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Previous estimates of the speed of solitary waves in shallow water un-
expectedly showed that the speed and energy were greatest for waves of
less than the maximum possible height. These calculations were based
on Padé approximants. In the present paper we present some quite inde-
pendent calculations based on an integral equation for the wave profile
(Byatt-Smith 1970), now modified so that the wave speed appears as a
dependent variable. There is remarkably good agreement with the previous
method. In particular the existence of a maximum speed and energy are
verified.

The method also yields a more accurate profile for the free surface of steep
solitary waves. As the wave amplitude increases, it is found that the point
of intersection of neighbouring profiles moves up towards the crest. Hence
the highest wave lies mostly beneath its neighbours, which helps to explain
why its speed is less.

Tables are given not only of the wave speed but also of the maximum
surface slope as a function of wave amplitude. In no case does the slope
exceed 30°, but for still higher waves this possibility is not excluded.

1. INTRODUCTION

Despite many experimental and theoretical investigations since the time of Scott
Russel (1845) and Rayleigh (1876) the exact form of solitary waves on water of
uniform depth has remained an interesting and unsolved problem. In a recent study,
Longuet-Higgins & Fenton (1974) made extensive numerical calculations which
yielded the unexpected result that the speed of a solitary wave in water of undis-
turbed depth % does not increase monotonically with the wave amplitude a, but
instead reaches a maximum at a fairly high value of a/h and then diminishes. The
highest wave is therefore neither the fastest, nor the most energetic. Similar results
have been found by Longuet-Higgins (1975) for waves on deep water and by Cokelet
(1975) for all steady, irrotational waves in water of any uniform depth.

These conclusions were however reached by the extensive use of Padé approxi-
mants, a device for summing power series beyond their ordinary radius of con-
vergence. Well known in other branches of physics, this technique was recently
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introduced into the study of gravity waves by Schwartz (1974). Essentially the
idea is very simple: to approximate the infinite sum of a power series not by its
partial sum, which is a polynomial expression, but more generally by the ratio of
two polynomials, having the same partial power-series expansion. This has the
effect of distorting the circle of convergence so that it extends well beyond the
nearest singularity in the complex plane.

While there is little reason to doubt the validity of this technique as applied to
gravity waves, it cannot yet be said to have been justified rigorously. Moreover,
though the speed and the energy of solitary waves were both found to converge
satisfactorily for all waves up to the highest, the same was not true of the surface
profiles. Hence there is some interest in confirming and extending these results by
an independent method of calculation.

A quite different approach to the calculation of solitary waves was proposed by
Byatt-Smith (1970). In this approach, the form of the wave profile is given directly
as the solution to a singular integral equation. In general the integral equation may
be solved numerically. The method is particularly successful for waves of moderately
large amplitude, though it fails for the very highest waves, where the sharp curva-
ture at the wave crest makes numerical integration increasingly less accurate.
Nevertheless, Byatt-Smith was able to calculate approximately the speed and
profile of solitary waves up to non-dimensional speeds (¥ = ¢/|/(gh)) equal to about
1.293. Beyond this point the method did not work.

Now the above value of F is very close to the maximum value /' = 1.294 found by
Longuet-Higgins & Fenton (1974). These authors suggested that the reason for the
failure of the integral-equation technique was that where F' is an almost stationary
function of the dimensionless amplitude a/h the wave profile, with F' as independent
parameter, cannot be accurately determined. Indeed, in the range where #
diminished with amplitude the solution was not unique, but two-valued. Moreover
the second solution might be difficult to obtain.

In the present paper this difficulty is overcome by recasting the solution of the
integral equation in terms of a new parameter w which, unlike F, is monotonic
throughout the whole range of wave heights.  is in fact the same parameter intro-
duced by Longuet-Higgins & Fenton (1974), being defined by

w = 1—¢?[gh. (1.1)
Here g denotes the particle-velocity at the wave crest, in the frame of reference
travelling with the wave speed (so that the motion appears steady). Generally w
lies between 0 and 1. The value w = 1 corresponds to the highest wave. An applica-
tion of Bernoulli’s equation gives
w = 2alh—(F?—1). (1.2)
In this paper w is taken as the independent parameter, and a/h (and hence F) as a
dependent parameter. This then allows practically the whole range of solitary waves
to be explored, without the necessity for F to be monotonic.
Using a digital computer with a large core-store, it has been found possible to
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compute the wave speeds and profiles with convincing accuracy as far as w = 0.96.
The computations show a maximum in the computed value of F at about w = 0.917,
corresponding to F = 1.294, in good agreement with the different calculations based
on Padé approximants.

The present paper therefore provides a welcome confirmation of the previous
results of Longuet-Higgins & Fenton (1974). Unlike the previous paper it also
yields the form of the wave profile at high amplitudes. Moreover, the form of these
profiles provide confirmation of a speculation by Longuet-Higgins & Fenton (1974)
as to the cause of the maximum value of I'; namely that the profiles of the highest
waves intersect the more rounded profiles of lower waves, at points not far from the
wave crest. Hence the highest waves actually lie beneath the not-so-high waves
over most of the profile (see §5 below).

2. THE INTEGRAL EQUATION
Following Byatt-Smith (1970), let us consider an irrotational, solitary wave of
amplitude a propagating with velocity — c in water of undisturbed depth k. Viewed
by an observer moving with the phase-velocity, the motion becomes a steady
stream, which at large distances has a uniform horizontal velocity equal to c. Tt will
be convenient to choose units of length and time so that

h=c=1 andhence ¢g=1/F2. (2.1)
In the moving frame of reference, we take rectangular axes (x,y) with the z-axis
horizontal and the origin in the mean surface level. ¢ is the velocity potential and

y = 7 the surface elevation. Byatt-Smith (1970) showed that (@) must satisfy the
integral equation

1 +77(¢)+(1/n)fiom8(¢’)lntanh in|gp—¢'|dg’ = 0, (2.2)

where 8(9) = ([0p),-., = [F*/(F*—27) — (dy[dg)*]%. (2.3)

If we take ¢ = 0 at the crest of the wave, then 7 is an even function of ¢. Hence (2.2)
may be written

1+7(¢)+ (1/ﬂ)f: [S(¢+¢")+8(|¢—¢'|)]Intanh (}ng’)dg" = 0.  (2.4)

Theintegrand has a logarithmie singularity at ¢’ = 0, which can however be reduced
by using the identity

[

(1/n) f “Intanh (ng’) dg’ = —
0
Thus we have

L+7(¢)—8(¢)+ (U’T)ﬁo [S(¢+¢")+8(|¢— ') — 28(¢)]In tanh (fng") dg’ = 0,
(2.5)
and as ¢’ — 0 the integrand is now like ¢'2In ¢’, which is small.
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To solve equation (2.5) numerically, we aim to evaluate the surface elevation # at

the N + 1 points
¢ =¢;=jA¢, j=0,1,2,...,N, (2.6)

where N is some large (even) integer and A¢ is a small step-length. For brevity,

write
7(¢;) = m; S($;) =8, R(g;) = By,

where R(¢) denotes the left-hand side of equation (2.5). Then given some fixed value
of the parameter w, and trial values of the 7;, we approximate S; and E;, (j = 0, 1,
2, ..., N). The vanishing of the IV + 1 residuals E;, with equation (1.2), then gives us
N +2 nonlinear equations for determining the 7; and F by successive approxi-
mations.

The values of #; are defined in the first place up to and including j = N. For the
evaluation of the integral in (2.5) we need values of 9, beyond ¢, By Stokes’s result
on the asymptotic behaviour of  as x - 00, we may approximate these by

Ny = Ny e 49, (2.7)
where « is the smallest positive root of the equation
t
A% Fe (2.8)
o

The values of §; may be calculated from (2.3). We can then evaluate the integral
in (2.5) by Simpson’s rule (setting the integrand G(¢, ¢') equal to 0 at ¢’ = 0). The
range of integration must be truncated at some suitable large value of ¢’, which
we take to be ¢ (equation (2.6)). Thus we set

© iN
[ 66,0108 = 188 S (Cuno 4602+ Gun), (29)

where (/; denotes G(@, ¢;).
An initial approximation to the 7; is provided either by the small-amplitude

theory of solitary waves, or else by previously computed solutions corresponding to

neighbouring values of w or ¢y. At each approximation, the matrix OR;/0n; was

calculated, and a new approximation (y;+ dy;) was obtained by solving the linear

equations

(OR;[on;) dn; = — By (2.10)

The process was repeated until the total absolute ‘error’, ¥ [R;|, was less than some
J

assigned bound, usually 10~%. This normally required four or five iterations. Repre-
sentative runs were carried out in both single and double precision. There were no
significant differences between the corresponding results, showing that rounding-

errors were negligible.
After calculating the 7;, the horizontal coordinates x; were calculated from

b b5
%, =f0 (6x/og) dg =f0 Sdg. .11)
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Also calculated were the values of the kinetic and potential energies, and the
‘circulation’ C. In terms of the present units (see equation (2.1)) these are given by

® \
T=3F | y(S-1)dg,

-0

V=3  p8dg, (2.12)

respectively. The integrals were evaluated by Simpson’s rule.

3. DISCUSSION OF ERRORS

Solutions were easily obtained up to and including w = 0.98 with at most five
iterations. However, at the higher values of w the profile tended to develop an
instability in the form of a saw-tooth, or ripple, whose period was of the same order
as the step-length. This instability was almost certainly numerical and not physical,
being associated with the sharp curvature, and its derivatives, which occur near
the wave crest as w approaches 1. These instabilities could always be eliminated by
reducing the step-length A¢ at constant ¢, until practical limitations prevented
any further increase in the magnitude of N.

There appear to be four main sources of error in the computation. The most
important arises from the truncation of the integral in equation (2.5). The part
neglected is of order

f * In tanh (3rg’) dg.
34

For large ¢y, the integral is order exp (— ngy). Hence we expect an error

€, 0c e~ 1574w (3.1)
approximately.
A second error also arises from the finite values of ¢. For in approximating 7, by
an expression proportional to exp (— ag;) (see equation (2.7)) we neglect some terms
asymptotically proportional to exp (—2ax¢;). Hencet we expect that

€,0C €7240N, (3.2)
In fact 2« > }n whenever
a>in, ie. o> 027

so that for the larger values of w, ¢, will decay more rapidly with ¢, than will ¢,.
+ Witting (1974) has suggested that the asymptotic form should generally contain terms

like exp (—na,,P) where a,, is the mth positive root of equation (2.8). However we have
oy > T > 204, 80 our conclusion still applies.
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We expect that both ¢, and ¢, may be made negligible by increasing ¢ sufficiently,
or by extrapolating to ¢y = oo for fixed A¢. There then remain errors due to the
finite size of Ag.

The first of these arises from the finite-difference approximation to the gradient
dy/d¢ in the expression for S (see equation (2.3)). The formula used was

(An/d@); = [ —15)" + (= 1j—0)*]/2(AG)?
which contains errors of order (A¢)2. So we expect
€y ~ A(AQ)?, (3.3)

where A(w) is some constant (at fixed w). On the other hand the contribution of
(dy/d¢)? to the value of Sis relatively small except possibly near the wave crest, and
hence we expect that 4 will not generally be large.

The use of Simpson’s rule for integrating a function f with a continuous fourth
derivative f4v) gives rise to errors of order (Ag)*fGv. However, the integrand
G(p, ¢') has a singularity of order ¢'21In ¢’ at one end of the range (¢’ = 0). Hence
we may on the contrary expect errors of order

¢, ~ B(AG)SIn Ag + C(Ag)3. (3.4)

Since such errors will occur in each of the E;, whereas the magnitude of (dy/d¢)? is
important only near the wave crest, the coefficients B and C will possibly be large
compared to the coefficient 4 in (3.3).

Both of the errors ¢; and ¢, will diminish rapidly as A¢ decreases, and it may be
possible to extrapolate to the limit A¢ = 0. We emphasize, however, that in all
extrapolations with respect to ¢, or A¢ the parameter w is to be kept constant, that
is, we consider only one particular wave profile at a time. Since the behaviour of the
solitary wave profile as w approaches its maximum is not yet well understood, all
extrapolations with respect to w will be avoided.

4, RESULTS FOR w = 0.96

The largest value of w for which reliable results were obtained was 0.96. Table 1
shows the calculated values of F, for different values of ¢y and A¢. Under AF are
listed the first-differences, and under » the ratio of successive values of AF.

Evidently, for each value of A¢, r is practically constant, indicating an expo-
nential rate of decreases of the error ¢; thus

€oC e MPN; == e—HADY, (4.1)
where p is given by
Inr
=— . 4.2
v (4.2)

The values of y in table 1 show that x is almost independent of both ¢, and A¢. In
fact, for large values of ¢y we have u = 1.6. Thisisin good agreement with the value

in suggested in § 3.
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This exponential rate of decay enables the extrapolation to ¢y = oo to be carried
out very simply by means of the formula

F,=F,+

T‘)’b
[ (AT, (4.3)
(where the suffix n denotes the entry in table 1 which corresponds to the highest
value of ¢, ,,) for each value of A¢. In this way we obtain the four values of F,
shown in table 2.

In the third and fourth columns of table 2 are shown the first-differences A'F,,
and the ratios 7’ of successive values of A'F,,. Table 3 shows the values of #' that
would be expected if the error in F,, were proportional to Ag, (Ad)?, (A¢)3In (Ag) or
(Ag)3, respectively. Evidently #’ is too small to be proportional to A¢. Guided by the
analysis of § 3 we assume that the error (¥ — F,) is given by an expression of the form

A(Ag)*+ B(Ag)*In (Ag) + C(AB)?, (4.4)

TABLE 1. CALCULATED VALUES OF F, WHEN w = 0.96

(@) Ag = 0.03 (©) Ad = 0.015
¢max F AF r ﬂ ¢max F AF r IJ{'
3.6 1.28225 3.6 1.28920
4.2 1.28482 g'ggifgg 041  1.49 42 1.29059 g‘ggégg 0.40 1.52
48 128587 0010 040 153 48 120115 OO0 039 1.56
54 128620 00007 038 16 54 120187  000es 039 15
6.0 128645 O 6.0 129146

) Ag = 0.02 (d) Ag = 0.01
3.6 1.28750 3.2 1.28885 i
4.0 1.28882 g‘ggégg 055 1.52 3.6 1.29037 g'ggégg 0.57 1.42
44 128054 OO0 054 153 40 129123
48 128003 0000 054 155
52 120014 000" 052 162
56 120025 o0000c 0.5 15
6.0 1.20031 O

TABLE 2. VALUES OF F' EXTRAPOLATED TO @ .. = 0O

Ad 7, A'F, ’
0.030 1.28655
0.020 1.29037 8'88‘1’?? 0.30
0.015 1.29152 oo 0.62
0.010 1.29223 '

TaBLE 3. VALUES OF 7’ CORRESPONDING TO VARIOUS ERROR LAWS
A¢
, A N error oc A¢ (Ag)? (Ap)? In (Ag) (Ag)?

0.030, 0.020, 0.015 0.500 0.350 0.320 0.243
0.020, 0.015, 0.010 1.000 0.714 0.561 0.514
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where A, B, C are constants to be determined. From table 2 we then have the
following simultaneous equations for 4, B, C:
50.04 —6.338B +1.900C = 382,
17.54 —1.712B +0.462C = 115, (4.5)
12.54—-0.9578+0.237C = 71,

(each side has been multiplied by 105). Solving these, we find
A =1.709, B=-7594, C=-97.33. (4.6)

The final value of F is then found from table 2 and equation (4.5) with A¢ = 0.01,

that is to say
F = 1292234 0.00042 = 1.2926 (4.7)

to four decimal places. This is to be compared with the value F = 1.2919 found by
Longuet-Higgins & Fenton (1974). Both values appear to be significantly below the
maximum value 1.2941 found previously at w = 0.913 (see figure 1).

The value of 4 given by equation (4.6) is considerably smaller than that of B or C,
as was to be expected from the discussion in §3.

]295 ¥ T T T T T T

1290

—#——= Padé approximants

O integral equation .

1.285J

] 1 1 ] 1 I |

080 085 0.90 095 100
[3)

Ficure 1. The dimensionless speed ¥ of very steep solitary waves (0.80 < w < 1.0). The
full curve represents the values obtained from Padé approximants; plotted points
correspond to the integral equation.
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5. F AS A FUNCTION OF ®

For all values of w, up to and including 0.96, it was found that the first-differences,
for constant A¢ and increasing ¢, behaved exponentially; hence the extrapolation
to ¢y = oo could be carried out quickly and accurately. These extrapolated values,
for w = 0.90, 0.92 and 0.94, are shown in table 4. In the case v = 0.94 it makes no
significant difference whether the extrapolation to A¢ = 0 is carried out by means
of the expression (4.5) or by the first term only (representing an error proportional
to (4¢)?). Accordingly we have adopted the simpler method. Similar considerations
apply all the more to the lower values of w.

TABLE 4. VALUES OF F,, WHEN w = 0.94, 0.92 aAND 0.90

o= 0.94 o = 0.92 o = 0.90
A F, AF,, F, AP, F, AF,
0.030 1.29220 0.00092 1.29379 0.00020 1.29393 0.00000
0.020 1.29312 0.00030 1.29399 0.00009 1.29393 0.00001
0.015 1.29342 0'00023 1.29408 ' 1.29394 '

0.010 1.29365

TABLE 5. CALCULATED VALUES OF ', T', V AxD C wWHEN 0.8 < w < 0.96

F T 14 (o)
f—“__’A‘—’ﬁ F-__'A_——‘-‘\ {—__A’—“ﬂ {—_"A‘_‘ﬁ
w (a) (®) (@) (®) (@) ®) (a) (b)

0.80 1.2848  1.2848 0.533  0.533 0.441 0.441 1.783 1.782
0.82 1.2877  1.2876 0.541  0.540 0.446  0.446 1.780 1.779
0.84 1.2900  1.2899 0.547  0.546 0.450  0.450 1.775  1.774
0.86 1.2919  1.2919 0.550  0.550 0.452  0.452 1.769 1.771
0.88 1.2932  1.2932 0.552  0.552 0.453  0.452 1.759  1.758
0.90 1.2939  1.2939 0.553  0.551 0.453  0.451 1.753  1.746
0.92 1.2941 1.2940 0.551  0.548 0.451  0.448 1.743 1.732
0.94 1.2938  1.2934 0.547  0.542 0.448  0.443 1.733 1.716
0.96 1.2926  1.2919 0.542  0.533 0.443 0.435 1.723  1.697

The final values of F, for w in the range 0.80 < w < 0.96, are given in table 5, and
are shown in figure 1 (plotted points) compared with the values derived from Padé
approximants (solid curve). The agreement is striking, especially since the vertical
scale in figure 1 corresponds to only about 19 of the total variation of F.

Also in table 5 are shown the calculated values of the kinetic energy 7', the
potential energy V and the circulation C (as defined by Longuet-Higgins 1974).
These are listed in the first column (@) under each heading. In the second column (b)
the values calculated by the Padé approximant method (Longuet-Higgins &
Fenton 1974) are shown for comparison. The values of 7', V and C converged less
rapidly than those for F, by an order of magnitude,{ and are given to three decimal

1 This is to be expected, since a further integration is necessary for their evaluation.
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places only. Nevertheless, there is still good agreement between the two methods of
calculation. In particular, the existence of a maximum in each of 7', ¥V and C is
verified.

For values of w less than 0.80, the values of 7', V and C as calculated by the two
different methods were in agreement to four significant figures, and the values of
I were in agreement to five significant figures. For these the reader is referred to

table 5 of Longuet-Higgins & Fenton (1974).

6. SURFACE PROFILES

One advantage of the present method of computation is that the profile of the
free surface may be calculated with greater accuracy. The advantage is most
apparent for steep waves, when w approaches its maximum value 1.

Figure 2 shows a succession of wave profiles, from w = 0.3 up to w = 0.9.
Evidently the height of the crest increases monotonically with . This is in
accordance with the Rayleigh-Boussinesq theory for waves of small amplitude in

which we have

y = taZsech? (o) (6.1)
and F? =1+ 102 (6.2)
Therefore o = 2afh—(F?—1) = Lo? (6.3)

and the wave height is approximately equal to w.

As wincreases, so at first the horizontal scale of the wave, which is proportional to
a1 or w—%, tends to diminish. The surface of each wave therefore lies above its
predecessor (corresponding to a lower value of w) at the crest, but lies below its
predecessor in the wave ‘tails’. It follows that each wave profile must intersect
its neighbour in at least one intermediate point on either side of the wave crest.

The point of intersection of each profile with its neighbour lies by definition on the
envelope of the surface profiles. The equation for this is found by differentiation with
respect to the parameter w or o. From equation (6.1) we easily find that a point on
the envelope must satisfy
($oz) tanh (3ax) = 1 (6.4)
S0 fox = 1.1997... = G, (6.5)

say. Hence as « increases so the point of contact with the wave envelope moves in
towards the wave crest. In fact we have

% = 2G[oc = 1.3853w1, ]

21 (6.6)
== -—:3'@—2*052 = 030520),"
so that for small values of & the wave envelope has the asymptote
2%y = H(G%—1) = 0.5856. (6.7)

This is shown by the broken curve in figure 4.
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Figure 3 shows an enlargement of the profiles in the neighbourhood of the wave
crest, at w = 0.90, 0.92, 0.94 and 0.96 respectively. It is apparent that as v - 1 so
the points of intersection continue to move up towards the crest. The upper envelope
of the wave profiles, as deduced from the present calculations, is shown in figure 4
(full curve). The points of contact at different values of w are indicated. The broken

1.0

——O0— integral equation

- 095 . T small amplitude theory

F1cure 4. The upper envelope of the profiles of solitary waves,
in water of constant depth.

curve corresponds to the asymptote given by equation (6.7) which is valid only for
small values of w.

This behaviour provides an explanation for the decreases in the wave speed F at
high values of w. For, over a large part of the wave, the profile of the highest waves
lies below that of the not-so-high waves, implying that the total mass, or volume, of
the wave actually diminishes as w approaches 1. The potential and kinetic energies,
which are integrals over the volume of the wave, likewise attain a maximum, and
then diminish. Moreover the average surface elevation

7= ” ﬂzdx/fw pdx

evidently decreases as w increases, for the very highest waves. But 7 is related to the
dimensionless speed F' by the exact relation

7= 30— 1)

which holds for solitary waves of any amplitude (see Longuet-Higgins & Fenton
1974, §6). Hence for the highest waves F tends to decrease also. Thus the un-
expected behaviour of 7, V and F can be seen to be reasonable after all.

It will be noticed that because of the final decrease in F, the ‘tails’ of the wave
profile, which are known to decay like exp (— o |z|) (see equation (2.8)) must begin
to spread out slightly again. This implies that there must be a second point of inter-
section far out in the tail, on each. side of the wave crest. The lower branch of the
envelope is too far out to be shown in figure 4.
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7. CONCLUSIONS

The parameters of steep solitary waves have been calculated by a method which
is independent of the use of Padé approximants. We have also avoided all extra-
polation with regard to the parameter w. The existence of maxima in the dimension-
less speed, energy and circulation has been verified numerically. A suggested reason
for this is also confirmed, namely that a solitary wave touches its wave envelope
from below; as the wave steepness increases, so the point of contact with the wave
envelope moves up towards the crest. Thus the steepest waves lie mostly beneath
the less steep waves, and it is not surprising that the total mass and energy of the
steepest waves are less, hence also their speed.

Throughout the computed range of w, the maximum wave steepness increases
monotonically with the wave height. In none of our computations does it exceed 30°.
However, the accurate determination of the limiting value of 0,,, as w - 1 must
await a study of the asymptotic form of the surface profile in the neighbourhood of
a sharply rounded crest.

Because of the large core-store required for these calculations, they were carried
out mainly on the Rutherford Laboratory’s I.B.M. 370/195, through the Atlas
Laboratory of the Science Research Council, over a data-link to the Institute of
Oceanographic Sciences at Wormley, Surrey. We are indebted to the staff of these
laboratories, and in particular to Mr W.T.J.Slade of I.0.S. Wormley, for their
valuable cooperation.
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