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Abstract - -A standard dynamic Reynolds stress model, with conventional coefficients, is applied to 
oscillatory boundary layer flows. With a grid resolution over the boundary layer thickness and 
wave period of the order of 100 and 600 respectively, well defined, grid-independent solutions are 
obtained. The available data are predicted in great detail. However,  even with turbulence 
characteristics, the data from oscillatory flows do not appear to be very model discriminant. A 
model based upon a standard (k-e) closure also predicts them reasonably realistically. 

With sediment entrainment,  giving stably stratified flow, the Reynolds stress model estimates 
that there is almost no turbulence above the mean velocity maximum. This is probably a reason 
why a (k-e) model even predicts such flows accurately. Another  reason is that the flow is strongly 
forced (by the oscillatory pressure gradient) and is not, like for instance turbidity currents, 
decisively governed by the turbulence. 

An oscillatory flow with sediment entrainment on a slope is predicted to force a systematic 
turbidity current. At large enough slope angles, the waves are predicted to trigger self-accelerated 
turbidity currents. 

1. I N T R O D U C T I O N  

OSCILLATORY boundary layer flows imply dynamic turbulence and possibly transition from 
laminar to turbulent flow. The interaction with an erodible bottom may give sand ripples 
and entrained sediments. Some of these features may be difficult to model. However, in 
the simplest special forms, oscillatory boundary layers offer the possibility to study 
dynamic flows without having to deal with dramatically new features (compare Telionis, 
1981). For many years JONSSON'S (1963) and JONSSON and CARLSEN'S (1976) data on the 
mean velocity profile phase variations have been used as a common reference for model 
validation. Models based upon algebraic, few-equation and full Reynolds stress closures 
appear to predict these data accurately (FREDSOE, 1984; SnENG, 1984; HAGATUN and 
EIosvtK, 1986; SUMMER et al. ,  1987; DAVIES et al. ,  1988; SHENG and VILLARET, 1989; 
JUSTESEN, 1991). Lately, data on turbulence characteristics have also become available 
(HINo et al. ,  1983; SLEATI4, 1987; JENSEN et al. ,  1989; DICK and SLEATH, 1991). Since the 
mean velocity profile variations alone appear to be little model discriminant, the new data 
could hopefully contribute significantly to more critical model identification and thereby to 
increased understanding. 
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The present study addresses dynamic Reynolds stress modelling of oscillatory boundary 
layer flows. Since this and comparable models only describe the growth and decay of 
turbulence, not its initiation, the study is focused towards flows with large turbulent 
Reynolds number, Re = [u,d 6v oc U2oAOV >> 1. Here [U,o I and 6 are the maximum friction 
velicity and boundary layer thickness respectively, 6 ~ 0.5 lU,o[ o) -1. The oscillatory 
frequency and laminar kinematic viscosity coefficient are ~o and v. Since we are most 
interested in the boundary layer flow below large ocean waves, the wave amplitude to 
surface roughness ratio is also supposed to be large, a/Zo = Uo/O)Zo >> 1. Here the free flow 
velocity amplitude is Uo and the surface roughness is Zo. 

It turns out that the Reynolds stress model predicts as realistically as the data allow us to 
decide. In this respect the study contributes to Reynolds stress model validation. From 
another point of view the study contributes to the understanding of why simpler models 
also predict oscillatory flow well. Based upon experience from turbidity currents (BRORS 
and EIDSVIK, 1992) it is particularly unexpected that stably stratified sediment-laden 
oscillatory flows are predicted realistically by few-equation turbulence closures (HAGATUN 
and EIDSVX~:, 1986). However, there are main differences between a turbidity and an 
oscillatory flow: (1) the oscillatory flow is strongly forced (by the pressure gradient) while 
the turbidity flow is forced by intricate interactions governed by the turbulence; and (2) the 
Reynolds stress model shows that the turbulence minimum within a turbidity flow is 
essential and requires sophisticated modelling. For an oscillatory flow the mean velocity 
extreme and the stress zero crossing are located near the top of the turbulent layer. Even if 
a few-equation model may predict the turbulence somewhat erroneously here, this is of 
minor importance. 

On a slope, an oscillatory flow with sediment entrainment is predicted to force a 
systematic turbidity current. For such a situation, the Reynolds stress model is expected to 
be significantly more realistic than few-equation models (compare BROS and EJDSVIK, 
1992). At sufficiently large slope angles, waves are predicted to trigger self-accelerated 
turbidity currents. This is consistent with the weak experimental evidence that is available 
(PANTIN, 1986, and references therein). 

2. MODEL 

2.1. First and second moment  equations 

The flow is idealized to be a thin shear layer with insignificant along-flow gradients. The 
convective terms are assumed to be insignificant as compared to the time derivative terms. 
Standard Reynolds stress sediment modelling and notations are used (compare for 
instance GIBSON and LAUNDER, 1977 and LAUNDER, 1989). The volume concentration of 
sediments, c, is supposed to be so small that the simplest two-phase models can be applied. 
The density and mass averaged horizontal velocity are given by p = (1 - c)pf + cos and pus 
= (1 - c)pfufi + cpsUsi. Here the density and velocity of the pure fluid and sediment 
components are (Pf, U~) and (ps,Usi) respectively. The equations for the first two moments 
are then 

_ 0 
O(p) (Ui) --OQ)) + (Ps -- Pf) (C)gi + - - r i k  (1) 

Ot Ox i Ox k 

O(U~U,;) = pq + Gq + (pq - 2edq + dq (2) 
at 
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1 C 1 ) 3_f_~ = Ce 1 Pii + e3-~Gii -  Ceze T~ 1 + d~ (3) 

o(c)_ o 
(<c> w,G3 - <c'u;,>) (4) 

Ot Oxk 

O(UiC) --  Pic  + Gic  + c/)ic + dic ( 5 )  
Ot 

o(c '2) 
- Pcc - ecc + dc~. (6) 

Ot 

The cartesian coordinate system is oriented along the alongflow, xl, and normal 
coordinate, x 3. The gravitational acceleration and the sediment fall velocity are gi = 
g(sin/3,0, - cos fl) and w s. Even if the present flow is supposed to be a thin shear layer, 
general notations are convenient. However, more special notations may also be used: x~ --, 
X, X 3 ----) Z ,  U 1 -'-'-) /A, U 3 ~ W ,  I ' i3  ~ Z'. Except for the density and stress influence, two-phase 
effects upon the turbulence are neglected. The different turbulence terms in equations (1)- 

t t C ! t t t t (6) are then,given by ri3 = - (p )  (uiu3) - (p~ - pf) ( u i u 3 )  + psW~ (c) (ui), PO = -((ciuk)  0 
(Uj)/OXk + (UjU'k} 3 {ui)/OXk), Gij = (p)-I  (p~ _ pf) ( (c 'u/)  gi + (c'ui) &), ~q = (p)-~ (p'(Ou;/Oxj 
+ Ouj'/Oxi)), dq = -(O/Ox~) ((u;u;u'k) + . . . ) ,  Pic = -((u~u'k) O(c)/Oxk + (c'u'~) 0 (ui)/O,), Gi,. = 

- x ,  C '2 dp --  - 1  , , , ,  , , , (P) ( P s -  Pf)( )gi, i c - (P)  (p Oc /Oxi),di~=--O/Oxk({uic u k ) + .  . . ) , P c c = - - 2 ( c  uk)O 
(C)/OXk, dc,.= -O/Oxk ( ( C ' 2 b t k )  -}- . . . ) .  

Turbulent closures are needed for the dissipation (e,ecc), pressure correlations (cbO, cbi,,) 
and third moments in (ri3, d#, de, clio d~).  As already illustrated by the equations (1)-(6), 
the small-scale fluctuations are supposed to be isotropic and the turbulent dissipation e is 
identical to the energy transfer from the energy containing eddies, modelled by the ad hoc 
closure (3). The time scale for the down-scale energy transfer and the diffusive time scale 
are proportional to T~, = 1/2 ( b / 1 2 ) / 6  = k/e. The dissipation of concentration variance is 
approximated from the standard relation ecc = 1/2@'2)/RTs. With conventional Boussinesq 
modelling and the experimental relation (u;c') = 2.0 (c'u~) cos Oi, i = 1, 2, Oi = atn 
((ui)/(uj#i)) (LAUNDER, 1975), the turbulent stress is approximated in equation (7). As 
expected, it turns out that the first term on the right hand side dominates, but close to the 
bottom the last term may also be significant (BRORS, 1991). 

Ti3 = - - (p) (U;U~)  + 2.0(ps - Of) c o s  Oiw ~ (c )  + psWs(C)(Ui) .  ( 7 )  

The third moment diffusive terms are modelled by Boussinesq closures 

d# = C,.~Txk T~ (uku~ Oxl 

0 Oe 

0 
Oxl 

, , ~o¢% 
dcc -- Cc o__Oxk Ts ~uku# ~ 

(8) 
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The more controversial, non-observable pressure correlation terms are, as usual, 
divided into the sum of a slow turbulent, rapid mean strain and buoyant part as qbi~ = ~ijl + 
f~k ij2 + f~k ij3, ~) ic = (I) icl "}- f~) ic2 -}- di~ ic3" The slow turbulent part is modelled as ROTTA'S (1951) 
return to isotropy relation (9). The rapid strain part is modelled as the isotropisation of 
production model (IPM) in equation (10) (LAUNDER, 1989). The buoyant term is modelled 
analogous to the (IPM)-expressions in equation (11). 

C1 2 kf~ij) ' dikicl __ Cca (c'u[) (9) 
(~) ijl = -- Tss ( (uiuj)t ' - .3 T s 

1 Pkkf~ijl,~ = _ C c 2  (C,bltk) 0 (Ui)/OX k ( lO)  fI3ij2 = - -C2  P i j -  3 ) ~c'~- 

dPij3 = - C a ( G i j -  l Gkkt~ij],  dPic3 = - C c 3 G i c  . (11) 

Wall modification of the pressure correlations are modelled by additive correction terms 
as described by GIBSON and LAUNDER (1977). Sediment-flow interactions are supposed to 
be unimportant for the turbulence except through the density and stress. No small 
Reynolds number corrections are applied. Although experience with this kind of model- 
ling and standard coefficients may not always be fully consistent with all data, a standard 
coefficient vector is chosen: (Cs, C~s, Co, C~, C,,1, C~2, Cc3, R, C1, C2, C 3, Cc l ,  Cc2, Cc3) = 
0.22, 0.15, 0.11, 0.18, 1.45, 1.90, 1.45, 0.52, 1.8, 0.6, 0.5, 3.0, 0.5, 0.5) (Gmsoy and 
LAUNDER, 1977). 

The boundary conditions are chosen to be standard. At the upper boundary zero flux 
conditions are applied for all variables except for the Reynolds shear stress, which is set 
equal to zero. Since the lowest grid is located very close to the bottom, standard neutrally 
buoyant equilibrium relations are applied at the lower boundary. The bottom interaction 
is modelled by means of the boundary condition for (c) and (c'u'3). For the purpose of 
comparison with simpler models, the (c)-condition is kept unchanged (HAGATUN and 
EIDSVIK, 1986): (C(0)) = max(c 1, c2). Here c 1 --< 0.3 is approximated from ENGELUND and 
FREDSOE (1976) and c 2 is the bottom concentration for sediment settling in laminar flow. 
Concentration second moment gradients are specified as zero. The wall stress is obtained 
from the logarithmic velocity profile. Alternatively a zero gradient condition is applied for 
the shear stress. The normal stress components are specified from the friction velocity ]u,I; 
lU, 12 = Iri3(0)l/p(0) as given by GIBSON and LAUNDER (1977). For neutrally buoyant flows, 
these conditions contract to the set (ui2)/lu,I 2 ,-~ (4.5, 2.6, 1.0). Concentration second 
moment gradients are specified as zero flux. 

The forcing is provided by the oscillatory pressure gradient and gravitational effects. For 
a sinusoidal free flow, (u(z)6))  = UoSino~t, the pressure gradient is specified to be 
independent of x3 as 

O(p)/OXl = __pfU0rj)- 1 COS (Of. (12) 

2.2. Integrations 

The integration scheme is implicit in time and central in the vertical coordinate. The 
vertical grid is equispaced on a logarithmic scale near the bottom. Without sediments ca 
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Fig. 1. Predicted bottom stress variations with phase for varying time steps. Flow corresponding 
to JENSEN et al. (1989). Run 13: (T, uo, Zo) = (9.72, 2.00, 3 x 10 -4) SI-units. 70 vertical grids. 

- - - A t  = 6 x 10 3 s ; - - A t  = 1.3 x 1 0 - 2 s ; -  . - A t  = 1.7 x 10-2s. 

70 grid points are necessary to obtain grid independent integrations. It turns out that the 
stress model tends to behave illconditioned as the near bot tom layer flow changes 
direction. While a time step of ca. At ~- T/200 is sufficient to obtain periodic and reasonable 
integrations with a (k-e) model, it turns out that a significantly smaller value is necessary 
for the stress model. Even for At < T/600, small irregularities can be noticed as the bottom 
stress passes the zero value from the positive side (see Fig. 1). However ,  on the whole, the 
integrations are well defined when At < T/600. 

3. DATA COMPARISON 

Almost certainly, in a large model like this, there exists a coefficient adjustment that 
would give detailed fit to the available data. In this case the result of the analysis would be 
data representation, not model verification. It is important that a non-adjusted standard 
model,  with commonly accepted coefficients, is compared to the data. As for other 
turbulent flows, when the relative difference between the prediction and data is less than 
about 20%, the estimates are judged to be as accurate as possible. 

3.1. Profiles 

JENSEN et al.'s (1989) experiments number 12 and 13 are associated with large Re- and 
a/zo-numbers,  and are complete in terms of turbulence data. These experiments are 
therefore chosen for detailed model comparison. The experimental characteristics for 
these runs are: (T, Uo, Zo = kJ30) = (9.72, 1.02, 3 x 10 -4) and (9.72, 2.0, 3 × 10 - 4 )  

SI-units. The distance from the bot tom to the channel centre is H = 0.14 m. Because the 
roof of the channel is smooth, the shear stress at the rough bottom boundary is higher than 
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at the top. This will presumably result in an asymmetric channel flow with a level of zero 
shear stress situated somewhere above the centreline level. For computational purposes, it 
is convenient to treat the upper boundary as a symmetry line. So, instead of prescribing 
wall boundary conditions at the top, it is assumed that the roof acts as a fictitious rough 
boundary 0.4 m above the bottom, and the upper computational boundary is placed in a 
symmetrical line H = 0.2 m away from the bottom. This height is consistent with a ratio of 
smooth roof to rough bottom shear stress of about 3/4, which seems reasonable in view of 
JEYSEN et al.'s (1989) shear stress measurements for smooth and rough boundaries. The 
maximum friction velocity is approximately u,0 = 0.058 for Run 12 and u,0 = 0.11 for Run 
13 (JENSEN et al., 1989) and turbulent Reynolds- and amplitude to roughness numbers 
(Re = U2,ohOV, a/Zo) are (5 x 103, 6 x 104) and (2 x 104, 1 x 105) for the two runs. In Run 
12, corresponding to the smallest Reynolds number,  the flow may not be fully developed 
turbulent at all phases (JENSEN et al., 1989). Nevertheless, as illustrated by Figs 2 and 3, the 
data and predictions show excellent agreement for both experiments. 

The phase variations of an oscillatory flow are well characterized relative to the level of 
vanishing stress, r = 0, which is almost the same as the level of mean velocity maximum 
and a minimum or inflection point of the normal velocity variance components. The 
bottom stress lead relative to the free current is consistent with common experience. From 
the phase value where r = 0 at z = 0, the level with r = 0 rises approximately linearly with 
phase both during the accelerating and decelerating stages. Below this level the acceler- 
ation stage is characterized by increasing wall extrema of all second moments.  During the 
deceleration stage the low level phase lead implies that the extrema are lifted away from 
the bottom to become secondary extrema for the next wave, with opposite mean velocity 
and shear direction. This picture, containing the main features of the shape of the profiles 
in Figs 2 and 3, is predicted and measured almost identically. 

The magnitude of the signals are also realistically predicted, particularly so for the mean 
velocity and shear stress. However ,  there appears to be some discrepancy between the 
predictions and data in the decelerating stage before zero crossing. Here  the mean velocity 
is predicted to be slightly too large and the stress slightly too small. The normal stress 
components are most accurately predicted near phase angles of ~/4. Here the secondary 
turbulent kinetic energy maximum is accurately predicted as ca. 0.45 times the near wall 
maximum (SUMMER et al., 1987). JUSTESEN'S (1991) (k-e) model predicts this ratio to be ca 
0.25. Although the latter prediction is also fairly accurate, it appears as the present model 
predicts the upper layer variations somewhat better. The predictions and data are different 
on the magnitude of the normal stress components at the upper layers, near phase shifts. 
However,  this may not imply model deficiency. Since the measured magnitude of the 
normal stress components at these levels are almost phase independent,  with no shear 
stress, it could be that there is 'background turbulence'  in the flume. 

3.2. Characteristic variables; phase variation 

To focus upon the main features of the predicted flow fields, illustrated in Figs 2 and 3, 
the phase variations of the main flow characteristics (Urn, 6, r(0), 6") are illustrated in Fig. 
4. The characteristics are: magnitude and height of the mean velocity maximum, wall 
stress and height to the level of zero stress. 

As illustrated in Fig. 4(a) the phase variation of 6(~ot) is almost linear. Over the phase 
interval where the mean velocity maximum is well defined, there is a definite similarity 
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Fig. 2. Oscillatory channel flow. Predicted and observed profiles at phase angles ranging from 0 
to 165 ° in steps of 15 °. Fixed origin for accelerating and decellerating mean velocity profiles. For 
other variables the origin and curves are moved to the right as the phase increases. Circles: Data 

from JENSEN et al. (1989). Run 12: (T, Uo, zo) = (9.72, 1.02, 3 × 10 -4) SI-units. 
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between predicted and measured values. Near the end of the decellerating period, where 
the mean velocity maximum is expanded (compare Figs 2 and 3), the uncertainty in 
estimated 6-values must be larger and the discrepancy between measured and predicted 
values may not be significant. The normalized mean velocity maximum is illustrated in Fig. 
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Fig. 4. Phase-dependency of boundary layer parameters predicted and measured. Circles: Data 
from JENSEN et al. (1989) Run 13. In diagram (d), circles represent bottom stress from direct 
measurements of (u 'v ' )  and asterisks represent estimated bottom stress from fit to logarithmic 

velocity profile in their Fig. 7. 

4(b). At all phases there is a remarkable similarity between predicted and measured 
values. 

Turbulence characteristics are specified in terms of bottom shear stress and height to the 
level of zero shear stress. The latter is illustrated in Fig. 4(c), and again there is a good 
correspondence between the predictions and the data. Comparing Fig. 4(a) and (c) also 
show that the level of mean velocity maximum and the level of zero stress are almost 
similar, as they should if a Boussinesq turbulent viscosity closure were realistic. The 
predicted and measured bottom stress is focused in Fig. 4(d). There appears to be a 
significant difference between the bottom stress estimated from the mean velocity profile 
and from the turbulent fluctuations. However, it should be kept in mind that the relative 
stress error is about two times larger than that of the friction velocity. In terms of turbulent 
velocity the difference between the two estimates in Fig. 4(d) is therefore only ca 20°/,,. The 
predicted maximum bottom stress is almost similar to the stress estimate based upon the 
mean velocity profile. The maximum bottom stress is much smaller than in a stationary 
channel flow with a pressure gradient equal to the present pressure gradient amplitude, to, , 
= pf~o- ~ Uo H. While the predicted and measured bottom stress phase lead are comparable 
near stress maximum, they appear to differ slightly near zero crossings. With the LDA- 
data uncertainty in mind (JENSEN et al., 1989), it is claimed that the bottom stress is 
predicted as accurately as the available data allow us to decide. Few-equation turbulence 
models also predict these features reasonably accurately (JUSTESEN, 1991). 

3.3. Bulk  data c o m p a r b o n  

By varying the surface roughness, Zo, and thereby (Re,  a/Zo), the predictions can be 
compared to most data. Figure 5(a) illustrates the predicted and measured boundary layer 
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(1984) prediction: . . . .  . (a), (b) Boundary layer thickness. Data from JENSEN et al. (1989). 
(c) Bottom stress phase lead over free flow velocity. Data  refered by COUSTEIX (1986). (d) 
Maximum bot tom stress phase lead over maximum free stream velocity. Data from JENSEN et al. 

(1989). 

thickness 6(:~/2)/Zo as a function of wave amplitude a/Zo. The model predicts the data 
accurately, as FREDSOE'S (1984) model also does. Figure 5(b) illustrates the boundary layer 
thickness as normalized with the wave amplitude, 6(:~/2)/a. The model predicts the data 
very well also from this point of view, as FREDSOE'S (1984) model also does. In Fig. 5(b) the 
predicted normalized maximum friction velocity lu,ol/uo, is plotted as well (tU,ol = 
(r(0)mafl (p))1/2). The simulations suggest that 6(~/2)/a ~ ]u,o]/Uo, with a fairly constant 
proportionality factor. This is consistent with common experimental estimates. In greater 
detail, the proportionality factor is predicted to decrease from about 0.5 to 0.4 over the 
interval a/Zo e (103, 105). 

Figure 5(c) and (d) illustrates the bottom stress phase lead over the free stream velocity. 
The phase difference in Fig. 5(d) is based upon conditions near maximum free velocity 
[compare Fig. 4(d)]. Both for the predictions and the experiments referred to in Fig. 5(d), 
the Reynolds number is of the order of Re = 0 (3 × 103, 2 × 104). With the measurement 
uncertainty associated with the bottom stress taken into account, Fig. 5 (d) is interpreted as 
a confirmation of model realism. 
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The data referred to by COUSTEIX (1986) in Fig. 5(c) are from small Reynolds number 
experiments. The smallest Reynolds number phase lead of about ~/4 may be understood in 
terms of the classic Stokes solution with a constant laminar viscosity coefficient. At the 
largest Reynolds numbers the turbulence in the boundary layer is likely to be so vigorous 
that the turbulent viscosity coefficient varies little with height and phase. A simplified 
model based upon the Boussinesq viscosity assumption, will then be analogous to the 
laminar case with the laminar viscosity coefficient replaced by a fairly constant turbulent 
viscosity coefficient. Therefore the phase lead increases for the largest Reynolds numbers, 
and the minimum phase lead around Reynolds numbers of Re = 0 (103) suggested by Fig. 
5(c) is reasonable. In this range transitions from laminar to turbulent flow will most 
probably be essential, and detailed modelling will be difficult. 

3.4. Sediment entrainment 

With sediment density, diameter and fall velocity Ps = 2.6 × 103 kg m -3, d = 1 0  - 4  m, 
w,. = 6 × 10 -3 m s -I  and oscillatory flow characteristica (Uo, T, z0) = (1, 10, 10 -5) SI-units, 
the predicted flow is illustrated in Fig. 6. Without sediments, the flow is predicted 
analogous to what is illustrated in Figs 2 and 3. With entrained sediments, a most 
significant change is that the boundary layer flow, with most turbulence, is closer to the 
bottom, with a more pronounced mean velocity maximum and phase lead. Except for 
phase angles near zero crossings, the turbulent stress is almost vanishing above the level 
where r = 0, and there is a pronounced minimum or reduction of the normal stress 
components near this level. Without sediments the maximum stress components are 
predicted at the bottom for smaller phase angles than about ~/2. At larger phase angles this 
maximum is lifted into the flow. With sediments the low level maximum is predicted to be 
detached from the bottom at all phase angles except close to zero crossings (Fig. 6). 
However, the latter effect does not turn out to be dominant for sediments in a flow 
corresponding to Fig. 3. The maximum stress is slightly reduced with sediments. The 
sediment concentration characteristica are illustrated in Fig. 6(b). During the acceleration 
stage and maximum free stream velocity, sediments are entrained. However, the turbulent 
fluxes above the level where r = 0 are almost vanishing so that most of the entrained 
sediments are confined to lower layers. 

The model is compared with RmBERINK and AL-SALEM'S (1992) experiment C10 in Fig. 
7. (Uo, To, d, Ws, Ps) = (1.7, 7.2, 0.00021, 0.026, 2650) SI-units. Zo = 0.08 d. Figure 7(a) 
illustrates the predicted height and phase variation of the expected sediments mass 
concentration, and Fig. 7(b) shows data comparisons. Since no model adjustment is done, 
we claim that the data are predicted as accurately as can be expected. The general height 
decrease is very accurately predicted, while the phase can be associated with errors. The 
phase lag between the low level sediment concentration and the free stream velocity is 
probably the most significant feature that is predicted and measured differently. However, 
the height variation of this phase lag is also predicted and estimated from the data 
differently. Figure 7(a) and (b) illustrate the predicted phase lag smoothly increasing with 
height. From the data it appears that the lag is almost constant below about 2 cm height. 
Between about 2 and 3.1 cm there is inconclusive information on this feature. Above about 
3 cm the lag is again estimated to be fairly constant. Physically there cannot be a phase lag 
decrease with height of sediment concentration. This means that the data suggest a lag 
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(a). Predicted oscillatory flow with ent ra ined sediments .  (Uo, T, z o, d, % )  = (1, 10, 10 
10 -4, 6 × 10 -3)  SI-units.  Velocity characteristics. 
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variation as large as about Jr over the height interval from about 2 to 3 cm. Could it be that 
the phase information in the data is not as accurate as desirable? 

Data  on sediment-laden oscllatory flows have previously been compared favourably 
with a model based upon (k-e) turbulence closure (HAGATUN and EIDSWK, 1986; HAGA- 
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Fig. 7. (a). Predicted expected sediment mass concentration as varying with height and wave 
phase. (Uo, To, d, w,,) = (1.7, 7.2, 0.00021, 0.026) SI-units, z = (0.5, 1.1, 1.6, 3.1, 5.5, 10) cm. 

TUN, 1987). The data are probably so few and uncertain that they cannot identify a better 
model. 

The present model predictions are compared with HAGATUN'S (1987) (k-e) predictions 
of sediment-laden flow in Fig. 8(a) and (b). Below the mean velocity maximum, the area 
with the most significant variations, there is a remarkable similarity between the two 
predictions. The limited discrepancy between the two models above this level, in for 
instance the turbulent length-scale, is not essential because the turbulence is very weak 
here. This similarity implies that the data comparisons with sediment-laden oscillatory 
flows previously done with a (k-e) model (HAGATUN and EIDSVIK, 1986), can be applied to 
the full stress model. As far as common sense and scarse data allow us to decide, the 
sediment feature of the full stress model is therefore also reasonable. 

From another point of view this implies that a simple (k-e) model predicts oscillatory 
sediment-laden flows as realistically as a full Reynolds stress model (compare HAGATUN 
and DDSWK, 1986; SHEN6 and VILLARET, 1988). This may be surprising when compared to 
experience from turbidity currents (BRORS and EIDSVIK, 1992). A reason could be that the 
data are so scarce, with so large uncertainty, that model errors are difficult to detect. 
However ,  a major error  of (k-e) models near levels of vanishing stress within the turbidity 
flow (BRORS and EIDSWK, 1992), is not essential for oscillatory flows. As illustrated by Fig. 
8, the turbulent stress below the level where r = 0 is predicted to be almost similarly 
predicted by both models. Above this layer the turbulence is predicted to be weak. Even if 
the (k-e) model may predict somewhat erroneously here,  the exact magnitude of the 
turbulence quantities near the top of the turbulent boundary layer is not essential. 
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Fig. 7. (b). As  in Fig. 7(a) ;  expec ted  sed imen t  mass  concen t ra t ion  as es t imated  f rom predic t ions  
and  data .  Da t a  f rom RmBERINK and  AL-SALEM (1992), expe r imen t  CI0.  

A n o t h e r  f e a t u r e  is  t h a t  t h e  o s c i l l a t o r y  f l o w  is  s t r o n g l y  f o r c e d  ( b y  p r e s s u r e  g r a d i e n t ) .  I t  is  

n o t  d e c i s i v e l y  g o v e r n e d  a n d  e v e n  f o r c e d  b y  t h e  t u r b u l e n c e ,  a s  is  a s e l f - i g n i t i v e  t u r b i d i t y  

f l o w .  
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SI-units. HAGA~UN'S (1987) (k-e) predictions. 

4. W A V E  F O R C E D  T U R B I D I T Y  C U R R E N T  A N D  T R I G G E R I N G  O F  S E L F - I G N I T I V E  

T U R B I D I T Y  F L O W S  

Oscillatory flow with sediment entrainment on slopes may reasonably generate a 
systematic down-slope mean current. It is even believed that this may trigger avalanches 
(PANT~N, 1986). AS opposed to simpler models, the present model is expected to describe 
turbidity flows realistically (BRORS and EIDSVIK, 1992), SO that its predictions on this 
subject should be of some interest. 

The oscillatory flow is chosen as in Fig. 3, with sediments as in Fig. 8. Each integration is 
initiated smoothly from a periodic flow over flat bottom introducing the slope angle 
gradually. For small slope angles, it turns out that the oscillatory flow with suspended 
sediment forces a period average stationary downslope flow. Figure 9(a) illustrates the 
period average as well as maximum and minimum suspended sediment mass as a function 
of slope angle. For small slope angles the suspended mass is significantly smaller, M = 0 
(102 kg m2), than the critical mass necessary for a self-ignitive turbidity flow, Mc = 0 (10 2 
kg m2); (PANxIN, 1979; EIDSVIK and BRORS, 1989). Figure 9(b) and (c) illustrate the 
stationary period average velocity and downslope sediment flux profiles as functions of the 
slope angle. Even on small slope angles, the waves force a systematic down-slope flow. 
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Although the magnitude of the period average flow may be significantly smaller than the 
oscillatory amplitude, the average flow is systematic so that its sediment transport to 
deeper  waters may be important. 

For larger slope angles a stationary period average solution no longer exists. Figure 
10(a) illustrates the time development of the suspended sediment mass and bottom stress 
for such a flow. During a few oscillations the critical mass of sediments is entrained and the 
flow develops into a self-ignitive turbidity current. It may be surprising that the bottom 
stress displays larger and larger amplitude, with small values near pressure gradient 
minima. However ,  the instantaneous profiles appear reasonable. It should be kept in mind 
that the turbidity flow is shallow, with purely oscillatory flow above. This means large 
mean velocity shear near the free stream velocity minima. The time developments of the 
period average velocity and downslope sediment flux are illustrated in Fig. 10(b) and (c). 
During a few oscillations the turbidity flow is significantly stronger and deeper  than the 
oscillatory boundary layer flow, and the average flow resembles the structure of a pure 
turbidity flow (BR~Rs and EIDSVIK, 1992). 

The wave and sediment characteristica chosen for the predictions are not extreme. Still 
the model predicts that the waves may trigger avalanches on slopes with as small 
inclination as c a  8 ° . Once it is generated,  an avalanche may continue to develop on slopes 
with inclinations as small as about 1 ° (BRORS and EIDSVIK, 1992). Since the present model is 
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generally validated, and in particular validated relative to data from turbidity and 
oscillatory flows, its predictions on these points are significant. This prediction also 
appears  to be consistent with the weak experimental  evidence that is available (PANTIN, 
1986 with references therein). 

5. CONCLUDING REMARKS 

A model based upon full Reynolds stress closure is applied to oscillatory boundary layer 
flow. The model is not as robust as few equation models are. However ,  when the boundary 
layer thickness and period are resolved by vertical grid and t imestep numbers  of the order 
of 100 and 600 respectively, well defined integrations are obtained. 

High Reynolds number  data (JENSEN et  al., 1989) are predicted to great detail. Even 
secondary ext rema of the stress components  above the mean velocity maximum are fairly 
well predicted. Variations of boundary layer thickness and bot tom stress amplitude and 
phase lead are realistically predicted as compared  to several data sources referred to by 
JENSEN et al. (1989) and COUSTEIX (1989). With sediments eroded from the bot tom,  the 
model compares  well with predictions by a (k-e) model,  and therefore also compares  well 
with the scarce data from such flows (HAGATUN and EIDSVIK, 1986). 

The oscillatory boundary layer data contribute towards verifying the realism of dynamic 
Reynolds stress models. However ,  even with turbulence characteristica, such data do not 
appear  to be very model discriminant. The much simpler, standard (k-e) model also 
predicts these data reasonably realistically. It may be unexpected that the (k-e) model even 
appears  to predict stratified sediment-laden flows fairly accurate. In other types of 
stratified flows, simple models of this type predict the turbulence near  a mean velocity 
ex t remum significantly in error (compare  BRORS and EIDSVIK, 1992). For the present 
sediment-laden flow the turbulence above this layer is predicted to be vanishingly small in 
both models. Even if the (k-e) model may predict somewhat  erroneously here,  this is not 
essential. Also the oscillatory flow is strongly forced (by the pressure gradient),  while the 
turbidity current is forced by intricate interactions governed by the turbulence. 

On a slope, waves with sediment entrainment  are predicted to force systematic down- 
slope flows. At larger slope angles the waves may even trigger self-ignitive turbidity flows. 
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