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1. Introduction

To avoid the problem of closure arising in the theory
of turbulence, in the past few decades several semi-
empirical theories and similarity models have been
proposed, that have been quite successful in describing
the flow over solid surfaces. It appears, however, that
to date no such model has yet been developed for
turbulent flow over a free-water surface disturbed by
waves. Nevertheless, it has been suggested by
Kitaygorodskiy (1969) that, beside the usual param-
eters needed to describe the flow over a solid surface,
two additional ones must be considered ; namely ¢, the
phase velocity of the dominant wave and A, the corre-
sponding wavelength. Thus, he reasoned that in the
near-water air layer a state of developed shear turbu-
lence exists in which, on the basis of dimensional argu-
ments, the characteristics of the turbulence, such as
the mean wind U="U(z) or the variance of the longi-
tudinal velocity fluctuations o,2=u?, are given by

dU
—=(uy/kz2)po, for hLz<z,, @)
dz
Tu2= U1, for hskz< 2, 2)

where z is the elevation, ws={(r¢/p)? the friction
velocity, 7o the surface shear stress, p the density of the
air, £ von Kérméan’s constant, %, the effective height of
the roughness of the water surface, and z, Miles’ critical
height, which is defined as the height at which the mean
wind speed equals the phase velocity, namely U(z.) =c.
Kitaygorodskiy (1969) hypothesized that, in general,
do=ao(z/\, c/uy) and ¢1=¢1(2/\, ¢/u,) are dimension-
less functions, but he did not specify their form or
nature.

One difficulty with this hypothesis is that it is not
always clear how the dominant wave should be defined.
The waves on a free-water surface are usually quite
random in both space and time, covering a wide spec-
trum of wavelengths. Especially when the waves are
growing under the influence of the wind, the interaction
among the various wavelengths of the developing
spectrum is a complex matter (e.g., Phillips, 1966), so

that it is rather difficult to characterize the wave effect
on the turbulence in terms of a single wavelength and
phase velocity. This difficulty does not exist under
conditions of a relatively weak wind over well-developed
slowly decaying smooth waves, or swell, and the
characterization of the wavefield by a single ¢ and A is
more meaningful.

Accordingly, it is the purpose of this note to present
on the basis of simple assumptions and dimensional
considerations a plausible mathematical expression for
oo, $1, etc., over relatively low-frequency waves, that
is, for large values of (¢/u4). The constants arising in
the analysis are obtained from available experimental
data.

2. Turbulent energy equation over a wavy water
surface

The equation for the energy balance of the turbulence
is a useful tool to analyze the mechanics of turbulent
flow and it has been the starting point for several
similarity models to describe flow in the lower atmo-
sphere (e.g., Monin and Yaglom, 1971). Under steady
neutral conditions over a homogeneous uniform surface
it can be written as

U 9 jwg wp
wu—+—<——+——)= € 3
0z 9\ 2 p

where %, v, w are the components of the velocity fluctua-
tions parallel to the x-, y-, z-axes, respectively; U is the
mean wind speed in its direction along the x-axis;
¢?/2=(’4+v*+w?)/2 is the turbulent kinetic energy
per unit mass; p is the pressure fluctuation; and p is the
density of the air. The first term in (3) represents
turbulent energy production since it expresses the
transformation of mechanical energy from the mean
motion through the Reynolds stresses. The last term
is essentially the work done per unit mass and per unit
time by the viscous shear stresses of the turbulence.
This dissipation is usually assumed to be independent
of the viscosity and expressable in terms of the variances
of the velocity fluctuations, or of the cross correlation,



480 JOURNAL OF
e=(—uw)/L,, where L, is a length scale characteristic
of the turbulence which may be taken proportional to
the elevation z.

Consider now that the underlying water surface is
disturbed by waves with a dominant phase velocity c.
Because of the difference in the scales of the wave-
induced turbulence and the shear- and buoyancy-
induced turbulence, it is convenient to express the
fluctuations in the air in terms of a random or turbulent
component superimposed on a dominant wave-induced

component, as

u= uzv+ut
v=0,7+v, (. 4)
etc.

The dominant wave is characterized by a single fre-
quency so that any long-term second-order cross corre-
lations of ¢~ with w-subscripted quantities are zero;
the same is true for third-order cross correlations of a
l-subscripted variable with two w-subscripted variables
resulting from the second term on the left in (3). How-
ever, as a result of the interaction between air turbu-
lence and wave-induced motion (e.g., Chang and Cheng,
1972), this is not necessarily the case for the third-order
cross correlations of a w-subscripted variable with two
{~subscripted variables. Thus, Eq. (3) may be written as

ds

_dU dy/w q 2 ;U—P— d wazué waw
uw——l——( : t+—t—-t> < + )
dz  dz\ 2 p 2 p

d watz
+~—< +uwuzwt+vwv,wt+wwwﬁ>
dz\ 2

T )
C1%8

where ¢y is a constant, and where #w =, +u,w, is
the total shear stress.

3. Similarity assumptions

Over a solid surface the vertical flux of turbulent
energy, represented by the second term in (3), is often
considered to be zero. Accordingly, let it be assumed
that over waves this only holds for the “random”
turbulence, but not for the wave-induced turbulence.
In other words, the turbulent energy produced by the
turbulent Reynolds stresses is being dissipated locally
without any convective transport; on the other. hand,
the wave-related energy is not only being dissipated
locally, but it is also diffused convectively upward,
since it originates from the motion of the swell. This
first assumption allows putting the second term in (5)
equal to zero.

For well-developed deep water waves ¢ and A are
strongly interdependent. Moreover, it has been found
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(e.g., Phillips, 1966; Kitaygorodskiy, 1969) that even
over a wavy surface the Reynolds shear stress is
approximately constant in the vertical, or

uw= —u,2 (6)

Consequently, Kitaygorodskiy’s ¢-functions may
probably be assumed to be independent of \ and z, and
it is acceptable to simplify them as

Bo=so(c/ux),

and in a similar way ¢, ¢2, etc.

A third assumption stems from the observation that
the relative speed of the air with respect to that of the
waves is probably the main factor governing the magni-
tudes of the wave-induced fluctuations. Thus

for ALz, (N

u’w:fl(c_U) X, ¥,2, t)
'D,(;:fg(C—U, X, y: Z’ t) » (9)

etc.

where the f’s are unknown functions that may however
be approximated by a McLaurin series as

f(C_LT) X, Y%, l)
= f(0> X, Y, %, t)_!_(c— (J)f'((), X2, [)

(c—=U)?
+Tfl/(0: X, Y, 3, l) Tt

where the primes denote differentiation with respect
to (c—U). Because the wave-induced fluctuations
probably become negligible when the air moves as fast
as the waves, f(0,x,y,2,/) may be neglected. To a first
approximation, terms in second and higher order
derivatives may also be neglected.

Finally, there is a vast amount of experimental
evidence (e.g., Roll, 1965; Ruggles, 1970) showing that
under neutral conditions the mean wind velocity profile
over a wavy water surface is for all practical purposes
logarithmic. Bearing also in mind that the Reynolds
stresses are approximately constant in the vertical, one
sees that the z-dependence in any of the terms in (5)
should be given either by (dU//dz) or by (uy/2).

With these four assumptions, dimensional considera-
tions suggest now the substitutions

d wwauz wwpw
s
dz\ 2 P
au

a [wuq? .
— st v,00Fwew? )= Catha—
dz\ 2 dz

aU
>=@@—UJL< (10)
dz

dUu
=[eaux—calc—U,)*}—, (11)
dz
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where ¢z, ¢; and ¢4 are constants and U, is a reference or

characteristic wind to be specified below. Thus, Eq. (5)

reduces to

dU Uy Ug®

ety ——co(c— U,)*—+—=0,
dz z 2

(12)

where ¢; and ¢g are constants. Comparison with (1)
vields

AU Uy c 2
—=—|:1+6<—~—a> 1, for (c/ug)>a, (13)

dz ks Uy

I 2
¢0= 1+,3<—__a> )
Uy

where a= (Cp,)"}, in which Cp,= (u4/(,)* is the drag
coefficient corresponding to l’,, and 8 is a constant to
be determined experimentally. Eq. (14) is the main
result of this note, providing the functional form of
Kitaygorodskiy’s function used in Eq. (1).

or

for (c/use)>a, (14)

4. Discussion

The constant e is related to the drag coefficient Cp,,
corresponding to U,. The drag coefficient over water
disturbed by waves has been the subject of much
experimental work. Reviews of recently obtained values
of Cp (e.g., Stewart, 1967; Toba and Kunishi, 197¢;
Pond, 1971; DeLeonibus, 1971) show that there is very
little evidence of wind speed dependence except at high
wind speeds; it appears to range between 0.0010 and
0.0015. Although Cp probably varies with ¢/u4 (Volkov,
1970), herein Cp, is merely a parameter which assumes
the value of Cp when ¢= U, or when (¢/us) =«. If the
above-mentioned values of Cp represent ‘“average”
wave conditions, i.e., for (c/uy)=c, it follows that
a=(Cp,y)~4= (U,/uy) lies in the range between approxi-
mately 25 and 32. Hence let it be assumed that a=29.
This also shows that the present characteristic velocity
U is related to ', the convection velocity of the large-
scale atmospheric pressure fluctuations at sea, which
Phillips (1966) found to be of the order of 25u,.

The only other parameter necessary in the formula-
tion of ¢g is 8. Unlike a however, 8 cannot be determined
from heuristic arguments but must be obtained from
wind profile measurements. Volkov (1969, 1970) has
presented and analyzed the results of experiments
carried out on the Western Mediterranean which con-
sisted mainly of measurements of the sea swell and of
various characteristics of the turbulence at 2 m and the
wind profile below 3.5 m above the water surface under
slightly unstable conditions. Two relationships are of
interest. The first one showed 1, vs %47, where u,? is the
apparent friction velocity obtained from the wind
profile, namely

dU
—-= (uy"/k3), (15)
dz
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I‘16. 1. Dependence of the shear function ¢o= (kz/u,)dU /dz on
the parameter ¢/u,. Curve 1 represents experimental data
published by Volkov (1969, 1970) and curve 2 is based on Eq. (14).

and where = (—uw)* is the actual friction velocity-.
The second relationship shows 7o vs ¢/#4. The combina-
tion of these two curves allows immediately the con-
struction of ¢o=¢o(c/us). This empirical function is
shown in Fig. 1. It can be seen that it is in agreement
with the present theoretical result of (14) with a=29.
The value of 8 thus obtained is 0.00600.

So far the analysis has centered on the shear function
do=¢o(c/us). As stated with Eq. (7) all other turbu-
lence statistics may be described by analogous func-
tions. In fact, using the argument leading to (10) and
(11), one obtains for the longitudinal fluctuations

Uyt =c1(c—U ), (16)
where ¢g is a constant. This gives, then, since
o l=u2+u,’ from Eq. (2),

¢ 2 ¢
¢1=[a1+b1<~——a> :(, for —>a, an

where a1 and b; are constants. Similarly, for the variance
of the vertical velocity fluctuations, one may write

ot =ups;, for h<Ls,

(18)

in which the subscript w refers to the z-velocity com-
ponent, and in which again ¢3=¢s(c/uy) is of the form

¢ 2 ¢
¢3=[03+bs<——0¢> :], for —>a,

where a3 and b are constants. Measurements of ¢, and
0w have been published by Volkov (1969) and
DeLeonibus (1971), which are in general agreement
with these equations. With a=29, Volkov’s data appear

(19)
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to follow approximately a1=12.0, 5;=0.0600, a;=3.0,
b3=0.0109. DeLeonibus’ neutral data follow approxi-
mately ¢;=2.5 and 5;=0.00495. Actually, DeLeonibus
(1971) also performed a linear least-squares regression
fit of all data and obtained (in the present notation)
¢2={1.68-+0.019[ (¢/2+) —291}?, which in view of the
small value of b3 of 0.019 is very close to the form of
(19). Even over solid surfaces there is a wide scatter in
the experimental results of (o./#s?) and (ou/us) (e.g.
Monin and Yaglom, 1971), so that also here differences
between the various sets of available experimental
results are to be expected. Obviously, more work will
be necessary to come to a consensus.
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