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Idealized model examples of non-dissipative wave–mean interactions, using small-
amplitude and slow-modulation approximations, are studied in order to re-examine
the usual assumption that the only important interactions are dissipative. The results
clarify and extend the body of wave–mean interaction theory on which our present
understanding of, for instance, the global-scale atmospheric circulation depends (e.g.
Holton et al. 1995). The waves considered are either gravity or inertia–gravity waves.
The mean flows need not be zonally symmetric, but are approximately ‘balanced’ in
a sense that non-trivially generalizes the standard concepts of geostrophic or higher-
order balance at low Froude and/or Rossby number. Among the examples studied are
cases in which irreversible mean-flow changes, capable of persisting after the gravity
waves have propagated out of the domain of interest, take place without any need
for wave dissipation. The irreversible mean-flow changes can be substantial in certain
circumstances, such as Rossby-wave resonance, in which potential-vorticity contours
are advected cumulatively. The examples studied in detail use shallow-water systems,
but also provide a basis for generalizations to more realistic, stratified flow models.
Independent checks on the analytical shallow-water results are obtained by using a
different method based on particle-following averages in the sense of ‘generalized
Lagrangian-mean theory’, and by verifying the theoretical predictions with nonlinear
numerical simulations. The Lagrangian-mean method is seen to generalize easily to the
three-dimensional stratified Boussinesq model, and to allow a partial generalization of
the results to finite amplitude. This includes a finite-amplitude mean potential-vorticity
theorem with a larger range of validity than had been hitherto recognized.

1. Introduction
A notoriously difficult yet fundamental problem in chemical, climate and weather

prediction is how to represent the effects of small-scale atmospheric waves in numer-
ical simulations of the global atmospheric circulation – the so-called gravity-wave
parametrization problem. The importance of this problem has been recognized by
the World Climate Research Programme (WCRP) through its Committee on Grav-
ity Wave Processes and their Parametrization, under the WCRP sub-programme on
Stratospheric Processes and their Role in Climate (SPARC). It is not known whether
gravity waves have comparable significance for ocean circulations, but in our present
state of knowledge of ocean dynamics it cannot be safely assumed that gravity waves
are insignificant.
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Gravity waves are too small in spatial scale to be directly represented in the simu-
lations. Instead, their effects have to be indirectly represented using parametrization
schemes based on approximate results derived from the so-called ‘wave–mean inter-
action theory’, which provides approximations to the effects of the waves upon the
larger scales, all the way up to the global scale of the stratospheric circulation.

The wave–mean interaction theory used in gravity-wave parametrizations relies
on a certain ‘dissipation assumption’, saying that all the significant wave effects can
be represented as mean forces that depend on wave breaking and other forms of
wave dissipation. Conversely, whenever and wherever the waves are not dissipating,
it is assumed that they can be altogether ignored. In this paper we re-examine the
dissipation assumption, and show by careful analysis that cases exist, in an idealized
model context at least, in which the assumption is misleading.

The cases of non-dissipative interactions to be studied turn out to be conceptually
interesting from a wider perspective as well. At first sight it would appear natural (e.g.
McIntyre & Norton 1990) to regard the ‘mean flow’ in these problems as a ‘balanced’
flow in the usual sense to which the idea of ‘potential vorticity inversion’ applies
(Hoskins, McIntyre & Robertson 1985; McIntyre 1993). However, although the con-
cept of a balanced mean flow does indeed turn out to be applicable to the wave–mean
problems studied here, it will be seen that this requires a non-trivial generalization of
the usual ideas about balanced flow evolution, as will be outlined now.

We recall, to begin with, that the decomposition of a given flow into a balanced,
potential-vorticity-controlled part and an unbalanced, gravity-wave-like part has long
been recognized as a useful conceptual and numerical tool in atmosphere and ocean
dynamics. Numerically, describing the balanced part of the flow accurately and
efficiently may well require a different numerical technique to that used to describe
the (unbalanced) gravity waves. For instance, current global atmospheric simulations
handle gravity waves in a manner completely different from their main flow evolution
scheme, namely via the parametrization schemes already mentioned.

Conceptually, the decomposition allows the very special characteristics of potential
vorticity (PV) and its evolution to be exploited. The relevant definitions of the two-
dimensional shallow-water PV and of the Rossby–Ertel PV for three-dimensional
stratified flow are, respectively,

q ≡ ∇× u+ f

h
and Q ≡ (∇× u+ fẑ) · ∇θ

ρ
, (1.1)

where u is the velocity field,† f is the Coriolis parameter, h is the height of the
shallow-water layer, ẑ is the vertical unit vector, θ is potential temperature, and ρ is
density. In the absence of forcing and dissipation PV is materially conserved, i.e.

Dq

Dt
= 0 and

DQ

Dt
= 0, (1.2)

which makes obvious the necessity of forcing or dissipation to change the value
of PV on material particles. The (unbalanced) gravity waves, on the other hand,
have no essential dependence on PV. It can be noted in passing that the distinction
between the balanced part and the gravity waves is clear-cut only in the linear limit
of small disturbances to a steady state, the so called ‘Rossby adjustment problem’. If
the disturbances are not small then finding the best possible such distinction at low

† In the left-hand equation ∇× u is shorthand for ẑ · (∇× u), and use is made repeatedly of the
fact that in two dimensions ∇× u can be treated as a (pseudo-)scalar.
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Froude and/or Rossby number is still very much a matter of current research, and
indeed subject, probably, to ultimate limitations (e.g. Norton 1988).

The picture we generally have to deal with is one in which the flow evolution
is a side-by-side evolution of the balanced part together with the gravity waves,
and in which each side is coupled to the other through a two-way interaction. The
coupling may be weak in many situations of practical interest, but, as noted above,
is known to be essential for the long-term evolution of the atmosphere. The first
half of the coupling, the effect of the balanced part of the flow on the evolution of
the gravity waves, can to first approximation be studied using linear wave theory.
It can lead to, for instance, the generation, refraction, reflection, and dissipation of
gravity waves. In the limit of a slowly varying mean flow most of these effects can
be modelled using standard ray-tracing techniques, which hence form the basis of
current parametrization schemes. The other half of the coupling, the effect of the
gravity waves on the evolution of the balanced part of the flow, is arguably less well
understood, and still requires some careful consideration.

If gravity waves were altogether absent – let us call this a notional ‘perfectly
balanced model’ – the flow evolution can be thought of in two distinct steps (cf.
Hoskins et al. 1985). Given the PV at a given time, the diagnostic step allows
calculation of the balanced flow fields, including the balanced velocity fields, from the
PV. Thereafter, the prognostic step advances the PV field, usually by simply advecting
it with the balanced velocity field. This leads to a changed PV field and the cycle
starts again. Because in a perfectly balanced model the flow is entirely controlled by
the PV, the diagnostic step is often called PV inversion.

How can the presence of gravity waves change this picture of the evolution of the
balanced part? The gravity waves will, in principle, affect both steps in the balanced
evolution sketched above, as we shall show. This is outside the scope of the traditional
dissipation assumption, which implies, not always correctly, that the waves affect only
the prognostic step, and then only when the waves are dissipating or breaking. The
new results of this paper suggest that the non-dissipative effect of the gravity waves on
the balanced part of the flow should be taken into account by a suitable modification
of the diagnostic step, because, in some cases at least, this effect is substantial.

In other words, simple PV inversion has to be non-trivially generalized to a
diagnostic procedure that recognizes the joint importance not only of PV but also
of certain averaged properties of the gravity waves, to yield the balanced part of
the velocity field that is used in the prognostic advection step of the PV. In such a
procedure, the simple condition of balance between, say, the Coriolis force and the
pressure gradient is generalized to take gravity-wave effects into account that, on
average, modify this balance condition.

Most of the small-amplitude results of this paper are contained in two equations
expressing modified diagnostic steps for the simplest possible balance condition,
namely quasi-geostrophic balance, in the two-dimensional shallow-water system and in
the three-dimensional Boussinesq system. These equations are, respectively, of the form(

∇2 − 1

LR
2

)
ΨL = qL − q0 + ∇× p2 −

Λ

c0LR
E (1.3)

and

ΨL
xx +ΨL

yy +
f2

0

N2
ΨL
zz =

(
Q
L − Q0

)
N−2 + [∇× p2] · ẑ . (1.4)

In both equationsΨL is a stream function for the horizontal Lagrangian-mean velocity
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field, and the evolution of the Lagrangian-mean PVs qL and QL is entirely determined
by the advection with the velocities corresponding to ΨL. The background PV fields
are denoted by q0 and Q0, LR is the shallow-water Rossby deformation length, c0 is
the speed of high-frequency shallow-water gravity waves, Λ is a factor dependent on
the intrinsic gravity-wave frequency (cf. (6.6)), N is the buoyancy frequency in the
Boussinesq system, E is the average shallow-water wave energy density, and p2 is the
gravity-wave pseudomomentum vector in both cases. Both E and p2 are O(a2) ‘wave
properties’, i.e. they can be evaluated from a knowledge of zeroth-order mean flow
and linear, O(a) gravity-wave fields alone, where a � 1 is the relevant small wave
amplitude.

These equations differ from the standard quasi-geostrophic equations by the addi-
tional terms containing E and p2, which describe the wave-induced changes in the
Lagrangian-mean velocity field. In general, these changed Lagrangian-mean velocities
will lead to deformations of contours of qL (or QL) that would not have taken place
without the gravity waves. Because these deformations persist once the gravity waves
have propagated out of the domain of interest, it is possible to speak of irreversible
changes in the PV, and thereby in the mean flow, that are induced by non-dissipating
gravity waves. Only in the special case of constant PV, in which material advection
cannot change the PV field, would the wave-induced changes in the mean flow be
reversible.

It can be shown that, in principle, there is no a priori bound on the size of PV
changes that can be achieved in this way, even in the limit of small-amplitude gravity
waves. This is demonstrated below through an example of Rossby-wave resonance, in
which the wave-induced PV changes produce a positive feedback that re-enforces the
cumulative deformation of PV contours. It is this point, namely that O(a2) changes in
the mean velocities induced by non-dissipative gravity waves may result in cumula-
tive, dynamically significant displacements of PV contours (growing as O(a2 t) in the
resonant example), that is missed when the dissipation assumption is simply taken
for granted.

The plan of the paper is as follows. In §2 the set-up of a shallow-water beta-channel
is described that provides the simplest possible model in which non-dissipative wave–
mean interaction effects can be studied. In §3 a perturbation expansion for small-
amplitude gravity waves in this beta-channel is presented, which leads to explicit
equations describing the entire O(a2) mean-flow response as well as to equations
describing only the balanced part of the O(a2) mean flow. The definition of ‘mean
flow’ used there is a slow-modulation average over the rapidly varying phase of the
gravity waves, which includes Rossby waves as mean flows. Note that using a ‘mean’
and ‘disturbance’ formalism simplifies the mathematical equations, but that it does
not provide a clear-cut physical distinction between balanced and unbalanced parts
of the flow. For instance, there may well be large-scale, mean gravity waves.

The balanced part of the mean-flow evolution driven by the gravity waves is investi-
gated in detail in §4, including the resonant case. The problem is then reconsidered by
using the particle-following formalism of generalized Lagrangian-mean theory (GLM)
in §5. GLM theory is fully defined and described in Andrews & McIntyre (1978a, b,
hereafter referred to as AM78a, b), but a self-contained outline of the features of the
theory used here is also presented in §5. A major clarification of the origin of the result
(1.3) is achieved in this way, providing not only an independent check on its validity,
but also pointing to generalizations to other flow systems such as the Boussinesq,
stratified model. Furthermore, (1.3) can be seen as a small-amplitude consequence of
a fully nonlinear PV theorem in GLM theory. Interestingly, the practical usefulness
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of this nonlinear PV theorem seems to extend to forced and dissipative flows as well,
a fact that has not been recognized before.

In §6 certain extensions and modifications of the simplest shallow-water model are
explored in order to probe the robustness of the interaction effects, and in §7 the
threads are drawn together to suggest a simple model of balanced evolution in which
dissipative and non-dissipative gravity-wave effects are both recognized. Nonlinear
numerical simulations in §8 provide a further independent check on the results. It
turns out, however, that the standard shallow-water model is not useful for the highly
non-dissipative simulations needed, owing to dissipative effects connected with the
rapid formation of gravity wave shocks in this model. Therefore, a modification of the
kind presented in §6 is chosen for the simulations, which prevents gravity-wave shock
formation in a simple, non-dissipative manner (Bühler 1997), and permits accurate
non-dissipative numerical experiments.

Section 9 derives the result (1.4) for a three-dimensional stratified fluid system.
This is a vital step towards understanding the corresponding effects in the context
of stratified fluid systems, which are of direct relevance to actual atmosphere or
ocean dynamics. The section provides first a Boussinesq version of the nonlinear PV
theorem, and then derives the small-amplitude result (1.4). Concluding remarks are
given in §10. An Appendix supplements §§3 and 6 with details of the evolution of the
mean height field in the shallow-water system, including a detailed discussion of the
importance of correct O(a2) boundary conditions, which prove vital, for instance, in
certain one-dimensional wave–mean interaction problems.

2. Set-up of the shallow-water beta-channel
The two-dimensional shallow-water system is the simplest flow model in which

both gravity waves and vortical features occur, and in which concepts such as balance
and wave–mean interactions involving gravity waves are non-trivial. Using a flat,
tangent-plane shallow-water system avoids non-essential complications due to the
curvature of the Earth. Such a shallow-water system can easily be equipped with
a background PV gradient in the meridional (i.e. northward–southward) direction
either through a latitude-dependent Coriolis parameter (the so-called beta-effect), or
through latitude-dependent shear of a suitable background flow in the zonal (i.e.
eastward–westward) direction. This leads to well-defined background PV contours
with undisturbed alignment parallel to the zonal direction.

Such a beta-channel set-up is depicted in figure 1. It can be thought of as an
idealized mid-latitude ‘stratosphere’. Simple boundary conditions are provided by
periodicity in the x (zonal) direction and impermeable walls in the y (meridional)
direction. The period length in the x-direction is L and is assumed to be comparable
to the channel width D. The impermeable channel walls are not fixed but oscillate
in a prescribed manner (not depicted) to generate coherent wavetrains of small-scale
gravity waves with wavenumber magnitude κ. These wavetrains form a sequence of
parallel rays that stretch obliquely across the channel. The envelope scale of the
rays is comparable to the period length L, and it is assumed that the ray envelope
is slowly varying on the scale of the waves, i.e. 1/(κL) � 1 is the relevant small
‘JWKB’ or slow-modulation parameter. An alternating pattern of northward- and
southward-pointing rays is chosen in anticipation of interesting effects occurring
when the pattern projects strongly onto the Rossby-wave modes of the channel. In
addition to the meridional gradient of the Coriolis parameter f = f0 + βy, a steady
background zonal flow U(y) in geostrophic balance may be present. Its meridional
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D

L

U( y) f = f0+byy

x

uS

uS

Figure 1. The shallow-water beta-channel set-up. D is the width of the channel, L is the period
length in the zonal direction, (x, y) are cartesian coordinates in the zonal (along the channel) and
meridional (across the channel) directions, U(y) is the background zonal flow, f is the varying
Coriolis parameter, and uS is the Stokes drift of the gravity waves. The short lines perpendicular to
the Stokes drift vector indicate individual phase lines of the gravity waves.

Physical meaning Small quantity Small parameter

Small-amplitude gravity waves h′1 , κ|u′1|/ω̂ a
Large† Rossby deformation length LR ≡ c0/f0 L/LR ε
Slowly varying channel and ray envelope 1/(κL) µ
Weak background PV-gradient βD/f0 µ min{1, ε−2}
Background flow in quasi-geostrophic balance U/(f0D) µ min{1, ε−2}

† This assumption will be relaxed in §6.

Table 1. Scalings and small parameters for the channel set-up

profile is either constant or slowly varying on the scale of the gravity waves. The
scaling of the various parameters is summarized in table 1.

The gravity waves are assumed to be of sufficiently small amplitude to allow a
useful perturbation expansion of all flow fields in powers of the small wave amplitude
a� 1. The JWKB parameter 1/(κL)� 1, which expresses a scale separation between
the rapidly varying phase of the gravity waves and the envelope scale of the wavetrain,
is assumed to be small enough to allow a unique decomposition of all flow fields into
slowly varying mean parts and rapidly varying disturbance parts. Therefore, the mean
part of a given flow field is defined as the Eulerian average over the rapidly varying
phase of the gravity waves. Clearly, using a scale separation to define the mean flow
is exact only in the limit of infinite scale separation. This is unlike, for instance, a
mean-flow definition based on zonal averaging, which is always exact. Therefore, in
practice it has to be assumed, in the usual way, that the scale separation is sufficiently
large for the definition of the mean fields to work with negligible error.

With these assumptions the flow fields can be uniquely decomposed into their
mean and disturbance parts at the relevant orders in small wave amplitude a. This
decomposition is denoted by φ = φ + φ′ and φ′ ≡ 0, where the overbar denotes the
Eulerian mean and φ stands for any flow field. Contributions at first and second
order in wave amplitude a are denoted by a corresponding subscript, whereas O(1)
contributions are denoted by capital letters. For example

u′ = u′1 + O(a2) and u = U + u2 + O(a3), (2.1)

where u is the velocity vector.
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The two-dimensional momentum equation for shallow-water flow without dissipa-
tion or forcing is

Du

Dt
+ f ẑ × u+ c2

0 ∇h = 0 with f = f0 + βy, (2.2)

where the Coriolis parameter f includes the beta-effect. Here D/Dt is the material
derivative, u = (u, v) is the velocity field, ẑ is the unit vector normal to the (x, y)-plane,
c0 is the speed of high-frequency gravity waves,† and h is the non-dimensional depth
of the layer such that h = 1 corresponds to the undisturbed layer depth.

Taking the divergence and the curl of the momentum equation gives the standard
divergence and vorticity equations, which together with the mass-continuity equation
form the set that will be considered in most of this paper, i.e.

Dh

Dt
+ h∇ · u = 0, (2.3)

∂∇ · u
∂t

+ ∇ · [(u · ∇)u]− f∇× u+ βu+ c2
0 ∇2h = 0, (2.4)

D∇× u
Dt

+ βv + (f + ∇× u)∇ · u = 0. (2.5)

It turns out that it is computationally simpler to work with (2.5) instead of the PV
equation (1.1).

The above equations will be used to determine the flow fields at three orders of
magnitude in wave amplitude a, namely O(a0), O(a1), O(a2), which will provide an
ordering of the flow into background, waves, and mean-flow response. Specifically,
this will lead to an O(1) steady zonal background flow in geostrophic balance, to O(a)
gravity waves, and to an O(a2) mean-flow response to the gravity waves. As further
small parameters appear (see table 1) one could attempt higher-order expansions in
those other small parameters as well. However, this is not done in the present paper,
and only the relevant leading-order contributions with respect to all other small
parameters will be retained. The small parameters of the problem are summarized
in table 1. There h′1 is the non-dimensional gravity-wave depth disturbance, u′1 is the
gravity-wave velocity disturbance, κ = (k2 +l2)1/2 is the magnitude of the wavenumber
vector k = (k, l) of the small-scale gravity waves, ω̂ is their intrinsic frequency, β is
the meridional gradient of f, and U is the velocity scale of the background flow.
Note that because D ∼ L has been assumed, the roles of D and L for the scaling
are interchangeable. The small quantities above scale with their associated small
parameters, e.g. h′1 ∼ a.

It turns out to be highly convenient, in the first instance, to restrict the parameter ε,
which measures the size of the channel against the so-called Rossby deformation
length LR , to values of much less than unity. This implies that large-scale mean flows
behave as if there were an almost rigid upper lid on the channel, which allows the
convenient neglect of all mean-flow depth changes. It also implies, together with the
JWKB assumption µ = 1/(κL)� 1, that only high-frequency gravity waves (i.e.waves
with ω̂ � f0), need to be considered, which will simplify certain relations regarding
the wave structure. However, neither of these two points is essential for the working
of the theory and in §6 the restriction ε� 1 will be relaxed, which will be seen to lead
to important and qualitatively new wave–mean interaction features. This is already

† The wave speed c0 is related to the gravity acceleration g and the undisturbed shallow-water
layer depth H by c2

0 = gH , but it turns out that g and H are never needed separately and hence
only c0 is introduced.
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accounted for in table 1, as it will turn out (cf. (3.1) below) that a tighter bound on
U and β is useful in the cases where ε is not small.

Using the small JWKB parameter µ for several other small quantities is of some
computational convenience, because it avoids unnecessarily cumbersome notation
when no detailed exploration of complicated parameter regimes is intended. The
background flow may vary slowly in the meridional y-direction, but then its derivative
scales with the channel width, i.e.

Uy ∼ U/D and Uyy ∼ U/D2, etc. (2.6)

This scaling allows the background-flow vorticity gradient Uyy to be of the same
order as β. Note therefore that although Uy � f nevertheless Uyy ∼ fy , which is
important to keep in mind when collecting all relevant leading-order terms in the
equations below.

3. Expansion in small wave amplitude
3.1. Background flow

A non-zero U(y) will, in the presence of background rotation, require a varying depth
field h = 1 + ∆H(y) to compensate for the Coriolis force. However, the necessary
depth-field variation ∆H(y) will be minutely small for a weak background flow U(y)
that obeys the scaling in table 1, and will be neglected. This can be demonstrated by
inserting U(y) into the steady y-momentum equation,

c2
0

d∆H

dy
= −(f0 + βy)U(y) ⇒ ∆H ∼ f0DU

c2
0

∼ µ min{ε2, 1}. (3.1)

3.2. Gravity waves

The O(a) continuity, divergence, and vorticity equations are

Dth
′
1 + ∇ · u′1 = 0, (3.2)

Dt∇ · u′1 + c2
0 ∇2h′1 − f∇× u′1 = −2Uy

∂v′1
∂x
− βu′1, (3.3)

Dt∇× u′1 + (f −Uy)∇ · u′1 = −v′1(β −Uyy), (3.4)

where Dt is the O(1) material derivative

Dt ≡
∂

∂t
+U(y)

∂

∂x
. (3.5)

The continuity and vorticity equations can be integrated if linearized particle dis-
placements are introduced. These are defined (e.g. AM78a or Andrews, Holton &
Leovy 1987) by

Dt(ξ
′, η′) ≡ (u′1, v

′
1) + (ξ′ · ∇)U = (u′1 + η′Uy, v

′
1). (3.6)

The scale of these displacements is |ξ′| ∼ a/κ. From (3.6) it follows that

∇ · u′1 = Dt∇ · ξ′ − (ξ′ · ∇)(∇ ·U ) = Dt∇ · ξ′. (3.7)

Together with the fact that DtU = Dtf ≡ 0, equations (3.6) and (3.7) allow integration
of (3.2) and (3.4) along O(1) material trajectories. If we assume that there was no
disturbance at the initial time, then the constants of integration can be set to zero.
This yields

h′1 + ∇ · ξ′ = 0 (3.8)



On non-dissipative wave–mean interactions 309

and

∇× u′1 − (f −Uy)h
′
1 = −η′(β −Uyy). (3.9)

This integral of the O(a) vorticity equation makes the stretching and advecting of
background vorticity obvious. For the scaling in table 1 the stretching term is much
bigger than the advection term. Together, (3.2) and (3.9) imply that the size of ∇× u′1
relative to ∇ · u′1 is f0/ω̂.

The scaling ε � 1 in table 1 implies that the wavelength of the gravity waves is
small compared to LR and that therefore the intrinsic gravity-wave frequency satisfies
ω̂2 � f2

0. However, this scaling requirement for ε will be relaxed in §6 below, and
it proves convenient to derive the gravity-wave structure here for all frequencies,
including frequencies near f0. Such low-frequency waves feel both gravitational and
Coriolis forces and are called inertia–gravity waves.

It is assumed that β and all derivatives of U are negligible for the local structure
of the small-scale, near-plane gravity waves, which, for instance, implies Dtξ

′ = u′1
in (3.6). Substituting (3.2) and (3.9) in (3.3) gives the familiar inertia-gravity-wave
dispersion relation

ω̂2 = f2
0 + c2

0 κ
2. (3.10)

The intrinsic gravity-wave phase velocity c ≡ ω̂/κ and the intrinsic group velocity
cg ≡ ((∂ω̂/∂k)2 + (∂ω̂/∂l)2)1/2 magnitudes are

c2

c2
0

=

(
1− f2

0

ω̂2

)−1

and
c2
g

c2
0

=

(
1− f2

0

ω̂2

)+1

, (3.11)

respectively. Both intrinsic phase and group velocities are parallel to the local
wavenumber vector k. The wave structure depends only on k, and assuming without
loss of generality that k = (k, 0) it is straightforward to show that u′1 and h′1 oscillate
in phase with each other and out of phase with v′1. Furthermore

k = (k, 0) ⇒ ∇× u′1 = v′1 ,x, h′1 + ξ′,x = 0, v′1 + f0 ξ
′ = 0 (3.12)

follow from (3.8) and (3.9). The quadratic correlations

k = (k, 0) ⇒ u′1
2 = v′1

2 + c2
0 h
′
1

2 and v′1
2 =

f2
0

ω̂2
u′1

2 (3.13)

hold, together with ω̂2 ξ′2 = u′1
2 and ω̂2 η′2 = v′1

2. The non-dimensional wave
amplitude a � 1 measures the relative size of the nonlinear terms in the equations
with respect to the linear terms. A suitable definition of a is a ∼ |u′1|/c, or, equivalently
in this model, a ∼ h′1, as in table 1.

The standard intrinsic wave-energy density per unit mass E, its partition into kinetic
and potential wave energy, and its evolution equation can be derived most directly
from the linearized momentum and continuity equations. This gives

E ≡ 1
2

(
|u′1|

2
+ c2

0 h
′
1

2
)

= O(a2c2), (3.14)

|u′1|
2

=

(
1 +

f2
0

ω̂2

)
E, c2

0 h
′
1

2 =

(
1− f2

0

ω̂2

)
E, (3.15)

DtE + u′1v
′
1 Uy = −c2

0 ∇ ·
(
h′1u

′
1

)
≡ −c2

0 ∇ · uS2 . (3.16)

There is no contribution from the Coriolis terms in (3.16), as these cannot do any
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work on the fluid. The loss of equipartition of wave energy in (3.15) is typical for the
influence of the Coriolis force, i.e. it also occurs for inertia–gravity waves in other
flow models such as the three-dimensional Boussinesq model. It can be seen that

low-frequency waves have less average potential energy (i.e. less c2
0 h
′
1

2) than average

kinetic energy. The limiting case f2
0/ω̂

2 → 1 is that of inertial oscillations, in which
all wave energy is kinetic.

Because h′1 is in phase only with the velocity component parallel to k, the Stokes

drift vector uS2 ≡
(
h′1u

′
1

)
can be simply related to E by

uS2 =
k

ω̂
E, (3.17)

which implies that uS2 = O(a2c). This definition of uS2 is consistent with the standard
definition of Stokes drift as the difference between Lagrangian-mean and Eulerian-
mean velocity, as will be shown in §5. The immediate significance of uS2 here is brought
out by considering the normalized total mean mass flux at a fixed point

hu = hu+ h′u′ = h2 U + u2 + uS2 + O(a3). (3.18)

This equation will be important later when the O(a2) boundary conditions at the
channel walls are considered. Note that large values of ∇ · uS2 are linked with gravity-
wave transience via (3.16).

The ‘JWKB’ approximation based on κL � 1 allows the use of standard ray-
tracing methods (e.g. Whitham 1974; Andrews et al. 1987) to calculate k(x, y, t) and
the amplitude of the gravity-wave field that develops from the wall undulations. In
that approximation (3.16) can be rewritten as(

∂

∂t
+

[
Ux̂+ cg

k

κ

]
· ∇
) (

E

ω̂

)
+

(
E

ω̂

)
∇ ·
[
Ux̂+ cg

k

κ

]
= 0, (3.19)

which expresses the conservation of so-called ‘wave action’, whose density per unit
mass is E/ω̂. The quantity in square brackets is the absolute group velocity, which
includes the background velocity. Rays are integral curves of this velocity field. The
background quantities f(y) and U(y) are independent of x and t, and therefore
k = k · x̂ and ω̂ +Uk are constant along rays. Changes of ω̂ and l = k · ŷ along rays
are therefore linked to changes in Uk, and for the scaling in table 1 these changes are
negligible. This implies that rays are straight lines and that if rays start parallel at
the site of wave generation, then they remain parallel as they cross the channel. This
means that the divergence ∇ · [· · ·] = 0 in (3.19), i.e.(

∂

∂t
+

[
Ux̂+ cg

k

κ

]
· ∇
)
E = 0, (3.20)

holds approximately with the group velocity [· · ·] constant along rays. Therefore E is
simply advected with constant group velocity along straight parallel rays.

If ε � 1 then f2
0 � ω̂2, and hence c ≈ cg ≈ c0. Therefore, under this scaling the

gravity waves are nearly irrotational, non-dispersive waves.

3.3. Mean-flow response

The mean O(a2) vorticity equation is (cf. (2.5))

Dt∇× u2 + v2 (β −Uyy) + (f −Uy)∇ · u2 = −∇ · (u′1 ∇× u′1). (3.21)
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The forcing term can be related to uS2 by using the leading-order expression for ∇×u′1
from (3.9) to obtain

∇× u′1 = (f −Uy) h
′
1 (3.22)

⇒ u′1 ∇× u′1 = (f −Uy) u
S
2 (3.23)

⇒ −∇ · (u′1 ∇× u′1) = −vS2 (β −Uyy)− (f −Uy)∇ · uS2 . (3.24)

It can be checked that retaining the smaller advection term from (3.9) would only add
a much smaller term than either of the two terms on the right-hand side of (3.24).

Now, consider the leading-order generalized Lagrangian-mean velocity (AM78a),
which is defined as

uL2 ≡ u2 + uS2 . (3.25)

It is clear that, because uS2 is already determined by the O(a) gravity-wave field,
knowledge of uL2 implies knowledge of u2 and vice versa. Unlike u2, which is the
Eulerian-mean velocity at a fixed position, uL2 is the Lagrangian-mean velocity fol-
lowing a fixed particle. One can express (3.21) in terms either of uL2 or of u2. These
equations are, respectively,

Dt∇× u2 + v2 (β −Uyy) + (f −Uy)∇ · u2 = −vS2 (β −Uyy)− (f −Uy)∇ · uS2 ,

Dt∇× uL2 + vL2 (β −Uyy) + (f −Uy)∇ · uL2 = Dt∇× uS2 .

}
(3.26)

This makes conspicuous the fact that equation (3.21) is more easily expressed in terms
of uL2 than in terms of u2. It is intriguing to note the difference in the appearance of the
forcing terms in the two equations. Disregarding divergence parts for the moment, the
Eulerian-mean flow appears to be forced through advection of background vorticity
by the Stokes drift (the first term on the right-hand side). On the other hand, the
Lagrangian-mean flow appears to be forced by the transience of the curl of the Stokes
drift, which does not involve the background vorticity at all. Of course, u2 and uL2
satisfy different boundary conditions, a fact that is clearly important in judging which
quantity is more convenient to use as a dependent variable. The boundary conditions
along the channel axis are periodicity in all fields, which applies to uL2 as well as to
u2. However, at the channel walls the mass flux across the walls must be zero, and it
is here that the boundary conditions differ. From (3.18) one obtains

hv = v2 + vS2 + O(a3) = vL2 + O(a3) = 0 at y = 0 and y = D. (3.27)

This mean boundary condition should strictly be applied at the mean position of the
wall (cf. AM78a), but to leading order the mean position of the wall coincides with
the undisturbed wall position. It follows that vL2 is zero at the walls whereas v2 = −vS2
there. This is another reason to favour the Lagrangian-mean velocity as dependent
variable, because it satisfies a simple, homogeneous boundary condition, regardless
of whether gravity waves are present or not.

From now on the Lagrangian-mean velocity uL2 will be made the basis of the
investigation. In practice this means that uS2 is regarded as given and uL2 is sought as
a response to it. This also means that the term ‘mean-flow response’ from now on
refers to uL2 instead of u2.

The mean O(a2) continuity equation is (cf. (2.3))

Dth2 + ∇ · u2 = −∇ · h′1u′1 or Dth2 + ∇ · uL2 = 0. (3.28)

The absence of any apparent mass sinks or sources in the second form in (3.28) is
another strong reason to favour the choice of uL2 over u2 as a dependent variable.
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Using (3.28) and Dt(f −Uy) = 0 the vorticity equation (3.26) can be rewritten as

Dt

[
∇× uL2 − (f −Uy)h2

]
+ vL2 (β −Uyy) = Dt∇× uS2 . (3.29)

The mean O(a2) divergence equation is (cf. (2.4))

Dt∇ · u2 + c2
0 ∇2h2 − f ∇× u2 + 2Uy(v2)x + βu2 = −∇ ·

[
(u′1 · ∇)u′1

]
. (3.30)

The wave-induced forcing term on the right can be re-written as follows:[
(u′1 · ∇)u′1

]
= ∇ 1

2
u′21 + (∇× u′1)ẑ × u′1 = ∇E/2 + (f −Uy) ẑ × uS2

−∇ ·
[
(u′1 · ∇)u′1

]
= −∇2E/2− (β −Uyy) u

S
2 + (f −Uy)∇× uS2 ,

 (3.31)

where (3.9) has again been used. Inserting this expression back into (3.30), adding
Dt∇ · uS2 and another Stokes-drift term, and using (3.28) and (3.16) then gives

−
(
DtDt − c2

0 ∇2
)
h2 + 2Uy(v

L
2 )x + βuL2

= −
(
DtDt + 1

2
∇2c2

0

) E

c2
0

+ f ∇× uL2 + 2Uy (vS2 )x −Uy ∇× uS2 + Uyyu
S
2 . (3.32)

In contrast with the vorticity and continuity equations, introducing uL2 did not lead
to any simplification here. Also equation (3.32) looks complicated because it contains
terms of very different magnitude. The equation can be simplified whilst retaining the
relevant leading-order terms by neglecting all background terms involving U or β.
This is possible because the dominant scale in (3.32) is set by the much larger terms
containing c2

0 . The simplified (3.32) is (after an overall sign change)(
∂2

∂t2
− c2

0 ∇2

)
h2 + f0 ∇× uL2 =

(
∂2

∂t2
+ c2

0

∇2

2

)
E

c2
0

. (3.33)

The boundary conditions for h2 at the walls arise in the usual way from the condition
vL2 = 0 there, and are given in the Appendix.

In principle, the three linear equations (3.28), (3.29), and (3.33) together with
appropriate boundary conditions for uL2 and h2 determine the entire O(a2) mean-flow
response to the wave-induced forcing represented by E and ∇ × uS2 . In the usual
way, these linear equations have one balanced mode and two unbalanced modes, and
the balanced part of the velocity field uL2 is mainly described by ∇ × uL2 , and the
unbalanced part of uL2 is mainly described by ∇ · uL2 .

This motivates decomposing uL2 into a rotational non-divergent part associated
with ∇×uL2 and an irrotational divergent part associated with ∇·uL2 . In the usual way,
the homogeneous wall boundary conditions can be applied to each part individually
without loss of generality. It remains to determine the non-divergent irrotational
constant zonal flow component of uL2 . In a zonally periodic, doubly connected domain
this can be achieved by specifying the circulation along a particular curve that reaches
from x = 0 to x = L. Consider the material line that coincides with the southern
wall. It turns out (as can be easily verified using the formalism of GLM theory in
§5) that the O(a) undulations of this contour may lead to O(a2) changes in the mean
circulation associated with uL2 along the wall boundary. These changes arise partly
because of the non-zero background rotation and partly because of the Lagrangian
averaging process. However, this circulation change is uniformly bounded in time,
and reverses back to zero when the waves are switched off and the wall returns to its
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original position. Furthermore, there is no background zonal PV gradient on which
a uniform zonal flow in uL2 could act to produce a change in the PV distribution.
Therefore the constant zonal flow component of uL2 will be neglected. It can be noted
that simplifying uL2 based on the criterion of whether or not a component of uL2 is
able to create irreversible, lasting changes in the PV distribution will be the vital
ingredient for the accurate development of balanced mean-flow equations below.

Consider now a ‘spin-up’ of the gravity-wave field from an initial steady state
without waves. If it is assumed in (3.29) that the size of ∇× uL2 is comparable to the
size of ∇× uS2 = O(a2c0/L), then (3.33) implies that h2 is comparable to E/c2

0 = O(a2)
at leading order. This in turn implies by (3.28) that, in terms of size, ∇ · uL2 ∼ ∇× uL2
if the spin-up is sufficiently fast so that Dt ∼ c0/L. This is the timescale necessary
to send a gravity wave across the channel, which appears reasonable for the spin-
up, and hence it is clear that ∇ · uL2 cannot be neglected against ∇ × uL2 simply on
order-of-magnitude grounds.

However, once the waves have settled to a steady state, the evolution of the mean
flow can be expected to occur on a much slower timescale dictated by Rossby-wave
dynamics, i.e. Dt = O(βL) then. The slowly evolving height field is then approximately
described by (3.33) without the time derivatives, i.e.

−∇2 h2 +
f0

c2
0

∇× uL2 =
∇2

2

E

c2
0

. (3.34)

The steady wave energy term on the right-hand side corresponds to a steady change
of O(a2) in the height field h2, which in this model tends to decrease the height field
within the gravity wavetrain. Note that under the assumption L � LR (i.e. ε � 1 in
table 1) this change in h2 dominates the usual quasi-geostrophic change of O(a2ε).
Under the same assumption (f − Uy)h2 can be neglected against ∇ × uL2 in (3.29),
which corroborates the scaling assumption for ∇× uL2 made previously.

Therefore, it can be seen that the divergent part of uL2 has led to a significant
change in h2, which is directly linked to the presence of the gravity waves. However,
this change is approximately reversible, i.e. if the waves are imagined to spin down
again then the changes in h2 are approximately undone. Looked at from another
way, this means that the mean material displacements associated with ∇ · uL2 , which
correspond to pushing particles together or apart to produce the changes in h2, are
approximately reversible. This picture only neglects free O(a2) mean gravity waves
that may be excited by the transient spin-up or spin-down of the O(a) gravity waves
and which would continue propagating along the channel after the O(a) waves had
spun down again. However, these propagating O(a2) gravity waves would by their
very nature also produce only reversible mean material displacements.

In summary, the entire O(a2) mean response consists of a balanced part and
an unbalanced, gravity-wave-like part. The unbalanced part does create significant
material displacements associated with significant depth changes h2, but these material
displacements depend on the continued presence of the O(a) gravity waves and are
therefore reversible. The balanced part, on the other hand, creates significant mean
material displacements that persist after the O(a) gravity waves have disappeared.
These balanced mean material displacements are therefore the only displacements
that can lead to irreversible, lasting changes in the PV distribution. From these
considerations it can be argued, first, that only the balanced part of the O(a2) mean-
flow response needs to be considered in order to calculate irreversible mean material
displacements, and, second, that h2 and ∇ · uL2 can be entirely neglected for the
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evolution of this balanced part. The second part of this statement will need some
modification once the restriction L� LR is relaxed in §6, but the first part of it will
remain valid.

Hence, from now on h2 and ∇ · uL2 will be neglected. This decouples the vorticity
equation from the other two equations and results in a simple balanced system of the
usual quasi-geostrophic kind, i.e.

Dt(∇× uL2 ) + vL2 (β −Uyy) = Dt(∇× uS2 ) and ∇ · uL2 = 0 (3.35)

together with vL2 = 0 at the walls.
The diagnostic and prognostic steps of this balanced system can be made apparent

by introducing a quantity q̃ defined as

q̃ ≡ f0 + β y −Uy + ∇× (uL2 − uS2 ), (3.36)

and this definition, together with ∇ · uL2 = 0 and the boundary conditions, forms the
diagnostic step, or the balance condition, of the balanced system. Equation (3.35) now
implies that to O(a2) (

∂

∂t
+ (U + uL2 )

∂

∂x
+ vL2

∂

∂y

)
q̃ = 0 , (3.37)

which forms the prognostic step of the balanced system, expressing the invariance of
q̃ along mean material trajectories.

The quantity q̃ is closely related to the usual shallow-water PV given by (1.1);
in fact it can be shown using GLM theory (AM78a and §5 below) that (1.1) in
general implies the invariance of qL, the Lagrangian-mean of q, along mean material
trajectories. Therefore, to O(a2) the quantities q̃ and qL satisfy the same differential
equation. If the flow starts from an initial state without gravity waves then q̃ and
qL are equal initially and hence throughout the evolution. In this case the important
result

qL = q̃ = f0 + β y −Uy + ∇× (uL2 − uS2 ) (3.38)

holds to O(a2). The occurrence of qL2 ≡ ∇×(uL2 −uS2 ) neatly captures the O(a2) changes
in the mean PV field, a fact that is not at all obvious from the definition of q in (1.1).

The origin of (3.36), (3.37) and (3.38) will be substantially clarified in §5 below,
where the exact particle-following averaging formalism of GLM theory is used.

4. Mean-flow response: irreversibility and resonance
In (3.35) the background-shear gradient −Uyy adds naturally to the background

gradient of f. Although the assumed scaling allows the two terms to be of the
same order – which may itself lead to interesting effects – the simplest solutions are
obtained by setting U to a constant because this results in an equation with constant
coefficients. This is done from now on. First U = 0 is considered, and then U is set
to a positive constant.

4.1. Zero background flow U = 0

For the scenario envisaged here, the picture that emerges from (3.35) is that of
episodes of slow evolution (when the gravity-wave field, and hence uS2 , is steady) that
are punctuated by brief intervals of rapid transience when the gravity-wave field is
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uSuL uL

uS

Figure 2. The flow situation immediately after the spin-up of the gravity waves. ∇× uL2 = ∇× uS2 ,
but uL2 and uS2 satisfy different boundary conditions at the channel walls. The broken line and the
solid line indicate the initial and current position of a PV contour advected by uL2 .

spinning up or down. In the slow episodes the right-hand side of (3.35) is zero (as
U = 0), and hence uL2 satisfies an unforced Rossby-wave operator, i.e. it evolves as a
simple superposition of free Rossby-wave channel modes. During transient spin-up
or spin-down (3.35) becomes approximately

∂

∂t
∇× uL2 =

∂

∂t
∇× uS2 . (4.1)

Figure 2 illustrates the flow pattern created by (4.1) just after spin-up of the gravity
waves. The curls of uL2 and uS2 are equal but the fields satisfy different boundary
conditions at the wall forcing regions. The difference between the two fields (which
is the Eulerian mean velocity u2) is therefore irrotational, non-divergent, and forced
by inhomogeneous wall boundary conditions with zonal scale L. The difference
therefore has modal structure exp(iKx) exp(±Ky) with K = O(1/L), which implies
that significant differences between uL2 and uS2 are confined to a boundary layer near
the wall, and otherwise decay exponentially with envelope scale L in the meridional
direction away from the wall. Far away from the wall, i.e. at distances > L, the
material velocity uL2 is therefore approximately equal to the Stokes drift uS2 . This
results in the characteristic circulation cells depicted in figure 2.

Also depicted is a PV contour at its initial position (broken line) and at a displaced
position (solid line). PV contours are material lines and hence simply advected by the
O(a2) mean material velocity uL2 . (The O(a) rapid undulations directly due the gravity
waves are not depicted.)

If β = 0, i.e. if there is no pre-existing PV gradient, then the initial state produced
by (4.1) is a steady state of (3.35). This means that after the transient spin-up there
is no further acceleration of the mean flow. If the gravity waves are imagined to
spin down in a similar way as they spun up, then there would be no mean flow
left behind. Although material particles would have changed their positions, i.e. the
time integral of uL2 would be non-zero in most places, this would have produced no
dynamically relevant change. This corroborates the expectation that no irreversible
mean-flow changes are possible in the absence of a pre-existing PV gradient, as stated
in the introduction.

If, on the other hand, β 6= 0, then material displacements will act on a pre-existing
PV gradient and will lead to an irreversible change in the PV field. Initially, uL2 ≈ uS2
near the centre of the channel and hence the size of the PV anomalies thus created
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grows initially as βvL2 ≈ βvS2 . However, if β 6= 0, then ∇× (uL2 − uS2 ) = 0 is not a steady
state of (3.35), i.e. the flow continues to evolve on a slow timescale after the rapid
spin-up. The solution of (3.35) for initial conditions such as those depicted in figure 2
is given by a slowly evolving dispersive Rossby wavetrain, whose spatial scale is O(L)
and whose timescale is therefore O(1/(βL)) or longer. The Rossby-wave dynamics
will periodically reverse all velocities and material displacements. The maximal PV
disturbance that is achieved depends on the initial conditions for ∇× uL2 and is hence
bounded by the size of ∇× uS2 . If the gravity waves are spun down again, then there
will always be finite undulations of PV contours that are left behind, and consequently
the flow would not revert back to its original rest state. This exhibits the essential
link between a non-zero background PV gradient (β −Uyy) in (3.35) and irreversible,
lasting mean-flow changes, i.e. changes that do not revert to zero once the waves have
come and gone.

4.2. Non-zero background flow U > 0 and resonance

If U is equal to a non-zero constant, then the slow evolution of (3.35) is modified.
In a frame moving with the background flow the gravity-wave field now translates
with speed −U in the zonal direction, and if U > 0 this translation speed may match
the phase speed of a free Rossby-wave channel mode, which is always negative, and
resonance may occur.

This is most easily demonstrated by introducing a stream function ΨL for uL2 such
that ẑ × ∇ΨL ≡ uL2 and ∇2ΨL = ∇ × uL2 . After the spin-up the evolution of ΨL is
described by (cf. (3.35))(

∂

∂t
+U

∂

∂x

)
∇2ΨL + β

∂ΨL

∂x
= U

∂

∂x
∇× uS2 (4.2)

with

∇2ΨL|t=0 = ∇× uS2 . (4.3)

The normal modes of ΨL have spatial structure exp(iKx) sin(ynπ/D), where K is the
zonal wavenumber and n is the meridional mode number. The homogeneous wall
boundary conditions are satisfied if n is an integer. A resonant mode exists if there
exists a meridional mode number n∗ such that the spatial part of the Rossby-wave
operator in (4.2) is zero, the condition for which is

β

U
= K2 +

(
n∗π

D

)2

. (4.4)

For this mode (4.2) predicts resonant growth of ∇2ΨL, i.e. ∇2ΨL ∝ t with growth
rate proportional to the size of ∇× uS2 . The mean PV equation (3.38) then shows that
qL2 ∝ t as well. In the simplest possible case uS2 = 0 and vS2 = 1

2
a2c0 sin(Kx), and then

the time T until qL2 of the resonant mode has grown to the size of ∇ × uS2 can be
found to be

T =
n∗π

4βD

K2D2 + (n∗π)2

KD
. (4.5)

The existence of such a resonant Rossby-wave mode, which in linear theory exhibits
unlimited gravity-wave-induced growth of qL2 , gives a clear example of an exception
to the dissipation assumption in at least one case.
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5. Generalized Lagrangian-mean theory

In the previous section the forcing of uL2 was described in terms of the Stokes drift uS2 .
It can be conjectured that the general non-dissipative effect studied, i.e. the permanent
deformation of PV contours by gravity-wave-induced material particle displacements,
is independent of the special characteristics of the shallow-water model. For instance,
non-dissipating gravity waves in the standard Boussinesq model of stratified, three-
dimensional flow are known to produce irreversible material displacements (e.g.
Bretherton 1969).

However, in the Boussinesq model ∇·u ≡ 0 and as a consequence the leading-order
uS2 for vertically propagating monochromatic gravity waves is zero, a feature that
is connected to the fact that a plane monochromatic gravity wave is a trivial exact
solution of the Boussinesq equations (with or without background rotation), because
particles move in planes of constant wave phase in this system. Monochromatic
shallow-water gravity waves, on the other hand, are not exact solutions and have a
non-zero leading-order Stokes drift. This leads us to suspect that the use of uS2 as the
central quantity to describe the forcing of uL2 may be model-dependent, i.e. special to
the shallow water model, and hence that the formulae derived in the previous section
cannot be expected to simply carry over to other flow models.

In addition, the perturbative, small-amplitude approach of the previous section
may be a poor guide to what is relevant in atmospheric or oceanographic flows that
exhibit large wave amplitudes a ∼ 1. Finite-amplitude counterparts of (3.35), should
they exist, would be very helpful in discerning robust features of the established results
that generalize to finite-amplitude waves. However, it is very difficult to manipulate
the Eulerian-mean equations into a form that allows us to collect all the terms that
contribute to the mean material velocity at orders beyond O(a2).

For both reasons, using GLM theory (AM78a, b) turns out to be decisively ad-
vantageous here. GLM theory establishes a nonlinear definition of uL at the outset
and then derives general equations for its evolution from the equations of motion.
The formalism of the theory applies for different forms of averaging, e.g. it applies
for zonal averaging as well as for the slow-modulation average over the rapidly
varying gravity-wave phase used in this paper. The physical interpretation of uL is
dependent on the particular choice of averaging (see AM78a for an interpretation in
the zonal-average case). In the special case of a slow-modulation average the physical
interpretation is very simple: trajectories of uL (i.e. solutions of dx/dt = uL(x, t)) are
exactly the mean material particle trajectories sought. The mean-flow and Stokes-drift
components of the motion of a material particle are combined in uL, and the essential
point is that uL only picks up that part of the material motion that is cumulative on
average.

Two important vector fields ξ and p emerge in GLM. The first generalizes to
finite amplitude the linearized particle displacements ξ′ used before. The second is a
quantity called pseudomomentum ( p is strictly the pseudomomentum per unit mass,
but here it will be loosely called pseudomomentum as well), whose curl will be seen
to be the central quantity in the description of the forcing of ∇× uL. Equation (3.35)
involving the Stokes drift uS2 in the previous section will then appear as a simple
special case by virtue of a near-equality of pseudomomentum and Stokes drift valid
for slowly varying shallow-water gravity waves. It is, however, the pseudomomentum,
and not the Stokes drift, that generalizes to stratified three-dimensional flow systems.

To prepare for this use of GLM theory it is necessary to establish some special
notation and to give a brief outline of the kinematical workings of the theory. The
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un(x, t)
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uL(x, t)
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z y
x

Actual trajectory

Mean trajectory

Figure 3. Mean and actual particle trajectories, which are supposed to have started from the same
position x0. The position x+ ξ(x, t) is the actual position of the particle whose mean position is x
at time t.

theory is then applied to the shallow-water system, which produces a fully nonlinear
GLM circulation theorem and a fully nonlinear GLM PV theorem. The O(a2), small-
amplitude forms of these equations are then shown to be the same as the O(a2)
equations (3.35) and (3.38) derived previously. Section 9 shows how the same GLM
formalism can be applied to the Boussinesq model of stratified, three-dimensional flow.
We shall need only slow-modulation averaging, and so the kinematics is described in
terms of it; see AM78a, b for a full account of GLM theory.

5.1. Slow-modulation GLM theory

Consider the trajectory (i.e. solution of dx/dt = u(x, t)) of a material particle starting
at point x0 in figure 3. The picture suggests that the motion of the particle is such that
it can be decomposed into a slow and a fast part by averaging over the fast timescale.
This averaging process associates two different trajectories with each particle: first its
actual, rapidly varying trajectory (thin line in figure 3), and second its mean, slowly
varying trajectory (bold line in figure 3). GLM theory now postulates the existence of
a unique disturbance-associated particle displacement field ξ(x, t) that links these two
trajectories (dashed arrow in figure 3). The field ξ(x, t) depends on the fast timescale,
and is defined such that

x+ ξ(x, t) (5.1)

is the actual position of the particle whose mean position is x at time t. The sense in
which x is the mean position is defined by

ξ(x, t) = 0, (5.2)

where the overbar denotes the slow-modulation average over the fast timescale.† Note
that the particle whose mean position is x at time t is not, in general, the same as
the particle that is at x at time t. In essence, GLM theory treats ordinary space (i.e.
all the points x in the domain) as a time-dependent reference space for both mean
and actual trajectories. The first reference is established by the trivial map x → x,
which associates with x the mean trajectory that touches x at time t. The second
reference is established by x → x + ξ(x, t) (i.e. (5.1)), which associates with x the

† For (5.1) to work satisfactorily one has to assume that each point x is touched by exactly one
mean trajectory at a given time t, because otherwise ξ(x, t) would not be unique. In other words,
mean particle trajectories must not cross each other. It is not a priori clear whether or not this
will occur. Distinct material particles may share the same mean position. Despite these cautionary
remarks the possible crossing of mean trajectories will now be assumed not to occur, and the map
in (5.1) will be assumed to be a single-valued function.
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actual particle trajectory of the same particle. This dual reference avoids the use of
classical Lagrangian particle labels as a reference space.

An exact Lagrangian-mean velocity can now be defined as

uL(x, t) ≡ u(x+ ξ(x, t), t), (5.3)

which is the finite-amplitude counterpart of uL2 of the previous section. By definition,
uL is the mean velocity of the particle whose mean position is x at time t. The
important point is that the averaging is performed over the values of u at the
actual particle positions, see figure 3. Mean trajectories are defined as integral curves
of uL(x, t), and this leads naturally to the definition of the Lagrangian-mean time
derivative

D
L ≡ ∂

∂t
+ uL · ∇, (5.4)

which is the derivative following mean trajectories.
The Lagrangian mean of any function φ is defined in analogy to (5.3). It is

convenient to introduce a notation for ‘lifting’ a function φ from mean to actual
particle positions,

φξ(x, t) ≡ φ(x+ ξ(x, t), t); (5.5)

then φ
L ≡ φξ(x, t). The difference between Lagrangian and Eulerian mean

φ
S ≡ φL − φ (5.6)

is defined as the Stokes correction, or Stokes drift in the special case of velocity. The

quantity φl ≡ φξ − φL defines the Lagrangian deviation from the average value of
the field φ, following a particle. Two important properties of the rates of change of
φξ result from the chain rule of differentiation:

(φξ),t = (φ,t)
ξ + (φ,j)

ξξj,t and (φξ),i = (φ,i)
ξ + (φ,j)

ξξj,i, (5.7)

where ( ),t denotes time-differentiation, ( ),i denotes covariant differentiation with
respect to xi, the ξj are the components of ξ, and summation over repeated indices is
understood.

By definition, (5.1) evaluated along a mean trajectory x(t) traces out the actual
trajectory of the particle whose mean trajectory x(t) is being followed. Therefore the

time derivative D
L

of (5.1) along a mean trajectory is equal to uξ(x, t), the actual
particle velocity, and this yields the evolution equation for ξ as

uξ = D
L

(x+ ξ) = uL + D
L
ξ ⇒ D

L
ξ = uξ − uL ≡ ul . (5.8)

Here ul = uξ − uL is the Lagrangian disturbance velocity. Given u(x, t) and initial
conditions for ξ (which are ξ(x, 0) = 0 if, as is assumed here, there is no disturbance
at t = 0) (5.3), (5.4), and (5.8) determine ξ and therefore uL at all later times.

A consequence of (5.7) and (5.8) is two important rules connecting material deriva-
tives on mean and actual trajectories:

D
L
φξ =

(
Dφ

Dt

)ξ
and D

L
φ
L

=

(
Dφ

Dt

)L
. (5.9)

The first rule is obtained by substituting (5.7) and (5.8) in its left-hand side and
observing that [u · ∇φ]ξ = uξj (φ,j)

ξ , and the second is simply the average of the first.
The simplicity of the Lagrangian mean of a material derivative is a major advantage
of GLM theory.
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A characteristic difference between standard Eulerian-mean theories and GLM
theory – sometimes called the ‘divergence effect’ (AM78a, McIntyre 1988) – is that in
GLM theory ∇ · u = 0 does not imply that ∇ · uL = 0. This divergence effect arises
naturally in GLM theory owing to the interplay between Lagrangian averaging and
the use of (5.2) to define mean particle positions. The significance of the divergence
effect is further discussed in AM78a, where it is stressed that a mean density field
satisfying the continuity equation

D
L
ρ̃+ ρ̃∇ · uL = 0 (5.10)

will in general not be equal to ρL. It proves convenient to use ρ̃, as defined by (5.10)
and a suitable initial condition, in GLM theory. If there are no disturbances initially,
then ρ̃(x, 0) = ρ(x, 0). Furthermore, in this case ρ̃ = ρ̃, i.e. ρ̃ is a mean quantity, as
can be shown by averaging (5.10) and noting that if ρ̃ = ρ̃ initially, then it holds at
all later times (see AM78a for further discussion of this point).

In the same way as ordinary density measures the dilation or contraction of actual
material volumes, ρ̃ measures the dilation or contraction of mean material volumes. It
is straightforward to show (AM78a) that therefore ρ̃ is equal to ρξ times the Jacobian
of the ‘lifting’ map x→ x+ ξ, i.e.

ρ̃ = ρξ
∂(x+ ξ)

∂(x)
. (5.11)

5.2. Shallow-water GLM theory

The GLM theory is now applied to the two-dimensional shallow-water equations (cf.
(2.2), (2.3)). There is, however, a problem in that the standard, fully nonlinear GLM
theory (i.e. theorem I and its corollaries in AM78a) applies only for constant Coriolis

parameter, i.e. β = 0. The root of the problem is that (fẑ × u)L 6= fẑ × uL if β 6= 0,
and in an exact theory this necessitates a non-trivial modification of the standard
GLM definition of pseudomomentum p in (5.16) below. Although this can be done
in principle (Bühler 1996), for simplicity the fully nonlinear GLM theory is here only
applied to (2.2) with β = 0. Section 5.3 below analyses the small-amplitude limit of
the GLM equations, and it is shown there how β 6= 0 can be incorporated in that
limit.

Following (5.10) and (5.11), the continuity equation (2.3) is replaced by two equiv-
alent equations for h̃:

D
L
h̃+ h̃∇ · uL = 0, (5.12)

h̃ = hξ
∂(x+ ξ, y + η)

∂(x, y)
= hξ

(
1 + ∇ · ξ +

∂(ξ, η)

∂(x, y)

)
, (5.13)

where (ξ, η) are the two components of ξ. In the momentum equation (2.2) it proves
advantageous to preserve the gradient character of the pressure term, and (5.7)
indicates how this can be achieved:

(h,j)
ξ
(
δji + ξj,i

)
= (hξ),i. (5.14)

Therefore (2.2) is first ‘lifted’ to actual particle positions (i.e. each term is evaluated at
x+ ξ(x, t)), then multiplied with δji + ξj,i, and finally averaged over the fast timescale.
The result is a special case of theorem I of AM78a, namely

D
L
(uLi − pi) + uLk,i(u

L
k − pk) + [f0ẑ × uL]i + c2

0 h
L

,i = 1
2

(
uξj

[
uξj + (f0ẑ × ξ)j

])
,i

, (5.15)
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where

pi ≡ −
([
ul + 1

2
f0ẑ × ξ

]
j
ξj,i

)
(5.16)

is the GLM definition of the pseudomomentum (per unit mass) p.

Like uS , p is a wave property in the sense that its leading-order expression is
O(a2), and that it can be consistently computed from linear wave solutions alone.
Pseudomomentum usually appears in studies of flow situations in which the mean
flow exhibits a translational symmetry, which leads to global conservation of the
component of h̃ p parallel to the symmetry direction (AM78b; Shepherd 1990). It
turns out, however, that p plays an essential role in mean-flow forcing regardless of
whether individual components of it are conserved or not. This becomes apparent
when the curl of (5.15) is taken:

D
L [∇× (uL − p) + f0

]
+
[
∇× (uL − p) + f0

]
∇ · uL = 0

⇔ D
L
q̃ = 0 for q̃ ≡

[
∇× (uL − p) + f0

]
h̃

, (5.17)

where the last line makes use of (5.12).† It is remarkable that only ∇× p enters but not
the symmetric part of the gradient of p, which is a repercussion of the peculiar term
−uLk,ipk in the momentum equation. Furthermore, it should be noted that (5.17) holds
for arbitrary structure of the disturbance, i.e., in contrast with the previous section, it
has not been assumed here that the disturbance is a slowly varying wavetrain.

Before going on it should be noted that, to the extent that p can be regarded
as given, (5.17) can be directly exploited as an equation for the vortical part of uL

forced by the curl of p. At small wave amplitude this must work because p is a wave
property. At large wave amplitude (5.17) still holds, but now the back-effect of uL

onto p can no longer be neglected and hence p can no longer be regarded as given.
Note that equation (5.17) gives no information about ∇·uL and hence the negligibility
of the divergence part of uL (and therefore of variations in h̃ in (5.17) as well) has to
be either assumed here or to be established by a fuller analysis of (5.15), as was done
in the previous sections.

Equation (5.17) is the finite-amplitude counterpart (for β = 0) of (3.36) and (3.37),
with p replacing the Stokes drift. The Lagrangian-mean potential vorticity qL is itself
invariant on mean trajectories by (5.9), and if there has been no disturbance initially,
and therefore q̃ = qL at the initial time, then the invariant quantity in (5.17) is equal
to qL at all times. This gives the finite-amplitude counterpart of (3.38), i.e.

qL = q̃ =

[
∇× (uL − p) + f0

]
h̃

. (5.18)

The equality of q̃ and qL subject to non-dissipative evolution and to suitable
initialization has been noted before by AM78a and others. However, it seems that
rather more can be said. Specifically, we have the following lemma.

† The concurrence of 1/h and 1/h̃ in (1.1) and (5.17) is accidental; if two-dimensional incom-

pressible flow were studied then (1.1) would hold without the factor 1/h, but 1/h̃ would still have
to be retained in (5.17). This is a consequence of ∇ · u = 0 not implying ∇ · uL = 0.
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Lemma. The equality (5.18) on a mean material trajectory holds subject only to suit-
able initialization, which is understood to mean that q̃ = qL and that h̃ is a mean quantity
fulfilling (5.13) at one point of the mean material trajectory. This can be achieved, for
instance, by initializing the flow without any disturbance. The equality (5.18) then holds
regardless of the presence of an arbitrary body force, of dissipative origin or otherwise,
in the momentum equation. In other words, although in the presence of forcing or dissi-
pation neither q̃ nor qL will be invariant on mean material trajectories, they will, subject
only to the suitable initialization, change in exactly the same way together.

Two alternative proofs of this lemma are possible. For the first proof consider the
shallow-water momentum equation (2.2) with an arbitrary force F on the right-hand
side. It is then straightforward to show that the evolution equations for q, qL, and q̃
are, respectively,

Dq

Dt
=
∇× F
h

, D
L
qL =

[
(∇× F )ξ

hξ

]
, D

L
q̃ =

εki

[
Fξj
(
δji + ξj,i

)]
,k

h̃
, (5.19)

where εki = −εik is the two-dimensional alternating symbol such that ε12 = 1. Using
(5.13), i.e. the relation between h̃ and hξ that depends on the initialization, and the
chain rule (5.7) then establishes, after some manipulation, the exact equality of the
two mean right-hand sides in (5.19), which completes this proof.

A second proof uses the connection between PV and the circulation around material
contours, which stresses the kinematical character of the lemma, and which also
clarifies the origin of the definition of p in (5.16). Consider two closed contours C
and Cξ , where Cξ is the image of C under the lifting map x→ x+ ξ, as illustrated in
figure 4. Note that there is no simple relation between the shapes or enclosed areas
of the two contours. The circulation Γ around the contour Cξ is defined in the usual
way, but Γ can also be related to an integral around C using the lifting map. This
gives

Γ ≡
∮
Cξ

[
u+ 1

2
f0ẑ × x

]
· dx =

∮
C

[
uξ + 1

2
f0ẑ × xξ

]
· dxξ

=

∮
C

[
uξ + 1

2
f0ẑ × xξ

]
i

(δij + ξi,j) dxj, (5.20)

which uses

dxξ = d(x+ ξ) = dx+ (dx · ∇) ξ.

Averaging this expression affects only the integrand because C is a mean contour,
and this defines a particular mean circulation Γ̃ as

Γ̃ ≡ (Γ ) =

∮
C

[
uL − p + 1

2
f0ẑ × x

]
· dx, (5.21)

after using the definition of p in (5.16).
On the other hand, Γ can be rewritten using Stokes’ theorem as

Γ =

∫
A

∫
Aξ

(∇× u+ f0) dxdy =

∫
A

∫
Aξ
qh dxdy =

∫∫
A

qξ(h dxdy)ξ (5.22)

=

∫∫
A

qξh̃ dxdy, (5.23)

where A and Aξ denote the areas enclosed by C and Cξ , respectively, and where (5.13)
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dxn

C

dxx

y

x

Cn

Actual contour Cn

Mean-position
contour C

n

Figure 4. Actual material contour Cξ and mean material contour C . Particles on the actual contour
have mean positions on the mean contour. Also depicted are the mean and actual trajectories of
one particular particle.

has been used in the last step. Averaging the last expression then gives

(Γ ) =

∫∫
A

qLh̃ dxdy. (5.24)

Similarly, using Stokes’s theorem in (5.21) together with the definition of q̃ in (5.17)
gives

Γ̃ =

∫∫
A

(
∇× (uL − p) + f0

)
dxdy =

∫∫
A

q̃h̃ dxdy. (5.25)

Finally, as Γ̃ = (Γ ) must hold for arbitrary choice of A, (5.24) and (5.25) imply that
q̃ = qL, which completes this second proof.

5.3. Small-amplitude shallow-water beta-channel

The GLM PV equation (5.17) is now evaluated in the small-amplitude limit, and at
the same time β 6= 0 is incorporated. Adding the β-term to the Coriolis parameter
adds the terms

[βy ẑ × u]ξj
(
δji + ξj,i

)
= β εj3n (y + η) uξn

(
δji + ξj,i

)
= β εj3n

{
y
(
uLn δji + ulnξj,i

)
+ ηuln δji + ηuξnξj,i

}
(5.26)

to the left-hand side of (5.15). This uses uξξ = (uL + ul)ξ = ulξ.
The leading-order expressions for the various GLM fields are (cf. AM78a)

uL = U + uL2 + O(a3), (5.27)

uL2 − u2 = uS2 = (ξ′ · ∇)u′1 + 1
2
ξ′iξ
′
j U,ij + O(a3), (5.28)

ul ≡ uξ − uL = u′1 + (ξ′ · ∇)U + O(a2) ≈ u′1, (5.29)

Dtξ
′ = u′1 + (ξ′ · ∇)U + O(a2) ≈ u′1, (5.30)

where the approximate equalities come from the negligibility of gradients of U on
the scale of the gravity waves. Consider only contributions at O(a2) now. Using the
above relations the scale of the two terms in round brackets in (5.26) is estimated as
O(βLa2c0), whereas the other terms are estimated to be much smaller. The first term
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adds naturally to the existing Coriolis force in (5.15), i.e. at O(a2)

[f0 ẑ × uL2 ]i → [(f0 + βy) ẑ × uL2 ]i (5.31)

in (5.15). The second term in round brackets in (5.26) is in fact not O(βLa2c0). This is
because of the cross-product between the O(a) wave fields in it, which vanishes in the
limit of a plane gravity wave. Hence the second term is smaller than the dominant
scale by a factor of at least κL. Therefore the change (5.31) is the only leading-order
change that needs to be made when adapting (5.15) for the O(a2) β-plane limit.
In particular, the pseudomomentum definition (5.16) remains unchanged to leading
order, in accordance with the fact that the β-effect is negligible for the small-scale
gravity waves.

The leading-order Stokes drift is found from (5.28) as

uS2 = (ξ′ · ∇)u′1 + 1
2
η′2 Uyyx̂ = h′1u

′
1 + O(µa2c0) + O(µ2a2U), (5.32)

where (3.8) has been used. This shows that the leading-order GLM definition of uS is
consistent with the O(a2) Eulerian definition in (3.16). Therefore

uL = u+ uS = Ux̂+ uL2 + O(a3) (5.33)

can be used in (5.17). The leading-order pseudomomentum p2 for slowly varying
waves has the generic form (cf. AM78a, b)

p2 =
k

ω̂
E, (5.34)

and comparison with (3.17) shows that uS2 = p2 here. This leading-order equality is
special, valid for shallow-water gravity waves, but not valid more generally. In the
Boussinesq system, as noted before, uS2 = 0 for gravity waves, but p2 is still given by
(5.34).

The O(1) part of D
L

is equal to Dt, and comparing (3.28) and (5.12) then shows
that h̃2 and h2 satisfy the same equation, and hence h̃2 = h2 if the flow is initialized
without disturbance. This equality, which can also be proven directly by averaging
(5.13) and noting that the Jacobian term vanishes for plane shallow-water gravity
waves, is again special, and does not generalize to other systems. Two-dimensional
surface gravity waves, for instance, provide an example in which the Eulerian mean
density and the corresponding ρ̃ differ at leading order (McIntyre 1988). It can be
noted in passing that from (5.13) and (3.8) it also follows that

h2
L

= h2 + h′21 ⇔ h2
S

= h′21 (5.35)

to leading order.
One can now evaluate (5.17) at leading order. The derivation leading from (5.15)

to (5.17) is affected only by the additional term in (5.31). This term, however, only
adds βy to the background vorticity. Therefore (5.17) at O(a2) is (neglecting changes
in h2 as before)

Dt∇× uL2 + (β −Uyy) v
L
2 = Dt∇× p2 = Dt∇× uS2 , (5.36)

where use has been made of the fact that D
L

= Dt + (uL2 · ∇) to O(a2). This is equal
to the O(a2) mean vorticity equation (3.35) of the previous section, which is a useful
check on the validity of (3.35) as it has now been derived via two independent routes.
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6. Extension of the parameter regime and modified shallow-water model
The previously made convenient assumption L/LR � 1 led to the simplest possible

mean-flow response problem, but this assumption was not based on any particular
features of realistic atmospheric or oceanic motions. This suggests a natural extension
of the parameter regime by relaxing the restriction L/LR � 1 now, i.e. by allowing the
parameter ε in table 1 to take any value, including values much greater than unity.
It turns out that in this new regime significant stretching of background vorticity by
h2 can take place, which then needs to be taken into account in (3.29) and other
equations to calculate uL2 . Furthermore, if L/LR � 1 then it is possible that the
wavelength of the gravity waves is itself comparable to LR whilst remaining small
compared to L. The gravity waves then become dispersive inertia–gravity waves,
which feel both gravitational and Coriolis forces, and the associated changes in the
wave structure need to be taken carefully into account.

In addition, a certain nonlinear modification of the pressure term in the shallow-
water momentum equation is now considered. This artificial modification of the
shallow-water model allows the dependence of the interaction effects on subtle changes
in the details of the ‘elastic’ properties of the fluid to be discerned. Furthermore, it will
be seen in §8 that such a modification is essential in order to arrive at a well-posed
numerical simulation. Specifically, the modification is

c2
0 ∇h −→ c2

0

γ − 1
∇
(
hγ−1

)
, (6.1)

where γ is a constant parameter not equal to one, but otherwise arbitrary (Bühler 1997).
The form of (6.1) is motivated by the gas-dynamical analogy in which standard
shallow-water flow is equivalent to two-dimensional flow of a homentropic perfect
gas with ratio of specific heats γ = 2, and in which gravity waves correspond to sound
waves. Of particular interest for the numerical simulations in §8 will be the modified
model corresponding to γ = −1. Clearly, for arbitrary γ the equations of motion lin-
earized around a background state with h = 1 remain unchanged, and therefore the
gravity-wave structure does not depend on γ. Furthermore, as the gradient character
of the pressure term is retained, the vorticity equation and the form and material
invariance of PV also remain unchanged. The only dependence on γ therefore will
occur in the O(a2) divergence equation (3.30).

The scaling in table 1 already includes a tighter bound on the size of U and
β to ensure that the background flow in geostrophic balance continues to require
only negligible deviations from unity of the background depth field. Also, the O(a)
gravity-wave structure in §2 has already allowed for low-frequency, inertia–gravity
waves. The relation uS2 = p2 still holds for slowly varying inertia–gravity wavetrains,
by virtue of the robust relation p2 = E k/ω̂ in that limit (AM78b), and the use of p2

instead of uS2 is preferred below.
The mean continuity and vorticity equations (3.28) and (3.29) are unchanged, except

for the trivial substitution of p2 for uS2 in (3.29), i.e.

Dt

[
∇× uL2 − (f −Uy) h2

]
+ vL2 (β −Uyy) = Dt∇× p2 . (6.2)

The definition of q̃ in (3.36) needs to be amended by the term −(f−Uy)h2. The mean
divergence equation (3.30) is changed in two places. On the left-hand side

c2
0 ∇2h2 −→ c2

0 ∇2

(
h2 +

γ − 2

2

(
1− f2

0

ω̂2

)
E

c2
0

)
, (6.3)
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and on the right-hand side

−∇2E/2 −→ −
(

1 +
f2

0

ω̂2

)
∇2E/2. (6.4)

These changes are consequences of the changed O(a2) pressure term and the changed
gravity-wave structure, respectively. Using (3.15), the simplified divergence equation
(3.33) can then be written as(

∂2

∂t2
− c2

0 ∇2

)
h2 + f0 ∇× uL2 =

(
∂2

∂t2
+ c2

0 Λ∇2

)
E

c2
0

, (6.5)

where the constant Λ is defined as

Λ ≡ γ − 2

2

(
1− f2

0

ω̂2

)
+

1

2

(
1 +

f2
0

ω̂2

)
. (6.6)

It is clear from (6.5) that the evolution of h2 will depend on the value of Λ, and that
this dependence will manifest itself even when the wave field is steady. The scaling
arguments advanced earlier, which allowed the neglect of h2, are not valid here. For
instance, during wave-field transience (6.2) is approximately replaced by (cf. (4.1))

∂

∂t

[
∇× uL2 − f0 h2

]
=

∂

∂t
∇× p2, (6.7)

in which the relative size of the two terms in the square bracket now depends
non-trivially on the value of ε and on the solution of (6.5).

As before, it is possible to use ∇·uL2 = 0 at all times without making an appreciable
error in the mean material displacements. For a steady wave field (6.5) becomes

−c2
0 ∇2h2 + f0∇× uL2 = Λ∇2E , (6.8)

and the balanced evolution of the O(a2) mean flow is then described by (6.2) and
(6.8)) together with the constraint ∇ · uL2 = 0. Introducing a stream function ΨL such
that uL2 = −ΨL

y and vL2 = ΨL
x allows (6.8) to be solved as

c2
0 h2 = f0Ψ

L − ΛE (6.9)

up to a harmonic function to be determined by boundary conditions. For definiteness
the constant part of ΨL is fixed such that the total integral of ΨL over the channel
is always zero. The boundary condition for ΨL at the walls is vL2 = ΨL

x = 0, and
likewise a condition for ∂h2/∂y must hold at the walls that maintains the vanishing
of vL2 there. It turns out (see the Appendix) that away from the wall undulations (6.9)
already implies this boundary condition, but that this is not so at the wall undulations,
where a more complicated condition holds. However, (6.9) is still useful as a far-field
approximation, valid at distances away from the walls not small compared to the
zonal envelope scale of the gravity waves.†

Substituting (6.9) into (6.2), and using (f − Uy)h2 ≈ f0h2, reduces the balanced
system to a single equation for ΨL, namely

Dt

[(
∇2 − 1

LR
2

)
ΨL

]
+
∂ΨL

∂x
(β −Uyy) = Dt

[
∇× p2 −

Λ(γ, f0/ω̂)

c0LR
E

]
, (6.10)

† This influence of the boundary conditions explains the very special features of genuinely
one-dimensional wave problems, in which the zonal wave envelope is effectively infinite and no
far-field region exists (e.g. McIntyre 1981; Yih 1997, and the Appendix).
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where the dependence of Λ on γ and the gravity-wave frequency has been highlighted.
Equation (6.10) is the required generalization of (3.35).

For completeness, it can be noted that the finite-amplitude GLM results in §5 are
affected by the extensions considered here only through a change

h
L → h(γ−1)

L
/(γ − 1) (6.11)

in the irrotational pressure term in (5.15). This change does not change the GLM
vorticity equation.

Relaxing the restriction L/LR � 1 is seen to have two quite different effects on
the balanced mean-flow response. First, the structure of the balanced mean flow is
modified in the usual quasi-geostrophic way to accommodate the finite Rossby de-
formation length LR . Second, a new forcing term appears in the balanced equations,
which induces a fundamentally different balanced mean-flow response to the previ-
ously studied response induced by the ∇× p2 term. However, this new forcing term,
which is connected with h2 and E, – and related to classic ideas on acoustic ‘radia-
tion stress’ (e.g. Brillouin 1925, 1936, 1964 ; AM78a; McIntyre 1981 and references
therein) – turns out to be dependent on subtle model details such as the value of γ,
the frequency of the gravity waves, and also on the details of the O(a2) wall boundary
conditions. By contrast, the ∇× p2 term does not depend on any of these details.

This strengthens the impression that the mean-flow forcing connected with ∇× p2

is the most robust, model-independent part of the interaction problem studied. A
corroboration of this view is found for at least one other standard flow model by the
analysis of the three-dimensional Boussinesq system in §9, where it is shown that only
∇× p2, but not E, enters the mean-flow forcing in that model.

The simplest example of qualitatively new mean-flow features due to the new
forcing term, which is also investigated numerically in §8, is given by the balanced
flow just after spin-up of the waves in the extreme case that L/LR � 1. This limit can
be achieved without changing p2 or E, and hence the terms with coefficients 1/LR
must eventually dominate in (6.10). Therefore

ΨL ≈ ΛLR

c0

E =
Λ

f0

E (6.12)

sufficiently far from the walls. This implies a strikingly different streamline pattern to
that shown in figure 2. The pattern in figure 2 shows a near-equality of uL2 and p2 (or
uS2 ) in the centre of the channel, with velocity maxima in the core of the wavetrains,
compatible with simple ideas about the waves’ Stokes drift ‘dragging’ the fluid with
it. The response according to (6.12), on the other hand, implies completely different
patterns of uL2 and p2, with velocity maxima located at the flanks of the cores, where
∇E is largest (cf. §8 for a numerical simulation). On the other hand, in the core, where
p2 is largest, uL2 is now zero.

7. Dissipative and non-dissipative gravity-wave effects
As noted in the introduction, dissipative effects are naturally represented in the

prognostic step of the PV evolution, changing the value of PV along material tra-
jectories. These wave-induced dissipative changes to the PV can in many cases be
neatly summarized by the so-called ‘pseudomomentum rule’ (e.g. McIntyre & Norton
1990, and references therein). In the shallow-water model this rule simply states that
dissipative wave-induced PV changes are equal to those that would arise if (a) the
gravity waves were absent, and (b) there were instead an effective mean force per unit
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mass acting in the direction of the waves’ pseudomomentum, and equalling in strength
the local dissipation rate of pseudomomentum per unit mass. Using this concept of
an effective mean force is convenient, for instance, for the purpose of gravity-wave
parametrizations in numerical models working with momentum equations, in which
such a force can easily be incorporated.

The robust equality between q̃, which in this paper is the central quantity in a
diagnostic step that takes gravity waves into account, and qL, which is the central
quantity in a dissipative prognostic step using the pseudomomentum rule, suggests that
both dissipative and non-dissipative effects can be simply combined. The standard
quasi-geostrophic system, when augmented with leading-order gravity-wave terms
according to (1.3) and the pseudomomentum rule, would then appear as(

∇2 − 1

LR
2

)
Ψ = q − q0 + ∇× p2 −

Λ

c0LR
E, (7.1)

u = ẑ × ∇Ψ, (7.2)(
∂

∂t
+ u · ∇

)
q =

1

τ
∇× p2, (7.3)

where q0 is the background PV (e.g. equal to f −Uy as before), and τ is a dissipation
timescale such that E/τ is equal to the dissipated wave energy per unit time and
unit mass. The first two equations together form the diagnostic inversion step, (7.3)
is the prognostic evolution step, and p2, τ and E are given, for instance, by a suitable
ray-tracing algorithm that includes dissipative effects. This model neglects Stokes
corrections in the PV and tacitly uses the Lagrangian-mean velocity as its velocity
field.

It can be noted that the effects due to dissipating gravity waves go together with
the familiar weakening of the waves’ pseudomomentum, as is built into the pseudo-
momentum rule in (7.3). However, this weakening of the waves’ pseudomomentum is
absent in the leading-order approximation to the non-dissipative effects. This makes
it appear unlikely that ways could be found in which the non-dissipative effects could
be captured in the usual, dissipative framework that relates mean-flow forcing to the
flux divergence of a suitable wave activity, as is often the case for zonally symmetric
mean flows (e.g. Andrews et al. 1987).

8. Numerical simulations
Numerical simulations are performed to verify the results of the small-amplitude

theory, and as a first step towards extending the study to large-amplitude gravity
waves. However, it turns out that the standard shallow-water (SSW) model is not
useful for a study that requires slowly varying, non-dissipating trains of gravity waves
containing many individual wavelengths. This is because of the well-known nonlinear
steepening and concomitant shock formation of SSW gravity waves, which disrupts
a straightforward integration of the equations, and leads to spurious oscillations,
strong numerical dissipation, and essentially uncontrollable growth of small-scale
noise unless highly specialized, shock-permitting numerical techniques are used. The
time for shocks to form is inversely proportional to the wave amplitude a, and
generally very short. For instance, a SSW gravity wave with moderate amplitude
a = 0.1 will break after just one wavelength of propagation. Clearly, this shock
formation did not pose a problem for the asymptotic small-amplitude theory of the
previous sections, because for any finite number of wavelengths needed to cross the
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channel the value of a can always be chosen sufficiently small to make the nonlinear
steepening negligible.

It can be argued (Bühler 1997) that self-induced shock formation of the kind
observed in the SSW system, although typical for longitudinal compressible waves
such as sound waves, is not typical for transverse incompressible waves such as small-
scale vertically propagating internal gravity waves in the atmosphere or ocean, which
are ultimately the object of this study. Consequently, in order to retain a simple two-
dimensional model as a first numerical testbench, a modification of the SSW system
was sought that would remove the unwanted gravity-wave shock formation. It can be
shown that a modification of the pressure term corresponding to (6.1) with γ = −1
achieves this goal. Such a modification can easily be implemented in existing SSW
numerical models, and, arguably, introduces only minimal changes in other features
of the shallow-water model (Bühler 1997). The resulting model with γ = −1 is called
the modified shallow-water model (MSW), and it was used in the simulations.†

The numerical scheme must have exceedingly low diffusion, including numerical
diffusion, to capture the non-dissipative effects. This strongly suggests the ultimate
use of specialized schemes, such as fast contour-dynamics schemes (Dritschel & Am-
baum 1997), that obey the material invariance of PV by construction. However, up to
now the application of such schemes has been confined to integrating balanced models,
such as the quasi-geostrophic model, with the non-trivial extension of these schemes to
the full shallow-water equations only now being actively pursued (Dritschel, personal
communication). It therefore seemed prudent, in the first instance, to demonstrate the
existence of the non-dissipative interaction effects using a SSW model, leaving the
ultimately more promising pursuit of specialized schemes to further research.

8.1. Description of the numerical model and set-up

The numerical model used was that of Ford (1994), adapted to integrate the MSW
equations in a beta-channel and to include a suitable wave generator. The model
uses (u, v, h) as variables in the momentum and continuity equations, and is based on
pseudospectral discretization in the zonal direction and on centred finite differences
on a staggered grid in the meridional direction. Explicit leapfrog time stepping (with
time step fixed at 2/3 of the CFL condition) with Robert–Asselin filter constant
equal to 0.03 is used (see Ford 1994 for details). The only systematic diffusion in
the model interior is a small amount of hyperdiffusion, with damping rate νk6 where
k is the zonal wavenumber, that is applied in the zonal direction only, and which
prevents numerical instability. The value of ν was fixed at (4L/5N)6f0, where L is
the zonal period length and N is the number of spectral coefficients, described below.
Near the channel walls suitable Rayleigh damping is applied to all model fields,
which allows removal of the gravity waves with negligible reflection over the span of
two wavelengths (see below). Both hyperdiffusion and Rayleigh damping are treated
implicitly in the time stepping.

The simplest possible channel set-up was chosen, with only a single wavetrain,
as illustrated in figure 5. This set-up has the advantage that the small gravity-
wave wavelength needs only to be resolved in the meridional direction, leaving
only the much larger envelope scale to be resolved in the zonal direction. Therefore

† It is perhaps noteworthy that this MSW model is in fact the unique choice out of a slightly
wider class of models than those in (6.1), namely all those models according to c2

0 ∇h → c2
0 ∇F(h)

with arbitrary functions F(·), if one requires (a) that the linearized form of the pressure term remain
unchanged, and (b) that simple one-dimensional non-rotating gravity waves can propagate in it
without change in shape.
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Figure 5. Left: set-up and displacement of a material contour in the early stages of the evolution.
The contour is initially aligned zonally (dotted line), and subsequently it is dragged northward by
the waves in the centre of the domain, and southward by a mass-conserving return flow at the
sides (solid line). This is a typical displacement picture for large LR > L, but not otherwise; see
text. Right: insert illustrating the gravity-wave height field along the centreline of the middle region
of the domain, in the case D = 2.4LR . Near the boundaries, Rayleigh-damping sponge layers are
imposed; see text.

resources can be focused on the meridional resolution, allowing these simulations to be
performed on a workstation. All simulations reported below used highly anisotropic
resolution with N = 16 spectral coefficients (i.e. 8 sines and 8 cosines) and 800
uniformly spaced grid intervals ∆y across the channel, which allowed 20 grid intervals
per gravity-wave wavelength. Over the last 40 grid intervals at each wall the Rayleigh
damping rate is ramped up with a sin2(·) profile, with maximum damping rate fixed
at 0.18 c0/(∆y) at the wall.

A crucial requirement for the wave generator is that it must allow coherent wave
forcing over hundreds of periods with minimal creation of artificial circulation.
After some experimentation a body force derived from a time-dependent potential
in the interior of the domain, near the southern wall, was chosen. The potential is
proportional to a smooth envelope (in x and y) times sin(ω̂t) cos(ly), where ω̂2 =
f2

0 + c2
0 l

2. This choice of potential force has the advantage that both its Eulerian and
its leading-order Lagrangian average are zero. It generates gravity waves going both
southward and northward, which turned out to be better conditioned numerically than
generation of northward waves only. The southward-going waves are immediately
absorbed at the nearby southern sponge layer. The wave generator is centred 80 grid
intervals away from the southern wall, with meridional envelope given by a cos2(·)
profile dropping from one to zero over 30 grid intervals, and zonal envelope given
by a Gaussian with lengthscale 0.3L/4. It should be noted that spurious local mass
sources or sinks in a rotating fluid can lead to significant spin-up of corresponding
spurious balanced motions due to the creation of PV anomalies, and it turned out
to be crucial to discretize the y-derivatives in the continuity equation in flux form in
order to avoid a slow loss of mass under the wave generator.

Owing to the anisotropic resolution the Eulerian average (· · ·) is implemented as
a y-average over 60 grid intervals (i.e. 3 wavelengths). The diagnostics given below
focus on the middle third of the channel, where the far-field theory of the previous
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L/LR D/LR βD/f0 U/c0 lLR a | p|/c0 ≈ 1
2
a2 Key feature

Case A 2.0 2.4 0.2 0.0 100 ∼ 0.17 ∼ 0.014 Irreversibility
Case B 2.0 2.4 0.2 0.0066 100 ∼ 0.17 ∼ 0.014 Resonance
Case C 20.0 24.0 0.2 0.0 10 ∼ 0.13 ∼ 0.008 Scale dependence

Table 2. Parameters for numerical simulations. Wave and pseudomomentum magnitudes
correspond to the centre region of the channel

sections should be most applicable, and where the zonal components of uL and p are
both negligible.

8.2. Numerical simulations

Three different cases are investigated to demonstrate the irreversibility, the possible
resonance, and the scale dependence of the mean-flow response. The parameters are
summarized in table 2. The gravity waves have high frequencies in all three cases,
which allows f0/ω̂ to be neglected throughout. In the first two cases A and B the zonal
wavetrain envelope scale 0.3L/4 is much smaller than LR , which allows the theoretical
results obtained assuming ε� 1 to be checked, and in case C the wavetrain envelope
scale is larger than LR , which allows the extensions of that theory to be checked.

Case A in figure 6 demonstrates irreversible wave-induced mean-flow changes that
are left behind once the waves have been switched on and off. Case B differs from
case A in that the waves are not switched off, and that a background flow U > 0
has been added that fulfils the resonance condition for the gravest channel mode (i.e.
n∗ = 1 in (4.4)). This leads to resonant growth of the PV deformations as demonstrated
in figure 7. Finally, in case C all spatial scales have been multiplied by 10, and the
drastically changed mean-flow response is shown in figure 8.

The mean-flow response in all cases can be understood qualitatively and quanti-
tatively by considering the balanced mean-flow inversion operator (7.1). In cases A
and B, the terms involving 1/LR can be neglected, and vL follows p(y) closely until
the PV anomaly q − q0 becomes significant, either through resonance or because the
waves are switched off again. In case C the 1/LR terms are important, and (7.1)
then shows that the mean flow reacts as if E were a mean-flow PV signal, with sign
depending on the sign of −Λ. For high-frequency gravity waves in the MSW model
(6.6) shows that Λ = −1, and hence the mean flow reacts as if E corresponded to
positive mean-flow PV. This explains what is seen in figure 8, keeping in mind that E
and the pseudomomentum magnitude have the same distribution, and that positive
mean-flow vorticity corresponds to ∂vL/∂x > 0 in the centre region.

This good agreement between theory and numerical simulation extends to a good
estimate for h from the far-field approximation (6.9) together with (7.1) and Λ = −1.
In cases A and B, this predicts a level rise c2

0 h ≈ +E, whereas in case C this predicts
a much smaller level change that approaches zero as the 1/LR terms become more
and more dominant. Both predictions are well corroborated in the centre region of
the numerical simulations.

9. GLM theory applied to the three-dimensional Boussinesq model
How does the foregoing generalize to the stratified systems that are of most interest

in connection with the real atmosphere or oceans? It will turn out that, in contrast
to the shallow-water model, only the pseudomomentum p2 enters the mean-flow
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Figure 6. Case A. Two snapshots of averaged PV, vL, and p(y) at different times (a) T = 25/f0,
(b) T = 100/f0. The upper panels show PV contours that originally filled the displayed middle
section of the channel. The gravity waves are switched off at T = 25/f0, and the deformed PV
contours subsequently move to the left as a Rossby wave, demonstrating an irreversible mean-flow
change. The lower panels show meridional pseudomomentum p(y) (broken line) and vL (solid line)
plotted along the channel at y = D/2. Initially, vL follows p(y) closely, and after the waves have
been switched off, vL is purely due to the mean-flow Rossby wave.

equations, i.e. E does not enter. Furthermore, p2 enters solely in the form of a forcing
term ∇ × p2. This is a remarkable simplification in comparison with the shallow-
water model: it comes essentially from the simplifications inherent in the Boussinesq
approximation.

Furthermore, in the simplest possible set of equations describing the balanced part
of the O(a2) mean-flow response, only the vertical component of ∇ × p2 enters. In
this section we demonstrate these points by first deriving Boussinesq counterparts of
the fully nonlinear PV equation (5.17) and the lemma (5.18), which exhibit the way in
which the fully nonlinear pseudomomentum p enters the problem. It turns out that
the lemma is still true for arbitrary forces in the momentum equation, but only if the
motion is adiabatic. That is, there must be no diabatic heating or cooling terms in
order for the lemma to hold. Thereafter the entire O(a2) mean-flow response to slowly
varying gravity waves is calculated, extending results first obtained in the non-rotating
case by Bretherton (1969) to the rotating case with variable f. Finally, the simplest
possible set of equations describing only the balanced part of the O(a2) mean-flow
response is derived, using the quasi-geostrophic approximation as a balance condition.
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Figure 7. As for figure 6 but for Case B. Waves are continually radiated and a resonant background
flow U > 0 has been added. PV contours deform resonantly, and vL departs from p(y) as the resonant
Rossby-wave velocity field grows.

9.1. Nonlinear GLM results

The standard Boussinesq model is given by

Du

Dt
+ f × u+ ∇P = σẑ, (9.1)

Dσ

Dt
+N2w = 0, (9.2)

together with the constraint ∇ · u = 0. The dependent variables are the three-
dimensional velocity u = (u, v, w), the buoyancy acceleration σ, and P , the pressure
deviation from hydrostatic pressure divided by the constant reference density. The
Coriolis vector f is either constant, or a non-divergent slowly varying vector field
such that its Lagrangian disturbance part can be neglected, as was the case in the
shallow-water β-plane. The buoyancy frequency N is taken to be constant, and the
buoyancy acceleration σ in the vertical momentum equation expresses the gravi-
tational restoring mechanism that opposes vertical displacements of the materially
conserved stratification surfaces σ + N2 z, which usually correspond to isentropes in
the atmosphere and isopycnals in the ocean. The Boussinesq PV is a special case of



334 O. Bühler and M. E. McIntyre

(a)

p(y)

vL

16

12

8

0.015

0

–0.015

y
LR

(b)

p(y)

vL

16

12

8

0.015

0

–0.015

y
LR

0 5.0 10.0 15.0 18.8

x/LR

0 5.0 10.0 15.0 18.8

x/LR

Figure 8. Case C. Spatial scales are enlarged by factor of 10 compared to A and B, leading
to corresponding longer time integration as well: (a) T = 250/f0, (b) T = 1000/f0. Waves are
continually radiated and background flow U = 0. See text for details on the changed mean-flow
response.

(1.1) with θ = σ +N2z (up to a constant factor) and ρ = 1, i.e.

Q ≡ (∇× u+ f) · ∇
(
σ +N2z

)
⇒ DQ

Dt
= 0. (9.3)

The GLM equations are derived by performing the same operations on (9.1) that
were performed on the shallow-water momentum equations, which there lead to
(5.15). This gives, in parallel with (3.8) of AM78a,

D
L
(uLi − pi) + uLk,i(u

L
k − pk) + [f × uL]i + P

L

,i = (. . .),i + σLδi3 + σlζ,i, (9.4)

where (. . .),i is a complicated gradient term that will not affect the vorticity equa-
tion to be derived in the next step, ζ is the vertical disturbance-associated particle
displacement such that

D
L
ζ = wl, (9.5)

and the pseudomomentum p is defined in its standard form pi ≡ −(ulj + [f × ξ]j)ξj,i.

Equation (9.4) holds without approximation, except for the neglect of (fl × ul) in the
case of varying f.
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The direct Lagrangian mean of (9.2) yields the pair

D
L
σL +N2wL = 0 (9.6)

and

D
L
σl +N2D

L
ζ = 0, (9.7)

where the disturbance equation follows directly from σξ = σL + σl , (9.5), and (5.9).
The second equation can be integrated along mean trajectories, and yields (if there
was no disturbance initially) σl + N2ζ = 0. Therefore the last term in (9.4) can be
written as a perfect gradient, i.e.

σlζ,i = −N2(ζ2/2),i. (9.8)

The curl of (9.4) then gives the GLM vorticity equation (cf. (5.15))

D
L [∇× (uL − p) + f

]
+
[
∇× (uL − p) + f

]
∇ · uL

−
([
∇× (uL − p) + f

]
· ∇
)
uL = ∇σL × ẑ. (9.9)

This equation expresses that the mean vector field [. . .] is advected by the mean
velocity field uL in exactly the same way as is ∇ × u by the actual velocity field u,
i.e. [. . .] is advected and stretched/twisted by uL (first and third terms on the left-
hand side) and diluted/concentrated by ∇ · uL (second term on the left-hand side).
The baroclinic force-curl on the right-hand side represents the gravity-wave restoring
mechanism; it too enters in exactly the same way as does ∇σ× ẑ in the actual vorticity
equation.

Defining the GLM density ρ̃ in the usual way through

D
L
ρ̃+ ρ̃∇ · uL = 0, (9.10)

and noting that (9.6) implies that

D
L (
σL +N2z

)
= 0 (9.11)

and

D
L (
σL,i +N2δi3

)
+ uLk,iσ

L
,k +N2wL,i = 0, (9.12)

we can show, using (9.6), (9.9), and (9.12), that

Q̃ ≡
[
∇× (uL − p) + f

]
· ∇
(
σL +N2z

)
ρ̃

⇒ D
L
Q̃ = 0 , (9.13)

which is the Boussinesq analogue of the shallow-water equation (5.17). The Lagrangian

mean of (9.3) gives D
L
Q
L

= 0 by (5.9), and hence, as before, if Q̃ = Q
L

initially then
it holds at all times.

This derivation of Q̃ can easily be extended to the fully compressible three-
dimensional Euler equations, without the restriction to constant N2. In that case
ρ can vary and the usual definition of PV is given by the Rossby–Ertel formula (1.1).
The potential temperature θ is materially conserved, i.e. Dθ/Dt = 0. Starting from
(3.8) in AM78a, and noting that θ is a monotonically increasing function of entropy,

the corresponding Q̃ is found to be (9.13) with the substitution θ
L

for σL +N2z.
Furthermore, it can be shown that, subject only to suitable initialization with no

initial disturbance, Q̃ = Q
L

holds even if arbitrary body forces are added to the
momentum equations, but, interestingly, not if diabatic heating or cooling is added
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to the buoyancy equation (9.2). This applies to both Boussinesq and Euler equations,
and the proof is given here for the more general Euler case. Consider two volumes V
and Vξ , where Vξ is the image of V under the lifting map x→ x+ ξ, and let a scalar
S be defined as

S ≡
∫ ∫ ∫

Vξ

Qρ dV =

∫ ∫ ∫
V

Qξρ̃ dV =

∫ ∫ ∫
V

(∇× u+ f)ξ · (∇θ)ξ
ρ̃

ρξ
dV , (9.14)

where (5.11) has been used. Using (A4) and (A17) of AM78a to relate (∇θ)ξ to ∇
(
θξ
)

and to relate the vorticity vector at x + ξ to ∇ × (uL − p) then gives, using (5.11)
again,

S =

∫ ∫ ∫
V

(
∇× (uL − p) + f + ∆′

)
· ∇
(
θξ
)

dV where ∆′ = 0. (9.15)

The zero-mean disturbance vector ∆′, whose details are irrelevant here, is defined to be
the fluctuating part of the expression on the left-hand side of AM78a’s (A 17) before
averaging. This represents zero-mean fluctuations of the absolute vorticity vector that
are induced by the fluctuating material displacements ξ. Taking the average of (9.15)

then gives, after comparison with (9.13) and noting that θ
L

= σL +N2z there,

(S) =

∫ ∫ ∫
V

[
Q̃ρ̃+

(
∆′ · ∇θl

)]
dV . (9.16)

On the other hand, averaging the second expression in (9.14) gives

(S) =

∫ ∫ ∫
V

Q
L
ρ̃ dV . (9.17)

Therefore, if it is now assumed that θl = 0, then (9.16) and (9.17) and the arbitrariness

of V imply that Q̃ = Q
L
, i.e. that

Q
L

= Q̃ =

(
∇× (uL − p) + f

)
· ∇θL

ρ̃
. (9.18)

The condition θl = 0 will, in general, only be fulfilled if the flow is initialized
without disturbance, as has been assumed throughout, and if there is no diabatic
heating or cooling, i.e. if Dθ/Dt = 0 holds. However, arbitrary forces can be added in
the momentum equation without violating (9.18). Hence, in the absence of diabatic
heating or cooling a lemma analogous to the lemma for the shallow-water system,
(5.18), holds in the three-dimensional stratified case.

9.2. Small-amplitude GLM results

The O(a2) mean-flow response to small-amplitude, slowly modulated inertia–gravity
waves is now derived. The Coriolis vector is taken to be f = ẑ (f0 +βy) with βL� f0,
where L is the horizontal envelope scale of the waves. A weak O(1) background zonal
flow U = x̂U(y, z) may be present, with U/L� f0, U,z � N, and U,yy ∼ U/L2 ∼ β.
The weakness of U allows the background part of σL to be neglected.

The near-plane O(a) inertia–gravity waves have wavenumber vector k = (k, l, m)
and are slowly modulated with horizontal and vertical envelope scales L and H ,
respectively. This implies that the wavenumber vector magnitude κ = (k2 + l2 +m2)1/2
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satisfies κL� 1 and κH � 1. The dispersion relation is

ω̂2 = f2
0

m2

κ2
+N2 k

2 + l2

κ2
, (9.19)

which implies that |ω̂| > f0 � βL. It turns out that there is no leading-order Stokes
drift, but the leading-order pseudomomentum is still given by the generic formula

p2 =
k

ω̂
E and |∇× p2| ∼

1

min(L,H)

κ

ω̂
E, (9.20)

where E = 1
2
(|u′1|2 +N−2σ′1

2) is the average intrinsic wave energy per unit mass of the
inertia–gravity waves.

The full O(a2) mean-flow response consists of the five fields ρ̃2, σ
L
2 , and uL2 . However,

the constraint ∇ · u = 0 implies that (cf. (9.4) in AM78a)

∇ · uL = 1
2
Dt(ξ

′
iξ
′
j),ij + O(a3) = Dt O

(
E

ω̂2 min(L2, H2)

)
, (9.21)

where Dt = ∂/∂t+U · ∇. This shows that ∇ · uL2 is inherently linked to gravity-wave
transience. Furthermore, comparing the size of the divergence term in the vorticity
equation (9.9) with the size of the first term in that equation gives, using (9.20),

f0∇ · uL2
Dt∇× p2

∼ f0

ω̂

1

min(κL, κH)
� 1. (9.22)

Hence, unlike in the shallow-water case, it is possible to neglect ∇ · uL2 at all times
on order-of-magnitude grounds, even when the waves are transient. This depends
crucially on the slow-modulation assumption in all directions, and would fail, for
instance, in the case of surface gravity waves as discussed in McIntyre (1988). The
smallness of ∇ · uL2 implies that ρ̃2 can be neglected at all times as well, and hence the
only remaining fields to be determined are σL2 and uL2 , subject to ∇ · uL2 = 0.

The O(a2) parts of (9.6) and (9.9) provide the necessary equations as

Dtσ
L
2 +N2 wL2 = 0 (9.23)

and

Dt

[
∇× (uL2 − p2)

]
+
(
uL2 · ∇

)
(f + ∇×U )

−
([
∇× (uL2 − p2)

]
· ∇
)
U − ((f + ∇×U ) · ∇) uL2 = ∇σL2 × ẑ. (9.24)

For any given ∇× p2 these two equations together with ∇ · uL2 = 0 determine the full
mean-flow response, which includes both balanced parts such as mean-flow Rossby
waves and unbalanced parts such as mean-flow gravity waves.

The simplest diagnostic equations for the balanced part of the mean-flow response
can be derived using the usual quasi-geostrophic balance conditions. These follow
from (9.23) and (9.24) by assuming sufficiently slow evolution such that the time
derivatives can be neglected at leading order, and by assuming sufficiently strong
background rotation such that the undifferentiated f0 sets the dominant scale in
(9.24). This leads to wL2 = 0 and f0∂u

L
2 /∂z = ∇σL2 × ẑ as balance conditions. These

conditions can be satisfied by introducing the quasi-geostrophic stream function ΨL

such that

uL2 = −ΨL
y , vL2 = +ΨL

y , wL2 = 0, σL2 = f0Ψ
L
z . (9.25)
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Substituting (9.25) in the O(a2) part of (9.13), which is

Q̃ = N2
(
f0 + βy −Uy

)
+N2

[
∇× (uL2 − p2)

]
· ẑ+ (f + ∇×U ) · ∇σL2 +O(a3), (9.26)

then gives the diagnostic equations.
The prognostic equation is obtained by using in (9.26) in (9.13), keeping only the

dominant f0 factor in the term involving σL2 . This yields

Dt

[
ΨL
xx +ΨL

yy +
f2

0

N2
ΨL
zz

]
+ΨL

x (β −Uyy) = Dt [∇× p2] · ẑ , (9.27)

or, equivalently to O(a2), (
Dt + uL2 · ∇

)
Q̃ = 0 (9.28)

and

ΨL
xx +ΨL

yy +
f2

0

N2
ΨL
zz =

Q̃

N2
−
(
f0 + βy −Uy

)
+ [∇× p2] · ẑ , (9.29)

where the last two equations makes the prognostic and diagnostic parts of the
balanced evolution explicit.

In the simplest case β = 0 and U = 0 there is no background gradient of Q̃ and
hence the solution of (9.28) is simply Q̃ = f0N

2. The diagnostic equations (9.29)
and (9.25) then demonstrate the purely transient, layer-wise two-dimensional O(a2)
mean motions due to gravity waves that were first pointed out by Bretherton (1969)
in the special case f0 = 0. If β 6= 0, irreversible forcing of O(a2) Rossby waves
by the O(a) gravity waves takes place. This is fundamentally similar to the case of
the shallow-water system. The robustness with which ∇ × p2 enters the balanced
mean-flow problem in both cases is intriguing.

10. Concluding remarks
Although most of the foregoing analysis is for the shallow-water system, it has also

become clear, from §9, that certain broad conclusions will carry over to more realistic
stratified systems provided that we use the pseudomomentum, and not the Stokes
drift, as the principal field describing the non-dissipative effects of the waves on the
mean motion. This came as a surprise in view of the heuristic idea that advection
of PV contours by the Stokes drift ought to be at least one of the significant effects.
But, in the manner typical of wave–mean problems, the Stokes drift is not the only
significant effect, and it can be cancelled by other effects of the same order. Another
surprise was that the cross-stream mean force p2 · x̂ ∂U/∂y appearing in the second
term of the GLM momentum equation (5.15) has no visible role, even though its
magnitude is not always negligible. Such a mean force might at first be thought
to be significant for exciting the Rossby-wave response in the zonally asymmetric
mean dynamics. The explanation is, again, that there are other effects of the same
order and that only the net effect, allowing for mutual cancellations, is relevant. Such
cancellations are indeed part of why, in the end, the PV-centred viewpoint turns out
to be much simpler than any momentum-based viewpoint.

The last finding is itself non-trivial, because generally speaking the usual concepts
of balance and PV inversion need to be modified to an extent that is non-trivial, in
wave–mean problems of the present type. This is in marked contrast to dissipative
wave–mean problems of the kind discussed in McIntyre & Norton (1990), who
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assumed balance in the ordinary sense to be a sufficient approximation. The example
studied in §§6 and 8 illustrates the point, which emerges clearly in one of the parameter
regimes analysed. Radiation stresses modify, at leading order, the geostrophic balance
that would otherwise be expected at low Rossby number; and this changes the velocity
profile qualitatively (cf. figure 7 and figure 8), providing, also, a first example in which
the advection of PV contours is qualitatively different from that expected from a
naive consideration of Stokes drifts alone.

More generally, non-dissipating gravity waves induce certain modifications in the
diagnostic step of the balanced evolution, cf. (1.3) and (1.4). Recognizing these
modifications complements and clarifies our picture of the coupled, side-by-side
evolution of balanced and unbalanced parts of the flow. Furthermore, recognizing the
possible cumulative importance of these non-dissipative modifications corrects the
standard assumption that the only important effects are dissipative.

As regards practical implications for atmosphere or ocean dynamics, such as
the design of gravity-wave drag parametrizations for atmospheric circulation and
chemistry models, this work suggests that the main places to look for strong, cumu-
lative, non-dissipative interaction effects are situations that allow, and are close to,
Rossby-wave resonance. This is the other important conclusion that we expect to
carry over to stratified systems. Conversely, in the absence of Rossby-wave resonance
these non-dissipative interaction effects are likely to be quite weak. The relevance of
Rossby-wave resonance for important phenomena such as, e.g., stratospheric summer
warmings is still very much a topic of current research and an area of uncertainty.
This means that at present the practical relevance of non-dissipative wave–mean
interaction effects remains an open question.
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Appendix. Details of the evolution of h2 and the accuracy of far-field
expression (6.9)

A.1. Boundary condition for h2 and the far-field approximation

At an impermeable (although possibly undulating) wall the GLM velocity perpendic-
ular to the mean position of the wall vanishes (cf. §4.2 in AM78a). To O(a2) this means
that vL2 = 0 at y = 0 and y = D, and if this condition is used in the y-component
of the O(a2) part of the GLM momentum equation (5.15) (with modified pressure
term according to (6.11)), then the boundary condition for h2 results. Noting that in

general uξj u
ξ
j = uj

L uj
L + ulju

l
j , that uξj (f0ẑ × ξ)j = ulj(f0ẑ × ξ)j , and that ul ≈ u′1 by

(5.29) simplifies the momentum equation. The O(a) inertia–gravity-wave fields derived
previously have to be used to evaluate the correlations between u′1 and ξ′. This is
most easily done by choosing the local wavenumber vector to be k = (k, 0), without
loss of generality, which yields (cf. (3.12) and (3.13))

ulju
l
j + ulj(f0ẑ × ξ)j ≈ u′1

2 − v′1
2 = u′1

2

(
1− f2

0

ω̂2

)
= E

(
1− f2

0

ω̂2

)
(A 1)



340 O. Bühler and M. E. McIntyre

for the remaining terms on the right-hand side of (5.15). The last expression holds
regardless of any specific choice of k. Taylor-expanding the pressure term on the

left-hand side of (5.15), subtracting a Stokes correction h
S

2 corresponding to (5.35)

and (3.15), and using D
L ≈ ∂/∂t finally leads to

f0u
L
2 + c2

0 h2 ,y = p(y), t +

(
1− f2

0

ω̂2

)
1− γ

2
E,y at y = 0 and y = D. (A 2)

Suffixes denote differentiation, and p(y) = El/ω̂ denotes the y-component of the
pseudomomentum vector. This boundary condition uses the same approximations as
the simplified divergence equation (6.5)(

∂2

∂t2
− c2

0 ∇2

)
h2 + f0 ∇× uL2 =

(
∂2

∂t2
+ c2

0 Λ∇2

)
E

c2
0

, (6.5)

i.e. it neglects U and β. Given the time-dependent E and p(y), the spin-up of ∇× uL2
and h2 is then described by (A 2), (6.5), and the vorticity equation in the form (6.7).

For steady gravity waves h2 is given by the far-field expression (6.9) together with
a harmonic remainder term, i.e.

c2
0 h2 = f0Ψ

L − ΛE + R with ∇2R = 0, (A 3)

where Λ is defined in (6.6), and where ΨL is the stream function for uL2 introduced
previously. Note that it was part of the definition of ΨL that it should have zero
integral over the channel. The boundary conditions for R follow from (A 2) and (6.6)
as

R,y =
f2

0

ω̂2
E,y at y = 0 and y = D, (A 4)

which, remarkably, has no dependence on γ but depends crucially on f0. The harmonic
remainder R can be decomposed into zonal spectral modes proportional to exp(iKx),
with coefficients fixed by (A 4). For K 6= 0 the corresponding meridional mode
structure is exp(±Ky), which leads to the exponential decay of the K 6= 0 modes
away from the boundaries. For K = 0 the meridional mode structure is a+ by, with
two constants a and b. The constant b is proportional to the zonal average of (A 4).
However, in the steady situation envisaged here E is constant along parallel straight
rays originated at the wall forcing regions. This implies that∫ L

0

E(x, y),y dx =
d

dy

∫ L

0

E(x, y) dx = 0 (A 5)

for all y, and hence b = 0. The constant a is not determined by (A 4). However, the
constant a can be determined by requiring, for instance, that the total mass in the
channel be conserved, which means that the integral over the entire channel of h2 as
given by (A 3) has to be zero. This will give a value for a that is proportional to the
energy density of the waves times the ratio of the area covered by the wavetrains and
the area of the channel. Consequently, if the wavetrains fill only a small part of the
channel then a will be small.

In summary, the accuracy of the steady-state far-field approximation (6.9) is seen
to be limited by two factors. First, there are deviations near the walls if the gravity
waves are of low frequency and the wavetrains are tilting in the horizontal direction.
These deviations are induced by (A 4). Second, if the wavetrains occupy a significant
part of the area of the channel, then global mass conservation would make the
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global constant a significant in (A 3). Conversely, sparse wavetrains far away from
boundaries can be expected to satisfy (6.9) accurately.

A.2. Non-rotating special case and one-dimensional wavetrains

If f0 is sufficiently weak such that f0Ψ
L can be neglected in (A 3), then it is possible to

derive a typical structure of h2 that depends only on E. The simplest possible example
has f0 = 0 and only a single wavetrain emitted at the southern wall and propagating
across the channel in a straight line. The condition (A 4) is then homogeneous and
therefore R = a, where a is a constant determined by mass conservation. This means
that

c2
0 h2 = −γ − 1

2
E + a (A 6)

in this example. If the width of the smoothly varying wavetrain envelope is denoted
by d, then it is clear that a ∼ d/L as d/L → 0, which can be achieved without
violating the JWKB requirement κd� 1 by letting L grow whilst keeping d constant.
Therefore, for a sufficiently large channel the height field approaches (A 6) with a = 0.
Remarkably, for standard shallow water (i.e. γ = 2) this corresponds to a mean
height decrease in the wavetrain, whereas for modified shallow water (i.e. γ = −1)
this corresponds a mean height increase there. This structure of h2 remains typical as
long as f0 is weak. For instance, it has to good approximation been observed in those
numerical simulations in §8 in which L/LR � 1.

It is of some interest to know what the counterpart of (A 6) may be in the case of
a truly one-dimensional wavetrain, in which gravity waves are forced along the entire
channel wall and the wavetrain envelope is therefore effectively infinite. For instance,
this would be the typical situation in the case of acoustic piston-type problems
that involve wave propagation along tubes. This one-dimensional case differs in two
important respects from the two-dimensional case. First, in the two-dimensional case
the mean pressure field inside the wavetrain has to match up with the ambient
background pressure far away from the wavetrain, whereas in the one-dimensional
case the mean pressure may be different from the background pressure everywhere.
Second, the influence of the wall boundaries in the two-dimensional case decays with
increasing distance from the walls, and becomes small when this distance is sufficiently
large compared to the envelope scale of the wavetrain. In the one-dimensional case the
envelope scale is effectively infinite, and hence it is to be expected that the influence
of the wall boundaries does not decay.

This can be illustrated by considering a simple one-dimensional time-dependent
spin-up problem with f0 = 0 and k = (0, l), which can be solved explicitly. The waves
are generated at the southern boundary and propagate northward with speed c0. In
this case (cf. (3.20))

E = E0 F(c0t− y) and p(y) =
E0

c0

F(c0t− y), (A 7)

where E0 is the positive value of wave energy after spin-up, and F(·) is a smooth
switch-on function that varies from zero to unity as its argument varies from zero to
O(D) and then remains unity for larger values of its argument. The right-hand sides
of (A 2) and (6.5) then become

γ + 1

2
E0 F

′(c0t) and
γ + 1

2
E0 F

′′(c0t− y) (A 8)

respectively, where F ′, F ′′ denotes differentiation of F with respect to its argument.
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Both equations together allow an easy determination of h2 for times small enough
such that the wavetrain has not yet reached the northern boundary, where reflection
might take place. The solution for these times is

c2
0 h2 = −E0

γ + 1

4

∂

∂y
(y F(c0t− y)) , (A 9)

which in particular implies a steady height change

c2
0 h2 = −E0

γ + 1

4
(A 10)

at positions y well inside the wavetrain such that F ≈ 1 there. The height field is
constant except at the wave front where F varies significantly. At the wave front
there is a secularly growing change in h2. In the special case γ = −1 there would be
no change in h2 anywhere, in contrast with the two-dimensional result for γ = −1
following from (A 6), which is h2 = E/c2

0 . An independent check on (A 8) hence
(A 10) comes from the standard expression E0(1 + ∂ ln c/∂ ln ρ) for the longitudinal
acoustic radiation stress (Brillouin 1925, 1936; McIntyre 1981), which translates here
to E0(γ + 1)/2.

The steady-state result (A 10) admits yet another independent check using Rie-
mann’s theory of characteristics (e.g. Whitham 1974). This theory, when applied to
simple waves generated at y = 0 and propagating into a semi-infinite region y > 0
that was previously at rest, states that the nonlinear algebraic relation

γ − 1

2
v + c0 = c0 h

(γ−1)/2 (A 11)

holds everywhere. Taking a Eulerian average at steady state, Taylor-expanding, col-
lecting terms at O(a2), and using (5.35) gives the relation

v2 = c0h2 +
γ − 3

4

E

c0

. (A 12)

The Lagrangian-mean velocity vL2 = 0 at y = 0 and in fact everywhere except at
the wave front. Therefore v2 = −vS2 = −E/c0, and hence (A 10) is recovered by this
independent route.

This shows again the importance of the boundary condition at y = 0. The boundary
condition at y = D, i.e. at the other channel side, is equally important: non-reflecting
conditions to O(a) and O(a2) mean that (A 9) is valid at all times, but in this case
(A 10) implies that the channel must change its total mass content (unless γ = −1),
i.e. vL2 6= 0 at y = D when the wave front arrives. On the other hand, a non-reflecting
boundary condition to O(a) only can be combined with total mass conservation, but
then there will be a back-reflected O(a2) wave in h2 that continually propagates back
and forth across the channel. If a small amount of damping is imagined, then this
O(a2) wave eventually dies out and establishes h2 = 0 throughout the channel, which
is the only steady height configuration compatible with mass preservation.

Unlike the two-dimensional cases studied previously, the one-dimensional case
depends globally, i.e. at long range, on the exact boundary conditions and the exact
initial conditions of the flow. This highlights, for instance, the very special character
of the problems with spatially-periodic disturbance velocity potential studied in Yih
(1997), which rules out ab initio all O(a2) effects like that described by (A 10).
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