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SUMMARY 
Momentum exchange at the interface between two fluids is considered using general reasoning on energy 

dissipation in the coupled planetary boundary layers. 
It is shown that the surface shearing stress can be expressed as a function of the relative surface geostrophic 

velocity between the two fluids, and that the surface velocity is a linear combination of the two surface 
geostrophic velocities. This latter result is in agreement with a result previously derived by E. B. Kraus directly 
from the momentum equations. 

The analysis enables the ratio of the dissipation rates between the two fluids in the interfacial boundary 
layer to be determined. For the coupled ocean-atmosphere, we find this ratio to be approximately ( p 1 / p 2 ) ’ 8 2  
where p ,  and p2 are the densities of air and water, and we have made use of observations of the surface drift 
velocity and a dimensional argument which both suggest that the drag coefficients in the two fluids are 
approximately equal. 

From the form of the expression for the surface shearing stress, it is clear that both fluids lose energy in 
the coupled boundary layer, and also that they either transfer energy to each other or extract energy from each 
other by interaction at the interface. 

These energy fluxes are carried by two elemental stresses due to the general circulations of the atmosphere 
and the ocean respectively and which we call ‘wind stress’ and ‘understress’. 

The mutual loss of energy implies that the interface exerts a drag on both the atmosphere and the ocean, 
and the interfacial energy exchanges show that the ocean does work on the atmosphere analogous to the work 
done by the atmosphere on the ocean. 

1. INTRODUCTION 

An understanding of the physics of the air-sea interface is very important in general 
circulation studies of the ocean and the atmosphere. We present some general results on 
the geostrophic interactions between the two fluids which are independent of the details 
of the frictional processes within the planetary boundary layers. 

A feature of the analysis is a discussion of the frame of reference in which the results 
are to be presented. We seek to show that this is by no means a trivial consideration. 

In particular, on expressing the dissipation rate for the coupled ocean-atmosphere 
in a frame relative to the earth it is shown that the physics is described by the interaction 
of two stresses due respectively to the surface geostrophic velocities of the two fluids. 
These two stresses, which we call ‘wind stress’ and ‘understress’, are essentially inde- 
pendent vectors owing to the difference in scales between the horizontal turbulence of 
the atmosphere and the ocean. 

2. EKMAN LAYER ENERGETICS 

( a )  Single Ekman layer 
The steady state momentum equations for the Ekman layer are 

1 -fpv = - ap/ax + az,,/az 

f p u  = - ap/dy  + arty, /az 

in which Ox, Oy and Oz are respectively towards the east, and north and vertically 
upwards, p is density, p is pressure, ( U ,  V) and (z,,, tyz) are respectively the horizontal 
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components of velocity and vertical shearing stress, and f = 251 sin 6 is the Coriolis 
parameter, in which SZ is the angular speed of rotation of the earth and 0 is latitude. 

On defining the geostrophic velocity components, 

v, = (l/fP)aP/ax ug = -(l/fP)ap/aY, (2) 
these equations may be written in the form 

-fpV = at,,/at f p u  = at,,/az (3) 
where 0 = U - U, and 
rate of dissipation per unit area in the Ekman layer by a fluid of constant density is 

= V - Vg are the components of the frictional velocity. The 

where U = (0, fi and T~ = (z,,, z,,), and z = 0 is the surface coordinate, which may be 
integrated by parts to yield 

D = [Tz.U1; - lom (ar,/az.u) dz ( 5 )  

in which the frictional velocity and the vertical gradient of shearing stress are orthogonal 
such that the integral is identically zero. On evaluating the first term, assuming the 
surface is at rest and using the definition of the frictional velocity, we obtain 

D = T, -ugo (6)  
where U,, is the surface geostrophic velocity and is the surface shearing stress. Hence 
the rate of dissipation is equal to the rate of working of the surface shearing stress on 
the surface geostrophic velocity. 

(b )  Coupled Ekman layers 
The preceding analysis has several important consequences when applied to a 

coupled fluid system which consists of immiscible upper and lower fluids. In the discussion 
we consider in particular the coupled ocean-atmosphere and we will refer throughout to 
the upper fluid as air and lower fluid as water (Fig. 1). The results, however, may be 
applied to any stable two-layer fluid system. 

For the coupled Ekman layers we have the pairs of equations 

-fP& = ( a t x z / a z ) l  f P l G  = (at,z/~z)I (7) 

-fp,Q, = (dL, /W2 fP2 02 = (az,*/aZ)2 (8) 

and 

where the subscripts 1 and 2 refer respectively to the atmosphere and the ocean. On 
applying the preceding reasoning we obtain, for the dissipation rate per unit area in the 
atmosphere and ocean respectively, 

D1 = V(Ug1 - Us) (9) 

where Ugl and Up are the surface geostrophic velocities in the atmosphere and the ocean, 
and Us is the surface drift velocity; and for the coupled system, the dissipation rate per 
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Figure 1. The coupled ocean-atmosphere planetary boundary layers. 

unit area is given by 

D = T5.(Ugl - Ug2). (11) 
Now since D1 3 0 and D2 3 0, the surface shearing stress must be expressible in the 
forms 

7 s  = 4 J g 1  - Us) + 41 
7 s  = B(Us - U g 2 )  + 4 2  

(12) 

(13) 
in which 41 and & are orthogonal to (Ugl - Us) and (Us - Ug2) respectively, and A and 
B are positive constants, the values of which depend on the dynamics and structure of 
the Ekman layers. 

Hence on solving Eqs. (12) and (13) for U, and 7, we obtain 

us = W g l  + SUgZ)/(A + B )  + (41 - 42) / (A + B )  

7 ,  = W / ( A  + B)l(Ugl - U g 2 )  + (Wl + A 4 M A  + B) .  

(14) 

(15) 

and 
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By applying similar reasoning to the total dissipation rate (Eq. (ll)), since D 0, we 
also require that ( ( B 4 ,  + A&)/(A + B)} should be orthogonal to (Ug, - Ugz). The three 
orthogonality conditions yield the three equations 

41 W U g ,  - Ug2) - 41 + 421 = 0 

4 ) 2 + W g l  - Ugz) + 41 - 421 = 0 

( W I  + A4Z).(Ugl - up21 = 0 

91 = 42 = 4- 
the solution of which is 

(16) 
Hence we obtain the general relations 

u s  = (AUg1 + BUgZ>/(A + B )  

7,  = W / ( A  + B)}(Ug, - Ugz) + 4 
(17) 

(18) 
together with the condition that the vectors (Ugl - Us), (Us - Ug2) and (Ugl - Ug2) are 
collinear regardless of the dynamics or structure of the Ekman layers. 

On evaluating U, and 6, at the interface ( z  = 0) in Eqs. (7) and (8) and substituting 
Eq. (17), we find also that 

in which r = (p2/pl)A/B. 
The expression for the surface drift velocity (Eq. (17)) in terms of r ,  and the 

conditions on collinearity have been derived previously by Kraus (1977) directly from 
the momentum equations. 

In this discussion we focus our attention on the expression for the shearing stress 
(Eq. (18)) which is the complementary relation to Eq. (17). 

On substituting for T,,  the expressions for the dissipation rates are 

D ,  = {ABZ/(A + B)2}(Ug1 - Ug,)2 

0 2  = {A2B/(A + B)2}(Ug, - Ug)' 

D = {AB/(A + B)}(U,, - Ug)' (22) 

D l / D z  = B/A. (23) 

and for the ratio of the dissipation rates in the two fluids 

The above results have been obtained in the frame of reference of the relative motion 
between the two fluids. 

We consider next the implications of the analysis for a frame of reference relative 
to the earth, which is that of the momentum equations. 

Firstly, on expressing 4 by the general relation 

4 = {AB/(A + B)}(Ug1 - U&) tan a (24) 

where /Uzl 1 = lug, 1 and IUzl= lUg21, and Uzl and U& are rotated 90" to the left-hand 
side of Ugl and U, respectively such that a is the angle of rotation of 7, to the left-hand 
side of (Ugl - Ug2), and substituting in Eq. (18) we obtain 

Q, = {AB/(A + B)}(u,, + Uzl tan (Y - U, - Uz2 tan a) 
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which may be expressed in the form 

7, = 7 1  - 7 2  

where 

T~ = {AB/(A + B)}(U,, + Uzl tan (u) 

and 

72 = (AB/(A + B))(U,, + U; tan a). 

50s 

(25) 

In Eq. (25) ,  7s is partitioned into two elemental stresses, r1 due to the motion of the 
atmosphere and T~ due to the motion of the ocean. 

Secondly, relative to the earth, we have the rate of energy extraction per unit area 
from the atmosphere, Di = 7, -Ugl ,  and the rate of energy extraction per unit area from 
the ocean, Di = - ( T ~ . U ~ ~ ) ,  are such that 

D = D; + D;.  (26) 

D ;  and D ;  differ respectively from D, and D2 because an energy flux (rs.U,) crosses the 
interface (positive from air to water) during the dissipation process. 

On using Eq. (25) we obtain the expressions 

which have the following interpretation. 
For the atmosphere (Eq. (27)) the first term represents the rate of loss of energy 

per unit area and the second term represents the rate of working of the ocean per unit 
area on the atmosphere, and for the ocean (Eq. (28)) the corresponding terms represent 
the rate of energy loss per unit area, and the rate of working per unit area of the 
atmosphere on the ocean. Note also that the ratio D;/D; in general depends on U,, and 
U,, in contrast to the ratio O2/D1 which we have shown to be a local function independent 
of Ug, and Ug2. 

Two important limits illustrate the general results. 

(i) Ug2 = 0. For a zero surface geostrophic current Eq. (17) reduces to the expression 

us = { A / @  + B)FJ,l 
and hence the surface drift velocity lies exactly along the direction of the surface 
geostrophic wind (cf. Kraus 1977). The rate of energy dissipation per unit area from Eq. 
(26) is equal to the rate of energy loss per unit area by the atmosphere, D = T ~ . U ~ ~ .  
Note, however, that the ratio of the dissipation rates in the ocean and the atmosphere 
remains D1/D2 = B/A such that part of the dissipation due to the surface geostrophic 
wind occurs in the ocean (in an Ekman layer which reduces the surface drift velocity to 
zero at depth). 

(ii) B/A % 1. Suppose that Ugl is given, then from Eq. (17) Us+ Ug2 and from Eq. (23) 
all the dissipation occurs in the atmosphere. This limit approximates the situation for 
flow over a solid surface which is moving at a velocity U,. If U@ = 0, the problem reduces 
to the single Ekman layer over a surface at rest, as in the introductory discussion (a), for 
which we have the relation 

7, = 7 1  (29) 
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3. NOMENCLATURE FOR THE STRESSES 

We wish to present a simple nomenclature for the stresses which carry the energy 
transfers between the two fluids. 

Firstly consider the single Ekman layer. Over a surface at rest the surface shearing 
stress is due solely to the action of the wind, and hence there is no corruption in using 
the terms ‘wind stress’ and ‘surface shearing stress’ interchangeably. This equivalence is 
expressed formally in Eq. (29) which is an identity for T~ and rl. 

Similarly for the ocean there is an equivalence between the bottom shearing stress 
and bottom stress as universally applied to the stress exerted by the current on the ocean 
bottom. 

In the coupled ocean-atmosphere q is also the wind stress, i.e. it is the stress due 
to the motion of the atmosphere relative to the earth. We propose that T ~ ,  which is the 
corresponding stress due to the motion of the ocean, cf. Eq. (25), should be called the 
‘understress’. This name is preferable to ‘current stress’ which is the exact analogue of 
‘wind stress’ because shearing stresses act both at the surface and on the bottom of the 
ocean. 

Two main arguments are presented for the use of the two-stress notation. (1) It is a 
formal expression that for the coupled occan-atmosphere the terms ‘surface shearing 
stress’ and ‘wind stress’ are not synonymous. The shearing stress arises from the inter- 
action of two independent general circulations, one in the ocean and the other in the 
atmosphere. (2) It is an essential vehicle for conveying the physics of the coupled 
boundary layer. The small change in the frame of reference for T,, between that of the 
relative motion between the two fluids (Eqs. (12) and (13)), and that of the earth (Eq. 
(25)) may at first glance appear to be trivial, since the current speed is usually much less 
than the wind speed. This inference, however, overlooks the fact that the change in 
datum is of the same order as the ocean current. 

Relative to the earth (our dynamical reference) the surface geostrophic wind and 
current velocities are the only fundamental velocities, and the wind stress and understress 
play distinct roles of comparable significance, see section 5 and Bye (1985). 

4. MODELS OF COUPLED EKMAN LAYERS 

We will illustrate the previous discussion with two models for which we may obtain 
expressions for A and B. 

(a)  Laminar coupled Ekman layers 
The classical Ekman model (Ekman 1905) assumes that the density and also the 

viscosity are constant in each fluid. Thus 

ar,,/az = qa2u/az2 ar,,/az = qa2v/aZ2 (30) 
where 7 is the viscosity. The solution for the coupled Ekman layers has been obtained 
by Kraus (1972), and it is found that the surface shearing stresses in the atmosphere and 
ocean respectively are of the form 
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where q1 = pl(ifv,)'/2 and q2 = ~ ~ ( l i f v ) ~ ' ~ ,  f > 0, in which ul = ql/pl and y = q d p ~  
where v l  and v2 are respectively the kinematic viscosities forthe atmosphere and the 
ocean. 

On expressing these results in the form of Eqs. (12) and (13) we have, 

A =41 B = 42 

91 = 41(-Vgl+Vs,Ugl-Us) 

42 = q2(-Vs+Vg, Us-Ug2) 

u s  = ( q l u g l  + 92Ug2)/(41 + 4 2 )  

9 = {q,q2/(q1 + 42)K-Vgl + v g 2 ,  Ug1 -Ug2) 

and hence the surface drift velocity is given by the relation 

(33) 

(34) 

cf. Kraus (1977). On substituting for Us we obtain 

from which follows the classical result that T, lies at an angle of 45" to the left-hand side 
of (Ugl - Ug2) in the northern hemisphere (a = 45"). The dissipation rate is given by 

D = {414*/(41+q2)}(Ugl-Ug2)2. (35) 

(b)  Turbulent coupled Ekman layers 
The simulation of the frictional processes for turbulent flow gives rise to the quadratic 

expressions 

7, = PlKl  l u g 1  - u s w g ,  -Us) + 41 
7 s  = P2K2 1 %  - U,I(US - U,) + 4* 

(36) 

(37) 

where K 1  and K2 are drag coefficients in each fluid for the component of stress in the 
direction of the relative motion. 

These relations are of the form of Eqs. (12) and (13) with 

A = PIK, l u g 1  - us/ 

B = P2K2 lus - u g 2 l  

(38) 

(39) 

9 = + 1  = 42 and T, = G(Ugl - U,) + 4 (40) 

and on applying the general results we obtain 

in which 

and 
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where 

6 = A / B  = ( p l K , / ~ 2 K ~ ) ' / ~ .  (42) 
These results completely specify the energetics of the coupled Ekman layers provided 

that K ,  and K2 are known. Note that on substituting for 4 from Eq. (24) and using Eq. 
(41) we have 

4l = p lKl  1 ~ : ~  - U: I(u,*, - u:) tan a 

where IU: 1 = \Us\ and U,* is rotated 90" to the left-hand side of Us. Thus from Eq. (36) 

ITS1 = PIK,  sec @ l u g 1  - u,l2 

1 7 5 1  = PZK2 sec alus - U g 2 l 2  

and similarly from Eq. (37) 

and hence K ,  = Cfl cos a/ and K z  = Cn cos a, where Cf, and Cf2 are the geostrophic drag 
coefficients for air and water respectively, see Arya (1975). 

Observations of the wind drift velocity, {6/(1 + 6)}U,, (e.g. Kraus 1972), usually 
show it to be about 3% of the surface geostrophic wind and suggest that 6 - 0.03. 

By Eq. (23) 6 is also the ratio of the dissipation rates in the ocean and the atmosphere, 
and hence its determination is also of importance for the thermodynamics of the coupled 
ocean-atmosphere system. 

On assuming that p1 = 1.2kgm-3 and p2 = 103kgm-3 we obtain ( ~ ~ / p ~ ) ' / ~  - 0.034 
and hence on comparing this result with the observational estimate for 6 it appears that 
K , / K ,  - 1 so that the geostrophic drag coefficients in the air and water should have 
similar magnitudes. Kraus (1977) has given an independent dimensional argument which 
supports this result, namely that the stress gradients should scale according to the Ekman 
depths of the respective fluids. Thus, 

where u* = (ITs(/p1)1/2 and w* = ( ( ~ , ~ ( / p ~ ) ~ / ~  are respectively the friction velocities in air 
and water, and on substituting this result in Eq. (19) we obtain A / B  = (p1/p2)lI2 and 
hence also from Eq. (42) that K 1 / K 2  - 1. 

Further experimental studies on this important ratio, however, are clearly necessary. 
Observations also indicate that the angle of rotation (a)  is usually small, and adjacent 
to the interface (2 = 0) in both fluids we have approximate constant stress layers in which 

7 s  - PIKIUa - usl(Ua - Us) (43) 

Ts - p2K'1Us - UQl(u, - UO) b z f l / w *  1 (44) 

Iz,fl/u* -+i 1 

where U, refers to the wind velocity at a height lzll with the drag coefficient K ,  and U, 
refers to the current velocity at a depth lz21 with the drag coefficient K'. 

By arguments similar to the above we obtain 

Ts - Tw - TF 

in which T~ = CUa and T F  = CU, where 
(45) 

C = p1 KIUa - Uol/(l + E ) ~  and E = ( K p l / K ' p 2 ) ' / ' .  
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T~ and 7 F  are the wind stress and the understress referred jointly to the height / z  ,/ in the 
atmosphere and the depth /z2/  in the ocean. These formulae, and the corresponding 
expression for the surface drift velocity, 

us - (EU, + U")/(l + E )  

are useful approximate relations which have been used to illustrate the principles of the 
coupled analysis (Bye 1985). 

5 .  DISCUSSION 

The preceding analysis has sought to examine the dissipation processes in the coupled 
ocean-atmosphere boundary layer. 

We can discuss the results in two frames of reference, firstly that of the relative 
geostrophic motion between the two fluids, and secondly with respect to the motion of 
the earth. Both approaches are valid and useful. 

The major conclusion from the arguments on the relative motion is that the dis- 
sipation rates in the two fluids are partitioned according to Eq. (23) .  This ratio can be 
evaluated for laminar flow, and approximately for turbulent flow (Eq. (42)) and may be 
expected to be important for the thermodynamics of the coupled ocean-atmosphere 
system, see Bye (1985). 

Arguments from an absolute frame of reference yield other information. In particular 
an answer can be obtained to the question where does the energy come from that is to 
be dissipated in the coupled boundary layer? This question cannot be addressed in the 
relative frame as in general energy crosses the interface between the two fluids in the 
dissipation process. We seek the answer through Eqs. (27) and (28) in which the rate of 
dissipation is partitioned into two terms representing loss of energy by the respective 
fluids, and two interactive or rate-of-working terms. 

The energy loss terms show that the fluids lose energy in proportion to the squares 
of their geostrophic velocities, and imply that the interface exerts a drag on both the 
atmosphere (by wind stress) and the ocean (by understress). The importance of this drag 
for the oceanic general circulation has been argued in Bye (1985). 

The rates-of-working terms may take either sign depending on the relative alignment 
of the geostrophic flows. If T ~ . U ~ ~  > 0 the ocean transfers energy to the atmosphere, and 
if 71.Ug2 > 0 the atmosphere transfers energy to the ocean; and vice versa. The intrinsic 
interest of the rate-of-working terms lies in the differing horizontal scales of the geo- 
strophic motions of the two fluids-the rate of working of the atmosphere on the ocean 
(by wind stress) has been extensively studied, but the rate of working of the ocean on 
the atmosphere (by understress) which emerges as a complementary process would 
appear also worthy of study. 

The difference between the rates of energy loss and the rates of interfacial energy 
transfer is the rate of dissipation, see Eq. (26). These considerations provide a simple 
framework in which momentum exchange at the sea surface can be discussed. 
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