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Abstract. Results of four groups of experiments involving transient, mechanically
generated water waves in a narrow wave tank are described. The purpose of these
experiments was to investigate the limitations of the validity of linear theory predictions of
the spatiotemporal structure of the surface elevation in focal regions. For unidirectional
surface gravity waves, focusing occurs as a result of long waves overtaking short waves.
Surprisingly, in our measurements, nonlinear effects are stronger in deep water than in
intermediate depth water and are stronger in nonfocusing wave trains than in focusing
wave trains. These trends can be explained by the observation that the dominant source of
nonlinear interaction in our measurements was the Benjamin-Feir instability, which acts
only over a limited duration in focusing wave trains, only in wave trains whose bandwidth
is narrow, and only in deep water. Under conditions in which the Benjamin-Feir instability
does not act (as is expected to be the case in the ocean), predictions that take into
account amplitude-dependent dispersion but otherwise neglect nonlinear effects are in
good agreement with measurements for wave trains with (ka)max slightly in excess of 0.30.

1. Introduction

The work reported here was motivated by recent attempts
[Boccotti, 1989, 1997; Phillips et al., 1993a, 1993b; Pelinovsky
and Kharif, 2000; Brown, 2001] to describe the expected spa-
tiotemporal structure of the sea surface in the vicinity of ex-
treme wave events using linear theory. In these publications,
extreme waves are modeled either as local maxima of a sta-
tionary Gaussian random process or as manifestations of
space-time caustics where wave energy (or wave action, as
appropriate) is locally focused. The details of these differing
theoretical models of extreme waves are not important in the
work reported here. Instead, we focus on a more fundamental
question: does the linear theory description of water waves
remain approximately valid in the vicinity of large wave events?

In view of the considerable effort that has been devoted to
the study of finite amplitude water waves over the past few
decades (see, e.g., the recent review by Dias and Kharif [1999])
the need for reexamining the limits of the validity of linear
theory might be questioned. While it is clear that nonlinear
effects play very important roles in the long-term evolution of
ocean waves [see, e.g., Komen et al., 1994], near the onset of
wave breaking [see, e.g., Dommermuth et al., 1988] and in other
circumstances it is not clear that nonlinear effects necessarily
play a critical role in the evolution of localized wave field
features, even if the feature of interest is an anomalously large
(but nonbreaking) wave. In this paper we seek to assess the
bounds of validity of a local, in both space and time, linear
theory description of water waves in the vicinity of focal events.

We present the results of four groups of experiments involv-
ing transient, mechanically generated water waves in a narrow
wave tank. The experimental work was performed at the Uni-

versity of Oslo’s Hydrodynamics Laboratory in a wave tank of
width 51 cm, depth 1 m, and length 25 m. A programmable
piston-driven hydraulic pump controlled one of the vertical
end walls (the wave “paddle”) of the tank to generate waves in
a repeatable fashion. At selected fixed locations, resistance-
type wave staffs measured the time histories of the waves that
were generated. Absorbing material covering a “beach” ex-
tending over ;6 m at the opposite end of the wave tank
effectively eliminated reflected waves. By generating waves
whose period increased with increasing time a focal region
(where longer waves overtake shorter waves) was produced
near the center of the tank. Rapp and Melville [1990] have used
essentially the same experimental setup to generate and study
breaking waves. In our work, wave amplitudes were varied but,
in all cases reported, were less than those that produced wave
breaking. Wave amplitudes a were varied in the hope of es-
tablishing an approximate bound on wave steepness ka (where
k is the horizontal wavenumber), below which linear theory is
approximately valid. Our observations indicate that wave
breaking occurs when the instantaneous local wave steepness
(ka)max exceeds ;0.44. With this in mind it should be noted
that those measurements reported here for which (ka)max is
near or above 0.3 correspond to very steep waves that are not
far from breaking. Pierson et al. [1992] have also experimentally
investigated limitations of the linear theory description of
steep nonbreaking surface gravity waves.

The remainder of this paper is organized as follows. In
section 2, experimental results for four groups of experiments
are presented. These results are presented in the order in
which the experiments were performed. A brief rationale is
given for performing each group of experiments. In section 3 a
more quantitative description of how our linear theory wave
field calculations were performed is presented. Included is a
discussion of the effects of friction, surface tension, and finite
amplitude dispersion. In section 4, measured wave spectra are
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presented and discussed. In section 5, the results are summa-
rized and discussed.

2. Preliminary Description of Experimental
Results

Figure 1 shows a subset of the data from the first group of
experiments that was performed. In Figure 1 and in similar
figures that follow, three measured sets of time histories are
shown together with a single linear theory–based prediction.
The manner by which the latter was constructed will be dis-
cussed in section 3. Differences in the three sets of measured
time histories are not visible on the scale at which the data are
plotted. Sets of measurements were made using four different
values of peak paddle amplitude using the same paddle wave-
form. One such set is shown in Figure 1. This was done so
that the validity of linear theory could be tested as a func-
tion of wave steepness ka. For the conditions shown in
Figure 1, (ka)max 5 0.35. The other group one measure-
ments had (ka)max values of 0.09, 0.24, and 0.40; waves in the
latter set of measurements were very close to breaking. All
reported measured values of (ka)max in this paper are the
maximum rate of change of the average (over three realiza-
tions) surface elevation ­z#/­t divided by the wave phase
speed at the measured spectral peak. (In this procedure the
phase speed at the spectral peak is an approximation to the
instantaneous phase speed at the maximum of ­z#/­t. In our
experiments this approximation is expected to be very good
as can be seen by comparing wave train time histories and
the corresponding space-time ray plots. In principle, the

instantaneous phase speed is computable as the rate of
change of the phase of the Hilbert transform envelope of
z#(t).)

For the data set shown in Figure 1 the water depth was h 5
60.0 cm, and the paddle input voltage time history had the
form

V~t! 5 b~t! sin f~t! (1)

for 0 # t # ts with

b~t! 5
256
27

t3~ts 2 t!
ts

4 Vm (2)

f~t! 5 2pfotS 1 2 a
t
ts
D . (3)

Here Vm, the voltage maximum, was variable, ts 5 18 s, fo 5
1.5 Hz, and a 5 0.4. Corresponding to (1)–(3), the instanta-
neous wave frequency at the wall is approximately

v~t! 5
df

dt 5 2pfoS 1 2 2a
t
ts
D . (4)

From this expression a set of space-time rays (see Figure 2) can
be constructed. Each space-time ray corresponds to a surface
of constant v (because the environment is time-invariant)
whose slope, dx/dt 5 ­v/­k , is constant (because the water
depth is not a function of position). These conditions define
the slope and x 5 0 intercept of each line (ray) plotted in
Figure 2. It is straightforward to verify that under deep water

Figure 1. Group one wave measurements (solid lines) corresponding to (ka)max 5 0.35 and linear theory–
based predictions (dashed lines). The water depth is 60.0 cm, cref 5 1.0 m s21, and a distance of 1 m
corresponds to a surface displacement of 16 cm.
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conditions, the simple FM sweep defined by (4) produces a
perfect focus at

xf 5
gts

8pafo
. (5)

For the parameters chosen, xf 5 11.7 m. A perfect focus is not
seen, even approximately, in Figure 2 because the lower-
frequency waves that were generated do not satisfy the deep
water dispersion relation. (When calculating the slope of each
ray, corrections, discussed in section 3, to the dispersion rela-
tion to account for frictional boundary layers and finite ampli-
tude dispersion were not taken into account.)

The interpretation of (4) as wave frequency at the wall
assumes that the amplitude b(t) (equation (2)) is a slowly
varying function and does not take into account the input
voltage to paddle displacement transfer function or nonlinear
effects in the coupling between the wave paddle and the waves.
We emphasize that these approximations affect only our space-
time ray plots, which we regard merely as qualitative guides to
aid in the interpretation of our experimental results. Our linear
theory–based wave field calculations do not require that any of
these assumptions be made; these calculations will be dis-
cussed in the section 3.

As expected, agreement between measurements and linear
theory predictions degraded with increasing (ka)max. (This
dependence is shown in Figure 9, which will be discussed in
more detail below.) Agreement was good for (ka)max 5 0.24
but was noticeably degraded for (ka)max 5 0.35 (see Figure 1).
A factor that was thought to contribute to the linear theory
prediction errors in these experiments was that these experi-
ments were performed in intermediate depth water (0.5 & kh
& 5.4). Our expectation was that nonlinear effects would be

weaker in deep water. To test this expectation, it was decided
to make a similar set of measurements using a combination of
deeper water and higher wave frequencies.

A representative set of results for the second group of ex-
periments is shown in Figure 3. The water depth was 79.7 cm.
The wave paddle input voltage was again described by (1)–(3),
this time with ts 5 18.0 s, fo 5 2.0 Hz, and a 5 0.3, again
corresponding to xf 5 11.7 m. The corresponding space-time
rays are shown in Figure 4. Because deep water conditions are
nearly satisfied (2.1 & kh & 12.9), only slight deviations (at
the lowest frequencies) from a perfect focus are seen in the ray
diagram. Again, four values of the peak input voltage were
used so that the validity of linear theory as a function of ka
could be tested. Figure 3 corresponds to moderately steep
waves with (ka)max 5 0.23. The other group two measure-
ments had (ka)max values of 0.12, 0.16, and 0.28.

Again, agreement between measurements and linear theory
predictions degraded with increasing (ka)max. Agreement was
good for (ka)max 5 0.12 but was noticeably degraded for
(ka)max 5 0.23 (see Figure 3). This trend is not surprising. It
is surprising, however, that for comparable values of (ka)max,
linear theory performed better in the (intermediate depth)
group one experiments than in the (deep water) group two
experiments. A possible explanation for this behavior is that
the near-perfect focus in the group two experiments presented
a particularly difficult challenge for linear theory. To test
whether this was the case, a third set of experiments was
performed using a slightly modified paddle waveform.

A representative set of results from the third group of ex-
periments is shown in Figure 5. The corresponding rays are
shown in Figure 6. For this group of experiments the paddle
input voltage had the form (1) and (2) with

Figure 2. Space-time ray diagram corresponding to the wave field shown in Figure 1.
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Figure 3. Group two wave measurements (solid lines) corresponding to (ka)max 5 0.23 and linear theory–
based predictions (dashed lines). The water depth is 79.7 cm, cref 5 0.6 m s21, and a distance of 1 m
corresponds to a surface displacement of 4 cm.

Figure 4. Space-time ray diagram corresponding to the wave field shown in Figure 3.
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f~t! 5 2pfotF S 1 2 a
t
ts
D 2

bts

3p
cos S 3p

t
ts
D G . (6)

The source function parameters were ts 5 18.0 s, fo 5 2.0
Hz, a 5 0.3, and b 5 0.015, and the water depth was h 5
60.0 cm, corresponding to 1.7 & kh & 9.7. Again, four
values of the peak input voltage were used. The results shown
in Figure 5 correspond to waves with (ka)max 5 0.22. The
other group three measurements had (ka)max values of 0.13,
0.17, and 0.30. The perturbation term in the phase function (6)
(compare to (3)) was chosen so that the caustic structure seen
in Figure 4 (almost a perfect focus) would unfold into a section
of a generic low-order space-time caustic [see Brown, 2001].
The caustic structure seen in Figure 6 is a section of a “swal-
lowtail,” which satisfies the stated objective. Other forms of the
phase function (6) could have been used to generate a wave
field whose caustic structure is topologically equivalent to that
shown in Figure 6.

Again, agreement between measurements and linear theory
predictions degraded with increasing (ka)max. Agreement was
good for (ka)max 5 0.13 but was noticeably degraded for
(ka)max 5 0.22 (see Figure 5). This behavior is essentially the
same as that observed in the group two experiments; compare,
for example, Figures 3 and 5. This suggests that in deep water,
nonlinear effects are not strongly influenced by details of how
the waves are focused. To provide a baseline against which
these results could be compared, it was decided to investigate
the behavior of a nonfocusing wave train in deep water.

The input waveform used in the fourth and final group of

experiments is described by (1)–(3) with ts 5 18.0 s, fo 5 1.5
Hz, and a 5 0 with a water depth of h 5 59.4 cm; kh ' 5.4
for this nearly monochromatic wave train. Four sets of mea-
surements, corresponding to (ka)max values of 0.15, 0.19, 0.25,
and 0.44, were made. The highest wave in the last set of
experiments broke about 1 m beyond the most distant mea-
surement location (at which (ka)max 5 0.44 was observed).
The measurements corresponding to (ka)max 5 0.25 are
shown in Figure 7. The corresponding space-time ray diagram
is shown in Figure 8. Note that the a 3 0 limit of (5) applies
so xf 3 ` . Surprisingly, in this nonfocusing limit the agree-
ment between measurements and linear theory predictions for
comparable values of (ka)max is somewhat worse than was the
case in the groups two and three experiments where focusing
was present.

The results described in this section are surprising for two
reasons: (1) the agreement between linear theory predictions
and measurements is better in intermediate depth water than
in deep water, and (2) the agreement between linear theory pre-
dictions and measurements in deep water is better for focusing
wave trains than for nonfocusing wave trains. After a digression to
explain how our linear theory predictions were constructed we
will return our attention to explaining these surprising trends. To
reduce the number of figures somewhat, we shall hereafter dis-
play results only for the group one, three, and four experiments.
Results for the group two experiments are very similar to those
for the group three experiments. This is not surprising inasmuch
as both involve focusing waves in deep water.

Figure 5. Group three wave measurements (solid lines) corresponding to (ka)max 5 0.22 and linear theory–
based predictions (dashed lines). The water depth is 60.0 cm, cref 5 0.6 m s21, and a distance of 1 m
corresponds to a surface displacement of 4 cm.
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3. Linear Theory Calculations
The linear theory solution to the wave maker problem (com-

pute the surface displacement z( x , t) from a knowledge of the
wall displacement d(t)) was first described by Kennard [1949].
Unfortunately, this solution is singular at the point where the
free surface touches the wall (D. H. Peregrine, unpublished
manuscript, 1972). The extent to which this flaw of the linear
solution to the wave maker problem affects the solution at
distant points is not known. In addition to this problem, one
expects that nonlinear coupling effects between the moving
wall and the water will be present, independent of the presence
or absence of finite amplitude wave propagation effects at
distant points in the wave tank. In our study it is highly desir-
able to eliminate nonlinear coupling effects between the wave
paddle and the water so that finite amplitude wave propagation
effects can be isolated. With these comments in mind the
technique described below was used to construct linear theory
wave field predictions.

The general linear theory solution has the form of a Fourier
integral. For unidirectional waves the usual Fourier integral
solution to the initial value problem has the form of an integral
over wavenumber k . For our purposes it is convenient to make
a change of variables from k to v; because ­v/­k Þ 0, there
is no loss of generality in doing so. The resulting Fourier
integral representation of the free surface displacement can be
written

z~ x , t! 5 E
2`

`

A~v!ei@k~v!~ x2xo!2vt# dv , (7)

where

A~v! 5
1

2p E
2`

`

z~ xo, t!eivt dt . (8)

After computing A(v) using (8), z can be computed for all t at
those x values of interest using (7). (For numerical purposes,
(7) and (8) were replaced by their discrete Fourier transform
counterparts and were evaluated using fast Fourier transforms
(FFTs).) Experimentally, the reference position xo was taken
to be 2 m in front of the wave paddle. Use of this procedure
eliminates nonlinear coupling effects that may be present in
the vicinity of the wave paddle (somewhat arbitrarily taken to
be x , 2 m) at the cost of reducing the number of available
wave sensors by one and effectively shortening the wave tank
by 2 m. Because of the trancendental nature of the surface
gravity wave dispersion relation,

v2 5 gk tanh ~kh! , (9)

the function k 5 k(v) was constructed using a table look up
and interpolation procedure. The linear theory wave field pre-
dictions shown in Figures 1, 3, 5, and 7 were computed using
(7) and (8) with k(v) defined by (9).

Examination of Figures 1, 3, 5, and 7 shows that the principal
shortcoming of the linear theory predictions is that the linear
theory phase is retarded (phase speeds too small) relative to
the measurements. The effects of surface tension, frictional
boundary layers, and finite amplitude dispersion produce mea-
surable phase perturbations that have not yet been accounted
for. Surface tension increases phase speeds, while frictional
boundary layers [see Mei and Liu, 1973] reduce phase speeds.
Both effects are small in our experiments. Furthermore, the

Figure 6. Space-time ray diagram corresponding to the wave field shown in Figure 5.
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Figure 7. Group four wave measurements (solid lines) corresponding to (ka)max 5 0.25 and linear theory–
based predictions (dashed lines). The water depth is 59.4 cm, cref 5 0.594 m s21, and a distance of 1 m
corresponds to a surface displacement of 4 cm.

Figure 8. Space-time ray diagram corresponding to the wave field shown in Figure 7.
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phase corrections that result from these effects partially cancel.
Finite amplitude corrections to the dispersion relation (9) lead
to an increase in phase speeds. For the wavenumbers used in
our experiments this effect is larger than the effects of both
surface tension and frictional boundary layers provided wave
amplitudes are greater than about 5 mm. Also, phase differ-
ences between measurements and linear theory predictions
were observed to increase with increasing wave amplitude; this
strongly suggests that finite amplitude dispersion is the domi-
nant cause of the misfit.

The lowest-order finite amplitude correction to the finite
depth dispersion relation (9) is [see, e.g., Whitham, 1974]

v2 5 gk tanh ~kh!

z F 1 1 S 9 tanh4 kh 2 10 tanh2 kh 1 9
8 tanh4 kh D k2a2G , (10)

where a is the wave amplitude. To invert (10) for k 5 k(v),
a 5 a(k) on the right-hand side must be known. To account
for the asymmetry of the measured wave spectra, a 5 a(k)
was approximated as two one-sided Gaussian distributions,
which smoothly match at the spectral peak. After making this
substitution, (10) was inverted using a table look up and inter-
polation procedure. Using this k(v), wave fields can be com-
puted using (7) and (8). We shall refer to wave field calcula-
tions of this type as quasilinear. In these calculations, finite
amplitude dispersion is accounted for, but there is no exchange
of energy between different spectral components of the wave
field.

In Figure 9, group one wave measurements at a fixed loca-
tion, x 5 12.03 m, for a range of (ka)max values are compared
to both linear and quasilinear wave field predictions. Agree-
ment between both types of prediction and measurements is
seen to be better for smaller values of (ka)max, as expected.

For all (ka)max values the agreement between the energetic
portion of the measurements and quasilinear predictions is
seen to be better than the agreement between measurements
and linear theory predictions. Figure 9 also shows, for the
larger (ka)max values, late arriving relatively high frequency
energy in both the linear and quasilinear predictions that is not
seen in the measurements. We attribute this shortcoming of
our predictions to the presence of high-frequency energy that
is phase-locked to longer (and hence faster) waves but which is
erroneously treated as freely propagating wave energy in our
simple predictions. In spite of this caveat, Figure 9 shows that
for the group one measurements, there is fair agreement be-
tween measurements and quasilinear predictions, even for
(ka)max 5 0.40. This is somewhat surprising inasmuch as
breaking was observed for estimated (ka)max values in excess
of 0.44.

Figures 10, 11, and 12 show a comparison between quasilin-
ear wavefield predictions and measurements at all measure-
ment locations for the same set of measurements that are
shown in Figures 1, 5, and 7. Consistent with Figure 9, a
comparison of Figures 10, 11, and 12 to Figures 1, 5, and 7,
respectively, shows that quasilinear wave field predictions are
in better agreement with measurements than are strict linear
theory predictions. As expected on the basis of (10), quasilin-
ear corrections to strict linear theory are observed to be larger
in intermediate depth water than in deep water. For the group
one experiments (involving focusing waves in intermediate
depth water), good agreement between quasilinear predictions
and measurements was found for (ka)max & 0.33; the (ka)max

value used in Figure 10 is near this approximate upper limit.
For the groups two and three experiments (involving focusing
waves in deep water), quasilinear predictions were found to
be in good agreement with measurements for (ka)max &
0.18; the (ka)max value used in Figure 11 lies outside of this

Figure 9. Group one wave measurements (solid lines) and predictions (dashed lines) at a fixed location, x 5
12.03 m, for four different values of kamax: (bottom) linear theory– and (top) quasilinear theory–based
predictions. The measurements shown have estimated kamax values of 0.09, 0.24, 0.35, and 0.40, increasing
upward. The water depth is 60.0 cm, cref 5 1.0 m s21, and the distance between tick marks in the vertical
direction corresponds to a surface displacement of 16 cm.
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range. For the group four measurements (involving nonfo-
cusing waves in deep water), quasilinear predictions were
found to be in good agreement with measurements for
(ka)max & 0.15; the (ka)max value used in Figure 12 lies well

outside of this range. (We have intentionally chosen to show
examples for which differences between predictions and
measurements can be seen. For smaller wave amplitudes,
differences between predictions and measurements are no

Figure 10. Same as Figure 1 except that quasilinear theory–based predictions are shown (dashed lines).

Figure 11. Same as Figure 5 except that quasilinear theory–based predictions are shown (dashed lines).
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larger than differences between the three sets of measure-
ments; the corresponding plots are uninteresting.)

We do not attach much significance to the values of the
upper bounds on (ka)max just quoted. It is significant, how-
ever, that the approximate upper bound on (ka)max is greater
for focusing waves in intermediate depth water than in deep
water and that the approximate upper bound on (ka)max is
slightly greater for focusing waves than for nonfocusing waves
in deep water. Thus the puzzling trends noted at the end of
section 2 cannot be accounted for by finite amplitude disper-
sion.

4. Wave Spectra
Insight into the cause of the failure of linear theory can be

obtained by examining the evolution of wave spectra. Normal-
ized spectral difference plots are shown in Figures 13, 14, and
15; these correspond to the measurements shown in Figures 1
and 10, 5 and 11, and 7 and 12, respectively. Spectral differ-
ences are plotted because these show more clearly small
changes in spectral shape. In these plots, Sx( f ) is the mea-
sured frequency power spectrum at position x , and So( f ) is
the power spectrum measured at x 5 xo weighted by exp
[22k9I(v)( x 2 xo)], where k9I(v) is the imaginary part of the
complex wavenumber [see Mei and Liu, 1973]

k9 5 kF 1 1 ~1 1 i!
d

b S 2kb 1 sinh 2kh
2kh 1 sinh 2khD G . (11)

The factor exp [22k9I(v)( x 2 xo)] accounts for energy losses
in frictional boundary layers. In (11), 2b is the width of the
wave tank, and d 5 (n/ 2v)1/ 2 is the boundary layer thickness
where n is the kinematic viscosity of water. Each spectral es-

timate plotted in Figures 13, 14, and 15 is the average of nine
independent spectral estimates; spectra from three sets of
measurements were averaged, followed by averaging over
three neighboring frequency bins.

Consider first Figure 15, corresponding to nonfocusing
waves in deep water. Here energy is seen to be transferred
from the spectral peak to sidebands. The cause of this behavior
is the sideband instability described originally by Benjamin and
Feir [1967]. In this instability the most unstable sidebands are
predicted to have frequencies vo(1 6 ka) whose energies are
predicted to grow asymptotically like exp (k2a2vot). Here vo

Figure 12. Same as Figure 7 except that quasilinear theory–based predictions are shown (dashed lines).

Figure 13. Normalized spectral differences corresponding to
the measurements shown in Figures 1 and 10. The anomalously
large negative and positive spectral differences correspond to
the measurements at x 5 10.83 m and x 5 13.22 m, respec-
tively.
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is the center frequency of a wave train whose bandwidth is
assumed to be narrow. These properties are in good agreement
with Figure 14 for ka 5 0.08. For the same set of measure-
ments, estimates of (ka)max decrease from 0.20 at the refer-
ence location to 0.18 at the fourth record and then increase to
0.25 at the final record. A typical value of ka for the initial
wave train is somewhat less than these estimates of (ka)max,
approximately twice the estimate, ka 5 0.08, derived from
Figure 15, as just described. This factor of 2 agreement is close
enough that we feel that it supports our interpretation that the
Benjamin-Feir instability is the cause of the spectral shifts seen
in Figure 15.

Consider now Figure 14, corresponding to focusing waves in
deep water. During the focusing phase of wave train evolution,
which is isolated in Figure 14 (top), the spectral peak is seen to
lose energy to sidebands, again suggesting that the Benjamin-
Feir instability is acting. The location of the maximally unsta-
ble lower sideband and the growth rate of both sidebands are
consistent with the above expressions using ka 5 0.18. This
value is intermediate between our estimates of (ka)max, which
fall between 0.12 and 0.22, in the corresponding time histories.
Thus, again, there is some quantitative evidence suggesting
that the Benjamin-Feir instability is acting. Note, however, that
in the case of Figure 14 this evidence is based on a very small
number of measurements. Also, it should be noted that the
location of the maximally unstable upper sideband is not well
defined in Figure 14. Some caveats are expected inasmuch as
the corresponding wave initial conditions only crudely approx-

imate the idealized conditions on which the Benjamin-Feir
analysis is based. In spite of these caveats the aforementioned
properties of Figure 14 (top) support the notion that during
the focusing phase of wave train evolution the Benjamin-Feir
instability is the dominant cause of nonlinear interactions. Fig-
ure 14 (bottom) suggests that the sideband instability that acts
during the focusing phase of wave field evolution is effectively
turned off during the defocusing phase. A heuristic explana-
tion for this behavior will be given below.

Spectral differences corresponding to focusing waves in in-
termediate depth water are shown in Figure 13. There is no
identifiable trend in Figure 13. We attribute most of the vari-
ability seen in Figure 13 to uncertainty in the spectral esti-
mates. (The spectra corresponding to the group one measure-
ments are more noisy than those for the groups two, three, and
four experiments. This noise is, of course, amplified when
differences are taken.)

The Benjamin-Feir instability is a deep water instability that
acts only on essentially unidirectional wave trains whose band-
width is narrow. Alber [1978] has derived a condition, that the
wave train’s bandwidth divided by its center frequency not
exceed the average wave steepness, under which the Benjamin-
Feir instability is able to act on a unidirectional wave train.
This condition was easily satisfied in our group four experi-
ments, was marginally satisfied in our groups two and three
experiments, and was not satisfied in our group one experi-
ments. In our group one experiments the Benjamin-Feir insta-
bility was unable to act both because the deep water condition
was not satisfied and because Alber’s bandwidth condition was
not satisfied. (In these experiments, kh ' 1.3 at the spectral
peak and Df/fpeak was in excess of unity.) The absence of this
instability in the group one experiments explains why linear
theory wave field predictions were in better agreement with
measurements for this group of experiments than for the
groups two, three, and four experiments.

Our surprising observation that nonlinear effects were stron-
ger in nonfocusing (group four) wave trains than in focusing
(groups two and three) wave trains has also been observed in
numerical simulations [Henderson et al., 1999]. This behavior

Figure 14. Normalized spectral differences corresponding to
the measurements shown in Figures 5 and 11: (top) spectral
differences at the first five measurement locations only, includ-
ing the reference measurement, and (bottom) spectral differ-
ences at all eight measurement locations. As propagation dis-
tance increases, the minimum normalized spectral differences
are 0.0 (at the reference measurement), 20.13, 20.17, 20.22,
20.23, 20.22, 20.19, and 20.18. Only in Figure 14 (top) do
the magnitudes of the normalized spectral differences increase
monotonically as a function of distance from the reference
measurement location.

Figure 15. Normalized spectral differences corresponding to
the measurements shown in Figures 7 and 12. The magnitudes
of the normalized spectral differences increase monotonically
as a function of distance from the reference measurement
location.
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might be anticipated in view of Alber’s bandwidth condition
for applicability of the Benjamin-Feir instability; this condition
was marginally satisfied in the groups two and three experi-
ments but was easily satisfied in the group four experiments.
The evolution of wave spectra shown in Figure 14 suggests the
following slightly more complicated, albeit heuristic, explana-
tion for this behavior. In the evolution of a focusing wave train
the focusing phase is followed by a defocusing phase (see
Figures 2, 4, or 6). During the defocusing phase of wave train
evolution, ka decreases because of dispersion; nonlinear ef-
fects are weakened and should play only a minor role. If the
duration of the focusing phase of wave train evolution is short
compared to the time required for nonlinear effects to act,
then nonlinear distortion of the wave train will be small. In
contrast, in very weakly focusing, or nonfocusing (see Figure
8), wave trains, conditions conducive to the growth of nonlin-
ear effects persist for a long time, so that these effects will
eventually become important.

5. Summary and Discussion
Surprisingly, in our laboratory measurements on focusing

unidirectional wave trains, nonlinear effects are stronger in
deep water than in intermediate depth water and are stronger
in nonfocusing wave trains than in focusing wave trains. These
trends have been explained by the observation that the domi-
nant source of nonlinear interaction in our measurements was
the Benjamin-Feir instability, which acts only over a limited
duration in focusing wave trains, only in wave trains whose
bandwidth is narrow, and only in deep water. Under conditions
in which the Benjamin-Feir instability does not act, linear the-
ory predictions were shown to be in good agreement with
measurements for wave trains with (ka)max slightly in excess of
0.30 provided amplitude-dependent dispersion is taken into
account.

Ocean waves are generally characterized by a spectrum with
a broad distribution of energy in both angle and frequency. In
deep water both of these properties preclude action of the
Benjamin-Feir instability. (In finite depth water, however, a
self-modulational instability of the Benjamin-Feir type may act
on wave components that are not codirectional [McLean,
1982].) Thus conditions under which the Benjamin-Feir insta-
bility is able to act are expected to be satisfied only under
extremely rare circumstances in deep water ocean waves.

Assuming this is true, our results have two important impli-
cations for deep water ocean waves. First, nonfocusing-
induced extreme waves of the type observed in our group four
experiments are expected to be extremely rare in deep water
ocean waves. Indeed, we expect that the type of temporally
limited action of the Benjamin-Feir instability that was ob-
served in our groups two and three experiments is also rare in
deep water ocean waves. Second, because the Benjamin-Feir
instability apparently played no role in our group one experi-
ments, we expect that the reported approximate limiting value of
(ka)max (below which a local linear theory description of the wave
field is a good approximation) for these experiments (slightly in
excess of 0.30) is most representative of deep water ocean waves.
Thus there is reason to expect that a local linear theory descrip-
tion of non–locally-forced nonbreaking extreme waves in the
ocean should be useful. Such a local description should not be
expected to be accurate for times (distances) significantly in ex-
cess of a few tens of wave periods (wavelengths). Because the
motivation for the work reported here was to understand the

limits of validity of a linear theory description of wave fields in
focal regions (which have limited spatiotemporal domains), we do
not view this condition as a severe restriction.

Finally, we note that the extrapolation of our results on
unidirectional waves to ocean waves should be questioned.
Laboratory experiments on focusing waves in two horizontal
directions should be performed to provide better insight into
the dynamics of extreme ocean waves.
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