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Abstract

Estimation of swell conditions in coastal regions is important for a variety of public, government, and research applications. Driving a model of
the near-shore wave transformation from an offshore global swell model such as NOAAWaveWatch3 is an economical means to arrive at swell
size estimates at particular locations of interest. Recently, some work (e.g. Browne et al. [Browne, M., Strauss, D., Castelle, B., Blumenstein, M.,
Tomlinson, R., 2006. Local swell estimation and prediction from a global wind-wave model. IEEE Geoscience and Remote Sensing Letters 3 (4),
462–466.]) has examined an artificial neural network (ANN) based, empirical approach to wave estimation. Here, we provide a comprehensive
evaluation of two data driven approaches to estimating waves near-shore (linear and ANN), and also contrast these with a more traditional spectral
wave simulation model (SWAN). Performance was assessed on data gathered from a total of 17 near-shore locations, with heterogenous
geography and bathymetry, around the continent of Australia over a 7 month period. It was found that the ANNs out-performed SWAN and the
non-linear architecture consistently out-performed the linear method. Variability in performance and differential performance with regard to
geographical location could largely be explained in terms of the underlying complexity of the local wave transformation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Knowledge of swell conditions at specific near-shore lo-
cations is important for coastal research, marine engineering,
and policy development. Although global swell models are an
effective approximation of open swell conditions, they become
less accurate in the near-shore zone. Many forms of remote
sensing suffer from similar issues; satellite observations, for
example, due to the manner in which they are sensed and
averaged, normally pertain only to deeper ocean locations,
typically 30 km away from the shoreline (Kalra et al., 2005).
Variations in near-shore bathymetry, local wind-generated seas
and the effects of artificial structures transform deep water swell
due to reflection, shoaling, refraction, diffraction and breaking
(Londhe and Deo, 2004). At a particular location, local
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topography may lead to attenuation or accentuation of long or
short period swells, either directly, or by the contribution of
local wind conditions. This makes the estimation of onshore
wave heights, even given reliable offshore swell measurements,
a non-trivial exercise.

The ability to estimate and predict onshore wave heights at
the shore is of significant public interest in countries such as
Australia, due to the high level of public activity in or near the
break zone. There is a clear need for this data both as a general
advisory to the public concerned with recreational use of the
near-shore zone, and for life-guards concerned with providing
advice in order to ensure public safety. Much of the Australian
coastline is characterised by both high density structures and
highly dynamic sediment evolution, and monitoring of onshore
wave heights is important for monitoring and managing coastal
development. Finally, scientific and engineering evaluations of
particular locations and structures in this zone depend on
reliable data on wave action.
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Currently, estimation of onshore wave heights from visual
inspection is carried out on a regular basis, and this information
is broadcast through private and commercial channels. The
conventional approach is for this estimation to be performed
and recorded manually by human observers, using a combina-
tion of heuristics, local knowledge, and offshore wind and wave
models published by government agencies. Numerical models
based on wave propagation theory have been neglected as
a practical onshore wave height estimation tool due to a
combination of factors: complexity of implementation, high
amounts of processor time required, the need for accurate local
bathymetric surveys, and general inaccuracy, even when the
previous conditions are met. However, there is a clear need to
substitute an objective and automated approach for human
observations of onshore wave activity, which are expensive,
time consuming, and prone to the usual forms of human failure
and error.

In academic research, the propagation of swell in near-
shore areas is conventionally studied by running either an
actual, or a virtual simulated physical model (Londhe and
Deo, 2004). Physical scale models require a significant
investment of resources for their construction and simulation.
For this reason, physical modeling using numerical computer
simulation incorporating the local physical environment and
local swell conditions is often used. The Simulating Waves
NearShore (SWAN) numerical model is an example of a
popular approach for modeling wave propagation in the near-
shore zone. However, numerical models themselves require
care and expertise in their implementation. For example, a
wave prediction system based on a numerical model must
often contend with physical processes on a wide range of
scales. These techniques are also sensitive to accuracy of the
bathymetric data for the study area, and the quality of driving
data at the model boundaries. Typically, hours of processing
time are required for simulation of a region with adequate
temporal and spatial resolution. Due to technical issues that
may arise, results are sometimes unsatisfactory, especially in
the break-zone.

Empirical wave recordings and observations are used to
calibrate and validate theoretical (Booij et al., 1999a) and
empirical (Komar and Gaughan, 1972; Caldwell, 2004) ap-
proaches to modelling the wave transformations that occur as
they progress from deep to shallow water. The method of
Caldwell (2004), for instance, was based on comparisons be-
tween buoy-measured Hs in deep water in close proximity to
locations where visual observations were taken of trough to
crest vertical wave height at the break point. There has been
interest in developing empirical, data-driven models of near-
shore wave characteristics for many years (Booij et al., 1999a).
For example, an empirical method of obtaining surf height at the
breakpoint from offshore wave data was derived from ob-
servations by Komar and Gaughan (1972). Following this
approach, an alternative measure of surf height, Hsurf, was
developed for coastal zones with narrow shelves, steep bottom
slopes and high refraction,

Hsurf ¼ HbKrðHbÞ; ð1Þ
where Kr is the empirical estimation of the refraction coefficient
as a function of shoaling and buoy-estimated breaker height,
Hb:

Kr ¼ −0:0013H2
b þ 0:1262Hb þ 0:3025: ð2Þ

The method is based on comparisons between buoy-mea-
sured Hs in deep water in close proximity to locations where
visual observations were taken of trough to crest vertical wave
height at the break point. We note the particular operational
definitions of wave height in the break zone (e.g. tough-crest
height, assessed visually): it should be recognised that it is
usually impossible to measure breaking wave height using a
fixed wave gauge, since the spatial point of breaking varies with
incident wave conditions. Estimating near-shore wave height
through modelling the shallow-water wave transformation via
simplified equations that are optimised using real-world data
might be termed a ‘semi-empirical’ approach.

In their application to analysis in the physical sciences,
artificial neural networks (ANNs) can be regarded as a strongly
empirical, as opposed to a model-based approach to estimate
and predict wave behaviour (Deo and Jagdale, 2003). ANNs are
a flexible learning architecture which rely on the presentation of
input and target data, rather than a theoretical model, for the
estimation of an underlying physical relationship. As general
purpose function approximators, ANNs purposely impose no
constraints on the final model generated, although the size of the
neural network necessarily limits the overall complexity of the
modelled function. In their role of associating temporally, spa-
tially, or modally distinct measurements of wind-wave activity,
they must approximate the physical propagation of wave
energy. The effect of local geography or bathymetry is inferred
from the co-variation of input-target pairs, rather than explicitly
determined. Thus, a representative corpus of training data is
essential for the function approximation potential of an ANN to
be realised.

The use of ANNs has been reported for numerous ap-
plications in the geological and marine sciences, and in par-
ticular have been used for forecasting wave climate time series
(Deo et al., 2001; Agrawal and Deo, 2002). Tsai and Lee (1999)
utilised neural networks for forecasting tidal variability and Tsai
et al. (1999) used neural networks for forecastingwave heights at
near-shore locations, using measurements from other locations
as input, finding that using multiple sites as input increased the
accuracy of predictions. Some work has tested ANNs for
specific oceanic structural and engineering tasks: (Mase and
Kitano, 1999) used feed-forward networks to estimate wave
force impact on a marine structure, and (Mase et al., 1995) found
that a similar ANN architecture accurately predicted damage
levels on a breakwater resulting from wave action. ANNs have
recently been shown to produce superior estimates of wave
spectra from wave parameters than those provided by theoretical
or statistical predictions (Naithani and Deo, 2005). Non-linear
empirical models have been shown to approximate well the
underlying wave physics (Tolman et al., 2005).

ANNs have been applied to estimating missing wave buoy
data (Balas et al., 2004), and recently Kalra et al. (2005) have
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detailed an ANN-based effort to map offshore wave data to
coastal locations, reporting superior performance of ANNs
compared to a linear statistical approach. The authors estimated
wave activity in the near-shore region from satellite monitoring
at offshore locations. Scotto and Soares (2000) concluded that
in estimating significant wave height of sea-states using non-
linear autoregressive (AR) models, linear models satisfactorily
modelled the lower statistical moments, but non-linear models
better approximated the higher moments such as skewness and
kurtosis. Also using an AR model, Ho and Yim (2005), recently
demonstrated the feasibility of interpolating missing buoy data
between two wave measuring stations.

Neural networks have been demonstrated to be superior to
conventional approaches for forecasting significant wave height
in open water, in a variety of situations (Deo et al., 2002, 2001;
Deo and Kumar, 2000; Balas et al., 2004). Rao and Mandal
(2005) focused on ANNs as an alternative to numerical mod-
elling for estimating wave-fields generated by cyclone events.
Browne et al. (2006) emphasised the use of ANNS for bridging
of modes of observation (i.e. global model output/logged buoy
data/visual observations) in the context of bringing offshore
estimates to estimate activity in the near-shore zone. It has been
shown that non-linear ANN approaches outperformed linear
statistical and numerical modelling, in the estimation of both
human observations at the beach, and wave-rider buoy data.

Apart from the welcome comparison of ANN performance
with that of linear regression by Kalra et al. (2005), there
have been insufficient comparisons of ANNs with other forms
of swell estimation, such as linear predictors, and numerical
modelling. Work reported by Browne et al. (2006) represented a
first step towards a systematic comparison between ANNs,
statistical, and numerical modelling approaches. However, this
work needs to be extended to include a greater variety of
geographical areas, and longer study time periods.

As neural networks are unconstrained general-purpose
function approximators, with potentially a very large number
of degrees of freedom, care must be taken in their application in
order to ensure that the underlying function is in fact well ap-
proximated, allowing in turn for good generalisation to new
data. Over-fitting, which results from a high ratio of model
degrees-of-freedom to presented data, is a particularly common
pitfall for engineering and scientific applications of ANNs.
These issues have led to concerns being raised regarding the
validity of previous work in applying ANNs to wave estimation.
For example, a method of wave forecasting using neural net-
works was recently reported by Makarynskyy (2004), and
subsequently challenged by Medina (2005) due to issues related
to over-fitting, lack of baseline performance comparisons, and
an insufficient degree of cross-validation. Inappropriate appli-
cation of ANNs often leads to spuriously high performance
estimates. It must be also noted that as a strongly empirical
approach, ANNs do not provide the insight into wave pro-
pagation processes that is provided by full-scale numerical
modelling. However, the advantages include computational ef-
ficiency and potentially greater predictive power, without the
need for detailed geographic information, or the laborious
testing of a range of physical model parameters.
Recent research is increasingly focusing on the use of neural
networks in the role of an unconstrained empirical function
approximation tool for estimating the relationship between
geographically or temporally displaced observations of wave
height. However, to-date little attention has been paid to ap-
plying them to approximate the deep-to-shallow water wave
transformation. The current paper is focused on mapping off-
shore global wind-wave observations to activity observed at
particular onshore locations. This requires the model to incor-
porate the effects of a number of physical processes such as
bottom friction, diffraction and refraction, generated by an
interaction of local geography and bathymetry with the offshore
wave field. Recent studies by Kalra et al. (2005) and Browne
et al. (2006), have reported superior performance by ANNs.
However, each study considered only a single geographical
location for a relatively short time, which prevented strong
conclusions regarding the relative efficacy of ANNs to be
drawn.

The present study attempts definitive testing of ANNs for
modeling the near-shore wave transformation: bringing global
ocean wave model output to near-shore locations, and demon-
strating a potentially useful tool for emulating expensive surf
reporter observations. A comprehensive evaluation of empirical
methods is attempted by considering a total of 17 onshore
locations across 5 geographical regions distributed across the
continent of Australia, for a period of 8 months. ANNs are
compared with baseline, linear and model-based approaches
and explanations for the differential performance are provided.
Detail is provided on the technical implementation and vali-
dation of ANN performance, which as discussed above, is
critical for establishing an accurate benchmark of performance.
The SWAN numerical model is applied for performance
comparisons, and in order to investigate the characteristics of
the study areas.

2. Methods

2.1. Study regions

As noted above, in order to achieve a comprehensive eval-
uation of spectral, linear, and ANN based modeling, the present
study considered five regions in Australia, each with distinct
properties, in both in terms of bathymetry and wave climate.
This is illustrated in the regional maps (Figs. 1–3). The red
filled circles denote the onshore locations considered in this
study, while the red stars indicate the theoretical location of the
NOAA WW3 grid point. Fig. 1 maps the bathymetry of each
region, which shows a range of profiles, from open, exposed
beaches, to sheltered bays, along with a range of island and
headland features. Fig. 2 plots the mean wave height, as
estimated by the SWAN model from the NOAA data over the
time period of interest: this may be considered in conjunction
with Table 1 to provide a view of regional and intra-regional
wave climate variability. Finally, Fig. 3 shows the degree of
linear relationship (correlation r) of the SWAN model output at
each point within each region, to that region's NOAA WW3
grid point, over the study period. Lighter values indicate a



Fig. 1. Bathymetry for five of the study regions.
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Fig. 2. Mean significant wave height as estimated by the SWAN model when driven by NWW3 over the study period.
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Fig. 3. Normalised correlation coefficient r between the NOAA driving input and SWAN output significant wave height over the study period. Lighter shades indicate
local regions affected by more complex wave transformations: i.e. a greater proportion of observed wave height variability is not linearly related to the wave height at
the model boundaries.
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smaller proportion of the variability being explained by a linear
relationship with offshore conditions, and hence indicate a
greater proportion of non-linear wave effects in the SWAN
model output at that point. We consider this to be a useful guide
to the model-estimated complexity in the wave-transformation
over each locale with each study region.



Table 1
Cross-correlation matrix and univariate mean and higher moments of significant
wave heights Hs recorded at NOAAWW3 grid points from 12/01/05 to 9/8/05

NNSW QLD SA SNSW VIC WA

NorthNewSouthWales (153.75−31) –
Queensland (153.75, −28) .75 –
South Australia (136.25, −36) − .23 − .24 –
SouthNewSouthWales (151.25,−34) .80 .49 − .24 –
Victoria (143.75, −39) − .16 − .23 .77 − .17 –
Western Australia (115.00, −34) − .02 .12 .21 − .11 − .02 –
Mean H̄s 1.95 1.89 2.91 1.47 2.31 3.06
Standard deviation σ2(Hs) 0.85 0.65 1.01 0.78 0.84 1.20
Skewness σ3(Hs) 1.48 0.84 0.65 1.87 0.98 1.06
Kurtosis σ4(Hs) 6.02 4.26 3.02 8.32 3.88 4.23

Table 2
Counts of surf reporter observations and total number of days monitored from
12/01/05 to 9/8/05

Region Beach Observations (N ) Days (N )

QLD Surfer's Paradise 231 201
Sunshine Coast 228 203

WA Margaret River 229 202
Perth 223 204

SA Seaford 222 206
Chiton Rocks 210 206

NNSW Mid Coast 361 206
North Coast 216 206

SNSW Bondi 374 200
Cronulla 362 204
Manly 377 207
Palm Beach 330 200
South Coast 236 200

VIC Woolamai 275 200
Portsea 268 200
Torquay 305 206
Warrombool 243 200

Observations were recordedmore than once/day duringmore dynamic surf conditions.

451M. Browne et al. / Coastal Engineering 54 (2007) 445–460
2.2. Data

In the following sections we describe the various forms of
data used in this study; bathymetric surveys used as input to the
numerical physical model, driving variables from NOAA
WaveWatch 3 (NWW3), and visual surf reporter estimates ofHs.

2.2.1. NOAA WaveWatch 3
The driving variables for all models tested in this study were

drawn from global wave model data gathered from the NWW3
model at 6 grid locations in various regions off the coast of
Australia from 12/01/05 to 9/8/05. The NWW3 model provided
updates four times daily, at 4 am, 12 pm (midday), 6 pm, and 12
am (midnight). The NWW3 variables were; significant wave
height, primary swell direction, primary swell period, wind
direction, wind speed, secondary swell direction, secondary
swell period, wind wave direction, and wind wave period.
NWW3 generates swell forecasts at every 3 h from +3 to
+180 h ahead of the current time as well as a single analysis at
0 h, which represents the model state, given current measured
data. In the present study, only the 0 h state information was
used. For the purpose of presenting the NWW3 variables to the
ANNs for empirical prediction, variables in degree format
present an issue because of the discontinuity at the 0°/360°
point. Each of the directional variables; primary swell direction,
wind direction and wave direction were transformed to Car-
tesian co-ordinates (‘northerliness’ DN and ‘easterliness’ DE):

DN ¼ cos
pD
180

� �
;DE ¼ sin

pD
180

� �
: ð3Þ

The locations of the NWW3 grid points are shown in
Table 1. Table 1 displays the cross-correlation matrix between
Hs at the various grid points. As expected, there are correlations
between nearby grid points; i.e. between Queensland (QLD)
and North New South Wales (NNSW) regions, and between the
South Australia (SA) and Victorian (VIC) grid points. However,
11 of the 15 cross-correlations are below 0.3, indicating that
overall, the swell conditions around the continent had a rela-
tively high degree of statistical independence during the study
period. This entails that to a large extent, although the regions
were considered over the same time period, the study regions
represent independent sources of data for the purpose of testing
the estimation methods. The univariate statistics of the NWW3
estimated Hs in Table 1 also illustrate the heterogeneous nature
of the offshore swell conditions around Australia. Southern
areas (i.e. VIC, SA and Western Australia (WA)) had higher and
more variable seas, whilst NNSW and QLD were characterised
by greater skewness in Hs, primarily due to the large contri-
bution that intermittent tropical storm events make to the overall
variability of Hs in these areas.

2.2.2. Bathymetric data
Bathymetric data is a key parameter to undertake near-shore

wave modelling. Bathymetric data were required for 5 areas of
the Australian Coast from deep water to shallow water in order
to compute the wave propagation from the NWW3 output grid
points to the surf reporter locations. The publicly available
Geoscience Australia bathymetric database (www.ga.gov.au)
was used to generate the whole bathymetry of 4 areas.

The database contains data around the Australian margin
since 1963 from a variety of systems and levels of accuracy. A
total of 931 surveys are currently registered, whose extent is
34N–79S, 90–180E. The typical point data spacing is 25–
200 m. Approximately 20% of these surveys were acquired by
Geoscience Australia, the other component being surveys from
other institutions, such as oil exploration companies and the
National Geophysical Data Centre to which various institutions
have contributed. Swath bathymetry in deep water, laser air-
borne depth sounder (LADS) data, points digitised from Aus-
tralian Hydrographic Service charts on the shelf and predicted
bathymetry from satellite altimetry (Smith and Sandwell, 1997)
have been brought together. The database grid was computed at
a cell size of 0.01 (36″ or 1111 m) as a compromise between
conveying detail and limiting the file size.

For the Gold Coast area, accurate bathymetry data were
provided by the Gold Coast City Council. ETA lines covering
the Gold Coast from the Gold Coast Seaway to Tweed Heads

http://www.ga.gov.au


Fig. 4. Standard feed-forward ANN architecture.

Table 3
Mean and higher moments of surf reporter significant wave height Hs

observations (in metres) from 12/01/05 to 9/8/05

Region Beach H̄s σ2(Hs) σ3(Hs) σ4(Hs)

QLD Surfer's Paradise 0.96 0.35 0.0076 0.0475
Sunshine Coast 0.91 0.33 0.0086 0.0540

WA Margaret River 2.02 0.66 0.0009 0.0177
Perth 0.60 0.28 0.0092 0.0354

SA Seaford 0.45 0.22 0.0068 0.0324
Chiton Rocks 1.37 0.31 0.0003 0.0231

NNSW Mid Coast 0.66 0.43 0.0128 0.0419
North Coast 1.03 0.33 0.0116 0.0627

SNSW Bondi 0.88 0.38 0.0132 0.0592
Cronulla 0.88 0.39 0.0139 0.0608
Manly 0.88 0.38 0.0126 0.0577
Palm Beach 0.89 0.38 0.0128 0.0570
South Coast 0.87 0.45 0.0081 0.0349

VIC Woolamai 1.40 0.44 0.0002 0.0259
Portsea 1.46 0.46 0.0034 0.0344
Torquay 0.85 0.39 0.0085 0.0366
Warranambool 0.89 0.41 0.0066 0.0360
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and refined bathymetric surveys around Burleigh Heads and
Currumbin Creek estuary were combined with the Geoscience
Australia database for the offshore information (typically used
from 20 to 80 m depth).

2.2.3. Surf reporter data
In collaboration with the Australian surf monitoring firm

CoastalWatch™, the study relied on a network of professional
surf reporters for performing daily visual estimates of sig-
nificant wave height at each of the 17 beach locations. Estimates
were made using a mobile internet link and time-stamped.
Visual inspection was usually performed once per day, between
6 am and 8 am, but during dynamic periods a second visual
estimate was made in the afternoon. Table 2 displays the
number of observations and number of days for which ob-
Table 4
Cross-correlation matrix r of significant wave Hs at NOAAWW3 grid points from

Queensland Western
Australia

South
Australia

N

SP SC MR PE SF CR M

QLD Surfer's Paradise SP –
Sunshine Coast SC .96 –

WA Margaret River MR .13 .08 –
Perth PE .12 .09 .89 –

SA Seaford SF .15 .15 .12 .14 –
Chiton Rocks CR .12 .12 − .10 − .09 .45 –

NNSW Mid Coast MC .41 .37 − .01 − .03 − .11 − .05 –
North Coast NC .77 .71 .27 .24 .05 .03

SNSW Bondi BI .20 .11 .04 .01 − .31 − .23
Cronulla CR .16 .07 .01 − .01 − .32 − .23
Manly MY .21 .11 .03 .01 − .31 − .23
Palm Beach PB .21 .12 .04 .02 − .30 − .22
South Coast SC .12 .05 .06 .07 − .20 − .23

VIC Woolamai WO − .01 .01 − .20 − .22 .30 .62 −
Portsea PO − .01 − .01 − .13 − .19 .27 .59 −
Torquay TO − .00 .00 − .21 − .25 .15 .67 −
Warranambool WL − .08 − .08 − .24 − .30 .10 .54 −

Boldface indicates correlation rN.30.
servations were recorded for each of the 17 beaches. As the surf
reports were the limiting source of data for optimizing the
models, this table also summarizes the number of input/target
data pairs available for analysis. Table 3 displays the univariate
statistics for the surf reporter observations at each beach study
site. As expected, both overall significant wave height and
variability are significantly less than the open ocean estimates
produced by NWW3. With reference to the regional maps and
the NWW3 statistics, it may be seen that there is variability
between the various study areas corresponding to both offshore
swell characteristics between regions, and local geographic
features. At certain nearby beaches, where local geography and
bathymetry is relatively homogeneous, there is a high degree of
similarity between the univariate statistics of the beaches. This
is supported by Table 4, which displays the normalised bivariate
correlations in Hs between the surf reporter sites. The Sydney,
New South Wales (SNSW) beaches in particular, which are
grouped in a relatively small region in and around Sydney, and
similar exposure to offshore swell, have a high degree of inter-
dependence. However, in general there is wide variability in the
univariate moments due to the different swell conditions pre-
vailing in the different continental locations, and considerable
variety in local geography and bathymetry.
12/01/05 to 9/8/05

orth NSW South NSW Victoria

C NC BI CR MY PB SC WO PO TO WL

.39 –

.65 .36 –

.64 .33 .98 –

.65 .37 .99 .97 –

.66 .36 .99 .97 .99 –

.59 .37 .74 .76 .74 .73 –

.10 − .07 − .12 − .12 − .12 − .12 − .18 –

.13 − .06 − .10 − .11 − .11 − .10 − .17 .91 –

.04 − .02 − .06 − .06 − .08 − .07 − .10 .83 .83 –

.01 − .07 − .02 − .01 − .04 − .03 − .07 .71 .69 .79 –



Table 5
Mean absolute error (MAE) in cm of NOAAWW3 derived significant height estimates with respect to surf reporter observations

Region Beach Baseline Linear ANN Non-linear ANN Ensemble SWAN

Raw Scaled Training Validation Training Validation

MAE MAE
P
MAE σ(MAE)

P
MAE σ(MAE)

P
MAE σ(MAE)

P
MAE σ(MAE) MAE

t⁎⁎

QLD Surfer's Paradise 91.77 23.30 17.70 0.12 17.84 1.32 14.93 0.96 16.12 1.05 13.60 3.22⁎ 32.31
Sunshine Coast 96.33 22.78 16.75 0.07 16.77 0.73 14.17 0.93 15.51 0.96 12.40 3.32⁎

WA Margaret River 102.89 36.64 34.20 0.17 34.74 1.30 23.75 1.46 26.69 1.64 21.34 12.17⁎ 65.51
Trigg Beach 244.11 13.32 13.46 0.13 13.80 0.55 11.15 0.67 12.05 0.89 10.16 5.25⁎ 62.77

SA Seaford 245.64 13.82 14.28 0.06 14.49 0.98 11.92 0.48 12.83 0.96 11.12 3.83⁎ 15.20
Chiton Rocks 152.84 21.15 20.56 0.04 20.64 0.52 16.17 0.76 17.42 0.76 15.12 11.02⁎ 40.93

NNSW Mid Coast 127.92 22.91 23.42 0.06 22.97 1.19 18.65 1.03 19.62 1.13 17.19 6.46⁎

North Coast 90.93 21.41 20.28 0.22 19.98 0.67 17.13 1.35 18.15 1.17 15.08 4.30⁎

SNSW Bondi 59.54 19.47 21.64 0.13 21.73 1.31 18.12 0.52 19.41 1.04 16.96 4.38⁎

Cronulla 60.26 19.94 22.22 0.15 21.85 1.09 18.76 0.75 20.25 0.93 17.26 3.53⁎

Manly 60.18 19.86 21.71 0.09 21.40 1.50 18.41 0.65 19.49 1.19 17.33 3.15⁎ 50.06
Palm Beach 58.97 19.72 21.96 0.19 22.26 0.88 17.69 0.65 19.75 1.34 16.42 4.95⁎

South Coast 64.73 28.06 26.97 0.11 27.45 1.33 22.14 1.70 24.20 1.53 20.56 5.06⁎

VIC Woolamai 89.94 29.62 27.88 0.09 28.30 1.05 23.93 0.86 25.64 1.47 22.70 4.67⁎ 38.72
Portsea 83.22 28.81 28.61 0.14 28.72 1.44 24.49 0.89 26.61 1.78 22.62 2.92⁎

Torquay 143.57 24.18 23.73 0.13 24.34 1.15 19.16 1.00 21.03 1.45 17.83 5.66⁎ 34.98
Warranambool 141.49 27.93 26.00 0.11 25.96 1.07 23.90 0.72 25.29 1.23 22.78 1.30

⁎ indicates 1-tailed t-statistics significant (N=5, pb0.01) ⁎⁎ t-statistics: two sample, one-tailed t-test testing HðPMAE val
nl b
P
MAE val

lin Þ.
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2.3. Analysis and simulation

2.3.1. ANN background
ANNs are widely accepted as a valuable tool for modeling,

approximation, and classification (Kostanic, 2001; Bishop,
1995; Ripley, 1996). The common fully inter-connected feed-
forward architecture implements a mapping y= f (x):ℜm→ℜn

and is optimized by providing multiple (assumed noisy) paired
samples of the input and target output {ip∈ℜm,tp∈ℜn}. The
transfer function g, which generates a unit's output given net
activation from connections to units in the previous layer,
should generally be smooth and have a well bounded range for
Table 6
Correlation R of NOAAWW3 derived surf height estimates with surf reporter obse

Region Beach Baseline Linear ANN

Raw Scaled Training Validation

r̄ r̄ r̄ σ(r) r̄ σ(r)

QLD Surfer's Paradise .49 .49 .73 .008 .71 .036
Sunshine Coast .46 .46 .72 .008 .71 .026

WA Margaret River .77 .77 .79 .005 .78 .018
Trigg Beach .79 .79 .80 .015 .80 .028

SA Seaford .67 .67 .63 .030 .61 .045
Chiton Rocks .58 .58 .62 .008 .64 .029

NNSW Mid Coast .72 .72 .74 .004 .73 .040
North Coast .34 .34 .52 .014 .52 .042

SNSW Bondi .81 .81 .75 .005 .76 .019
Cronulla .80 .80 .75 .005 .75 .026
Manly .80 .80 .75 .004 .75 .036
Palm Beach .81 .81 .75 .006 .75 .035
South Coast .69 .69 .72 .006 .70 .047

VIC Woolamai .67 .67 .69 .003 .68 .033
Portsea .70 .70 .69 .007 .69 .029
Torquay .68 .68 .70 .007 .71 .016
Warranambool .59 .59 .63 .004 .64 .040

⁎ indicates 1-tailed t-statistic significant (N=5, pb .01).
any input; e.g. g:(−∞, ∞)→ (−1, 1) for the tan-sigmoidal case
(logistic and gaussian functions are also common basis
functions). Assuming the activation function at each layer i=
{1, …, L} is homogenous, an ANN implements the function

f ðxÞ ¼ f ða0Þ ¼ hLðhL−1ðhL− N ðh1ða0ÞÞÞÞ ð4Þ
with the layer transformation h defined by

ai ¼ hiðai−1Þ ¼ giðWi½aTi−11�Þ ð5Þ

where the set of free parameters (termed weights) in the system
{Wi} determine the particular non-linear mapping, noting that
rvations

Non-linear ANN Ensemble Hðr̄ valnl
Nr̄ vallin

Þ SWAN

Training Validation

r̄ σ(r) r̄ σ(r) r̄ t-statistic

.83 .027 .79 .037 .86 4.84⁎ .72

.83 .025 .80 .029 .87 7.42⁎

.88 .011 .86 .022 .90 8.23⁎ .73

.87 .018 .85 .023 .89 4.82⁎ .72

.75 .020 .70 .027 .78 5.81⁎ .63

.77 .021 .74 .028 .81 8.63⁎ .40

.83 .021 .80 .039 .86 3.90⁎

.74 .058 .68 .070 .81 6.28⁎

.84 .0093 .82 .021 .86 6.86⁎

.84 .011 .79 .016 .87 4.63⁎

.84 .0093 .81 .025 .86 4.55⁎ .76

.85 .011 .81 .036 .87 4.15⁎

.80 .029 .76 .032 .84 3.16⁎

.78 .018 .74 .034 .80 3.97⁎ .62

.78 .015 .74 .030 .81 3.53⁎

.81 .019 .78 .030 .84 7.35⁎ .70

.71 .022 .69 .031 .75 2.91⁎
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a0=x is an m element vector, aL=y an n element vector, and
necessarily the dimensions {di

1, di
2} of Wi have the constraints

di
1 =m+1, dL

2 =n+1, and di
1 =di−1

2 . This notation represents the
constant or bias term as a unit input appended to the output
vector of the previous layer. ANNs are usually conceptualised
as a series of neural layers, with forward interconnections
between subsequent layers, as shown in Fig. 4.

A common application of feed-forward networks for esti-
mation involves a fixed architecture or topology, with two or
three layers L, and an arbitrary number of neurons (defined by
di
2) in each layer. Training a neural network usually involves

minimising an error function (e.g. for mean-square error (MSE),
ϵn=Σp(yp− tp)2), utilising local gradient search algorithms
operating on −δϵn /δ{Wi}, the derivative of the error function
with respect to the free weight parameters in the network.
Sophisticated and efficient search algorithms, such as the
Levenburg-Marquardt method or conjugate gradient descent
(Marquardt, 1963; Kan and Timmer, 1989), along with modern
computational resources, allow for fast optimisation of medium
sized networks. Single layer, or linear feed-forward networks
converge to a global optimum. The function-approximation
power of non-linear ANNs with one or more hidden layers is
based on the non-linearity of the basis functions in the hidden
layers. However, this property also entails the presence of local
Fig. 5. ANN estimation performance
minima in the error function. ANN implementation requires
acknowledgement that optimisation based on local gradients
may be expected to yield solutions located in some form of local
minima: i.e. good but not optimal solutions. Multiple runs with
random initial {Wi} are a straight-forward way to alleiviate this
issue. Further, since ANN architectures can involve a large
number of free parameters, over-fitting of the training data is
common: this must be taken into account both in model
optimization, and in estimating model effectiveness.

2.3.2. ANN implementation
In the present study, the basic feed-forward ANN architec-

ture was used to implement three empirical estimates of surf
reporter readings of significant wave height, H s

sr. In each case,
the 9 NWW3 parameters (given in Section 2.2.1) were used as
inputs to the model, with the four directional angle variables
transformed to 2D Cartesian coordinates on the unit circle,
leading to a total of 13 inputs. Firstly, a simple linear scaling of
NWW3 derived Hs, Hs

N was implemented:

bH sr
s ¼ w1H

N
s þ w0 ð6Þ

with the model weights w determined empirically. Because of
the extreme simplicity of this model, we refer to this as the
at Surfer's Paradise, Queensland.



Fig. 6. ANN estimation performance on a South Australian beach.
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baseline-scaled estimate. In order to reduce the number of input
variables, and hence the number of free weights in the networks,
principle components analysis (PCA) was applied as a pre-
processing step.1 Using a form of scree plot, it was decided that
retaining the first 6 orthogonal projections of the data retained a
reasonable level (N92%) of total (normalised) variability in the
NWW3 data. Given the vector of normalised NWW3 driving
variables n, and the 13×6 PCA transformation matrix P, the
linear empirical model is given by

bH sr

s ¼ hwT; ½nTP 1�Ti ð7Þ

where 〈·〉 denotes the inner product operation, and the 6-ele-
ment weight vector w is optimized with respect to the training
data. All feed-forward ANN and non-ANN model optimization
was done using the Levenburg-Marqhardt (LM) algorithm
implemented in MATLAB. Like other iterative optimization
algorithms, the LM method finds parameter values that
minimize the sum of squares using local gradient information
of the objective function. It is a more robust form of Gauss-
1 As PCA is a standard data pre-processing technique for reducing data
dimensionality, it will not be discussed. For more details the reader is directed
to Joliffe (2002).
Newton algorithm (which utilizes first derivative information in
estimate updates).

The final empirical model is a non-linear feed-forward neural
network utilising tan-sigmoid activation functions

hðxÞ ¼ 2
1þ e−2x

−1 ð8Þ
in the hidden layer, and linear activation in the output layer. The
non-linear ANN model used a single hidden layer of 6 neurons,
the equation being:

bH sr

s ¼ wT
2 ; hð½nTP 1�W1Þ1
� �� � ð9Þ

with the 6×7 input-to-hidden connection matrix W1 and the
1×7 hidden-to-output weight vector w2

T being determined
empirically.

Themulti-layer ANNs used in the studywere purposelymade
as small as possible in order to reduce the potential for over-
fitting the data: the non-linear architecture involved 49 free
weights. It was assumed that a reasonable approximation to the
shallow-water transformation for a single location would not
require an overly complex model. The available data for the surf
reporters at each onshore location varied from 800 to 900 data
points. The ANNs were trained using a 5-fold combined early-



456 M. Browne et al. / Coastal Engineering 54 (2007) 445–460
stopping and cross-validation method. That is, 80% of the data
was used for optimising the free weights in the model, with 20%
used for cross-validation of the data, and early stopping of
training. This approach is intended to prevent over-fitting of the
training data, and for generating reliable estimates of perfor-
mance on unseen data. For the non-linear model given in Eq. (9),
each partition of the data was used to train 10 ANNs with
identical topology, but different random weight initialisations,
and the best performing neural net used in each case. Finally the
ensembleANN output was calculated by averaging the output of
the 10 ANNs upon presentation of the entire data set. The
ensemble method is known to improve performance and
generalisation of ANNs, but the performance in this case is
known to be an overestimate, as the performance calculation
is necessarily performed on the combined training and test data
subsets for all the trained neural networks. Therefore, in Tables 5
and 6, the validation performance column may be treated as a
conservative estimate of future ensemble ANN performance,
whilst the reported ANN ensemble performance is rather more
optimistic.

2.3.3. SWAN background
SWAN (version 40.41) is a spectral wave model based on the

action density balance equation (Hasselmann et al., 1973) that
Fig. 7. ANN estimation performance
describes the evolution of two-dimensional wave energy spectra
under specified conditions of winds, currents, and bathymetry
(Booij et al., 1999b; Ris et al., 1998).

SWAN can be used on any scale, even if this model is
specifically designed for coastal applications. This model
requires no restriction on wave approach angle or directional
width. SWAN is able to simulate accurately the wave field in
coastal areas where reflection and diffraction are not significant.
The SWAN Cycle III User Manual by Holthuijsen et al. (2002)
provides a detailed account of the theoretical background,
program structures, and implementation. SWAN modeling has
been used successfully for storm-induced coastal flooding
assessment applications (Cheung et al., 2003), to drive near-
shore wave-induced current near-shore models (Castelle et al.,
in press), for wind generated waves in lakes (Jin and Z.-G.,
2001) and in coastal regions (Ou et al., 2002; Castelle et al.,
2006), and to model the evolution of wave spectra in a wave
tank (Wood et al., 2001).

2.3.4. SWAN implementation
In the present study, SWAN is used in stationary mode. The

model considers a steady state situation that requires the time of
propagation of the waves through the domain to be short
compared to the variation of water level, currents and changes
on a Western Australian beach.
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in offshore wave conditions. Triad interaction is taken into
account in the computations. The breaking wave model chosen
herein is the bore-based model of Battjes and Janssen (1978),
with a constant breaker parameter γ=0.73 following Battjes
and Stive (1985). The wave forcing provided by the NWW3
nearest output point is to the offshore and lateral boundaries of
the model. For Western Australia, South Australia, Victoria and
New South Wales areas, the computational grid is concurrent
with the Geoscience Australia grid i.e. a regular grid at a cell
size of 0.01. For the Queensland area, a curvilinear grid is used
for computations with grid cell size of O(100 m). During the
simulations, the wave information is requested at each surf
reporter location. The outputs are given in 10 m depth in order
to avoid an underestimation of wave height due to wave
breaking during high energy conditions. The tide level is treated
as constant equal to 0 in the Admiralty Height Datum (AHD),
i.e. at mid tide. Stationary computations are done every 6 h,
concurrent with the NWW3 output data.

3. Results

Table 5 presents the performance of the various empirical
models in terms of mean absolute error (MAE) for the 17 surf
Fig. 8. ANN estimation perform
reporter locations, organised according to study area. A single
NOAA WW3 grid point served as input to models for all
the surf reporter locations in each study area. For ease of
presentation, the MAEs are provided in cm rather than metres.
The first column displays the difference between the raw
significant wave heights H s recorded at the offshore NOAA
grid point and the surf reporter observations. This base- line
difference ranged from approximately 0.6 m at the Sydney, New
South Wales beaches, to approximately 2.4 m at Trigg Beach,
WA and Seaford, SA. The next column displays the MAE after
linear scaling of offshore H s using Eq. (6). At all locations,
linear scaling resulted in a significant decrease in the MAE. This
baseline measure represents the error after linear attenuation of
wave energy is accounted for. Because of the insignificant
degrees of freedom for this model (i.e. 1), division of the data
into training and validation subsets was not performed. For the
linear and non-linear ANNs (Eqs. (7) and (9)), data was split
into training and validation and test sets, and the results of both
are shown. The incremental improvement of the linear and non-
linear ANNs varied over the test sites. The ensemble ANN
performance is also shown. Two sample t-tests (N=5) were
performed in order to explicitly test the hypothesis that the non-
linear ANN MAE was less than the linear version. Despite
ance on a Victorian beach.
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relatively small incremental improvements in performance in
some cases, the t-statistics were significant at the .01 probability
level for all locations except for Warranambool, VIC.

Table 6 shows similar results for the normalised correlation
coefficient R between empirical model estimates and surf re-
porter observations. The R coefficient provides a more sensitive
measure of estimation performance. For consistency, raw and
scaled correlations are included, although they are identical due
to the fact that R is normalised with respect to univariate var-
iance, and linear scaling therefore has no effect of the observed
R. Here the improvement is estimation performance over the
baseline is more apparent, and so too is the differential im-
provement over the various locations. Despite the greater
degrees of freedom in the non-linear versus linear models,
generalisation performance, as measured by the validation
columns was consistently better for the non-linear networks.
This is confirmed by the t-statistics, which indicate significant
improvement in performance in almost every case.

Figs. 5–9 compare graphically the output of the best per-
forming non-linear neural network with the surf reporter
observations. A time series over the study time period is
shown on the left hand side of each plot. The two error-bar plots
on the right hand side summarise the relationship between either
Fig. 9. ANN estimation performance
H s offshore baseline (middle plot) or ANN network estimated
H s (right plot). In both cases, the diagonal line represents H s as
reported by the human observer, whilst the mean and standard
error at each wave height is summarised by the error bars.

The full page illustrations provided in Fig. 1 shows the
bathymetric profiles for each of the study regions for which
bathymetry was available.

4. Discussion

We first consider the effectiveness of SWAN modeling for
near-shore wave estimation. For each area, there is a significant
improvement of the wave estimation in terms of the mean
absolute error (MAE) at the surf-reporter locations in com-
parison with the NOAA outputs. Thus, the overall degree of
wave bottom friction over the continental shelf and wave energy
shadowing behind headlands and islands appears to be correctly
estimated. However, the results are generally not comparable
with either the linear or non-linear empirical models.

The effectiveness of SWAN modeling is, not surprisingly,
more effective when accurate bathymetry are available and a
more refined computational grid is used. In the Queensland area,
for which this was the case, the correlation factor significantly
on a New South Wales beach.
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improves in comparison with NOAA output data (from 0.49 to
0.72), as does themean absolute error (MAE) (0.94m to 0.32m).
This area is exposed to moderate to high energy southerly to
south-easterly swell during the winter period. During these wave
conditions, the surf reporter location is partially sheltered by the
Coolangatta headlands. This sheltering and resulting wave
refraction patterns are mostly responsible for the significant
improvement of the correlation factor.

For the other areas, SWAN performance in terms of the
correlation statistics is significantly worse in comparison to the
ANN estimators, and even the baseline. This can be explained
by many factors. The main concern is the bathymetric data, and
consequently the coarse computational grid. In the Queensland
region, comparison of Geoscience Australia bathymetric data
and bathymetric surveys provided by the Gold Coast City
Council showed that errors of the order of sometimes a few
meters could be measured. The main processes affecting the
wave propagation exist in the near-shore zone, usually between
30–40 m depth. For example, in the New South Wales area,
there is significant longshore variability of the seabed between 0
and 50 m depth which are poorly revealed by Geoscience
Australia database. Mid-scale processes such as refraction are
poorly simulated by SWAN in the present study. Furthermore,
for areas with a large and shallow continental shelf such as the
Western Australia area, calibration of bottom friction is a key
parameter for an accurate estimation of wave height to the
shore. Finally, one of the main reasons why SWAN results are
not in very good agreement with surf reporter wave height
estimation is the wave forcing format. Indeed, significant wave
height, mean period and mean wave angle are provided by
NWW3 outputs in our areas of interest. Directional wave spec-
tra, which were not available in the present study, are necessary
for optimal performance of model-based estimation techniques.

The ANN based empirical method used, on the other hand,
does not depend on careful adjustment of physical parameters
(such as bottom friction) and handles gracefully sub-optimal
input data (i.e. swell parameters in lieu of the complete direc-
tional spectrum). It was expected that the non-linear ANN
architecture would perform better than the linear models, and
this was borne out by the results. Tables 4 and 5 show that non-
linear networks consistently out-performed linear networks over
the study regions both in terms of standard error, and correlation
with the surf reporter targets. This need for a non-linear model
was in accordance with predictions, as a non-linear model was
expected to be necessary to take into account the interaction of
variable offshore forcing conditions and complex local bathym-
etries. From Figs. 1–3, it is clear that a significant proportion of
the shared variability in offshore and onshore observed swell
heights is modulated by non-linear physical processes in the form
of refraction, wave interactions, and local wind effects.

The simultaneous prediction of near-shore wave heights over
a large number of study regions, along with the use of SWAN
modeling of wave propagation in the region (Figs. 1–3) allows
us to consider the reasons for differential prediction perfor-
mance in each study area. The Queensland region, for instance,
is subject to variability in swell direction, biased towards the
southeast. For these beaches, the relationship between offshore
and onshore swell height is moderated strongly by swell direc-
tion, with more southerly swells experiencing a higher degree of
sheltering and refraction. In the case of Seaford SA, both linear
and non-linear ANNs failed to markedly improve onshore swell
estimation. This may be explained by the fact that offshore and
onshore activity is highly decoupled: the highly dynamic off-
shore wave climate has limited propagation to the onshore site
due to sheltering. Poor performance at this site also results from
the inherent difficulty in monitoring small changes in wave
height, and the fact that a higher proportion of this variability is
due to unpredictable effects such as localized winds. The utility
of non-linear estimation was more apparent at Chiton Rocks
SA, which may be explained by its more exposed aspect,
yielding a more consistent relationship between offshore and
onshore activity, which the empirical models were able to
emulate. A non-linear model was more effective because it was
able to take into account differential attenuation due to swell
direction. The empirical estimation methods were less useful on
Sydney (SNSW) beaches, where the baseline relationship
between NOAA and the surf-reporters was very high. The
lack of complexity in the offshore-onshore wave transformation
meant that there was little further improvement that the linear or
non-linear models could make on the baseline prediction. The
South Coast NSW study site was a slight exception to this rule,
that we explain by its greater distance from the NOAA grid
point (it is located further south, off-map). The best perfor-
mance overall, in terms of ANN improvement over baseline,
was observed at Margaret River and Trigg beach, WA. This is
consistent with the general relationship observed between local
site characteristics and the improvement of estimation perfor-
mance over baseline. That is, non-linear ANNs are most ef-
fective for estimation when there is a systematic yet complex
coupling of offshore and onshore wave climates. Best per-
formance is observed when local transformative processes such
as shoaling, attenuation and refraction moderate, but do not
completely decouple, the onshore from the offshore wave
climate. ANNs tended to over-estimate smaller swells. We
believe this is due to the fact that the ANN models assume a
Gaussian error distribution. However, this is unrealistic since; a)
it is impossible to observe negative wave heights, and b) the
wave height distribution is positively skewed. This could be
addressed in future work by utilising a zero-truncated, or quasi-
binomial error distribution, which would more accurately reflect
acutal wave height distributions.

5. Conclusions

The methodologies considered here have immediate
application for near-shore wave height estimation. This is
significant because the vast majority of human activity occurs
in the near-shore zone, and swell conditions in this area are
therefore of greatest interest to coastal managers and the
public. When combined with a near-shore model, existent
global wave models such NWW3 can provide a reliable and
cost-effective source of offshore data in absence of in situ
measurements. Compared with linear and spectral modeling,
this study has concluded that near-shore conditions can be
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inferred from WW3 parameters most effectively using ANN-
based estimation. As well as explicit and implicit modeling of
the near-shore wave transformation, the paper establishes quite
strong relationships between an open ocean global wind-wave
model and onshore visual estimates of wave height provided
by experts. The empirical approach presented here relies on the
availability of a corpus of target data for model training: the
use of a nationwide database of expert surf reporter records is a
unique characteristic of this study. The practical application
rests on the ability to replace the manual ratings, with the
automatic estimates generated by the ANN model. The high
correlations and relatively small standard-errors obtained
by the ANN model on the validation data set indicates that
6–12 months of daily observations is sufficient to build a
model that generalizes well.
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