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Previous estimates of the speed of solitary waves in shallow water un- 
expectedly showed that the speed and energy were greatest for waves of 
less than the maximum possible height. These calculations were based 
on Pad6 approximants. In  the present paper we present some quite inde- 
pendent calculations based on an integral equation for the wave profile 
(Byatt-Smith 1970), now modified so that the wave speed appears as a 
dependent variable. There is remarkably good agreement with the previous 
method. In particular the existence of a maximum speed and energy are 
verified. 

The met hod also yields a more accurate profile for the free surface of steep 
solitary waves. As the wave amplitude increases, it is found that the point 
of intersection of neighbouring profiles moves up towards the crest. Hence 
the highest, wave lies mostly beneath its neiglzbours, which helps to explain 
why its speed is less. 

Tables are given not only of the wave speed but also of the maximum 
surface slope as a function of wave amplitude. In  no case does the slope 
exceed 30°, but for still higher waves this possibility is not excluded. 

Despite many experimental and theoretical investigations since the time of Scott 
Russel (1845) and Rayleigh (1876) the exact form of solitary waves on water of 
uniform depth has remained an interesting and unsols~ed problem. In  a recent study, 
Longuet-Higgins $ Fenton (1974) made extensive numerical calculations which 
yielded the unexpected result that the speed of a solitary wave in water of undis- 
turbed depth h does not increase monotonically with the wave amplitude a, but 
instead reaches a maximum a t  a fairly high value of alh and then diminishes. The 
highest wave is therefore neither the fastest, nor the most energetic. Similar results 
have been found by Longuet-Higgins (1975) for waves on deepwater and by Cokelet 
(1975) for all steady, irrotational M-aves in water of any uniform depth. 

These conclusions were however reached by the extensive use of Pad6 approxi- 
mants, a device for summing power series beyond their ordinary radius of con- 
vergence. Well lino~vn in other branches of physics, this technique was recently 
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introduced into the study of gravity waves by Schwartz (1974). Essentially the 
idea is very simple: to approxin~ate the infinite sum of a power series not by its 
partial sum, mrhich is a polynomial expression, but more generally by the ratio of 
t~vopolynon~ials, hwing the same partial pov er-series expansion. This has the 
efr'ect of distorting the circle of convergence so that it extends well beyond the 
nearest sil~gularity i i ~  the complex pla,ne. 

JFhiTe tlzere is little reason to doubt the validity of this technique as applied to 
gravity waves, it cannot yet be said to have been justified rigorously. &!oreover, 
though the speed and the energy of solitary waves were both found to converge 
satisfactorily for all waves up to the highest, the same 1%-as not true of the surface 
profiles. Hence there is some interest in confirming and extending these results by 
an ii~clependent method of calculation. 
il quite different approach to the calc~~latiol~ of solitary waves mas proposed by 

Byatt-Smith (1970).In this approach, the form of the wave profile is given directly 
as the solution to a singular integral equation. In general the integral equation may 
be solved numerically. The method is particulmly successft~l for waver of moderately 
large amplitude, though it fails for the very highest waves, where the sharp curva- 
ture a t  the wave crest makes numerical integration iacreasingly less accurate. 
Nevertheless, Byatt-Smith was able to calculate approximately the speed and 
profile of solitary waves up to non-dimensional speeds (E" = cl%/(ghj)equal to about 
1.293. Beyond this point the method did not work. 

Now the above value of H is very close to the maximum value F = 1.294 found by 
Longuet-Higgins S: Penton (1974).These authors suggested that the reason for the 
failure of the integral-equation technique was that where P is an almost stationaiy 
function of the dimensionless amplitude alh the wave profile, with F as iadependei~t 
parameter, canilot be accurately determined. Indeed, in the range where Ir' 
diminished with amplitude the solution was not unique, but two-valued. AIorcover 
the second solution might be difficult to obtain. 

In  the present paper this difficulty is overcome by recasting the solution of the 
integral equation in terms of a new parameter w which, unlike P,is monotonic 
throughout the xvlzole range of wave heights. w is in fact the same parameter intro- 
duced by Longuet-Niggins & Penton (1974),being defined by 

0= 1-q2/g12. (1.1) 
Here q denotes the particle-velocity a t  the wave crest, in the frame of reference 
travelling with t he  wave speed (so that the motion appears steady). Generally w 
lies betweer 0 and 1.The value o = 1corresponds to the highest wave. A11 applica- 
tion of Bernoulli's ecjuation gives 

w -1 2crlib-(F2-1). (1.2) 

I11 this paper w is talien as the independent parame.tcr, and alh (and hence I?) as a 
dependent parameter. This then allows practically the it-hole range of solitary waves 
to be explored, without the necessity for F to be monotonic. 

Using a digital compnter with a large core-store, it has been found possible to 
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compute the wave speeds and profiles with convinci~~g accuracy as far as w = 0.96. 
The computations show a maximum in the computed value of lr a t  about w = 0.917, 
corresponding to P = 1.294, in good agreement with the different calculations based 
on Pad6 approximants. 

The present paper therefore provides a welcome coi~firmation of the previous 
results of Longuet-Higgins & Fenton (1974). Unlike the previous paper it also 
yields the form of the wave profile a t  high amplitudes. Moreover, the form of these 
profiles provide confirmation of a speculation by Longuet-Higgins & Fenton (1974) 
as to the cause of the maximum value of F ;  namely that the profiles of the highest 
waves intersect tlle more rounded profiles of lower waves, a t  points not far from the 
wave crest. Hence the highest waves actually lie beneath the not-so-high waves 
over niost of the profile (see 5 5 below). 

Pollowing Byatt-Smith (1970), let us consider an irrotational, solitary wave of 
amplitude a propagating with velocity -c in water of undisturbed depth h. Viewed 
by an observer moving with the phase-velocity, the motion becomes a steady 
stream, which a t  large distances has ,z uniform horizontal velocity equal to c. I t  will 
be convenient to choose units of length and time so that 

12 = c = 1 and hence g = 1/P2. (2.1) 

In  the moving frame of reference, we take rectangular axes (x, y) with the x-axis 
horizontal and the origin in the mean surface level. $ is the velocity potential and 
y = Y,I the surface elevation. Byatt-Smith (1970) showed that q($) must satisfy the 
integral equation 

l + ( ) + ( l / )- cZ3 S($')lntanhfnl$-$'/d$'= 0, (2.2) 

If we take $ = 0 a t  the crest of the wave, then 7 is an even function of $. Hence (2.2) 
may be written 

Theintegrandhas a logarithmir! singularity at  4'= 0,which can however be reduced 
by using the identity 

( l / ~ ) / ~  = i.ln tanh (in#') dq5' -
0 

Thus we have 

and as $' -+0 the integrand is now like $ ' 2 h ~  $', which is small. 
12-2 
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To solve equation (2.5) numerically, tve aim to evaluate the surface elevation 7 a t  
the N + 1points 

q5=q5j=jAq5, j = 0 , 1 , 2,...,N ,  (2.6) 

where M is some large (even) integer a8nd Aq5 is a small step-length. For brevity, 
write 

l ~ ( $ ~ )= qj, S(Qj)= Sj, R($j) = Rj, 

where R($)denotes tlie left-hand side of equation (2.5). Then given some fixed. value 
of the parameter o,and trial values of the yj, we approximate Sjand Ri, (,j= 0,1, 
2, . . .,N ) .The vanishing of the N +  1residuals Rj,with equation (1.2), then gives us 
N S  2 nonlinear equations for determining the qi and 3' by successive approxi- 
mations. 

Thc values of ?lj are defined in the first place up to and including j = N. For the 
evaluation of the integral in (2.5) we need values of qj beyond 4N.By Stolies's result 
on the asymptotic behaviour of q as z -t m, tve may approxiinate t'hese by 

where a is the smallest positive root of the equation 

The values of Sj may be calculated from (2.3).We can then evaluate the integral 
in (2.5) by Simpson's rule (setting the integrand G(4, q5') equal to 0 at 9' = 0). The 
range of integration must be truncated a t  some suitable large value of q5', which 
we take to be gS,,. (equation (2.6)). Thus tve set 

4A7Sow~ ( 4 ~ 4 ' )  C (G,,-, +4G,,_, +G,,),dd' 4 $A$ (2.9) 
n= 1 

where Gj denotes C($, 4;). 
A11 initial approximation to the ?lj is provided either by the small-amplitude 

theory of solitary waves, or else by previously computed solutions corresponding to 
ileighbousing values of (I) or q5,. At each approximation, the matrix i3Rj/i3y, was 
calculated, and a new approximation (yj+dyj) was obtained by solving the linear 
equatio~is 

(2Rj/aqi) dqi = -Rj. (2.10) 

The process was repeated until the total absolute 'error2, C was less than some 
3 

assignrd bound, ust~ally 10-5. This normally required four or five iterations. Repre- 
sentative runs were carlied out i11 both single and double precision. There mere no 
sig~~ificantc1iffercnc.e~ between thc corresponding results, showiilg that rounding- 
errors were negligiblc. 

After calculating the rj,the llorizontal coordinates x3 were calculated from 



179 Xpeed and proJile of steep solitary waves 

Also calculated were the values of the kinetic and potential energies, and the 
'circulation' C. In terms of the present units (see equation (2.1))these are given by 

respectively. The integrals were evaluated by Simpson's rule. 

Solutions were easily obtained up to and including w = 0.98 with a t  most five 
iterations. However, a t  the higher values of w the profile tended to develop an 
instability in the form of a saw-tooth, or ripple, whose period was of the same order 
as the step-length, This instability was almost certainly numerical and not physical, 
being associated with the sharp curvature, and its derivatives, which occur near 
the wave crest as o approaches 1.These instabilities could always be eliminated by 
reducing the step-length A$ at constant $ ,  until practical limitations prevented 
aa1y further increase in the magnitude of N .  

There appear to be four main sources of error in the computation. The most 
important arises from the truncation of the integral in equation (2.5). The part 
neglected is of order 

SQ:,1n tmh  (in$') d$'. 

For large QN, the integral is order exp ( - in$,,). IIellce we expect an error 

e - l ~ 5 7 $ ~  (3.1) 

approximately, 
d second error also arises from the finite values of 9,. For in approximating T~by 

an expression proportional to exp (-%Qj) (see equation (2.7))we neglect sorne terms 
asymptotically proportional to exp ( - 2 ~ 4 ~ ) .Hencet we expect that 

e - 2 ~ $ g .  

In  fact 2z > i n  whenever 
a > kn, i.e. o > 0.27 

so that for the larger values of w,  s, will decay more rapidly with $N than will 6,. 

-r JTitt~ng.(1974) has suggosted that tho asymptotic form shoulcl genorally contain terms 
like exp ( -%a,$) \rillere 2, is tho mth positive root of equation (2.5). ITowever we llnvc 
a, > x > 2a,, so our conclusion still applies. 
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We expect that both e, and s, niay be made negligible by increasing QA,ssnfficiently, 
or by extrapolatii~g to $, = oo for fixed AQ. There then remain errors due to the 
finite size of A$. 

The &st of these arises fioni the finite-difierer-ice approximation to I!ic gradie1:t 
dy/d$ in the expression fo-i. S (see equation (2.3)). The formula usecl n-s< 
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xx~llich contains errors of order (A$)2. So we expect 

where A(w) is some constant (at fixed w). On the otIier. hand the cont:ibution of 
(d71/dyl)%o the value of Sis relatively small except possibly 11ea1. the wave crest, a17cl 
hence we expect that A will not generally be large. 

The use of Simpson's rule for integrating a function f with a continnous fourth 
derivative f ( 1 ~ )gives rise to errors of order (A$)4 f (iv). However, tlle integrand 
G(Q,9')has a singularity of order $'21n $' a t  one end of the range (9' = 0). Wencc 
me may on the contrary expect errors of order 

e4 N B(A9)3 111 C(A9)3. (3.4) 

Sirice such errors will occur i11 each of the Rj,whereas the magnitude of (cly/d$)"s 
importa~zt on137 near the wave crest, the coefficients B and C will possibly be large 
compared to the coefficient A in (3.3). 

Both of the errors e, and c4 will diminish lapidly as A55 decreases, and it may be 
possible to extrapolate to tlie limit A$ = 0. We emphasize, however, that in all 
extrapolations with respect to (bn,or A$ the parameter w is to be kept constant, tliat 
is, we consider only one particular wave profile a t  a time. Since the behaviour of the 
solitary wave profile as w approaches its maximum is not yet well understood, all 
extrapolations with respect to o) will be avoided. 

4.RESULTSF O R  w = 0.06 

The largest value of w for xvhjch reliable results were obtained was 0.96. Tablc 1 
shows the calculated values of P, for different values of Q ,  and A$, ililrder AP are 
listed the first-differences, and under r the ratio of successive values of A F .  

Evidently, for each value of AQ, r is practically constant, indicating an expo- 
slential rate of decreases of the error e; thus 

where p is given by 

The values of p in table 1show that /c is alniost independent of both 9, and AQ. In 
fact, for large values of g5, me have p + 1.6.This is in good agreement with the value 
in suggested in 5 3. 
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This exponential rate of decay enables t'he extrapolation to 9, = co to be carried 
out verjr simply by means of t'he formula 

(where the suffix n denotes the entry in table 1 which correspol~ds to the highest 
value of 
shown in table 2. 

I n  the third end fourth colunins of table 2 are shown the first-differences A'B", 
and the ratios r' of successive values of A'&. Table 3 shows the values of r' that 
tvould be expected if the error in Fmwere proportional to A$, (A#)2, (A#)31n (A$) or 

respectively. Evidelltly r' is too small to be proportioilal to A$. Guided by the 
analysis of 5 3 we assume that the error (F-Fm)is given by an expression of the form 

TABLE1. CALCULATEDVALUES O F  li(, WHEN W = 0.96 

(a )  A$ = 0.03 	 (c) A$ = 0.015 

A ~ x  P A F  r P $,ax F A F  r P 
3.6 	 1.28225 o.oo257 3.6 1.28920 o.oo139 

0 4 1  1.49 0 4 0  1.52
4'2 1'28482 0.00105 	 o:40 4'2 0.00056 o:39
4.8 1.28587 	 1.53 4.8 1.29115 o,ooo22 1.56

0'00042
5.4 1.28629 o.ooo16 	 0.38 1.6 5.4 1.29137 o~oooo9 0.39 1.5 
6.0 1.28645 	 6.0 1.29146 

(b) A$ = 0.02 	 ( d )  A$ = 0.01 

$,,,)
 for each value of A$. In  this way tli-e obtain the four values of lim 

TABLE3.  VALUESO F  T' COK.RESPONDING TO VARIOUS ERROR LAWS 

A$ 
-7 error cc A$ (A$)a In (A$) 
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where A, B, C are coi~stants to be determined. From table 2 we thell have the 
following simultaneous equations for A,  B, C: 

(each side has been multiplied by lo5). Solving these, we find 

The final value of F is then found from table 2 a11d equation (4.5) with A$ - 8.01, 
that is to say 

P = 1.29223+ 0.00042 = 1.2926 (4.7) 

to four decimal places. This is to be conlpaved with the value P = 1.2919 found by 
Longuet-Higgins & Feilton (1974).Both values appear to be significantly belo~v the 
maximum value 1.2941 found previously at w + 0.913 (see figure 1). 

The value of A given by equation (4.6) is considerably smaller than that of B or @, 
as mas to be expected from the discussion in $ 3 .  

le-rcE'tide al~j)roxi.i~:a~l!s 

0 integral cquntiijn 

0.80 0.85 0.90 0.95 1.00 

FIGERE1. The diinens~oriloss speed P of very steep solitttry waves (0.80 < w < 1.0). 'Che 

full curve represents the values obta~ned from Pail6 q,proximaritz; plotteti pollits 

cosrespolid to the Integral equatiol~. 
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5. i? A S  A F U N C T I O N  O F  W 

For all values of w , up to and including 0.96, it was found that the first-differences, 
for constant AQ and increasing 
to q5, = oo could be carried out quickly and accurately. These extrapolated values, 
for w = 0.90, 0.92 and 0.94, are shown in table 4. In  the case w = 0.94 it makes no 
significant difference whether the extrapolation to A$ = 0 is cai-ried out by means 
of the expression (4.5) or by the first term only (representing an error proportional 
to Accordingly we have adopted the simpler method. Similar considerations 
apply all the more to the lower values of w .  

TABLE4. VALUESOF F, WHEN W = 0.94, 0.92 AND 0.90 

#,,
 behaved exponentially; hence the extrapolation 

The final values of F,  for w in the range 0.80 6 w < 0.96, are given in table 5, and 
are shown in figure I (plotted points) compared with the values derived from Pad6 
approximants (solid curve). The agreement is striking, especially since the vertical 
scale in figure li corresponds to only about I % of the total variation of P .  

Also in table 5 are shown the calculated values of the kinetic energy T, the 
potential energy V and the circulation C (as defined by Longuet-Higgins 1974). 
These are listed in the f i s t  column (a)under each heading. In  the second colunzn (b) 
the values calculated by the Pad6 approximant method (Longuet-Higgins & 
Fenton 1974) are shown for comparison. The values of T, V and C converged less 
rapidly than those for P ,  by an order of magnitude, t and are given to three decimal 

t This is t o  be expected, since a f~~ r the rintegration is necessary for their evaluation. 
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places only. Nevertheless, there is still good agreement between the two methods of 
calculation. In  particular, the existence of a maximum in each of T, V and C is 
verified. 

For values of w less than 0.80, the values of T ,  V and C as calculated by the two 
differeilt methods \.ere in ag~eement to four significseat figures, and the values of 
P were in agreement to five significant figures. For these the reader is referred lo 
table 5 01Loi~guet-Higgiizs$ Penton (1974). 
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One advailtage of the present method of computatioii is that tlze profile of the 
free surface may be calculated with greaher accuracy. The advantage is most 
apparent for steep waves, ~~he11 approaches its maximtarn value 1.o 


Figure 2 sho\~~sa successioii of wave profiles, from w = 0.3 up to w = 0.9. 
Evidently the height of the crest illcreases mollotonically with o.This is in 
accordance with the Rayleigh-Boussinesq theory for waves of small amplitude in 
~~rhichwe have 

y = +a2sech2 ($ax) 

and ~2 3= 1+4-9. (6.2) 

Therefore w = 2a/h--(6" 1) = 3 (6.3) 

and the wave height is approximately equal to o. 
As w increases, so a t  first the horizo~~tal scale ofthe wave, svlhch is proportional to 

a-1 or w- i ,  tends to diminish. The surface of each wave therefore lies above its 
predecessor (corresponding to a lower value of o)a t  tlze crest, but lies below its 
predecessor in the wave 'ttais'. It follows that each wave profile must intersect 
its neighbour in a t  least one intermediate point on either side of the wave crest. 

The point of intersection of each profile with its lleighbour lie? by definition on the 
e?zvelopeof the surface profiles. The equation for this is found by differentiation with 
~aespectto the parameter o or a.From equation (6.1) we easily find that a point on, 
the eilvelope must satisfy 

( ~ Z I L . )tanh (&ax)= 1 (6.4) 

sag'. Hence as a increases so the point of corrtact with the wave envelope moves i11 
towards the wave crest. In  fact tve have 

so that for slnall values of w the wave envelope has the asymptote 

z2y= .$(G2- I)  = 0.6556, (6.7) 

This is s h o ~ ~ ~ n  by the broke11 curve in figure 4. 
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Figure 3 shows an enlargement of the profiles in the neighbourhood of the wave 
crest, a t  w = 0.90, 0.92, 0.94 and 0.96 respectively. It is apparent that as w -+1so 
the points of intersection continue to move up towards the crest. The upper envelope 
of the wave profiles, as deduced from the present calculations, is shown in figure 4 
(full curve). The points of contact a t  different values of w are indicated. The broken 

---0- integral equation 

FIGURE4. The upper envelope of the profiles of solitary waves, 
in water of constant depth. 

curve corresponds to the asymptote given by equation (6.7) which is valid only for 
small values of w.  

This behaviour provides an explanation for the decreases in the wave speed F a t  
high values of o.For, over a large part of the wave, the profile of the highest waves 
lies below that of the not-so-high waves, implying that the total mass, or volume, of 
the wave actually diminishes as o approaches 1.The potential and kinetic energies, 
which are integrals over the volume of the wave, likewise attain a maximum, and 
then diminish. Moreover tfhe average surface elevation 

evidently decreases as w increases, for the very highest waves. But 7is related to the 
dimensionless speed F by the exact relation 

7 = i(F2- 1) 

which holds for solitary waves of any amplitude (see Longuet-Higgins & Fenton 
1974,5 6). Hence for the highest waves F tends to decrease also. Thus the un- 
expected behaviour of T, V and $' can be seen to be reasonable after all. 

It will be noticed that because of the final decrease in P,the 'tails' of the wave 
profile, which are known to decay like exp ( - a  1x1) (see equation (2.8)) must begin 
to spread out slightly again. This implies that there must be a second point of inter- 
section far out in the tail, on each side of the wave crest. The lower branch of the 
eilvelope is too far out to be shown in figure 4. 
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The parameters of steep solitary waves have been calculated by ti method which 
is independent of the use of Pad6 approximants. We have also avoided all extra- 
polation with regard to the parameter (0.The existence of maxima in the dimension- 
less speccl; energy and circulation has been verified numerically. A suggested reason 
for this is also confirmed, namely that a solitary wave touches its wave envelope 
from below; ax the wave steepness increases, so the point of contact with the wave 
envelope moves up towards the crest. Thus the steepest waves lie mostly beneath 
the less steep waves, and it is not surprising that the total mass and energy of the 
steepest wave2 are less, heiice also their speed. 

Throughout the computed range of w, the maximum wave steepness increases 
monotonically with the wave height. In none of our computations does it exceed 30". 
However, t'he accurate determination of the limiting value of Om,, as w + I must 
await a study of the asymptotic form of the surface profile in the neighbourhood of 
a sharply rounded crest. 

Because of the large core-store required for these calculations, they were carried 
out mainly on the Rutherford Laboratory's I.B.M. 3701195, through the Atlas 
Laboratory of the Science Research Council' over a data-link to the Institute of 
Oceanogsapliic Sciences at  Wormley, Surrey. We are indebted to the staff of these 
laboratories, and in particular to A1r W. T. J.Slade of I.O.S. Wormley, for their 
valuable cooperation. 
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