained from a theoretical
framework using this velocity is deficient, since the
frame of reference for the coupled ocean–atmosphere
system is the Earth reference frame (Bye and Wolff
1999). The formulation given in Bye (1995), which was
called the inertial coupling relation, overcomes this de-
ficiency and provides an expression for the surface shear
stress relative to the Earth reference frame.
It is the purpose of this paper to review the basis of

the inertial coupling relation using a wave model which
involves a refinement of the analysis given in Bye (1988)
and also an expression for the spectrally weighted phase
velocity of the gravity wave spectrum. It will be em-
phasized that the inertial coupling hypothesis is groun-
ded on observational studies on both sides of the air–sea
interface, and follows naturally from traditional con-
cepts of coupled frictional layers using the wave
boundary layer model, presented below.
The main significance of the inertial coupling rela-

tion, however, is its interpretation in terms of the large-
scale interaction of coupled fluids of large density con-
trast (Bye and Wolff 1999), which is also discussed later.

2 Formulation of the coupled frictional layers

The two basic profile relations which apply approxi-
mately near the sea surface are, in the air:
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u0 ¼ uS þ u�=j ln z=z0 ; ð1Þ
and in the water:

u ¼ uR � w�=j ln z=zR; zR > z0 ; ð2Þ
in which the meteorological convention (z positive up-
wards) is used in the air, and oceanographical conven-
tion (z positive downwards) is used in the water, and
z ¼ 0 at the mean sea level. The friction velocities in air
and water are, respectively, u� and w� where

u� ¼ ðss=q0Þ1=2 and w� ¼ ðss=qÞ1=2 in which q0 and q are,
respectively, the density of air and water, ss is the surface
shear stress, uS is the air velocity at z ¼ z0; uR is the water
velocity at z ¼ zR, and j is von Karman’s constant.
Equation (1) would be expected to apply in the constant
stress layer of a neutral atmosphere, and Eq. (2) has
been observed in the constant stress layer of the ocean,
even though wave motions were also present. As they
stand, Eqs. (1) and (2) do not fully define the coupled
system. This inadequacy can be overcome by defining
a paired expression in the other fluid for each of the
relations. For Eq. (1), the paired equation for water is:

u ¼ uS � w�=j ln z=z0 : ð3Þ
This technique, which was originally applied in Bye
(1965), where simultaneous profiles in air and water were
available, which had the property that w� ¼ eu� where
e ¼ ðq0=qÞ1=2, unambiguously defines the velocity, uS ,
which is usually called the surface drift velocity, and also
the air roughness length, z0, which is usually just called
the roughness length, although no physical reality is
implied for the coordinate (uS, z0).
In practice, the drift speed of entities at the sea sur-

face is influenced by many other factors, see, for ex-
ample, Wu (1975). The pair of relations (Eqs. 1 and 3) is
the description of the momentum coupling in the uS
reference frame.
For Eq. (2), the paired equation for air is:

u0 ¼ u0R þ u�=j ln z=zR ; ð4Þ
where u0R is the velocity in air at z ¼ zR, which can be
expressed in terms of uR by the relation:

uR ¼ evu0R ; ð5Þ
where v is a constant. The substitution of Eq. (1) into
Eq. (4), and Eq. (2) into Eq. (3) yields the relations
between the velocities:

uS ¼ ð1þ vÞ=ð1� evÞw�=j ln zR=z0 ð6Þ

and

uR ¼ vð1þ eÞ=ð1þ vÞuS : ð7Þ

In the inertial coupling relation, introduced in Bye
(1995), Eq. (5) is written in the form:

u0R ¼ uL þ u0 ð8Þ
and

uR ¼ euL þ u0 ; ð9Þ

in which u0 is the nonwave-induced velocity common to
both fluids, uL is the wave-induced velocity in the air (the
spectrally weighted phase velocity), and euL is the wave-
induced velocity in the water (the spectrally integrated
Stokes velocity). The choice of the coefficient, e, in
Eq. (9) ensures that Eqs. (2) and (4) are of similarity
form. The substitution of Eqs. (8) and (9) in Eqs. (4) and
(2), respectively, and the elimination of uL yields:

u� ¼ C1=2½u0 � u0 � ðu� u0Þ=e
 ; ð10Þ
in which the drag coefficient, C ¼ 1=4ðj2= ln2 z=zRÞ, and
u0 ¼ ðuþ eu0 � 2euLÞ=ð1þ eÞ ; ð11Þ
and also from Eqs. (1) and (3) using Eq. (11), we have:

uS ¼ u0 þ 2euL=ð1þ eÞ ; ð12Þ
which illustrates that the surface drift velocity also can
be partitioned into a wave-induced and a nonwave-
induced component. The implications of the inertial
coupling hypothesis are discussed in Section 4.

3 The wave boundary layer model

The main purpose of this paper is to evaluate uR and u0R
directly, using wave spectral estimates, and hence to
check the validity of the partitioning of the velocities
(Eqs. 8 and 9) on which the inertial coupling relation is
based. We will assume that the wave spectrum is de-
scribed by the Toba spectrum for wind-generated grav-
ity waves (Toba 1973) and that nonwave-induced
currents are absent (u0 ¼ 0). In this situation, Eqs. (8)
and (9) predict that v ¼ 1.
The estimate of uR is obtained from an extension of

the results presented in Bye (1988), which are based on
the Toba spectrum, in which the vertical profile of the
spectrally integrated Stokes velocity, u, in the oceanic
surface layer is given by the relation:

u ¼ a0u�

ZK1
K0

K�1e�2KZdK ; ð13Þ

where K ¼ u2�r
2=g2 and Z ¼ gz=u2� are the dimensionless

wavenumber and depth, respectively, r is the wave fre-
quency, g is the acceleration of gravity, a0 is identified as
e=j, i.e., for j ¼ 0:4 and e ¼ 0:034, a ¼ 0:085, and the
indices 1 and 0 indicate, respectively, the value of K
corresponding to the upper and lower wave frequencies
in the equilibrium range of the wave-frequency
spectrum. On taking the integral of Eq. (13) we obtain:

u ¼ a0u� lnK1=K0 þ
X1
n¼1

ð�2ZÞnðKn
1 � Kn

0 Þ=ðnn!Þ
" #

;

ð14Þ
where u ! 0 for Z ! 1. Also, differentiation of
Eq. (13) with respect to Z followed by integration over K
yields:
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du=dZ ¼ a0u�=Zðe�2K1Z � e�2K0ZÞ ; ð15Þ
whence it follows that:

du=dZ ¼ �2a0u�K1 for Z 
 ð2K1Þ�1 
 ð2K0Þ�1 ð16Þ
and

du=dZ ¼ �a0u�=Z for ð2K1Þ�1 
 Z 
 ð2K0Þ�1 ; ð17Þ

such that immediately below the ocean surface the ver-
tical distribution of Stokes velocity is described by a
linear law, while deeper in the oceanic surface layer the
logarithmic law applies. Now, if we assume that the

momentum flux, w2�, in the oceanic surface layer remains
constant as for a wall boundary layer, and identify
the water roughness length as the depth of the transi-
tion from the linear to the logarithmic profile, where the
nondimensional depth, ZR ¼ ð2K1Þ�1, we find from
Eq. (14) that the water reference velocity

uR ¼ w�=j lnK1=K0 þ
X1
n¼1

ð�1Þnð1� ðK0=K1ÞnÞ=ðnn!Þ
" #

� w�=jðlnK1=K0 � 0:80Þ; K1 � K1 ; ð18Þ

and

zR ¼ aRu2�=g ð19Þ
is the water roughness length, where aR ¼ ZR. Note that
in Bye (1988) the constant term in Eq. (18), which is
small in comparison with the log term for an extended
wavenumber range, was omitted, i.e., the shear above
z ¼ zR, which is small in comparison with the logarith-
mic shear, was neglected (and also a nonstandard no-
tation was used in which the air roughness length was
denoted by z00 instead of z0 and the water roughness
length was denoted by z0 instead of zR).
The spectrally weighted phase velocity of the gravity

waves, u0R ¼ g=�rr, where �rr is the mean wave frequency
specified by the equality

�rr2
Z1
0

SðrÞdr ¼
Z1
0

r2SðrÞdr ; ð20Þ

in which SðrÞ is the wave frequency spectrum specified
according to Toba (1973), as

SðrÞ ¼ 0; r > r1 and r < r0

SðrÞ ¼ au2�gr
�4; r1 � r � r0 ;

ð21Þ

where r0 and r1 are, respectively, the lowest and highest
frequencies of the equilibrium range in the spectrum,
and a � 0:096 is Toba’s constant. Substitution of
Eqs. (21) into Eq. (20) to obtain �rr, and hence u0R yields:

u0R ¼ u�=ð3K0Þ1=2 ð1� ðK0=K1Þ3=2Þ=ð1� ðK0=K1Þ1=2
h i1=2

� u�=ð3K0Þ1=2; K1 � K0 ; ð22Þ

or, from the approximate expression, equivalently,
uR ¼ c0=

p
3, in which c0 ¼ g=r0 is the wavespeed of the

lowest frequency (r0) wave. The spectral expressions for
uR and u0R can be used to find v from Eq. (5), which
yields:

v ¼ ð3K0Þ1=2ðlnK1=K0 � 0:80Þ=j; K1 � K0 : ð23Þ
Equation (23) is an expression for v in terms of the wave
age, c0=u� ¼ K�1=2

0 , and also the Charnock parameter
for the water roughness length, aR ¼ ð2K1Þ�1. Figure 1
shows v evaluated from Eq. (23) over a range of wave
ages, and K1 ¼ 0:5 ðaR ¼ 1Þ, which is the upper limit of
K1 given in Phillips (1985), and is also equal to that
found by Bourrassa (2000) in a reevaluation of observed
water velocity profiles. It is apparent that over the ap-
proximate wave age range (30 > c0=u� > 5), v � 1. The
evaluation of v using the exact expressions for uR and u0R
has a somewhat smaller variation of v (1.4–0.7) over the
same range of wave ages, and, as it should, indicates that
v ! 0 for K0 ! K1. Thus, the Toba spectrum wave dy-
namics are consistent with a wave-dominant environ-
ment, which approximately satisfies the similarity
hypothesis on which the inertial coupling relation is
based, and in which nonlocal processes are unimportant.
This conclusion, although necessarily imprecise owing to
the simple model of the wave spectrum used, strongly
supports the partitioning of the velocities (uR and u0R)
used in Eqs. (8) and (9). The sensitivity to K1 is illu-
strated in Fig. 1 by the evaluation of v for
K1 ¼ 0:35 ðaR ¼ 1:4Þ which is the mid-range of K1 given
in Phillips (1985), and which was also used in Bye (1988).

3.1 Comparison of the similarity model
with observational data

A check on the validity of the similarity model (v ¼ 1)
can be obtained from field measurements of the vertical
profiles of the mean velocity in the surface layers of air
and water (see Bye 1965, 1987; Churchill and Csanady
1983). On substituting Eq. (5) in Eq. (16), we obtain the
nondimensional water reference velocity ratio:

uR=w� ¼ ð3K0Þ�1=2 ; ð24Þ
from which Eq. (7) yields the nondimensional surface
drift ratio:

uS=w� ¼ 2=ð1þ eÞð3K0Þ�1=2 : ð25Þ

For K1 ¼ 0:5, Eqs. (24) and (25) yield uR=w� ¼ 11, and
uS=w� ¼ 21. For comparison, the experimental estimates
are in the ranges 7–23 (mean 11), and 19–35 (mean 25),
respectively (Bye 1988).
The set of relations for the wave model (Eqs. 6, 19,

and 25) also enable the Charnock parameter for air
(Charnock’s constant) to be predicted; the result is:

a0 ¼ 1=ð2K1Þ exp �jð1� eÞ=ð1þ eÞð3K0Þ�1=2
h i

; ð26Þ
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where a0 ¼ Z0, and z0 ¼ a0u2�=g. On evaluating Eq. (26)
for K1 ¼ 0:5, we obtain a0 ¼ 0:017, which is a magnitude
similar to observational estimates (Garratt 1992).

3.2 Extension to more general conditions

The wave model can be extended to include the transfer
of momentum by turbulent (Ekman) shear in addition to
wave (Stokes) shear, by specifying the momentum flux
to the waves as a fraction c2 of the total wind stress. In
this case, all the results presented above remain valid
with the reservation that u� should now be replaced by
cu�. Then, on adding an Ekman velocity, uE, to the
Stokes velocity of Eq. (25), we obtain:

uR ¼ cuR þ uE ; ð27Þ
which is identical with Eq. (9), since by definition, the
wave-induced velocity is the Stokes velocity, euL ¼ cuR,
and the nonwave-induced velocity is the Ekman velocity,
u0 ¼ uE. On defining the ratio of the Stokes velocity to
the Ekman velocity, R ¼ euL=u0, Eq. (27) yields:

c ¼ ð1þ R�1Þ�1 ; ð28Þ
whence, as it must, c ¼ 0 at R ¼ 0 (the case of no Stokes
velocity) and c ¼ 1 at R ¼ �1 (the case of no Ekman
velocity). If, for example, the Stokes drift velocity and the
Ekman drift velocity are of the same magnitude (R ¼ 1),
it follows from Eq. (28) that c2 ¼ 0:25, which is in good
agreement with the estimates of c2 presented in Phillips
(1977). Note also that for the partition of momentum
flux described above, the wave ages of the basic analysis,
e.g., in Fig. 1, would be reduced by the factor (c).

3.3 Wave breaking effects in the wave boundary layer

The extension of the wave boundary layer model to in-
clude both Stokes and Ekman surface drift accom-
modates in a basic way all the key processes operating in
the upper ocean dynamics, in particular the role of wave-
breaking, which was examined by Craig and Banner
(1994), Craig (1996) and Melsom (1996), who, on the-
oretical grounds, demonstrated that wave-breaking sig-
nificantly enhances the mean velocity. In addition, Craig
and Banner (1994) and Craig (1996) established that the
mean velocity in the near-surface layer is approximately
linear with depth, while the turbulent kinetic energy and
the turbulent kinetic energy dissipation decay with depth
at powers several times greater than 1. In other words,
the vertical structure of the near-surface layer, which is
created by wave-breaking, is quite different from that
inherent in the logarithmic layer, as confirmed by ex-
perimental data (Kitaigorodskii et al. 1983; Thorpe
1984; Agrawal et al. 1992; Anis and Moum 1992;
Drennan et al. 1992; Osborn et al. 1992; Terray et al.
1996). This linear velocity profile is also predicted by the
wave boundary layer model (see Sect. 3), although wave-
breaking processes are not explicitly considered. That is,

models, each of which describes the mean drift from a
different viewpoint, provide identical (in a qualitative
respect) results. This should be kept in mind when
interpreting experimental data, in particular the data of
Csanady (1984), who suggested that the linear velocity
profile detected in the surface layer was due to breaking
waves.

4 The inertial coupling relation

The extension of the wave model (see Sect. 3.2) has
justified the general form of the partitioning of the
reference velocities (uR and u0R) used in the one-dimen-
sional inertial coupling relation (Eq. 10). The two-
dimensional inertial coupling relation of Bye (1995)
follows directly on relaxing the assumption that the
Stokes velocities and the Ekman velocities are collinear,
which yields:

sS ¼ q1C j u0 � u0 � ðu� u0Þ=e j u0 � u0 � ðu� u0Þ=e½ 

ð29Þ

and

u0 ¼ ðuþ eu0 � 2euLÞ=ð1þ eÞ ; ð30Þ
in which

u0R ¼ uL þ u0 ð31Þ
and

uR ¼ euL þ u0 : ð32Þ
On substituting Eq. (30) into Eq. (29) we also obtain:

sS ¼ q1 2=ð1þ eÞ½ 
2C j u0 � u� ð1� eÞuL j
� u0 � u� ð1� eÞuL½ 
 : ð33Þ

Equation (29) demonstrates the key property of the in-
ertial coupling relation that the surface shear stress is
expressed using velocities relative to the Ekman velocity
(u0) common to both fluids, and Eq. (33) is the corre-
sponding relation in terms of the wave-induced velocity.
Equation (33) is a general relation for the surface

shear stress, which shows that the presence of the wa-
vefield can give rise to an upward transfer of momentum
across the sea surface. Note that the form of Eq. (33)
accommodates waves and wind of different orientations,
since it is based on the partition of the reference velo-
cities (Eqs. 31 and 32) used in the bulk formula. In this
important respect it differs from the traditional approach
to the partition of the total surface shear stress (essen-
tially through the drag coefficient, rather than the velo-
cities, used in the bulk formula) into a turbulent shear
stress, wave-induced shear stress, and a viscous stress,
e.g., Phillips (1977) and Makin and Kudryavtsev (1999).
Upward momentum transfer from the ocean to the

atmosphere has recently been observed in field mea-
surements (Smedman et al. 1994; Drennan et al. 1999) in
situations where swell is propagating into regions of
light wind. Equation (33) indicates that this is a generic
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process, and that the wavefield is of first-order im-
portance to the dynamics of the ocean general circula-
tion. In particular, it suggests that the Ekman dynamics
are not essentially controlled by the wind, but by the
wind and the wavefield, each being of similar

importance. This places much more importance on wave
modeling in general circulation studies than has been
suggested by other studies, e.g., McWilliams and
Restrepo (1999).
Equation (30) links the two representations of sS . The

relations apply within the wave boundary layer, which
extends upwards and downwards from the interface. At
the edges of the wave boundary layer (z ¼ zB), the fluid
velocity tends to the free stream velocity, thus
u1 ¼ u0ðzBÞ is the surface wind, and u2 ¼ uðzBÞ is the
surface current. In the following discussion, the relations
will be applied at z ¼ zB. The incorporation of the wave-
boundary layer in the planetary boundary layer is dis-
cussed in a separate paper (Bye 2001), in which the
steady-state Ekman solution for the two fluids coupled
by Eq. (29) is presented.
We consider next the inertial coupling relation in the

frame of reference of the surface shear stress, and as-
sume that ss lies along the Ox axis. Then, from Eqs. (29)
and (30), we obtain:

v ¼ evL þ v0 ð34Þ
and

v0 ¼ vL þ v0 ; ð35Þ

such that the normal velocities in air and water, re-
spectively, v0 and v are constant, and all the velocity
shears lie along Ox. Next, on introducing the relation
between the Stokes shear and the Eulerian shear:

euL ¼ rðu0 � u2Þ ;

where r is a constant (note that for u2 ¼ 0, r ¼ R,
see Sect. 3.2), Eq. (29) and Eq. (30) reduce to scalar
expressions in which ssx and uL are functions of the
surface wind relative to the surface current, namely,

ssx ¼ q1CjF jðF Þju1 � u2jðu1 � u2Þ ; ð36Þ

where F ¼ 2ðr þ 1Þ=ð1þ e þ 2rÞ, and

uL ¼ r=ð1þ e þ 2rÞðu1 � u2Þ : ð37Þ
In a frame of reference in each fluid moving at the re-
spective normal velocities, these relations are a formally
complete description of the momentum exchange pro-
cess. The normal circulation acts solely to ventilate the
stress field, and from Eqs. (34) and (35), it consists of
both the Eulerian and Stokes components of the dy-
namics, the total normal velocities being determined by
the Ekman dynamics, as discussed in Bye (2001). Fur-
thermore, in horizontally homogeneous conditions in
which the surface shear stress is a constant vector, they
would be also valid at a fixed measurement station.
Thus, the classical drag law description of the near-
surface momentum transfer is the limiting form of the
more general inertial coupling relation, applicable in
horizontally homogeneous conditions. Two limiting
conditions are the following:

1. The surface current (u2) is equal to the Ekman
velocity (u0), common to both fluids (r ¼ �1). Here, it

Fig. 1 The parameter v as a function of wave age, c0=u�, for:
K1 ¼ 0:5 ðaR ¼ 1Þ solid curve, and K1 ¼ 0:35 ðaR ¼ 1:4Þ dashed
curve. E denotes evaluation from the exact solution, and A denotes
evaluation from Eq. (23)

Values of v (Table of values used in Fig. 1)

c0/u* Exact Eq. (23)

1.4 0 – K1 = 0.5
2.5 0.79 –
5 1.34 1.47
5.8 – 1.51 (Maximum)
7 1.39 1.50
10 1.30 1.38
15 1.09 1.14
17 1.02 1.06
20 0.94 0.97
30 0.74 0.76

1.7 0 – K1 = 0.35
2.5 0.48 –
5 1.09 1.17
6.8 – 1.27 (Maximum)
7 1.17 1.27
10 1.14 1.22
15 0.98 1.03
17 0.92 0.97
20 0.86 0.90
30 0.70 0.71
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is assumed that the shear in the wave boundary layer is
due only to the wavefield, and the role of the surface
current is solely that of a moving reference. In this local
reference frame, Eq. (36) and Eq. (37) predict that

ssx ¼ q1Cju1 � u2jðu1 � u2Þ ð38Þ

and

uL ¼ 1
2
ðu1 � u2Þ : ð39Þ

2. The wavefield is of negligible importance (r ¼ 0).
Here, Eq. (36) reduces to the relation:

ssx ¼ q1½2=ð1þ eÞ
2Cju1 � u2jðu1 � u2Þ ; ð40Þ

which is of form similar to Eq. (38), but in which ssx
would be enhanced for the same drag coefficient (C), due
to the Ekman shear in the water.

The familiar forms (Eqs. 36 and 37), however, ob-
scure the fundamental structure of the inertial coupling
relation, as discussed at the beginning of this section,
and applied to general circulation modeling in the next
section.

5 The application of the inertial coupling relation
in general circulation modeling

In order to apply the inertial coupling relation in general
circulation models, uL in Eq. (33) must be predicted
using a wave model. This is achieved by setting u0 ¼ 0 in
Eq. (30), i.e., the analysis which generates the wavefield,
by definition, is expressed in the Earth’s reference frame.
The resulting equation is of the form (Bye and Wolff
1999):

euL ¼ 1
2
ðe½u1
 þ fu2gÞ ; ð41Þ

where [u1] and fu2g denote, respectively, appropriate
two-dimensional spatial-temporal averages of the sur-
face wind and surface current. Equation (41) can be
directly substituted into Eq. (33) to obtain the surface
shear stress, which was denoted by ss0 in Bye and Wolff
(1999). The instantaneous nonwave-induced velocity (u0)
may also be evaluated from Eq. (30) using the
instantaneous velocities (u1) and (u2), which yields:

u0 ¼ ððu2 � fu2gÞ þ eðu1 � ½u1
ÞÞ=ð1þ eÞ ; ð42Þ
and on substituting for u0 in Eq. (29), we find that the
averages of the surface wind and the surface current
satisfy the relation

ss0 ¼ q1Cj½u1
 � fu2g=ejð½u1
 � fu2g=eÞ : ð43Þ
Equation (41) is, in effect, a wave model. A simple recipe
inwhich a shortmoving average of the surfacewind, and a
longmoving average of the surface current are used offers
an approximate working expression for uL (Bye andWolff
1999). This procedure recognizes that uL incorporates
both a contribution from wind-waves and swell. It is

clearly of importance to develop more sophisticated re-
lations for uL, using spectral wave models that can be run
as an integral part of coupled general circulation models.

6 Conclusion

The above analysis unifies the processes occurring across
the air–sea interface, which separates two fluids of large
density contrast. It is clear that it is necessary to consider
the problem in a multiple reference framework, which
can accommodate all aspects of the momentum ex-
change, whereas on using the local reference frame, only
that part of the exchange process which can be re-
presented by the three-dimensional turbulent fluctua-
tions is considered. The implications of extending the
representation to include the two-dimensional turbu-
lence of the two fluids are far-reaching (Bye and Wolff
1999). This paper endeavors to provide a physical
interpretation of the inertial coupling process on
which these arguments are based in terms of the wave
dynamics of the near-surface layer.
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