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Abstract Several schemes for scalar advection on un-
structured triangular grids are assessed for possible
use in ocean modelling applications. Finite element, fi-
nite volume and finite volume–element approaches are
evaluated. A series of tests, including a numerical order
of convergence analysis, idealized rotating cone and
cylinder experiments, and transport of a tracer through
the Stommel Gyre representation of ocean basin-scale
circulation, are carried out. Volume element Eulerian–
Lagrangian and third-order Runge-Kutta discontin-
uous Galerkin schemes are recommended for use
in tracer studies. Taylor–Galerkin and second-order
Runge–Kutta discontinuous Galerkin are found to be
robust and accurate second-order schemes. When pos-
itivity is required, a fluctuation redistribution scheme
was found to be an easily implemented, accurate, and
computationally efficient approach.
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1 Introduction

Increasing interest in ocean modeling with unstruc-
tured grids has developed over the past few years.
Unstructured finite element (Greenberg et al. 1998;
Le Provost et al. 1994; Le Roux and Staniforth 2000;
Lynch and Werner 1987, 1991), finite volume (Chen
and Beardsley 2002; Oksuzoglu and Hees 1998), and
spectral element (Curchitser et al. 2001; Iskandarani
et al. 1995; Levin et al. 2000) approaches are now
employed in a variety of ocean modelling applications.
One of these models, denoted Quoddy (Lynch and
Werner 1991), has proven highly successful on wind-
and tidally dominated coastal and continental shelf
problems (Hannah et al. 2001; Lynch and Hannah 2001;
Lynch et al. 1996). However, when we began to address
tracer transport problems using Quoddy, limitations
associated with the treatment of advection in the model
became evident. Excessive diffusion was required to
suppress under- and overshooting due to dispersive rip-
ples in the presence of sharp concentration gradients.
In an attempt to address these shortcomings, we have
conducted a review of advection schemes suitable for
use on unstructured triangular grids.

Several excellent texts have appeared over the past
10 years or so on the subject of numerical treatment
of advection and hyperbolic problems. Among these,
Hirsch (1990), LeVeque (1992), and Toro (1999), while
addressing finite difference approaches, provide valu-
able background on the issues involved with numerical
treatment of advection problems. Finlayson (1992) and
Morton (1996) include excellent overviews of finite el-
ement approaches using unstructured triangular grids.
Godlewski and Raviart (1996), Kröner (1997), and
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LeVeque (2002) provide comprehensive descriptions
of finite volume methods, including those suitable for
use on triangular unstructured grids. Vreugdenhil and
Koren (1993) is an extensive comparison of a wide
variety of schemes for advection–diffusion problems,
including finite element and finite volume approaches.
These texts provided an excellent background for
the literature review and examination of specific al-
gorithms. This review includes analyses of recent
monotonic finite volume, discontinuous Galerkin and
Eulerian–Lagrangian schemes not covered by the listed
texts.

Recently, Hanert et al. (2004) analyzed continuous,
non-conforming, and discontinuous finite element and
finite volume approaches to ocean scalar advection.
They included analyses of dispersion and mass con-
servation characteristics that complement the analy-
ses in this study. This study includes a broader range
of advection schemes currently in use in engineering
fields, particularly monotonic and Eulerian–Lagrangian
schemes.

The paper is organized as follows. In Section 2, the
schemes examined in the study are described. Section 3
contains a description of the test cases and the re-
sults of the tests. Relative computational performance
of the schemes is discussed in Section 4. The paper

concludes in Section 5 with a summary of results and
conclusions.

2 Advection schemes

From the vast literature relevant to the study of scalar
advection on unstructured triangular grids, we have
selected a number of representative schemes that are
of interest to the ocean modeling community. Pure
advection of a passive scalar is addressed in this study,
expressed as the two-dimensional advection equation:

∂c
∂t

+ u · ∇c = 0 (1)

with Dirichlet boundary conditions on the inflow part
(�1) of the boundary (�)

c(x, t) = cb(x, t), x ∈ �1

where c is concentration, u is the advecting velocity, t is
time, and cb is the specified boundary forcing. It should
be noted that in this study, the flow will be assumed to
be incompressible. Thus, in the scalar situation, the ad-
vection and conservation forms of Eq. 1 are equivalent
because the velocity field is nondivergent.

Table 1 Abbreviations, descriptions, and key references for advection schemes examined

Abbreviation Description References

GFEM ’classic’ Galerkin finite element method Morton (1996)
NQ-RK2 nodal quadrature finite element with second-order Runge-Kutta Morton (1996)
NQ-EF nodal quadrature finite element with Euler forward Morton (1996)
SUPG streamline upwind Petrov–Galerkin Brooks and Hughes (1982)
SUPG–Tri modified streamline upwind Petrov–Galerkin Mizukami (1985)
SUPG–MH modified streamline upwind Petrov–Galerkin Mizukami and Hughes (1985)
TG Taylor–Galerkin Donéa (1984)
PSI positive streamwise invariant cell vertex finite volume Deconinck et al. (1994)
FE-FCT finite element flux-corrected transport Löhner et al. (1987)
Lax-Wendroff Lax–Wendroff cell vertex finite volume Deconinck et al. (1994)
Fluct. Redis. fluctuation redistribution cell vertex finite volume Hubbard and Roe (2000)
VELA control-volume finite element Eulerian–Lagrangian Oliveira (1997)
VELA–FCT VELA with flux-corrected transport Oliveira and Fortunato (2002)
VELA-N-LF VELA with non-linear filter Oliveira and Fortunato (2002)
MLG maximum limited gradient cell-centered finite volume Batten et al. (1996)
MUST monotonic upwind scheme for triangles cell-centered finite volume Tamamidis (1995)
RKDG2 second-order Runge–Kutta discontinuous Galerkin without limiter Cockburn and Shu (1998)
RKDG2-minmod RKDG2 with minmod limiter Cockburn and Shu (1998)
RKDG2-TVBM RKDG2 with total variance bounded in the means limiter Cockburn and Shu (1998)
RKDG3 third-order Runge–Kutta discontinuous Galerkin without limiter Cockburn and Shu (1998)
RKDG3-minmod RKDG3 with minmod limiter Cockburn and Shu (1998)
RKDG3-TVBM RKDG3 with total variance bounded in the means limiter Cockburn and Shu (1998)
MPDATA2 MPDATA finite difference, two iterations, non-oscillatory Smolarkiewicz and Margolin (1998)
MPDATA3 MPDATA with three iterative passes, non-oscillatory Smolarkiewicz and Margolin (1998)



Ocean Dynamics (2007) 57:339–361 341

The schemes applied in this study to solve Eq. 1,
together with their abbreviations and key references,
are summarized in Table 1. The schemes are briefly
described in 1. Further details on the various schemes
can be obtained from Budgell and Skogen (2000) and
the original references.

We have broadly categorized the advection algo-
rithms and listed the algorithms in each category
as follows:

– Galerkin finite element: GFEM, NQ-RK2, NQ-
EF, TG

– Stabilized Galerkin methods: SUPG, SUPG–Tri,
SUPG–MH

– Fluctuation distribution: PSI, Lax-Wendroff, Fluc.
Redis.

– Flux-corrected transport: FE-FCT
– Cell-centered finite volume: MLG, MUST
– Discontinuous Galerkin: RKDG2, RKDK2-

minmod, RKDG2-TVBM, RKDG3, RKDK3-
minmod, RKDG3-TVBM,

– Eulerian–Lagrangian methods: VELA, VELA–
FCT, VELA–NLF

The final scheme applied in this study is not a trian-
gular unstructured-grid advection scheme at all—it is a
structured-grid, finite-difference scheme applied to reg-
ular, square-grid cells. The finite difference scheme is
included to provide a basis of comparison for finite dif-
ference ocean modelers unfamiliar with unstructured
grid techniques. Multidimensional positive definite ad-
vection transport algorithm (MPDATA) is commonly
used in general ocean circulation models (Bleck et al.
1992; Higdon 2002). Hecht et al. (1995, 2000) and
Hasumi (1999) found MPDATA to be among the best
of the schemes they tested in their comparison studies.

It should be noted that several of the schemes, such
as the finite volume, discontinuous Galerkin and VELA
methods, have been designed with flux conservation in
mind. The benefits of employing such conservation
measures will not be evident in this study, as we only
consider scalar advection in nondivergent flow fields.

3 Comparison of advection schemes

The performance of the schemes described in the pre-
vious section is examined in a series of test problems.
The first of the problems is a numerical order of con-
vergence analysis that tests the rate at which the various
advection schemes approach an exact, smooth solution
with successive mesh refinement. The reduction in the
order of accuracy produced by slope and flux limiters
can be determined, as can the sensitivity to grid orien-

a b c

Fig. 1 Grid types

tation and connectivity. The second test is a rotating
cone problem. This problem tests peak and shape
preservation. Positivity, monotonicity, and the ability
to preserve sharp gradients is tested by the rotating
cylinder problem. The final problem is the advection
of a Gaussian hill within an analytic basin-scale ocean
circulation, the Stommel gyre. This case tests the ability
of the schemes to properly represent tracer advection
in a strongly deformed flow field typical of ocean cir-
culation. By conducting the Stommel gyre tracer exper-
iment on both a homogeneous-resolution grid and on
a locally refined grid, it is also possible to determine
which of the advection schemes benefit most from local
mesh refinement.

Some of the schemes can exhibit a sensitivity to grid
orientation and connectivity. To test sensitivity to mesh
characteristics, tests were run on the three different
types of grid (Fig. 1).

Grid A is a right-triangle mesh with a constant ori-
entation of the diagonal at 45◦ from the lower left to
the upper right. It is a regular grid in that each interior
node is always attached to six elements. Grid B is a
“Union Jack” grid, in which nodes alternate between
being connected to four and eight triangular elements.
Some schemes display degraded accuracy on this type
of variable connectivity. Grid C is an unstructured grid
produced by a mesh generator. The mesh is isotropic
in that there is no preferred mesh orientation. Interior
nodes are generally attached to six triangular elements,
but some are connected to as few as four and others to
as many as eight triangles. Grid C is typical of meshes
generated for realistic applications.

3.1 Order of convergence

The various schemes are tested for the rate at which
they converge to the exact solution. While the meshes
used to test convergence are regular, the analysis will
provide an indication of which schemes are likely to
benefit most from local grid refinement in a general
unstructured mesh. A scheme with a very poor con-
vergence rate will derive relatively little benefit from
local refinement, for example, and thus, may not be
a very competitive candidate for use in a general
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unstructured mesh. Futhermore, whereas the schemes
can often approach or achieve nominal orders of accu-
racy in the absence of limiting operations, convergence
rates can drop markedly if slope or flux limiters are
applied to maintain monotonicity. An order of conver-
gence analysis can show which of the monotonic, or
nearly monotonic, schemes can maintain high accuracy
as indicated by the convergence rate.

The test problem is that described by Hubbard
(1999) and Hubbard and Roe (2000). The initial con-
centration field is a double sine wave:

c = sin(2πx)sin(2πy) (2)

with a velocity u = (1, 2)T on a doubly periodic domain
[0, 1] × [0, 1]. At t = 1.0, the concentration field should
have returned to its initial value. Changes in the L1

norms as the meshes are refined from 17 × 17 through
129 × 129 grid nodes are recorded as numerical order
of convergence (NOC) estimates in Table 2 for grid A.

The VELA schemes were not included in this test
because space- and time-varying boundary conditions
were not implemented in the model. Instead, grid re-
finement experiments were conducted on the rotating

Table 2 Numerical order of convergence (NOC) of the schemes
on the right-triangle (A) grids based on L1 scores in refining from
17 × 17 to 33 × 33, 33 × 33 to 65 × 65 and 65 × 65 to 129 × 129
grid nodes

Advection scheme NOC

17–33 33–65 65–129

GFEM 2.07 2.01 2.00
NQ-RK2 1.89 1.99 2.00
NQ-EF 1.88 1.86 1.59
SUPG 1.98 1.99 2.00
SUPG–Tri 0.50 0.71 0.84
SUPG–MH 0.95 0.95 0.97
Taylor-Galerkin 1.97 1.99 2.00
PSI 0.54 0.65 0.79
FE-FCT 2.44 2.34 2.02
Lax-Wendroff 1.86 2.01 2.02
Fluctuation redistribution 1.83 1.99 2.01
MLG 1.00 1.24 1.49
MUST 0.44 0.77 0.69
RKDG2 no limiter 2.46 2.28 2.14
RKDG2 minmod 1.89 2.00 1.93
RKDG2 TVBM 2.08 – 1.60
RKDG3 no limiter 3.23 3.07 3.03
RKDG3 minmod 1.94 1.98 1.89
RKDG3 TVBM – – 1.77
MPDATA2 non-oscillatory 0.90 1.10 1.20
MPDATA3 non-oscillatory 1.09 1.19 1.29

MPDATA2 and MPDATA3 are on square finite difference grids.

cone problem, and the results will be discussed in the
next section.

The time steps used were selected to satisfy the
Courant stability criterion with a time step of approx-
imately 0.8 of the maximum permitted by linear sta-
bility analysis for the explicit schemes and a Courant
number of approximately 0.8 for the implicit schemes.
For GFEM, SUPG, SUPG–Tri, SUPG–MH, PSI, Lax–
Wendroff, Fluct. Redist., and MPDATA, a time step of
�t = 0.32�xmin was used, where �xmin is the minimum
element side length. For NQ-RK2, TG, FE-FCT, MLG,
and MUST, �t = 0.16�xmin was used; for RKDG2,
�t = 0.08�xmin; for RKDG3, �t = 0.04�xmin; and for
NQ-EF, �t = 0.02�xmin.

The tables show that the GFEM, NQ-RK2, SUPG,
TG, FE-FCT, Lax-Wendroff, Fluct. Redis., and
RKDG2 are all second-order schemes and that
RKDG3 is a third-order scheme. As expected, the
PSI scheme is first order. The SUPG–Tri, SUPG–MH,
MLG, MUST, MPDATA2, and MPDATA3 schemes
are no better than first order, sacrificing second-order
accuracy for improved monotonicity. NQ-EF does
not achieve second order accuracy because of its
first-order time discretization. It is noteworthy that,
whereas, as shown in the next section, the FE-FCT and
Fluct. Redis. schemes are monotonic, these schemes
retain second-order rates of convergence on smooth
problems. Applying the minmod limiter to RKDG2
does not degrade the convergence rate appreciably;
the convergence rate remains nearly second order.
However, when the minmod limiter is applied to
RKDG3, the convergence rate becomes second order,
as well. Thus, if it is necessary to apply the minmod
limiter to ensure monotonicity, there is no advantage
in using the higher order RKDG3 over the RKDG2
scheme.

Most of the schemes are insensitive to the grid orien-
tation and connectivity. The exceptions are MLG (as
noted by Hubbard 1999) and MUST. These schemes
degrade in performance on grid B relative to grid A,
with NOC values on grid B of 0.82 and 0.42, respec-
tively, for 65 × 65 to 129 × 129 nodes.

Nearly all the schemes exhibit consistent behavior
as resolution is increased from 17 × 17 through 33 ×
33, 65 × 65 to 129 × 129 nodes. The exceptions are
the RKDG–TVBM schemes. The TVBM limiter is de-
signed to provide a combination of the unlimited and
minmod properties. Figure 2 shows how this affects
the convergence rates. At coarse spatial resolutions
(17 × 17 and 33 × 33), the RKDG2–TVBM results fol-
low those of the unlimited RKDG2, whereas at higher
resolutions (65 × 65 and 129 × 129), the RKDG2–
TVBM results follow those of RKDG2–minmod. The
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Fig. 2 L1 norms for the cell-centered schemes on grid A meshes

RKDG3–TVBM results, on the other hand, are the
same as RKDG3 unlimited at 17 × 17, the same as
RKDG2 unlimited at 32 × 32 and follow RKDG3–
minmod and RKDG2–minmod for 65 × 65 to 129 ×
129 resolution. Where the TVBM results leave, the un-
limited curve and switch to the minmod curve is largely
determined by the parameter M in (3.7) in Cockburn
and Shu (1998). Unless stated otherwise, their value of
M = 50 is also used in this study.

Whereas the NOC estimates for most of the schemes
appear to have converged by 129 × 129 nodes, some
of the schemes, notably RKDG2/3 TVBM, NQ-EF,

SUPG–Tri, PSI, MLG, and MPDATA2/3, may need
further mesh refinement to provide stable estimates.

3.2 Rotating cone

All the schemes were applied to the rotating cone prob-
lem described by Hubbard (1999) and Hubbard and
Roe (2000). The initial condition is a cone defined by:

c =
{

cos2(2πr) for r ≤ 0.25

0 otherwise,
(3)

where r2 = (x + 0.5)2 + y2 and the velocity u = (−2πy,

2πx)T is applied to the domain [−1, 1] × [−1, 1], with
zero concentration specified on the inflow boundary
conditions. At t = 1.0, the cone should have returned
to its initial position without change of shape after one
revolution. The schemes were applied to grids A, B,
and C.

The spatial discretization is 65 × 65 nodes, for a
minimum grid size of 0.03125. The time step for
GFEM, SUPG, SUPG–Tri, SUPG–MH, PSI, Lax–
Wendroff, Fluct. Redis., and MPDATA was �t =
0.08�xmin. For NQ-RK2, TG, FE-FCT, MLG, and
MUST, �t = 0.04�xmin was used; for RKDG2, �t =
0.03�xmin, for RKDG3, �t = 0.02�xmin and for NQ-
EF �t = 0.01�xmin. The VELA schemes were in-
tegrated using 5- and 50-time steps per simulation
(NT = 5 and 50, where NT is the number of time steps
in the integration), so that the corresponding time steps
are 0.2 and 0.02, respectively.

The results are summarized in Table 3 and the results
for grid C are shown in Figs. 3, 4, and 5.

Table 3 Rotating cone test case results at t = 1.0 on grid C. MPDATA2 and MPDATA3 are on a square finite difference grid

Advection scheme Min Max L1 Advection scheme Min Max L1

GFEM –0.032 0.995 0.222 MLG 0.000 0.854 0.124
NQ-RK2 –0.237 0.855 1.384 MUST 0.000 0.977 0.388
NQ-EF –0.281 0.896 1.548 RKDG2 –0.011 0.977 0.049
SUPG –0.012 0.931 0.146 RKDG2-minmod 0.000 0.747 0.176
SUPG–Tri –0.003 0.493 0.762 RKDG2-TVBM –0.011 0.977 0.049
SUPG–MH –0.003 0.759 0.339 RKDG3 –0.002 0.997 0.003
TG –0.019 0.989 0.049 RKDG3-minmod 0.000 0.749 0.168
PSI 0.000 0.321 1.386 RKDG3-TVBM –0.002 0.997 0.004
FE-FCT 0.000 0.711 0.297 MPDATA2 0.000 0.591 0.604
Lax-Wendroff –0.208 0.836 1.122 MPDATA3 0.000 0.805 0.347
Fluct. Redis. 0.000 0.849 0.551
VELA (NT = 50) –0.008 0.985 0.025
VELA (NT = 5) –0.006 0.994 0.007
VELA–FCT (NT = 50) 0.000 0.985 0.014
VELA–FCT (NT = 5) 0.000 0.994 0.005
VELA–NLF (NT = 50) 0.000 0.984 0.024
VELA–NLF (NT = 5) 0.000 0.994 0.024
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Fig. 3 Concentrations at t = 1.0 for the schemes in the rotating
cone test case on grid C

From Table 3, it can be seen that the RKDG3,
RKDG3-TVBM, VELA, VELA–FCT, and VELA–
NLF provide the best overall agreement with the exact
solution in terms of minimum L1 values and match-
ing the minimum and maximum. Of the monotonic
schemes, the VELA–FCT and VELA–NLF are clearly
superior, providing the same level of accuracy as the
original VELA. Of the second-order schemes, the TG,
RKDG2, RKDG2-TVBM, GFEM, and SUPG pro-
vide the lowest L1 scores while capturing the peak
values with slight undershoot. The MUST scheme is
monotonic and captures the peak amplitude but at
the price of a higher L1 score. On reasonably well-
structured grids, such as grid C, the MLG scheme

provides a good balance of monotonicity, peak captur-
ing, and minimal error. The FE-FCT and Fluct. Redis.
schemes are both essentially flux-corrected transport
algorithms and exhibit similar behavior. Whereas both
are monotonic, the Fluct. Redis. scheme demonstrates
less attenuation of the peak amplitude but produces an
L1 score that is nearly double that of FE-FCT. This
is due to shape and phase errors in the Fluct. Redis.
results (Fig. 4). The results for all the schemes are
nearly the same for grids A and C, but the results for
MLG, RKDG2–minmod and RKDG3–minmod deteri-
orate appreciably on grid B, with L1 values of 0.444,
0.563, and 0.561, respectively.
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Fig. 4 Concentrations at t = 1.0 for the schemes in the rotat-
ing cone test case on grid C. The VELA schemes shown have
NT = 5. MPDATA3 is on a square finite difference grid
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Fig. 5 Concentrations at t = 1.0 for the schemes in the rotating
cone test case on grid C

As shown in Figs. 3, 4, and 5, RKDG3, RKDG3-
TVBM, VELA–FCT, and VELA–NLF are close to the
exact solution. The elevated L1 values exhibited by
MUST and Fluct. Redis. would appear to be attribut-
able to the distortion of the cone shape and to phase
errors. MUST effectively transforms the cone to a cylin-
der, whereas Fluct. Redis. retains the distortion evident
in the Lax–Wendroff solution. The high L1 values of
NQ-RK2, NQ-EF, and Lax–Wendroff are due to the
negative undershoots and dispersive ripples evident in
the figures. Attenuation of the cone amplitude causes
high L1 values for the PSI and SUPG–Tri results.

The MPDATA2 non-oscillatory finite difference
scheme produces excessive dissipation, but the

Table 4 Numerical order of convergence in the cone test case on
the right-triangle (A) grids

Advection scheme L1

VELA (NT = 50) 2.89
VELA (NT = 5) 2.30
VELA–FCT (NT = 50) 2.52
VELA–FCT (NT = 5) 2.09
VELA–NLF (NT = 50) 2.94
VELA–NLF (NT = 5) 3.02
TG 2.35
FE-FCT 2.20

MPDATA3 non-oscillatory scheme produces results
that are slightly better than Fluct. Redis. and FE-FCT.

The convergence properties of VELA schemes in re-
fining from 65 × 65 to 129 × 129 nodes on the rotating
cone problem for grid A is shown in Table 4.

Results from the TG and FE-FCT schemes are in-
cluded to provide a basis for comparison. From the
L1 values, the convergence rates of the VELA–NLF
and VELA (NT = 50) schemes are approximately third
order, the remainder are roughly second-order.

3.3 Rotating cylinder

To test the monotonicity and robustness of the
schemes, they were each applied to the rotating cylin-
der problem described by Hubbard (1999). The initial
condition is a cylinder defined by:

c =
{

1 for r ≤ 0.25

0 otherwise,
(4)

where r2 = (x + 0.5)2 + y2 and the velocity u = (−2πy,

2πx)T is applied to the domain [−1, 1] × [−1, 1], with
zero concentration specified on the inflow boundary
conditions. At t = 1.0, the cylinder should have re-
turned to its initial position without change of shape
after one revolution. The grid size and time steps used
in this case are the same as described for the rotating
cone test.

The results are summarized in Table 5.
From the L1, the most accurate schemes are the

VELA–FCT with NT = 5, VELA with NT = 5, MUST,
and RKDG3. VELA–FCT and MUST are also mono-
tonic. As in the rotating cone case, results on grids A
and C are similar, performance degrades appreciably
on grid B for MLG, RKDG2–minmod, and RKDG3–
minmod, with L1 values of 0.511, 0.595, and 0.592,
and peak values reduced to 0.981, 0.924, and 0.924,
respectively. It should be noted, however, that the
MLG is the second most accurate second-order scheme
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Table 5 Rotating cylinder test case results at t = 1.0 on grid C. MPDATA2 and MPDATA3 are on a square finite difference grid

Advection scheme Min Max L1 Advection scheme Min Max L1

GFEM –0.326 1.298 0.905 MLG 0.000 1.000 0.250
NQ-RK2 –0.504 1.547 1.569 MUST 0.000 1.000 0.142
NQ-EF –0.628 1.739 1.937 RKDG2 –0.057 1.082 0.242
SUPG –0.165 1.133 0.359 RKDG2-minmod 0.000 0.999 0.313
SUPG–Tri –0.040 0.835 0.712 RKDG2-TVBM –0.042 1.059 0.259
SUPG–MH –0.036 1.001 0.393 RKDG3 –0.101 1.113 0.130
TG –0.183 1.192 0.330 RKDG3-minmod 0.000 0.999 0.302
PSI 0.000 0.601 1.223 RKDG3-TVBM –0.012 1.013 0.194
FE-FCT 0.000 1.000 0.444 MPDATA2 0.000 1.000 0.630
Lax-Wendroff –0.373 1.411 1.021 MPDATA3 0.000 1.000 0.464
Fluct. Redis. 0.000 1.000 0.515
VELA(NT = 50) –0.079 1.096 0.203
VELA (NT = 5) –0.145 1.143 0.116
VELA–FCT (NT = 50) 0.000 1.000 0.180
VELA–FCT (NT = 5) 0.000 1.000 0.104
VELA–NLF (NT = 50) 0.000 1.000 0.236
VELA–NLF (NT = 5) 0.000 1.000 0.206

(after MUST) on grids A and C and is still competitive
with all of the monotonic second-order schemes, except
MUST, on grid B. GFEM, NQ-RK2, NQ-EF, and Lax–
Wendroff produce excessive levels of oscillation. In
addition, the Lax–Wendroff and the Fluct. Redis. lead
to severe deformation of the cylinder shape. The accu-
racy of MPDATA3 is comparable to that of FE-FCT,
but the accuracy of MPDATA2 is somewhat lower
than that of FE-FCT and Fluct. Redis. The accuracy
of the TG is also corrupted by significant oscillations.
The PSI and the SUPG–Tri results display appreciable
errors in the peak amplitude due to excessive numerical
diffusion.

3.4 Stommel Gyre

To test the schemes’ behavior under conditions typical
of basin-scale ocean circulation, the analytical solution
for the Stommel gyre (Stommel 1948) was used to
advect a Gaussian hill tracer distribution, as described
by Hecht et al. (1995, 2000). From Hecht et al. (2000),
the stream function representing the circulation pattern
of the Stommel Gyre can be expressed as:

� = 1

ρ
γ

(
b
π

)2

sin
(πy

b

) (
peAx + qeBx − 1

)
, (5)

where x and y are distances from the western and
southern boundaries, respectively, b is the meridional

dimension of the basin and ρ is the density of the fluid.
The parameter γ is defined as

γ = Fπ

rb
, (6)

and

A = −α/2 + (
α2/4 + (π/b)2

)1/2
, (7)

B = −α/2 − (
α2/4 + (π/b)2)1/2

, (8)

p = (
1 − eBλ

)
/
(
eAλ − eBλ

)
, (9)

q = 1 − p , (10)

α = 1

r
∂ f
∂y

. (11)

The zonal width of the basin is λ = 104 km, the depth is
D = 200 m, the wind stress amplitude F = 0.1 N m−2,
the friction coefficient is r = 10−6s−1, and the Corio-
lis parameter is specified as f = y × 10−11m−1s−1. The
meridional dimension of the gyre is b = 6.3 × 103 km.

The velocity is obtained from the volume stream
function as

u = D−1 ∂�

∂y
, (12)

v = −D−1 ∂�

∂x
. (13)

The initial tracer concentration distribution is
Gaussian, with an amplitude of 1, width of 800/

√
2

km, and is centered at (λ/3, b/3) over a background
concentration of 1. The stream function pattern and
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initial tracer distribution are shown in Fig. 6. The in-
tegration was conducted for a period of 1.5 × 108 s (∼ 5
years). The reference solution was obtained through a
back-trajectory calculation with a fifth- and sixth-order
Runge–Kutta integration using Eqs. 12 and 13.

The problem was solved on two different meshes.
The first mesh, shown in Fig. 7, is an unstructured
grid with a mean element side length of 108.6 km
and consists of 6,588 nodes and 12,724 elements. The
MPDATA schemes were applied using a square grid
with a grid size of 100 km. For most of the schemes,
a time step of 2 × 104 s was used. The exceptions were
NQ-EF, RKDG2, and RKDG3 with time steps of 1 ×
103, 1 × 104 and 5 × 103 s, respectively, and the VELA
schemes that were run with time steps of 5 × 106 (NT =
30) and 3.75 × 107 s (NT = 4).

The results are summarized in Table 6 and shown in
Figs. 8, 9, and 10.

The parameters of Table 6 are those of Hecht et al.
(1995) and are used in this study to permit comparison
with those results. The parameters include MIN, MAX,
l2, V and TV, where

MIN = min{c} − min{cR} , (14)

MAX = max{c} − max{cR} , (15)

l2 = {(c − cR)2} 1
2 /{(cR)2} 1

2 , (16)

V = {c − c}2/{cR − cR}2 − 1 , and (17)

TV =
{
| ∂c
∂x

| + | ∂c
∂y

|
}
/

{
|∂cR

∂x
| + |∂cR

∂y
|
}

− 1 , (18)

where c is the concentration in the models and cR is the
reference concentration.

With a perfect match to the reference solution, these
error diagnostics would have a value of zero. Negative
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Fig. 6 Streamfunction and initial tracer distribution for the
Stommel Gyre case. Streamfunction is in units of 106m3s−1.
Contour interval of the tracer concentration is 0.05
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Fig. 7 Unstructured triangular grid used in the Stommel
Gyre case

values of MIN indicate undershoot, negative values of
MAX indicate attenuation of the peak, and positive
values of MAX indicate overshoot. l2 is indicative of
goodness of fit in an L2 sense, V measures the variance
or ‘energy’ of the numerical solution compared to that
of the reference solution, and TV is a measure of the
magnitude of gradients and small-scale variability in the
numerical relative to the reference solution.

Advecting tracer through the strongly deformed ve-
locity field in the western boundary current proves to
be a challenging test case. It was not possible to obtain
a numerically stable solution with the NQ-EF scheme
and, as shown in Fig. 8, NQ-RK2 is extremely noisy, as
well. The TG and Lax–Wendroff schemes (Fig. 9) and
GFEM (not shown) exhibited considerable small-scale
noise in the western boundary region. The noisiness is
reflected in large TV values. Only the VELA schemes
and RKDG3 closely resemble the reference solution.
The VELA (NT=4) schemes (Fig. 9) display the pecu-
liar artifact that a ‘ghost’ strip replicating the leading
edge of the tracer field appears across the middle of
the tracer distribution. These patterns are due to the
large velocities in the western boundary that separate
parts of the diffused plume and transport them ahead
of the main plume. The VELA schemes with NT=30
produce some low-amplitude small-scale rippling in the
concentration contours.

Of the monotonic schemes, VELA–FCT (NT=4)
and VELA–NL (NT=4) are clearly superior, as shown
by the summary statistics of Table 6. Based on the
l2 scores, the rest of the monotonic schemes in de-
creasing order of performance are VELA–FCT (NT=
30), VELA–NLF (NT=30), MPDATA3, MPDATA2,
Fluct. Redis., FE-FCT, PSI, MUST, RKDG3–minmod,
RKDG2–minmod, and MLG. The MPDATA schemes
are superior to all the monotonic schemes except for
VELA–FCT and VELA–NLF. It is interesting to note
that, although RKDG3 is one of the best overall
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Table 6 Stommel gyre test
case results. MPDATA2 and
MPDATA3 are on a square
grid cell finite difference grid

Advection scheme MIN MAX l2 V TV

GFEM –6.032 0.021 1.117 0.722 18.312
NQ-RK2 –5.416 4.919 3.803 14.703 41.572
NQ-EF – – – – –
SUPG –0.107 –0.711 0.652 –0.712 –0.353
SUPG–Tri –0.688 –0.411 0.618 –0.349 0.203
SUPG–MH –0.657 –0.494 0.584 –0.359 0.231
TG –0.660 –0.386 0.591 –0.266 3.025
PSI 0.000 –0.752 0.729 –0.745 –0.398
FE-FCT 0.000 –0.564 0.666 –0.374 0.076
Lax-Wendroff –0.367 –0.340 0.582 –0.223 2.152
Fluct. Redis. 0.000 –0.593 0.614 –0.569 –0.089
VELA NT = 30 –0.070 –0.238 0.309 –0.231 0.370
VELA NT = 4 –0.057 0.003 0.128 –0.019 0.332
VELA–FCT NT = 30 0.000 –0.261 0.316 –0.274 0.194
VELA–FCT NT = 4 0.000 0.001 0.124 –0.023 0.271
VELA–NLF NT = 30 0.000 –0.407 0.422 –0.443 0.201
VELA–NLF NT = 4 0.000 –0.016 0.154 –0.042 0.347
MLG 0.000 –0.704 0.754 –0.667 –0.197
MUST 0.000 –0.640 0.735 –0.569 –0.096
RKDG2 –0.139 –0.276 0.355 –0.218 0.086
RKDG2-minmod 0.000 –0.709 0.751 –0.671 –0.223
RKDG2-TVBM –0.015 –0.667 0.734 –0.649 –0.168
RKDG3 –0.112 –0.132 0.186 –0.115 0.063
RKDG3-minmod 0.000 –0.700 0.749 –0.668 –0.220
RKDG3-TVBM –0.007 –0.611 0.700 –0.627 –0.135
MPDATA2 0.000 –0.539 0.579 –0.593 –0.091
MPDATA3 0.000 –0.507 0.551 –0.562 –0.053

schemes, by imposing monotonocity through the TVD
minmod limiter, the peak concentration amplitude is
attenuated to the point that the scheme is nearly the
worst. The performance of MLG is surprisingly poor,
given that the Stommel mesh is isotropic, and MLG
performed well on the cone case on a similar mesh (grid
C). The distortions in the concentration field produced
by MUST in the cone case are present in this test,
as well. MUST successfully maintains strong gradients
(and, thus, the relatively small TV value), but at a price
of flattening the peak. The PSI and the SUPG schemes
are, again, very diffusive.

To examine the performance of the various schemes
when the mesh is refined to resolve the velocity struc-
ture, the stretched mesh shown in Fig. 11 is employed.
The grid is stretched such that the element side lengths
are inversely proportional to the magnitude of the ve-
locity. The minimum nodal separation on an element
is 7.4 km, the maximum is 219 km, and the mean is
74.2 km. The mesh contains 12,524 nodes and 24,062
elements. The time step used with each of the schemes
in the stretched mesh case is 0.1 of the value used in the
non-stretched case described above.

The results are shown in Table 7 and Figs. 12, 13,
and 14. Not surprisingly, the higher-order schemes

converge more rapidly to the reference solution as
the grid is refined. The VELA schemes (Fig. 14) and
RKDG3 unlimited (Fig. 13) are virtually indistinguish-
able from the reference solution. The improvement in
l2 values from the uniform mesh to the stretched mesh
is most dramatic for these schemes, varying from a ratio
of 6.7 for VELA–NLF (NT=4) to 19.8 for VELA–FCT
(NT=30). The ratio of the average grid sizes between
the two meshes is 1.46. If a third-order scheme, such as
RKDG3, were not producing enhanced accuracy from
the local grid refinement, but only from the average grid
size reduction, then we would expect a ratio of 3.11.
Because the RKDG3 ratio is 10.3, the scheme clearly
benefits from local grid refinement. The expected ratio
based on average grid size for second-order schemes
is 2.13. The TG, Lax–Wendroff, and RKDG2 have
ratios of 5.6, 3.9, and 2.7, respectively, displaying good
convergence properties.

The performance of SUPG on the stretched grid is
disappointing. Its l2 ratio is only 1.4, which is first-order,
at best. This result differs dramatically from that of
the numerical order of convergence analysis, in which
SUPG achieved second-order rates of convergence.
Conversely, the SUPG–Tri and SUPG–MH schemes
obtain l2 ratios of 3.4 and 3.7, respectively, and are
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Fig. 8 Concentrations at
t = 1.5 × 108 s for the
reference solution and
advection schemes in the
Stommel gyre test case.
MPDATA2 and MPDATA3
are on a square grid cell finite
difference grid
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competitive with the formally second-order schemes
on the stretched grid. SUPG–Tri, SUPG–MH, and
RKDG2 are not monotonic, but their negative under-
shoot is less than half such second-order schemes as TG
and Lax–Wendroff. These two SUPG schemes could
be useful candidates for applications that can tolerate
a slight negative undershoot. It was not possible to
obtain stable numerical solutions for GFEM, NQ-RK2,
and NQ-EF, so these schemes were not included in the
stretched-grid test case.

Of the monotonic schemes, VELA–FCT and
VELA–NLF are clearly superior. The Fluct. Redis.
scheme has the next best l2 score and now displays
significantly better accuracy than FE-FCT. This is re-
flected in the l2 convergence rates, with a value of
2.1 for Fluct. Redis. and 1.8 for FE-FCT. The rest
of the monotonic schemes possess l2 values between
0.43 to 0.45, except MLG which is much worse with a
value of 0.575 and PSI with 0.630 , as a result of the
high numerical damping. MUST has a l2 ratio of 1.7,
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Fig. 9 Concentrations at
t = 1.5 × 108 s for advection
schemes in the Stommel gyre
test case
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and the MAX value of -0.014 is much improved over
the uniform mesh value of -0.640, indicating excellent
reproduction of the peak value. However, MUST still
seriously distorts the concentration pattern, as shown
in Fig. 13.

4 CPU time requirements

To obtain a rough indication of relative computing
time requirements of the various advection schemes,
the 65 × 65 rotating cone on grid A was run as a

benchmark. The time steps are the same as used before
in the 65×65 rotating cone test case. The ratios between
the time steps of the various schemes was found to hold
for further grid refinement, such as to 129 × 129 nodes,
for example.

Times relative to that of the PSI scheme are listed in
Table 8. It should be noted that no attempt was made to
optimize the performance of the schemes. The RKDG3
schemes, for example, would benefit from performing a
6 × 6 matrix reduction in-line as an algebraic expres-
sion instead of using calls to external matrix routines.
The relative times listed in Table 8 are only intended as
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Fig. 10 Concentrations at
t = 1.5 × 108 s for advection
schemes in the Stommel gyre
test case
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a very approximate guide to the computational require-
ments of the various methods.

MPDATA2 and Lax-Wendroff are considerably
faster than any of the other schemes. Of the monotonic
unstructured grid schemes, Fluct. Redis. is the fastest,
followed closely by VELA–FCT and VELA–NLT,
both with NT = 5.

The relatively high computational efficiency
achieved by the VELA schemes is accomplished
through the large time steps possible due to the absence

of Courant stability restrictions. The CPU times of
VELA are dependent on the accuracy required for the
tracking, through a closing error, and of the accuracy
of the evaluation of the integrals at the feet of the
characteristic lines. The values of the closing errors
and the number of subdivision triangles used in this
study are typical of estuarine applications. Because the
velocities of the tests were time-independent, the CPU
times for the tracking are very small. We expect that
for tests with space- and time-dependent velocities, the
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Fig. 11 Stretched unstructured triangular grid used in the
Stommel Gyre case

CPU times of VELA should increase. Our experience
with estuarine applications suggest that the CPU time
should increase by a factor of 2.

The use of the minmod slope limiter and modified
minmod (TVBM) limiters increases computation times
over the unlimited RKDG schemes considerably. The
relatively long computation times of MLG and MUST
are also largely attributable to the slope limiters they
employ. TG takes roughly double the computation time
of GFEM and SUPG because it uses half the time step
of these schemes. Because FE-FCT uses TG as the
high-order scheme, the FE-FCT time step is half that of

Fluct. Redis., thus, accounting for much of the relative
computational efficiency of Fluct. Redis. over FE-FCT.

5 Discussion and summary

In this study, the behavior of a variety of advection
schemes for unstructured grids is examined on a num-
ber of test cases. From the results, it is clear that the
new ELM methods, which minimize mass errors and
oscillations, such as VELA and its monotonic variants
(VELA–FCT and VELA–NLF), possess the highest
accuracy of the schemes examined. ELM schemes are
ideal for passive tracer studies in which large time
steps can be used. However, the complexity of the
space-time control volume formulation of these new
ELMs might prove an obstacle for problems deal-
ing with space- and time-varying boundary conditions.
Although these types of boundary conditions have been
implemented in similar models (ELLAMs, Binning and
Celia (1996)), the complexity of dealing with unstruc-
tured grids and complex boundaries in coastal prob-
lems in a mass-preserving way may lead to significant
increases in CPU time.

The RKDG3 scheme is nearly as accurate as the
VELA family. Whereas the scheme is computationally

Table 7 Stommel gyre on
the stretched mesh test
case results

Advection scheme MIN MAX l2 V TV

GFEM – – – – –
NQ-RK2 – – – – –
NQ-EF – – – – –
SUPG –0.031 –0.521 0.467 –0.538 –0.309
SUPG–Tri –0.020 –0.200 0.181 –0.189 –0.093
SUPG–MH –0.027 –0.172 0.159 –0.163 –0.026
TG –0.066 –0.054 0.106 –0.028 0.931
PSI 0.000 –0.667 0.630 –0.662 –0.304
FE-FCT 0.000 –0.412 0.377 –0.349 –0.081
Lax-Wendroff –0.080 –0.066 0.149 –0.056 0.546
Fluct. Redis. 0.000 –0.327 0.280 –0.320 –0.087
VELA NT = 30 –0.002 0.000 0.015 0.005 0.028
VELA NT = 4 –0.003 0.004 0.017 0.007 0.025
VELA–FCT NT = 30 0.000 –0.014 0.016 0.003 0.018
VELA–FCT NT = 4 0.000 0.003 0.017 0.007 0.015
VELA–NLF NT = 30 0.000 –0.015 0.045 –0.010 0.031
VELA–NLF NT = 4 0.000 0.003 0.023 0.007 0.024
MLG 0.000 –0.562 0.575 –0.582 –0.115
MUST 0.000 –0.014 0.434 0.544 0.178
RKDG2 –0.029 –0.101 0.131 –0.084 0.006
RKDG2-minmod 0.000 –0.460 0.446 –0.474 –0.119
RKDG2-TVBM –0.003 –0.416 0.412 –0.430 –0.088
RKDG3 –0.004 .006 0.018 0.019 0.012
RKDG3-minmod 0.000 –0.452 0.434 –0.447 –0.103
RKDG3-TVBM –0.003 –0.411 0.407 –0.420 –0.081
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Fig. 12 Concentrations at
t = 1.5 × 108 s for advection
schemes in the Stommel gyre
test case with a variable mesh
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expensive relative to nearly all the other schemes,
Cockburn and Shu (1998) note that the third-order con-
vergence rate of RKDG3 means that the scheme can
achieve better accuracy than the second-order schemes
at much coarser resolution and, thus, lower computa-
tional cost. The RKDG3 scheme is not monotonic, but
at moderate to high resolution, the negative undershoot
is nearly negligible. If strict monotonicity is required, a
minmod slope limiter can be applied but at a cost of
reducing the order of the scheme to less than second

order and a tripling of the computation time. This is in
contrast to the VELA–FCT and VELA–NLF schemes,
which produce monotonic results with no loss in
accuracy and negligible increase in computation time.
The TVBM limiter may provide a compromise between
the high-accuracy non-monotonic RKDG3 and the low-
order monotonic RKDG3–minmod, but in practice, it
proved difficult to find generally appropriate values for
the weighting parameter. The success of the nonlinear
monotonicity-preserving filter in VELA–NLF suggests
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Fig. 13 Concentrations at
t = 1.5 × 108 s for advection
schemes in the Stommel gyre
test case with a variable mesh

RKDG3-Unlimited

RKDG3-TVBMRKDG2-TVBM

RKDG3-MINMODRKDG2-MINMOD

RKDG2-Un

MLG MUST

limited

0
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+07 0
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+07

0
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+07

0
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+07

0
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+070
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+07

0
0

5E+06

2.5E+06 5E+06 7.5E+06 1E+07

0
0

5E+06

2.5E+06

2.5E+06 5E+06 7.5E+06 1E+07

2.5E+06

2.5E+06 2.5E+06

2.5E+06

2.5E+06

2.5E+062.5E+06

that a similar filtering operation applied to RKDG3
might achieve monotonicity in that scheme at reason-
able computational cost.

Overall, TG and RKDG2 perform better than
the other second-order schemes. These two schemes
produce less undershoot and fewer dispersive rip-
ples while maintaining higher accuracy than the other
second-order schemes.

Of the monotonic(nominally)second-order schemes,
Fluct. Redis. and FE-FCT provide similar results. On
the most realistic test case, that of the Stommel Gyre

on a variable mesh, however, Fluct. Redis. emerges
as superior to FE-FCT. Furthermore, the Fluct. Redis.
scheme is over twice as fast as FE-FCT.

The MLG and MUST schemes, while monotonic,
proved to be first-order accurate and computation-
ally expensive. MLG severely attenuated peak concen-
trations, while MUST greatly distorted the shape of
the concentration distribution by producing excessively
steep gradients.

While the along-stream diffusion implicit in SUPG
attenuated peak concentrations below that of TG and
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Fig. 14 Concentrations at
t = 1.5 × 108 s for advection
schemes in the Stommel gyre
test case with a variable mesh
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RKDG2, it was not sufficient to avoid negative under-
shoot in the concentration fields. SUPG–MH produced
greater peak attenuation than SUPG in the rotating
cone test, but created only negligible negative under-
shoot. SUPH–Tri was more dissipative than SUPG–

MH in the cone test, but produced the same level of
negative undershoot. On the variable mesh Stommel
Gyre problem, SUPG–MH and SUPG–Tri are superior
to SUPG in every respect and are competitive with
the second-order schemes. GFEM and TG provided

Table 8 Times relative to PSI
in ascending order for
rotating cone test case on
65 × 65 grid

Advection scheme Relative time Advection scheme Relative time

MPDATA2 non-oscillatory 0.46 TG 6.73
Lax–Wendroff 0.52 RKDG2 8.61
MPDATA3 non-oscillatory 0.97 FE-FCT 10.66
PSI 1.00 RKDG–TVBM 12.83
NQ-RK2 1.44 VELA (NT = 50) 13.18
GFEM 2.73 VELA–NLF (NT = 50) 13.23
NQ-EF 2.85 VELA–FCT (NT = 50) 13.27
SUPG–MH 3.33 MLG 13.61
SUPG 3.44 MUST 14.10
SUPG–Tri 3.70 RKDG2–minmod 16.19
Fluct. Redis. 4.05 RKDG3 122.52
VELA–FCT (NT = 5) 4.37 RKDG3–TVBM 314.95
VELA (NT = 5) 4.41 RKDG3–minmod 318.66
VELA–NLF (NT = 5) 4.41
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acceptable accuracy for smooth gradient problems but
introduced large errors for tests with sharp gradients.

To our knowledge, only the Hanert et al. (2004)
study has compared unstructured triangular advection
schemes on the Stommel gyre problem. Their results
for continuous finite element, discontinuous finite ele-
ment and finite volume schemes are consistent with the
results presented in this paper for SUPG, RKDG2, and
Lax-Wendroff, respectively.

The benefit of using unstructured grid approaches is
the possibility employing of local mesh refinement. It
is for that reason that the variable mesh Stommel Gyre
test case is so important. It permits us to examine the
behavior of the candidate schemes on a variable mesh
where the advecting velocity field is representative of
that encountered in typical basin-scale ocean model
applications. The results from that test, in combination
with the rest of the analyses of this study, lead us to
recommend that for tracer studies, the VELA family
of schemes should be considered. If non-negative fields
are essential, then the VELA–FCT and VELA–NLF
approaches can be adopted. Of the two, VELA–FCT
provides better results. If slight negative undershoot is
acceptable, then RKDG3 is also an excellent candidate
scheme for tracer advection. TG and RKDG2 show the
best overall performance of the second-order schemes.
If non-negativity is an important property, then Fluct.
Redis. should be considered. It is an accurate, compu-
tationally efficient scheme that is readily retro-fitted to
existing finite element model codes.
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Appendix 1: Description of advection schemes

This section is a description of the advection schemes
listed in Section 2.

1.1 Galerkin finite element

Included under Galerkin finite element schemes is
the ’classic’ Galerkin finite element scheme (GFEM)
(see Finlayson (1992) or Morton (1996) for a deriva-

tion). GFEM employs the full, consistent mass matrix
and centered, implicit (Crank-Nicolson) second-order
time discretization. Maintaining the full, or consistent,
mass matrix can be computationally expensive, as a
large number of equations must be solved simultane-
ously through either direct or iterative means. Thus,
there is a strong temptation to perform nodal quadra-
ture, or mass lumping, to reduce the mass matrix to a di-
agonal through a summation of the contributions from
surrounding nodes at each node. The lumped mass
treatment, when combined with a second order Runge–
Kutta time discretization, provides second-order accu-
racy in time and space while remaining computation-
ally inexpensive enough for use in three-dimensional
models. This scheme, denoted the nodal quadrature
Galerkin, second-order Runge–Kutta (NQ-RK2), is in-
cluded to examine the impact of mass lumping on
the quality of advection results. Computation time can
potentially be halved by employing the single time
level first-order Euler forward scheme, denoted nodal
quadrature Galerkin Euler forward (NQ-EF), to the
lumped system. This scheme is examined, as it is cur-
rently in use in the existing three-dimensional finite el-
ement ocean model Quoddy (Lynch and Werner 1991),
and we wished to determine the degradation in accu-
racy (if any) caused by employing first-order vs second-
order time discetization. An approach that requires
only a single time level while maintaining second-
order accuracy in time and space is the Taylor-Galerkin
method, denoted TG (Donéa 1984), which bears a close
resemblance to the Lax–Wendroff schemes of the finite
difference world. In this study, the TG scheme was
applied with a consistent mass matrix.

1.2 Stabilized Galerkin methods

To minimize unwanted oscillatory behavior in Galerkin
solutions, attempts have been made to stabilize the
results by means of altering the variational formu-
lation. Such approaches, known as stabilized meth-
ods, attempt to penalize spurious oscillations through
means such as modification of the weighting function
(Brooks and Hughes 1982), imposing a least squares
penalty function (Hughes et al. 1989), or utilization of
a residual-free bubble function in which a higher-order
polynomial weighting function is used, which vanishes
at the element boundaries (Brezzi et al. 1992; Hughes
1995). In this study, only variants of the streamline-
upwind Petrov–Galerkin (SUPG) scheme will be
considered, as for pure advection, the Galerkin least-
squares formulation reduces to that of the SUPG
(Ilinca et al. 2000) as do residual-free bubble stabi-
lization schemes (Franca et al. 1998). The streamline-
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upwind Petrov–Galerkin (SUPG) scheme (Brooks and
Hughes 1982) applies an upwind weighting to obtain
stable solutions in advection-dominated flows. In one
dimension, the determination of an upstream direc-
tion is unambiguous and optimal in that it leads to
nodally exact solutions. In two dimensions, however,
the determination is more ambiguous, particularly on a
triangular mesh. Mizukami (1985) developed a scheme
for determining the upstream direction that is based
on element properties that are defined unambiguously.
The values of upstream direction and resulting element
diffusivity vary with element nodes. This scheme of
Mizukami (1985) is denoted SUPG–Tri. Mizukami and
Hughes (1985) noted that the streamline is not al-
ways the appropriate upstream direction. They develop
a Petrov–Galerkin scheme, denoted in this study as
SUPG–MH, based on a discrete maximum principle
that provides improved discontinuity, capturing while
minimizing spurious oscillations. A consistent mass
matrix and Crank–Nicolson time discretization was
employed for all the SUPG schemes.

1.3 Fluctuation distribution

Within recent years, fluctuation distribution schemes
have received increasing interest in computational fluid
mechanics. The approach, described by Struijs (1993),
entails the distribution of a cell update among the nodes
connected to the cell. If the distribution of the up-
date at a time step, or fluctuation, between the nodes
is such as to produce an upwind weighting, the pos-
itive streamwise invariant (PSI) scheme is produced
(Deconinck et al. 1994). While the PSI scheme is sec-
ond order in the cross-stream direction and monotonic,
it is only first order in the along-stream direction
for transient problems. By centering the distribution
of the fluctuation between nodes, one can generate
the single time step, second-order Lax–Wendroff fluc-
tuation distribution scheme (Deconinck et al. 1994).
While the Lax-Wendroff scheme is second order, it
is not monotonic and is subject to oscillatory behav-
ior. To obtain monotonic solutions while maintaining
second-order accuracy in smooth regions, Hubbard
and Roe (2000) developed a fluctuation redistribu-
tion (Fluct. Redis.) scheme. This approach combines
the first-order, but monotonic PSI scheme, with the
second-order, but oscillatory Lax–Wendroff discretiza-
tion. The approach can be viewed as a generalized
flux-corrected transport algorithm, where the maxi-
mum non-oscillatory component of the fluctuation is
obtained through a geometric projection.

There now exists a version of the PSI scheme that is
both second-order accurate in space and time, as well

as positive (Abgrall and Mezine 2003), which appears
promising. Unfortunately, we learned of this scheme
too late for it to be included in this study.

1.4 Flux-corrected transport

As is well known, second-order methods such as the
standard Galerkin and Taylor–Galerkin approaches
will generate oscillatory behavior in the absence of
diffusion in the presence of sharp concentration gra-
dients. To maintain positive, monotonic solutions in
the presence of strong advection, flux-corrected trans-
port (FCT) algorithms can be employed. Löhner
et al. (1987) developed a finite element FCT method
that combines a higher-order scheme (a second-order
Taylor–Galerkin with a consistent mass matrix) and
a low-order solution (a lumped-mass Taylor-Galerkin
with added diffusion). In this study, the finite element
flux-corrected transport algorithm (FE-FCT) employs
the consistent mass matrix Taylor–Galerkin scheme
as the high-order approximation and the low-order
scheme employed is the PSI approach, described in
the previous section. The development of the scheme
follows that for finite differences by Zalesak (1979),
where ’fluxes’ are replaced by ’element contributions
to a node.’

1.5 Cell-centered finite volume

MUSCL (monotone upstream-centered schemes for
conservation laws; van Leer 1979) type schemes for
cell-centered, triangular, finite volume approaches
(Hubbard 1999) were investigated in this study. The
governing equation is the flux conservative form of the
advection equation as given in Eq. 19.

∂c
∂t

+ ∇ · f(c) = 0 (19)

where f(c) is the flux vector, and in this study, is defined
as f(c) = uc. Fluxes are summed across the cell faces,
ensuring local mass conservation. To achieve higher-
order accuracy, a reconstruction is performed across
the cell and surrounding cells. In this case, linear recon-
struction is employed to obtain second-order accuracy.
The reconstructed solution, however, is not monotonic
so that some sort of limiting operation, such as slope
limiting, is applied when monotonicity is required. The
maximum limited gradient (MLG) scheme of Batten
et al. (1996) determines a reconstruction based on the
concentration gradients in a cell and its three neighbors.
The MLG gradient is then taken to be the largest,
after slope limiting, of the four concentration gradients.
In one dimension, the MLG reduces to the Superbee
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limiter (Sweby 1984). A second-order upwind scheme
on cell-centered triangular finite volumes has been de-
veloped by Tamamidis (1995). The method, designated
MUST for monotonic upwind scheme for triangles, is
fully upwind and formally second order. The solution is
partitioned into first-order upwind and higher (second)
order contributions. The second-order term is based
on a reconstruction procedure in which values at the
triangle vertices are computed through an inverse dis-
tance weighted summation of the surrounding barycen-
ter values. The reconstructed vertex values are used to
compute gradients across the triangles, but only the gra-
dient upwind of a given cell face is used. The scheme is
thus fully upwind. To ensure monotonicity, the higher-
order contribution is limited so that the value at a cell
face always lies between the values at the barycenters
of the two connecting triangular cells. Time integration
in both MLG and MUST is accomplished through a
second-order Runge–Kutta scheme.

1.6 Discontinuous Galerkin

The discontinuous Galerkin scheme for multidimen-
sions (Cockburn et al. 1990) is based on the flux-
conservative form of the advection Eq. 19. As in the
cell-centered finite volume schemes, fluxes are summed
across element faces to produce cell mass conservation.
However, higher-order reconstruction is based upon a
Galerkin representation within each cell. If linear basis
functions are used, then a lumped-mass time deriva-
tive can be employed, and second-order Runge–Kutta
time integration can be applied to produce the second-
order Runge–Kutta discontinuous Galerkin method
(Cockburn and Shu 1998), which is denoted in this
study as RKDG2. A third-order scheme, denoted
RKDG3, is obtained by employing quadratic basis
functions and third-order Runge-Kutta time integra-
tion. Mass lumping can not be used with the quadratic
basis functions, however, and a 6×6 mass matrix must
be decomposed for each element. The RKDG methods
outlined above will not be free of oscillations. Slope
limiting is applied to deal with this problem. In this
study, the minmod and total variance bounded in the
means (TVBM) slope limiters described by Cockburn
et al. (1990) are employed.

1.7 Eulerian–Lagrangian methods

Eulerian–Lagrangian methods (ELMs) have become
increasingly popular in a variety of fields (Binning and
Celia 1996; Rasch and Williamson 1990; Sorek 1988;
Staniforth and Côté 1991), combining the accuracy of
the Lagrangian approach with the convenience of a

fixed computational grid. ELMs, however, can have
serious mass conservation errors (Baptista 1987;
Russell 1989), which are related to the accuracy of the
tracking of the characteristic lines and of the evalua-
tion of the integrals at the feet of the characteristic
lines, to the mass conservation of the forcing flow field
and to the implementation of the boundary condi-
tions. To overcome these problems, several techniques
have been proposed (Celia et al. 1990; Cheng et al.
1999; Oliveira and Baptista 1998; Oliveira et al. 2000).
Among these, the Eulerian Lagrangian adjoint meth-
ods (ELLAMS) (Binning and Celia 1996; Celia et al.
1990; Russell 1989) have emerged as a distinct type of
ELM methods based on space-time varying weighting
functions, based on the adjoint equation. These meth-
ods allow for a mass conservative implementation of
any type of boundary conditions. A control-volume fi-
nite element Eulerian–Lagrangian scheme, designated
VELA (Oliveira 1997), is used in this study. This
scheme presents some similarities with the ELLAM of
Healy and Russell (1993), combining the finite volume
approach for the integration of the transport equation,
a high accuracy tracking and integration at the feet
of the characteristic lines for best mass conservation.
Although it also uses space-time weighting functions,
this scheme does not resort to the adjoint of the equa-
tion, thus, separating the definition of the weighting
function from the specific equation being solved. Con-
centrations and total depths are defined by linear shape
functions in each element. The area integrals at the feet
of the characteristic lines are evaluated by subdivision
quadrature (Healy and Russell 1993; Oliveira 1997).
Because the original VELA scheme produced signifi-
cant oscillations in the presence of complex flow fields
and large gradients (Oliveira 1997), two additional
VELA-based schemes that eliminate oscillations are
also presented in this study. The VELA–FCT (Oliveira
and Fortunato 2002) is based on flux-corrected trans-
port concepts adapted for finite elements (Löhner et al.
1987). Because the strict application of FCT concepts
in ELMs will lead to mass errors (Priestley 1993), this
scheme resorts to local mass correction techniques to
eliminate mass errors without introducing excessive
numerical damping. The third scheme (VELA–NLF),
(Oliveira and Fortunato 2000, 2002) is based on the
use of non-linear filters to eliminate oscillations, fol-
lowing the concepts proposed by Mahlman and Sinclair
(1973). The VELA–NLF is an adaptation of the non-
linear filter of Mahlman and Sinclair (1973) for unstruc-
tured grids and is based on mass conservation concepts
to eliminate the oscillations. Once an oscillation is
found, the concentrations at this node and at the ad-
jacent node that leads to the maximum concentration
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difference are set to be equal by preventing any mass
changes in the set of elements that contain any of the
two nodes.

1.8 MPDATA

The multidimensional positive definite advection trans-
port algorithm (MPDATA) (Smolarkiewicz 1984;
Smolarkiewicz and Clark 1986; Smolarkiewicz and
Grabowski 1990; Smolarkiewicz and Margolin 1998)
is a second-order accurate, positive-definite, and con-
servative finite-difference advection scheme commonly
used in geophysical fluid applications. MPDATA is an
iterative scheme in which the first pass is a donor
cell, or upstream differenced, approximation that is
positive definite but only first-order accurate. The
second pass estimates and approximately compen-
sates for the second-order truncation error of the
first pass. Successive additional passes estimate the
error of the previous pass and approximately cor-
rect for it, progressively improving the accuracy. In
the first donor cell pass, the velocity is the ac-
tual physical velocity. In successive passes, the ve-
locity is a pseudo- or anti-diffusive velocity, which
is calculated from the field being advected and pos-
sesses no physical significance. MPDATA is posi-
tive definite (sign preserving), but not monotonic. To
eliminate spurious oscillations, a non-oscillatory option
was developed (Smolarkiewicz and Grabowski 1990)
that uses flux limiting to impose monotonicity. In this
study, only the non-oscillatory version of MPDATA
is used, with two and three iterative passes, denoted
MPDATA-2 and MPDATA-3, respectively.
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