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ABSTRACT

With Prandtl’s theory of the mixing length as the point of beginning, a theory concerning the structure
of the atmospheric surface layer is proposed on similar assumptions as were put forward by Lettau. The
novel feature in the present treatment lies in the fact that the acceleration due to the frictional part of the
turbulence is considered to be dependent on stability, whereas Lettau assumed a constant value for this
acceleration. Although this theory is not exact, it may promote a better understanding of atmospheric

turbulence.

A dimensionless stability number is introduced; it enables one to obtain a simple survey of all states of
the atmospheric surface layer. The theory is tested with observations of Rider (1954). The requirements

for a further experimental program are established.

1. Introduction

When investigating atmospheric turbulence, one
often encounters the fact that nearly every assumption
which is made to develop a theory appears to be un-
tenable during further analysis. Consequently one is
prompted to try and work with ever more fundamen-
tal concepts and, as a result, ever greater difficulties
are encountered. This picture of the present state of
affairs comes to mind when reading the circumstantial
and interesting survey on turbulence and transfer
processes in the atmosphere by Priestley and Sheppard
(1952). Of course, a fundamental analysis is essential
to build up an entirely satisfactory theory. However,
it may be profitable to develop in a less exact but more
tentative manner a theory which is useful and capable
of practical application. The exact basis of the theory
may then be developed afterwards.

An example of such a course of action in the field of
turbulence is provided by the theory of the mixing
length as given by Prandtl (1932). Assuming the
mixing length [ proportional to the height 2z, Prandtl
derived the well-known logarithmic wind profile;
von Karman (1930) produced a basis for Prandtl’s
assumption by means of his similarity hypothesis,
while Hamel (1943) derived von K4arman’s similarity
hypothesis in an exact manner from the Navier-
Stokes equations and so produced an exact theoretical
basis for Prandtl’s theory.

Conversely, the mixing length may now be defined
by the relation:

l = k(Z + ZD)} (1)

where k is von KArméan's constant, and g, is the
roughness parameter. Moreover, from the experimen-
tal verification of the logarithmic wind profile, it may
be inferred that the conditions postulated by Hamel
are reasonably well satisfied when the atmosphere is
in neutral equilibrium. These conditions are:

1. A steady turbulent flow exists;
2. The velocity components #, » and w may be split up into a
mean component and a purely turbulent component:
w =14+ u, etc., where @’ =9 =o' =0;

3. w'w' > v 8i/d2, or K> », where » = kinematic viscosity
and K = coefficient of eddy transfer; -

4. For the main flow, the relation Re; = @nx»™ =~  must
hold, where x is the distance in the direction of the main flow
from the boundary of the surface, where it becomes homogeneous,
to the point of measurement. For %, one may, for instance, take
the mean velocity through the atmospheric layer under con-

A
sideration, such that %, = h“‘[; @ dz, where £ is the height of

the layer.

Hamel’s work has been specially chosen by way of
example, first because one has the impression that
meteorologists are not aware of the exact foundation
of the logarithmic wind profile, and secondly because
the concept of the mixing length will be used in the
following derivations.

As soon as a theory is developed in a less exact
manner, with use of qualitative considerations, great
care must be taken when interpreting the results. A
typical example in which this is insufficiently done is
given by Lettau’s theory. Starting from some chal-
lengeable assumptions, Lettau (1949) constructs a
theory which indeed possesses some interesting as-
pects, but which is certainly not founded on such a
“sound physical basis” as the author claims. In the
present article, it is shown that by slightly modifying
his assumptions and by using a more cautious formula-
tion a theory may be constructed which, it is true, will
have fewer pretenses, but possibly more practical
value.

2. The transfer equations

Using the above-listed conditions 1, 2 and 3, the
equation of continuity, and the equation of state,
Businger (1954) has shown that it is possible to derive
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the well-known equation of transfer of momentum
and heat in a satisfactory manner from the Navier-
Stokes equations and the Fourier equation:

W = — T/P = u*Z’ (2)
and L
w'0" = F/c,p,

3)

where 7 = shearing stress, p = density, #« = friction
velocity, 6 = potential temperature, F = heat flux,
and ¢, = specific heat at constant pressure.

r/p and F/c,p may be taken as constant in the bot-
tom 25 m of the atmosphere. In accord with Lettau
(1949), this layer will be called the “atmospheric sur-
face layer.” The upper limit of the “‘surface layer” is
not sharply defined, but depends on the level where
the term (8p/dx)z can no longer be neglected and must
be introduced in (2).

It is common practice to write the correlation co-
efficients w'%’ and w'¢’ in the following form:

wu' =— K, d4/9z,

(4)
)

where K,, = coefficient of eddy viscosity, and K, =
coefficient of eddy conductivity.
It should be kept in mind that, for adiabatic condi-
tions, the relation
K, = i oz

and
w'0’ = — K, 06/93,

(6)

has obtained satisfactory theoretical foundation, so
that on this point the theory is fairly complete. This,
however, is not the case for K. It is not so easy to find
a suitable and useful relation for this coefficient. The
relation

)

which formerly was generally accepted, has been
strongly challenged on theoretical grounds by Ertel
(1942; 1944) and by Priestley and Swinbank (1947);
Swinbank (1951) and Pasquill (1949) claim to have
proved experimentally that K, 5% K,. On the other
hand, measurements by Rider and Robinson (1951)
have shown that K; = K, = const; moreover these
writers argue that this constant can only be equal to 1.

Of an entirely different nature is a theory by van der
Held (1947), which contains an argument in favor of
the validity of (7). Starting from the model of turbu-
lence as given by Prandtl, van der Held regards the
elements of turbulence as molecules with an infinite
number of degrees of freedom. He then follows up the
analogy between molecular viscosity and the eddy
viscosity K., and between the molecular thermal
diffusivity ¢ and the eddy conductivity K;, making
use of the well-known non-dimensional Prandtl
number defined by Pr = v/a. Now a relation exists,
derived from the kinetic theory of gases, between Pr

Kh=Km=Ky

JOURNAL OF METEOROLOGY

VoLUME 12

and the number of degrees of freedom of the molecules:
Pr=(n+2)/(n+4,5),

where » is the number of degrees of freedom. I't follows
that, for n = «, Pr = 1; or, if we may extend the
analogy between molecular and turbulent motions,

Pr = Km/Kh =1 or Km = Kh = K. (7&)

From the above, it will be obvious that no unanim-
ity exists on this point. In the following, we shall use
(7), bearing specially in mind that the ratio K,/Kp,
while not necessarily equal to one, will be approxi-
mately constant for a given profile.

Equations (2) and (3) now become, with use of
(4), (5) and (7),
K = 84/0z = uy?, (8)

(9)

These equations contain three unknowns: K, # and 8.
Therefore, a third relation must be found to solve
these equations. In the following sections, an attempt
is made to find such a relation.

and
K 38/05 = — F/cyp.

3. Frictional (mechanical) turbulence and convective
turbulence

In an adiabatic atmosphere, the turbulence is en-
tirely due to friction at the surface of the earth. As
soon as a heat flux exists, turbulence will either increase
or decrease through the liberation or absorption of
convective energy. We may now make a formal dis-
tinction between turbulence caused by mechanical
friction (the frictional or mechanical turbulence) and
turbulence caused by convection (the convective
turbulence). The problem is now to write down this
formal distinction in an equation. It was Richardson
(1920) who, for the first time, more or less succeeded
in achieving this by means of energy considerations.
The chief result of Richardson’s analysis is the defini-
tion of the Richardson number, Ri, as a measure of the
stability of the atmosphere.

g 00/dz

' T Teajaz (10)

where g = gravity and T = absolute temperature.
Measurements have shown that this number can be
used as a stability parameter. A disadvantage, how-
ever, is that Ri varies with height. Moreover, in this
form the description of the components of turbulence
is still incomplete.

Attempts at a more complete description of both
components of turbulence have been made by Rossby
and Montgomery (1935) and by Lettau (1949),
Lettau has given the more consistent definition, which
nevertheless is not yet entirely satisfactory. He
assumes a mean convective acceleration 4, which
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may be written _
A = (gl 38/32)/T,

where [ is again the mixing length, which here has
been used in the same sense as in deriving (6). Further,
Lettau distinguishes between a total turbulent ac-
celeration and a turbulent acceleration which would
obtain if there were no flux of heat, 7.e., if the atmos-
phere were adiabatic. He writes

K* K2 108/9z

TR
(Lettau’s so-called mixing velocity has been replaced
by K/l) where the index @ denotes quantities related
to adiabatic conditions. The first term of the right-
hand side indicates the contribution of friction to the
turbulence. The further development of Lettau’s
theory makes it clear that this term is independent of
stability, a fact which in our opinion is an objection
to this theory; for the frictional turbulence will be
determined by the shearing stress, which is certainly
not independent of the stability. Since K, and I, refer
to adiabatic conditions, the following relations hold :

(11)

Ka = u*alm (12)
and
la = k(z 4+ 20). (13)
So we may write, for (11),
K2 uz*a [ 69 0
g 96/9z (14)

73—=k(3+zo)— T

The difficulty now is that it is impossible to determine
Uxq as soon as the atmospheric conditions are no longer
adiabatic. It is necessary then to wait till the heat flux
vanishes, while the further synoptic situation remains
unchanged. For when the heat flux increases under
otherwise similar circumstances, %« will also increase
as a result of the increasing instability of the atmos-
phere, a phenomenon which is often observed in the
daily course of the wind velocity in case of clear
weather. It is possible now to meet the above-men-
tioned objection by writing instead of (12),

Ky = uxk(z + 20), (15)

in which the index f denotes that the quantity relates
to the frictional part of the turbulence. This equation
expresses the assumption that friction contributes to
the turbulence in the same way whether the atmos-
phere is adiabatic or not. From (13) it is furthermore
clear that /, is not dependent on stability. So we may
write

la =1l = k(z + 20). (16)

With the aid of (15) it is now possible to formulate an
equation analogous to (14), namely
K2 u% gl 36/9z

F ket T ()

A. BUSINGER

555

Now we must take for us that value which holds for
the moment under consideration. Besides the fact that
qualitatively (17) is more acceptable than (14), the
theory appears to develop further, in a simpler way
than that due to Lettau. (We shall return to this in
section 5, below.) However, it is fully realized that
(17) requires further justification and proof; but, for
the time being, this equation will be postulated.

Combining (15), (16) and (13) with (17), we obtain
an equation analogous to (11),

K* K2  glod/ez

£ i 18
B1p T (18)

Although we have now come a step nearer to a solution
of the problem, a new variable, [, has been introduced
and therefore a fourth relation is required. Before
derivation of such a relation, considerations of similar-
ity are introduced to reduce the number of parameters
and to define a suitable stability parameter.

4, Similarity and stability

From the well-known logarithmic law, @ = u,
X k1 1In [(z + 20)/20], a non-dimensional velocity
and a non-dimensional height may at once be derived,
namely, U = @/ux and ¢ = (2 4+ 20)/20. Substituting
these expressions in (8) and introducing another non-
dimensional parameter, R = K /ux3,, one obtains

aU/at = 1/R. (19)

The similarity between (9) and (8) is brought out by
writing (9) as

39/3¢ = 1/R, (20)
where

3 = (0 — 60)/6x, 0s =— F/(uscyp),

and #, = potential temperature at the surface. The
meaning of 6x may be clarified by identifying the
velocity profile and the temperature profile. This can
be achieved by using us as the unit of velocity and 6«
as the unit of potential temperature. The ratio of the
scales of both profiles is given by #«/6x = ¢. From this
ratio and ux, 0« can be at once determined:

21)

The problem is now to determine R as a function of
height and stability; so, for instance,

R = R(g-y Ri).

3* = %*/0’.

(22)

It has been shown experimentally that Ri can be used
as a stability parameter. A disadvantage, however, is
that Ri is an unknown function of height. Therefore,
it is desirable to find another stability parameter which
is independent of height. That such a quantity must
exist may be deduced from the fact that, if Ri is known
at one height, while %4« and 6« are also known, the
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velocity and temperature profiles and consequently
the rate of change of Ri with height are entirely
determined.

One may now try to split up Ri in two parts, one of
which is independent of height. The easiest way to
achieve this is to express Ri in the quantities defined
above. We then find

g 38/0z
==
T (04/3z2)?

g9*20
= — 23

Tt (23)
This is really what we looked for: a term (gfzo)/ Tus?
which is constant with height, and a known quantity
R which varies with height. Writing

— (g0+20)/ Tus® = S, (24)
it follows that, instead of (22), one may write
R = R(§, S»). (25)

S. is now used as stability parameter instead of Ri.
The practical significance of this equation is that, if
the profiles have once been determined for one given
set of conditions involving a given value of S,, they
are also determined for any other set of conditions
which yields the same value of S,. Furthermore, the
number S, enables us to draw up a survey of all states
of the atmospheric surface layer which satisfy Hamel’s
four conditions. However, the stability parameter thus
defined can only assume its full importance when the
above reasoning has been confirmed experimentally.

5. The relation R(Z, S,)

For an adiabatic atmosphere S, = 0, for 6+ = 0.
In unstable conditions, one finds S, > 0, and in stable
conditions S, < 0.

The structure of the flow in neutral conditions,
S. = 0, is known and can be expressed in the non-
dimensional units U and {:

R =k, (26)
S0

U= (Ing)/k. 27)

As indicated earlier, for the calculation of R(¢, S,)
in other than adiabatic conditions another relation be-
tween [/ and K, 6 and # is required in addition to (8),
(9) and (18). Therefore, another assumption must be
made. An obvious assumption, already made by
Rossby and Montgomery (1935), is that (6) remains
valid also for a non-adiabatic atmosphere. By use of
(8), (15) and (16), this assumption reduces to

K/K; = /I, (28)

This relation, however, does not meet our require-
ments, because according to (18) K and ! would de-
crease with increasing instability, which is contrary
to experience. This also explains the unsatisfactory

JOURNAL OF METEOROLOGY

VOLUME 12

relation between the theory of Rossby and Montgom-
ery and the observations.

However, by modification of (28), a qualitatively
acceptable result can be obtained. For if we make the
assumption that

K; = I 3i/dz, (29)
we now find, using (8), (15) and (16), that
K/K; = (/1) (30)

This assumption is very similar to Lettau’s assump-
tion,

K/Ka = (l/la)z- (31)

The assumptions (30) and (31) are not equal, because
K, % K,, which appears from (28) and (15); so [/ and
K in (30) are not the same as [ and K in (31). The
problem is now fully determined by (8), (9), (18) and
(30), so that a relation R(¢, S,) may be found.

On the contrary, the theory of Lettau is not yet so
complete, because (8) and (9) combined with (11)
and (31) produce still another parameter, w4/#sq,
which is yet unknown. To make his theory complete,
Lettau gives (in the present writer’s opinion) a chal-
lengeable discussion about the daily course of the
various quantities. He uses a certain level where
91/0z is independent of stability. However, we shall
not reproduce this part of Lettau’s theory ; suffice it to
refer to his work.

As has already been mentioned, it is possible to find
a relation R(¢, S,) with the aid of (8), (9), (18) and
(30). It is necessary, in doing so, to use the dimension-
less parameters from section 4, above, and (15) and
(16). After some calculations, we find

R = (k})®S. + 3kS[1 + (1 + 4k5SA)E]
Substituting (32) in (19) and integrating, one finds

b o L[y, D+ 4868 — 10001 +4£S,)} +1]
Tkl [ F4keS)PH1I0(1 +4S)E—1]

2(1 4 4BS,)}
(14 (1 + 4ksSHEP
2(1 + 4kS,)}
T (14 4RSS

This is a relation of the type required. It is, however,
difficult to decide whether this equation agrees with
the observations. The observations which so far have
been taken are either incomplete or fail to satisfy the
conditions required for the turbulence to be fully
developed.

Although (32) and (33) are by no means sufficiently
founded, and therefore may not be expected to give an
adequate description of the structure of the atmos-
pheric surface layer, they are represented graphically
in figs. 1 and 2, respectively. The (f, S.) diagram

(32)

(33)
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TaBLE 1. Comparison of various assumptions leading to a relation R({, Sx).

Writer ist assumption 2nd assumption R(t, Sn)
Rossby and K _Kp | 138/0s K _ ! -~
Montgomery BB T K I ke = R(1 — BS.R)?
K* _ K2 _ 130/os 5_(12 o 5 Va4 1y e uy Vo, o 12
Lettau S o =02y  rR=(Z)ees rmie{i+[1+e(32)us]'}
. K? K/  136/9z K (1Y _ k¢ s
Businger F = 7 X = (Z}) R = p22S, + 5 01+ (1 + 4keS)Y]
total turb, = K !
General frictional turb. 4 = =1 (l—) R = R, Sp)
convective turb. Ky d

(fig. 1) in particular is illuminating, since it shows how
ultimately the entire structure of the surface layer can
be represented by means of such a diagram. We shall
return to this point below.

As long as k¢S, << 1, (33) reduces by approximation
to

U=Fkllng — 2S5, — 1). (34)

Panofsky (1952) derived an equation equivalent to
(34) by giving for K an expansion in two terms of a
Taylor series,

U=k7Int — (mz/k)( — 1),

where the parameter m obviously can be evaluated by

the proposed theory as follows:
m = 2kS./z.

A synopsis of the various theories mentioned above,
and the corresponding relations R({, S,) is given in
table 1. Although The Rossby-Montgomery approach
is quite different from Lettau’s approach, the respec-
tive assumptions made by these investigators can be
written in comparable form. This has been done, the
various assumptions made being written in a form
analogous to (18) and (28). 8 is a constant which must
be determined experimentally. The ratio us/#s, in
Lettau’s theory is a new parameter arising from the

e e e
: et
1
4“* R=K %'Sh+k 8/2 ﬁ+(|+4 kSsn) { 000
.\\
2 \
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8 FRANP
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4 A N - .
A \\X\\T\'\ e lg
5 i /\ 200 ] ™~ o
/ ( \\\\ \\\\ :«-:\ e
SN —
et / \“%O\ : = - LQ
8 oy | v & L — =
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Fic. 1. (¢, S») diagram.
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fact that he relates his assumption to the adiabatic
state. The table clearly shows that a large number of
possibilities exists from which a choice can be made.
Only a thorough theoretical investigation can settle
the question as to which choice is the right one, al-
though a well arranged experiment may serve to give
some first indications.

6. The (¢, S,) diagram

It was already pointed out that fig. 1, in which ¢
and S, have been chosen as rectangular coordinates, is
highly illuminating as regards the structure of the sur-
face layer. The straight line S, = 0 passes through
the middle of the diagram and divides it into two
parts. The left-hand side corresponds to a stable
atmosphere, and the right-hand side to an unstable
atmosphere. However, another division can be made
which is more characteristic for this diagram. By
means of (32) and (23), curves of R = const and Ri
= const have been drawn.

Now, (32) determines a certain maximum value of
Ri in the stable region, namely, Ri = 0.105. It is con-
ceivable that this value corresponds to the transition
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from turbulent to laminar flow, so that a laminar
region and a turbulent region may be distinguished.

A similar transition exists in the unstable region
from forced convection to free convection.! Here also
a critical value of Ri can be found at which the transi-
tion occurs. By means of theoretical consideration due
to Taylor (1931), and measurements by Johnson and
Heywood (1938), the following relation for the profiles
in conditions of free convection may be derived:

R = const X {175, (33)

By fitting this relation continuously to (32), a critical
value of Ri =—8 is found. A more comprehensive
treatment of free convection has been given by
Businger (1954). The conditions under which (32) is
valid are therefore limited on two sides by a critical
value of Ri. Under these conditions, a regime of forced
convection is set up, since frictional turbulence pre-
dominates over convective turbulence throughout.

1 By forced convection is understood the turbulent heat flux in
regions where frictional turbulence predominates, while free con-
vection occurs in regions of predominantly convective turbulence.
In meteorology, the term convection is generally used instead of
free convection.
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F16. 2. Wind profile as function of Sx.
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Through the above analysis, the whole classification
has been given in essence.

By use of (32), it is possible to draw curves U =
const in fig. 1. Instead, a separate diagram has been
constructed (fig. 2) with ¢ and U as rectangular co-
ordinates, so that a picture is obtained of the shape of
the profiles.

7. Experimental verification

There is a great need for observations which are so
complete that the theories can be tested. The experi-
mental confirmation which Lettau claims ‘to have
found for his theory cannot in fact be accepted as such,
since not all the independent theoretical parameters
were determined experimentally.

The only set of observations which makes possible a
suitable test has been published recently by Rider
(1954). He has given direct measurements of the
shearing stress, while the heat flux has been evaluated
independently from a heat balance. Although the
accuracy of either the shearing stress or the heat
balance is small, these measurements are so complete
as to prevent unlimited adjustment of the quantities
ux, 20 and F to the observed wind profiles.

Although a test is possible with Rider’s observations,
it is difficult to determine the manner in which the test
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can best be carried out. The most convenient way ap-
peared to be a comparison of S, obtained by theory
with S, from observations. The theoretical S, were
obtained by comparison of the observed wind profiles
with the theoretical ones. This was only possible after
choice of a fixed value of z, for all observations. Care-
ful considerations made it obvious that 0.34 cm < z
< 0.44 cm; therefore, zo = 0.4 cm has been taken for
the test. It being assumed further that the deviation
of the wind profile from the logarithmic profile was
negligible at 15 cm, S, could be evaluated from the
wind profile by interpolation in fig. 2. This value of S»
was considered the ‘‘theoretical” value. It was also
possible to calculate S, more directly from the ob-
servations in various other ways. The following ways
were chosen:

1. Sa=
2. Su=

— Ri (9%/92)20/ 1 ;

— gF/ (ux*Tcpp) ;
and
3. S. =— (Riuz0)/Kn.

The quantities on the right-hand sides of these equa-
tions could be obtained from Rider’s tables, except
ux, which was evaluated from the wind speed at 15
cm, and g, it again being assumed that the logarithmic
profile was valid to this height.
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F1G. 3. Plot of .S, evaluated from profiles versus S, from observations.
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In table 2 and fig. 3, the results of this test are rep-
resented for the observations with |.S,|theor. > 1073
Although there is a rather large scattering of the
points, there is a certain agreement between theory
and observation. The observations in the stable region
show particularly large spreading, which probably can
be ascribed to non-stationary conditions of the surface
layer. For good estimation of S, from the profiles, it
appeared to be desirable also to have measurements
from heights above 2 m, especially in unstable condi-
tions.

The results of this test cannot be considered as quite
satisfactory, and the increased need for more complete
observations is once more stressed.

It is seen that, to confirm a theory, it is necessary
that all independent quantities are measured and that
no unknown parameters are inferred from the theory.

On the basis of the preceding considerations, it is
possible to formulate an observational program which
is sufficiently complete. Starting from the principle
that S, and the shape of the velocity and temperature
profiles must be measured independently, and re-
quiring Hamel’s four conditions to be realized as fully
as possible, one notes that the theory can be tested if
the following points are satisfied :

1. It is important to have available two very large fields with
different z,, the surfaces of which must be as uniform as possible,
to ensure a constant 2. Moreover, these fields should change as
little as possible in the course of time, so that the observations
can be reproduced. The minimum extent of the fields is deter-
mined by Re,. There are reasons to suppose that Re; must be
2 10° for the profiles to be fully developed. This value of Re;
corresponds to a distance of 2 to 5 km. There are not many places
where uniform terrains of such extent are found, which further-
more do not change with time. However, it is possible that the
salt deserts in the United States satisfy these requirements.

2. The surface drag must be measured directly and in such a
manner that the surface is not disturbed, for an accurate deter-
mination of ux is of fundamental importance for testing the
theory. No doubt, considerable experimental difficulties will be
encountered; but in the writer’s opinion, these should not be
insuperable.

3. Complete measurements of heat- and water-budgets are
required for an independent determination of F, a quantity which
likewise is of fundamental importance for testing the theory.
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The experimental difficulties associated with these measurements
have been largely overcome.

4. Finally, it is necessary that measurements of wind speed,
temperature and humidity are made at different heights, e.g.,
at 0.10, 0.20, 0.50, 1.00, 2.00, 5.00, 10.00 and 20.00 m. Here, also,
the experimental difficulties have been largely overcome.

8. Remarks

The analysis presented above is by no means claimed
to be a complete description of the atmospheric sur-
face layer; but it contains a first fundamental step
from which further progress can be made. There are
many problems bordering on the problem discussed,
which are just as fundamental and which may have
even more practical value once they have been solved.
Some of these problems are:

1. In which manner do the velocity- and temperature-profiles
change during transitions from one field to another with a different
value of z?

2. What is the influence of surface roughness on the flux of
heat?

3. What are the critical values of Ri?

4. In which manner do the profiles vary as a function of the
heat flux, other factors being equal?

5. What is the structure of the atmosphere throughout the
boundary layer?

Although many workers have studied these and
similar problems, no really satisfactory results have
been obtained so far.

Finally, various investigators (Batchelor, 1950;
Inoue, 1952; and others) have raised grave objections
against the concept of the mixing length and have
shown the inadequacy of this concept in certain cases.
In its place, they have put forward the so-called
statistical theory of turbulence. However, at present
this statistical theory is only applicable to ‘“homogene-
ous’’ media such as an adiabatic atmosphere, not to
inhomogeneous media in which convective forces
occur. It therefore seems that the rejection of the
concept of the mixing length is at least premature, in
particular because this concept has shown its useful-
ness in adiabatic conditions.

TaBLE 2. Wind profiles for various stabilities observed by Rider. From these profiles, theoretical S, is derived. Table shows
dimensionless wind speed U = /u, at dimensionless height { = 2/2,, 2o = 0.4 cm.

Neutral Observation number
¢ profile 7 16 17 23 24 25 29 31 33 35 40 41 42 43
500 15.5 13.8 14.1 14.2 13.7 14.1 13.7 17.9 14.3 14.6 14.0 194 220 240 200
375 14.8 13.3 13.4 13.7 13.3 13.8 13.2 16.3 13.8 14.0 13.6 17.5 200 214 18.8
250 13.8 12.7 13.0 12.9 12.9 13.3 12.9 14.6 13.1 13.2 12.8 15.6 16.0 18.0 16.4
188 13.1 12.4 12.5 13.0 124 12.7 12.3 13.7 12.5 12.6 12.0 15.3 15.6 16.5 14.9
125 12.1 11.5 11.7 11.9 11.8 12.3 11.4 12.3 11.8 11.8 11.6 12.5 12.8 13.6 13.3
94 11.3 10.7 11.2 11.4 11.3 11.4 11.2 11.6 11.2 11.3 11.2 12.0 11.5 12.5 12.4
62.5 10.4 10,0 100 10.3 101 10.5  10.1 10.5 10.25  10.1 10.4% 109  10.3 1.1 10.6
37.5 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1*
Uy 17.5 12,9 10.7 15.6 13.1 10.8 13.3 26.1 14.7 11.2 6.5 3.2 4.5 3.3
1048, 25 20 20 30 25 20 -—15 15 10 20 —18 —-30 —60 35

* Value 9.1 follows from U = k'In ¢, with { = 37.5 and & = 0.40.
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Lettau (1952), too, holds the view that the mixing
length must not be used. However, it can easily be
shown that Lettau’s theory nevertheless uses this
concept, which also follows from the fact that it is
possible to formulate his assumptions in the form given
in table 1.
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