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An investigation on novel lines is made into the problem of water waves according 
to the perfect-fluid model, with reference to wave motions in both two and three space 
dimensions and with allowance for surface tension. Attention to the Hamiltonian 
structure of the complete nonlinear problem and the use of methods based on 
infinitesimal-transformation theory provide a Systematic account of symmetries 
inherent to the problem and of corresponding conservation laws. 

The introduction includes an outline of relevant elements from Hamiltonian theory 
($ 1.1) and a brief discussion of implications that the present findings may carry for 
the approximate mathematical modelling of water waves ($1.2). Details of the 
hydrodynamic problem are recalled in $2. Then in $3  questions about the regularity 
of solutions are put in perspective, and a general interpretation is expounded 
regarding the phenomenon of wave-breaking as the termination of smooth Hamil- 
tonian evolution. In $4 complete symmetry groups are given for several versions of 
the water-wave problem : easily understood forms of the main results are listed first 
in $4.1, and the systematic derivations of them are explained in $4.2. Conservation 
laws implied by the one-parameter subgroups of the full symmetry groups are worked 
out in $5, where a recent extension of Noether's theorem is applied relying on the 
Hamiltonian structure of the problem. The physical meanings of the conservation 
laws revealed in $5,  to  an extent abstractly there, are examined fully in $ 6 and various 
new insights into the water-wave problem are presented. 

In  Appendix 1 the parameterized version of the problem is considered, covering 
cases where the elevation of the free surface is not a single-valued function of 
horizontal position. I n  Appendix 2 a general method for finding the symmetry groups 
of free-boundary problems is explained, and the exposition includes the mathematical 
material underlying the particular applications in $34 and 5. 
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1. Introduction 
The behaviour of Hamiltonian systems whose phase space has infinite dimensions 

is an old subject reinvigorated by much recent progress. Wide attention is paid to 
i t  both because various major problems of mathematical physics exemplify such 
systems and because certain model equations with interesting, comparatively 
accessible properties can also be so considered. The subject is moreover very 
appealing in mathematical respects, being particularly fertile in applications of 
variational methods and methods of infinite-dimensional differential geometry. An 
impressive, albeit still incomplete, chapter of the subject comprises applications to 
the abstract hydrodynamical problem for a perfect fluid, which can be considered as 
a Hamiltonian system whose configuration space is the group of volume-preserving 
diffeomorphisms of some (fluid-filled) manifold in R2 or R3 (e.g. see Arnold 1966; Ebin 
& Marsden 1970; Marsden 1974, ch. 4), and the present problem of water waves must 
be acknowledged to  fall within the broad ambit of this previous work. The problem 
is quite special, however, being greatly complicated by the boundary conditions at 
the free surface, and the available general theory does not appear to be in any 
immediate way helpful. The need for a specialized theory is plain, of course, because 
the evolutionary nature of the water-wave problem can be appreciated to reside in 
the surface conditions rather than in the field equations for the fluid, which, under 
the hypothesis apposite to  this problem, are reducible by Kelvin’s theorem to a 
time-independent form (i.e. just Laplace’s equation in fixed spatial coordinates, 
satisfied by the velocity potential). 

The key to bringing notions of Hamiltonian mechanics usefully to bear on the 
water-wave problem is a remarkably concise interpretation of the free-surface 
conditions in terms of functional derivatives of the energy integral, an invariant of 
the problem given the role of Hamiltonian. I n  this interpretation two functions of 
time and horizontal position alone, namely the vertical elevation ‘1 of the free surface 
S and the evaluation Q, of the velocity potential at S ,  appear as canonical (Darboux) 
variables. I n  effect 9 is a generalized coordinate (of infinite dimension) and @ a 
generalized momentum. This simplifying formalism appears to have been noticed first 
by Zakharov (1968). Representations of the nonlinear boundary conditions by 
functional derivatives of energy and momentum integrals were also considered by 
Benjamin (1974) in another, closely related light, and Miles (1977 ; see also Milder 
1977) has made a deep study of this formalism, recognizing i t  to hold for wave motions 
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of liquids contained in vessels of arbitrary shape. Further extensions of i t  applying 
to gravity-capillary waves with edge constraints, including waves of this type that 
are periodic in one horizontal coordinate, have been noted by Benjamin (1980). 

I n  the present treatment of the water-wave problem, our principal aims are to 
examine its symmetry groups thoroughly and then to find the implications of these 
symmetries as regards conservation laws. Whereas the first aim is achievable without 
particular regard to the Hamiltonian structure of the problem, progress towards the 
second depends crucially on it, particularly on the variational characterizations 
provided. Many of the properties thus investigated are already well known (cf. 
Benjamin & Mahony 1971 ; Benjamin 1974; Longuet-Higgins 1974,1975,1980a). But 
to the best of our knowledge this is the first systematic study of the fundamental 
mathematical aspects that  are covered. 

The details of the hydrodynamic problem are set out in 32, which includes a brief 
rehearsal of the Hamiltonian formalism noted above. Surface tension is included in 
the account, and the only restrictive assumption about the wave motion is that  7 
remains a single-valued function of horizontal position. I n  33 some incidental 
commentary is presented concerning the regularity of solutions and the eventuality 
of wave-breaking. Folding of the free surface S ,  contrary to the aforementioned 
assumption, is considered as an essential precursor of breaking, and there is a review 
of the question how the evolutionary process may pass into this stage consistently 
with Hamiltonian principles. A reformulation of the hydrodynamic problem using 
parametric representations of S is given in Appendix 1 ,  to which reference needs to 
be made in $3. A new general interpretation is proposed describing precisely the 
manner in which the applicability of perfect-fluid theory terminates. 

The symmetry groups associated with several versions of the water-wave problem 
are presented in $4, being listed first in their simplest forms but then being derived 
systematically by identification of their infinitesimal generators. Explanations of some 
technical arguments needed are deferred to  Appendix 2, where the account covers 
a generalized free-boundary problem including the water-wave problem a$ a particular 
case but also having many other prospective applications. All the symmetry groups 
established in $4, which total thirteen for the three-dimensional version of the 
problem in the absence of surface tension, are recognized to have immediate physical 
interpretations. 

The conservation laws linked to these symmetries are derived in $ 5 ,  where the 
treatment relies on a new generalization of Noether’s theorem due to Olver (1980a). 
After an outline of the underlying theory, the pivotal result that  is needed, 
establishing a one-to-one correspondence between the single-parameter symmetry 
groups of any Hamiltonian system and its conservative properties, is presented as 
Theorem 5.1. The inferences drawn from applications of this theorem are collected 
in Theorems 5.2 and 5.3, which, for the two-dimensional and three-dimensional 
versions of the problem, list respectively eight and twelve conserved densities on S (i.e. 
quantities that are not exact differentials but whose integrals over any horizontal 
domain depend only on boundary values - in a sense to be made clear). Certain of 
these results have straightforward physical interpretations, but others have delicate 
meanings which call for careful discussion. A finally comprehensive account of the 
conservation laws obeyed exactly by water waves is given in $6, the main findings 
being presented collectively as Theorems 6.1 ($6.1) and 6.2 ($6.4). The account 
includes full explanations of the conservation laws in physical terms ($6.2), and some 
original findings concerned with a quantity I 7 ,  here termed virial, whose conservative 
properties are comparatively obscure ($6.3). The Lagrangian formulation of the 
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water-wave problem and a certain connexion between I and wave action are noted 
in 56.3. Finally, in 56.5, several delicate points of interpretation are clarified 
concerning waves on an  ocean of infinite depth. I n  particular, a precise analysis on 
novel lines is made in order to  elucidate the meaning of the momentum components 
in this case, which occur in certain kinematic identities but which appear a t  first sight 
to be indeterminate. 

1 . l .  Elements of Hamiltonian mechanics 

It will be helpful to recall a few of these elements in order to fix ideas. First, 
considering any Hamiltonian system with afinite number n degrees of freedom, take 
X E  Rn to  denote the configuration variable and y E Rn the (generalized) momentum 
variable. In  terms of the Hamiltonian function H ( x ,  Y ) E C ' ~ ( R ~ ~  --* R), the equations 
determining ( x ,  y ) ( t )  from any initial value ( x ,  y ) ( to)  are 
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dx  
dt dt 
- = H H , ,  -- dy - -H, .  

Here H ,  is just the n-vector with components aH/ay, (i = 1, . . 
Regarding x and y as column vectors and writing 

u = [i] , grad H ( u )  = [:::;I 
we have that the 2n equations in (1.1) are equivalent to 

u, = J grad H ( u ) ,  

in which J is the skew-symmetric matrix expressible by 

J = (  -I 0 I ) ,  

(1.1) 

n) , and H, similarly. 

where I is the n x n identity matrix. The scalar H is commonly, but not necessarily, 
the total energy of the system, and (1.1) or (1.2) implies that H ( u )  = const. along any 
solution curve u = u ( t )  in RZn. Any system in the form (1.2) with J a nonsingular, 
skew-symmetric matrix of constants can be reduced locally, by a linear transformation 
of the dependent variable u ,  to  a system in the canonical (Darboux) form with Jgiven 
by (1.3). 

Continuous systems having evolutionary equations in the form (1.2) also qualify 
as Hamiltonian. Then grad His to  be interpreted as a functional derivative in respect 
of some suitable inner product ( . , . ) p  over the class I' of functions (the infinite- 
dimensional phase space) to which the solution u can be attributed, and the 
skew-symmetric transformation J is correspondingly understood. Thus, formal 
definitions generalizing the preceding, finite-dimensional ones are 

(grad H ( u ) ,  v )p  = [(d/ds)H(u+Sv)ls=O, 

(Ju, v )p  = - (u, Jv)p  

V u, v E P. By convention the label Hamiltonian is extended to any equation in the 
form (1.2) with J skew-symmetric, nonsingular and independent of u. As regards 
vertain symmetry and conservative properties, however, the last two conditions on 
J are not absolutely essential (cf. Lax 1978; Gel'fand & Dorfman 1979). Accordingly, 
when either is not satisfied, the description quasi-Hamiltonian is justified. Equations 
in the form 

Kut = grad H ( u ) ,  (1.4) 
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where K is a skew-symmetric operator that is not invertible, may also be so described. 
I n  Appendix 1,  dealing with the parameterized version of the water-wave problem, 
we obtain an equation in this form. Plainly, it does not by itself fully describe an 
evolutionary process, for ut is not determined uniquely by it.  Rather, as the context 
makes clear, i t  is a sidelight, revealing incidental Hamiltonian structure, on a process 
that may be otherwise fully determined when arbitrary features of its representation 
are fixed. Note that either of the abstract equations (1.2) or (1.4) implies H ( u )  = const. ; 
for in the first case 

dH(u)  -- - (grad H ( u ) ,  u ~ ) ~  = (grad H ( u ) ,  Jgrad H ( u ) ) ~  = 0, 
dt 

Many properties of Hamiltonian systems can be conveniently represented in terms 
of Poisson brackets. Respective to a particular J in (1.2), the Poisson bracket of any 
two sufficiently smooth functions F :  P 4 R and G: P --f R is defined as 

[ F ,  GI = (grad F ( u ) ,  J grad G ( u ) ) ~  

It follows immediately from this definition that F ( u )  = const. along any solution 
curve of (1.2) in P if and only if [ F ,  HI  = 0. (We have already exemplified this 
proposition in noting that H ( u )  = const. follows from the obvious identity 
[H,  HI  = 0.) Because [ F ,  HI  = 0 is a symmetrical relationship between F and H ,  this 
also implies that if ul ( t )  is any solution curve of the Hamiltonian system given by 
replacing H by F in (1.2), then H(u,) = const. Another, deeper implication of the 
condition [ F ,  HI  = 0 is that the flows of the respective Hamiltonian equations 
commute (i.e. SF o SH = SH o SF,  where SH and SF are respectively the solution 
operators for (1.2) and its alternative; cf. Lax 1978; Olver 1 9 8 0 ~ ) .  Ideas extending 
these basic ones will be developed in $5.  

= - [G, F ] .  

1.2. Wider implications 

We have good reason to  believe that the present investigation accounts for all 
conservation laws intrinsic to the complete water-wave problem. While proof that 
no other exists is deferred to a subsequent paper (Olver 1982), it is timely to 
appreciate the import of this proposition, particularly its bearing on the interpretation 
of approximate theories. The fundamental aspect now highlighted is comparable with 
that of the three-body problem clarified by the celebrated theorems of Bruns and of 
Poincark (Whittaker 1937, Ch. 14), which establish the only invariant integrals of 
the dynamical equations to be those in respect of energy and the components of linear 
and angular momentum. In common with this classic example of a (finite-dimensional) 
Hamiltonian system, the limited number of conservation laws obeyed exactly by 
water waves contrasts with a greater, in fact unbounded number of them obeyed by 
some approximate models, which correspondingly have unnatural symmetries 
(cf. Ibragimov 1977) and need to be interpreted cautiously. 

The point in question, that  simplifications can introduce conservative properties 
not attributable to the complete version of the problem, is particularly obvious with 
regard to  linearized theory. For instance, consider two-dimensional irrotational wave 
motions in an infinite layer of water free from surface tension lying on a horizontal 
plane. Let h denote the mean depth and x E [w the relevant horizontal coordinate. 
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According to the linearized approximation which is very well known, the elevation 
71 = ~ ( x ,  t )  of the free surface above its undisturbed level satisfies an evolution 
equation in the form 

where A is the symmetric linear operator, invariant with x and t ,  whose symbol is 
given by 

[i.e. if ~ ( x ,  t )  is a smooth function vanishing together with all its derivatives as 
x -+ k 00 and its Fourier transform with respect to x is %q = $([, t ) ,  then 
F ( A q )  = A^$]. Treating q and v = gt as conjugate variables, we recognize (1.5) 
to exemplify a Hamiltonian system as represented by (1.2); the Hamiltonian 
function is 

Tt t  = A%,, (1.5) 

4 6 )  = (s /E)  tanh ' 0 

H = J (k,Ay,+&vv2)dx, 
R 

and d H / d t  = 0. On the other hand, any number of such quadratic invariants are to 
be found trivially from (1.5). For, if C is any symmetric linear invariant operator 
whatever, for example (-8;)" with n = 1 ,  2, . . . , then (1.5) implies that  

JR(CyZ All, + 27Cv) dx = const. 

I n  the approximation providing (1.5), the total energy of the wave motion is found 
to be 

E = fR:g~TZ+.(-A~~)-lv~dx = const., 

and its total momentum in the x-direction to be 

gr,( -Ad;)-% dx = const. 
- J R  

Having a clear physical meaning, unlike all the others, these two nonlinear invariants 
are in fact the only ones representative of the complete problem. 

The infinite profusion of invariants for the linearized problem thus is a straight- 
forward matter without particularly helpful implications. A comparable but much 
more remarkable property, however, is possessed by the Korteweg-de Vries (KdV) 
equation which serves as a rudimentary nonlinear model for unidirectional propa- 
gation of small-amplitude long waves in a uniform channel. This equation too is known 
to have an infinite number of conservation laws tied to  it, accountable to infinitely 
many 'accidental ' symmetries (e.g. see Olver 1977), and they have unquestionably 
interesting consequences. I n  particular, nonlinear interactions among solitary-wave 
solutions (solitons) are immaculate, allowing each component to emerge asymptoti- 
cally in its exact original form. The Hamiltonian structure of the KdV equation has 
been discussed by Gardner (1971), Lax (1978) and others in the light of this special 
conservative behaviour. Roughly speaking, by analogy with Hamiltonian systems 
whose phase space is finite-dimensional, one can say that the KdV equation is 
completely integrable by virtue of its unbounded set of invariant integrals, and its 
amenability in this respect makes it particularly attractive as a model for physical 
processes. The special properties must nevertheless be judged as intrinsic to the 
model, rather than as accurately simulative of real phenomena. The complete 
water-wave problem for a uniform channel is known to have solitary-wave solutions 
(Friedrichs & Hyers 1954; Amick & Toland 1981), but perfect interactions akin to 
those of KdV solitons are unlikely since the problem appears to  have only two 
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nonlinear integral invariants. We may appropriately note that the alternative, 
regularized long-wave equation studied by Benjamin, Bona & Mahony (1972) has a 
formal status more or less equal to that of the KdV equation as an approximate model 
for water waves, but this equation was shown by Olver (1979a) to have only two such 
invariants. It too can be regarded as a Hamiltonian system (see Lax 1978), having 
comparatively few symmetry properties but, a t  least in respect of its amenability to  
numerical solution, being none the worse for this shortage. 

2. The hydrodynamic problem 
We first present the full problem with allowance for three-dimensional motion and 

for surface tension, leaving particular versions of i t  to be specified later. Let' (x, y .  z )  
be fixed Cartesian axes with y vertical upwards. An incompressible inviscid liquid, 
having unit density, is considered to  occupy a domain D, whose upper boundary, the 
moving free surface denoted by S, is described by the equation 

(2 .1)  y = v ( x ,  z ,  t ) .  

Here 7 is assumed to be a single-valued function of z, z for all relevant t ,  but in $ 3  
and Appendix 1 the contrary case where S is folded will be examined. The horizontal 
projection of S is the whole plane [w x [w, to be denoted by So, and 7 is taken to be 
a smooth function vanishing together with all its derivatives as (x2 + z2) i  + 00. Either 
D, extends to infinite depth for all ( x ,  z )  €So, or i t  is bounded by a fixed horizontal 
plane y = - h. 

The motion of the liquid is supposed to have been generated from rest by 
conservative forces, being consequently irrotational according to Kelvin's theorem. 
The eulerian velocity field u: D, + R3 is therefore given by u = V$; and since the 
incompressibility of the liquid requires that V.u = 0, the velocity potential 
4 = $(x, y ,  z ,  t )  satisfies 

A$(=  4 x x + ~ y v + $ z z )  = o  in D,. 

The kinematic conditions of the problem include 

(2 .2)  

IV$(+O as ( x 2 + y 2 + z 2 ) f +  00 (2 .3)  

$ y = O  on y = - h .  (2 .3')  

and, in the case of finite depth, additionally 

To represent evaluations of $ and its derivatives at the free surface S, the following 
notations are used: 

@ = 4 s  = $(x,  V(Z, 2, t ) ,  2, t )  

@(x) = (4X)Sl @(y) = ($y)S, @ ( Z )  = (4Z)S? @ ( t )  = ( 4 t ) S .  

@t ( = at @) = @ ( t )  + @(y) T t ,  

@(n) = ( 8 n 4 ) S  = R-l(@(y)-V~@(X)-Vz@(~))~ 

Note that 

and that corresponding expressions hold for QX and Q Z .  We also write 

where R = (1  + ~ i  +r,")i, and 

q2 = IVqq% = @&) + + @&). 
I n  this notation, the kinematic condition applying a t  S is 

~~ 

T t  = R@(n) = @(Y) - 71, @(X) - T z  @ ( Z )  
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(cf. Lamb 1932, $9). The remaining, dynamical boundary condition expresses the fact 
that  the pressure in the liquid a t  S is -2aH, where a is the coefficient of surface 
tension and 

is twice the mean curvature of#. Thus, using the Bernoulli integral of the dynamical 
equations to express the pressure, we have 

C D , , , + $ ~ + ~ T - ~ V H  = 0 (2.5) 

(cf. Lamb, §20), which is the same as 

@t = - (W + 97 - 2aH) + a(,) Tt 

= -(+$+gy-2aH)+@(,, R@(,) (2.5') 

by (2.4). I n  general a function of time alone is included in the Bernoulli integral, but 
here it is zero by virtue of the asymptotic conditions on S for (x2  + z2)$ + 00. 

The kinetic energy of the motion is given by 

and the associated potential energy by 

V = ~ s o { ~ q 2 + c r ( R -  1))dxdz.  

The second integral expressing K follows from the first by Green's theorem combined 
with (2.2) and (2.3) ; and V is expressed relative to  a state of rest with S everywhere 
horizontal. It may readily be confirmed that (2.2)-(2.5) imply the total energy 
E = K+ V to be conserved. 

To obtain the Hamiltonian formulation of the problem, we first note that the 
motion is determined fully by the two functions rj and CD of x ,  z ,  t .  That is, for each 
t ,  7 determines the domain D, and CD determines the corresponding q5, which is the 
unique solution of the linear boundary-value problem comprised by (2.2), (2.3) and 
(q5)s = CD. We can accordingly consider E = E(7, CD) and proceed to calculate the 
functional derivatives E, and EQ. The calculation is done on the lines of the classical 
calculus of variations, using the formal definitions 

where ( . , . ) denotes the inner product for L2(So). The expression (2.6) for K gives 

h'= (q ,  b2)+J V+.V$dxdydz 
4 

= ( V ?  @) + w s >  q n )  R )  

6 = (AS+@(,) q. 

by Green's theorem, and the second integral can be reduced to the required form by 
use of the obvious identity 

The expression for V = V ( 7 )  gives a t  once 

= ( 4 5  ST) + a { ( V x ,  R-lvx) + (ria E-lTZ))> 
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and the terms proportional to CT are reducible through integrations by parts. Hence 

Em = R@(,). 

Comparison with (2.4) and (2.5') now shows that the hydrodynamic problem is 
formally equivalent to the Hamiltonian system of equations 

~t = EQ, @t = -E,, (2.8) 

with 1;1 and iD as canonical variables (cf. Zakharov 1968; Miles 1977). It may be noted 
incidentally that the same formalism holds when D, is bounded beneath by any 
smooth fixed surface r, not necessarily horizontal, but So is still the whole horizontal 
plane. The only difference then is that the kinematical condition a, q5 = 0 on r is 
included in the specifications of the linear boundary-value problem closing the system 
(2.8). In  the case that D, is bounded in all directions (i.e. the liquid is contained in 
a finite vessel), some modifications are needed. If surface tension is operative, a 
condition at the edge of S needs to be specified, which could reasonably be that the 
contact angle between S and the fixed part of 30, takes a prescribed value, or that 
7 = 0 a t  the edge (cf. Benjamin 1980). In  this case, moreover, a non-zero constant, 
say A,  is generally needed on the right-hand side of the dynamical surface condition 
(2.5). Accordingly, the appropriate Hamiltonian function replacing E in (2.8) is 
E+Am,  where in keeping with (2.2) and (2.4) 

is plainly a constant of the wave motion. 
For easy reference later, let us note the two-dimensional version of the problem 

(2.2)-(2.5) in the case of infinite depth. Here 7 = ~ ( x ,  t ) ,  @ = @(x, t ) ,  etc., and the 
complete two-dimensional problem is 

@(t)+842+9v--bJ5x/11 +rl3$} = 0. 

In  this case, of course, we have R = (1  -i-vi)i, and in the last of (2.9) the expression 
for the curvature of S is the same as (qZ/R)*.  

3. Regularity and wave-breaking 

For continuous Hamiltonian systems it is usually difficult to verify that physically 
meaningful solutions exist over long iiltervals of time. I n  common with general 
three-dimensional vortex motions of a perfect fluid even when confined within finite 
fixed boundaries (cf. Ebin & Marsden 1970, Ql), water waves are mathematically 
uncertain to the extent that no existence and regularity theory is yet established. 
Note that constancy of the positive Hamiltonian E ,  either as expressed in $2 or as 
more generally expressed in Appendix 1, is quite insufficient to guarantee acceptable 
regularity of the solution. Accordingly, like most others dealing exactly with 
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unsteady water waves, our investigation proceeds on the unsupported presumption 
of solutions remaining smooth. While its tentativeness should be acknowledged, this 
line of approach is entirely reasonable for present purposes - and faute de mieux 
necessary. 

On the other hand, a specially interesting aspect of the theoretical problem is 
indicated by the practical observation that water waves can break, producing 
vigorous turbulence and so passing beyond the reach of perfect-fluid theory. The 
evolutionary process with Hamiltonian structure is an abstraction, of course, but has 
been amply confirmed as an excellent approximation to nature before the onset of 
breaking. It is therefore evident that the process can eventually develop properties 
incompatible with nature, where the obviation of them depends essentially on 
physical factors not included in the ideal theory. Many different suggestions have been 
made about the rnec'hanism of wave-breaking, but in our view the basic mathematical 
issue has not yet been adequately exposed. 

One sort of explanation that has often been given refers to the possibility of a local 
'instability', as the result of which small-scale features of the wave motion develop 
rapidly and real-fluid effects thereby become predominant somehow (for a recent 
appeal to this idea, see Stiassnie & Peregrine 1980, 95). With regard to a continuo& 
evolutionary process the meaning of ' instability ' can hardly be made precise, 
however, and the main theoretical issue is not illuminated by proposals on these lines. 
Rapidly developing motions such as occur near the crest of a wave prior to breaking 
may still be modelled accurately by the perfect-fluid equations, which can in principle 
be integrated forward in time until some ruinous singularity is developed. Until that 
event, the Hamiltonian structure and other conservative properties of the perfect-fluid 
model remain intact. In  particular, the motion remains everywhere irrotational 
according to Kelvin's theorem and is unquestionably not turbulent. 

Another explanation - or rather description - of the breaking mechanism has been 
suggested by proponents of catastrophe theory (Thom 1975, p. 94;  Zeeman 1970). 
According to it,  the crest of a wave evolves into a sharp-angled form, akin to the 
extreme form of steady waves in the absence of surface tension as discovered by Stokes 
(Lamb 1932, p. 418). The crest thereafter becomes cusped forwards, in the manner 
typified algebraically by the unfolding of the hyperbolic umbilic catastrophe. This 
characterization is not unlike what is sometimes seen, particularly in that a jet of 
water is thrown forward; but there is little evidence that this type of singularity is 
evolved precisely by the hydrodynamic system. More cogently, local perfect-fluid 
behaviour that simulates the formation of sharp corners in the free surface of a water 
wave and probably typifies the intermediate stages in the overturning of waves has 
been analysed by Longuet-Higgins (1980b, 1981). However, such behaviour if i t  did 
occur would presumably still be a stage of Hamiltonian evolution, so that it does not 
account for the final breakdown of the model and the appearance of turbulence. 

The interpretation favoured by us is simple and definite, recognizing that the 
free-boundary problem can have smoothly evolving solutions that suddenly become 
incommensurate with reality. Consider first the stage of evolution illustrated in 
figure l (b ) ,  which smoothly follows that in figure l ( a ) .  The height 7 of the free sur- 
face X has ceased to be a single-valued function of position in the horizontal plane, 
so that the simplifying assumption introduced in $2 is violated. As will be shown in 
Appendix 1 ,  the hydrodynamic problem can nevertheless easily be recast in a 
parametric form covering this situation; the equations can still be presumed to 
determine a smooth evolutionary process, and a quasi-Hamiltonian formalism is 
applicable. But, taken forward in time, the solution describing S will eventually 
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FIGURE 1. Eventualities in extreme stages of evolution. 

present the situation in figure 1 (c ) ,  where the same part of space is occupied twice 
by the fluid. Note that neither the mass-conservation condition divu = 0 nor any 
specification of the parameterized problem precludes such behaviour, although it is, 
of course, physically impossible. 

Thus an extra, overriding constraint suddenly arrests the previously smooth 
evolutionary process. Unbounded decelerations of the liquid occur at the instant of 
impact between two different points of S ,  and it is highly plausible to explain the 
generation of turbulence, air-entrainment and other real-fluid effects as the sequel 
to the abrupt cancellation of the preceding hydrodynamic model. The situation is 
roughly comparable with the interruption of Hamiltonian structure when collisions 
occur in the N-body problem. 

The suggested manner of breakdown is readily understood with regard to ‘plunging 
breakers’, which feature a definite, more or less two-dimensional jet of water being 
projected forward of the wave crest to fall on the part of S ahead. We emphasize, 
however, that in principle the explanation may relate equally well to three-dimensional 
as to two-dimensional situations, and to phenomena such as ‘spilling breakers’ where 
the impact of different parts of S is less plainly involved. Thus, according to our view, 
incipient breaking in any of its various manifestations (that is, whenever ‘white 
water ’ first appears in practice) may be similarly accountable to  the suppression of 
an impossible situation determined by Hamiltonian evolution. Such interruptions of 
a previously smooth, energy-conserving process may occur on a small, even micro- 
scopic scale, not merely in the prominent manner of a plunging breaker. Two localized 
impossibilities, such as may perhaps initially underlie the turbulent zone of a spilling 
breaker, are sketched in figure 1 ( d ) .  Note that the reason for breakdown is not a 
singularity in the usual mathematical sense, nor in any precise sense an instability, 
but is rather a smooth departure of the Hamiltonian model from its approximate 
intersection with the physical world. 

4. Symmetries of the water-wave problem 
Our object here is to  establish the complete symmetry group for the problem 

specified in Q 2, both its two-dimensional and three-dimensional versions and both 
with and without surface tension. The methods used to find the symmetries are 
developed from the theory of transformation groups and from prolongation theory, 
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as will be summarized in Appendix 2. Accordingly, we postpone exposition of the 
underlying mathematics until the end of this section, first presenting the main 
findings in two theorems and proceeding to  some discussion of their physical meaning, 
before taking up the technicalities of the proofs. I n  fact, once any particular group 
is given as in the theorems, i t  is fairly straightforward to  check from the equations 
of the problem whether or not this is a symmetry group. The detailed and admittedly 
complex computations used to  prove the theorems nevertheless have a twofold 
purpose. They provide a systematic means of finding symmetry groups, and they give 
assurance finally that all possible symmetries of the kind under consideration have 
been found. 

For the sake of readers primarily interested in practical applications, we shall state 
the results first in the form of explicit group transformations, rather than their 
infinitesimal generators which are the prior outcome of our computations. The groups 
to be specified all depend on a finite number of continuous parameters. We thus ignore 
discrete symmetries, such as reflections, which are not connected continuously to the 
identity map (as recovered by the zero or unit value of parameters in the continuous 
case). This mild delimitation of our aims, being tied t,o our use of infinitesimal 
methods, is considered to  miss nothing of importance. 

The following theorems state that  the full symmetry group respective to  each 
specified version of the water-wave problem is 'generated' by a certain number of 
one-parameter subgroups. This means that for the respective problem any symmetry 
(of the kind with continuous connection t o  the identity) can be constructed by 
applying a finite number of the component symmetries in succession. [Recall, for 
example, that the group of rotations in R3 has a corresponding representation, being 
generated by the three one-parameter subgroups of rotations about three Cartesian 
axes.] 

The given subgroups may be considered to act geometrically on the four-dimensional 
space with coordinates (x, y ,  t ,  $) for the two-dimensional physical problem, or the 
five-dimensional space with coordinates (x, y ,  z, t ,  $) for the three-dimensional 
problem. Each group correspondingly induces a transformation in the space of 
solutions, in effect transforming the graphs of the free surface and of the velocity 
potential [cf. (A 9) in Appendix 21. The key point is that  transforming a given solution 
by any of the symmetries produces a continuous family of other solutions. The 
theorems first specify the geometrical transformations, listing expressions for the 
transformed independent and dependent variables. Then the corresponding new 
solutions found from the group transformations are expressed in terms of the original 
free-surface elevation and potential. In  these expressions, E E R denotes each additive 
group parameter (so that  the composition of transformations determined respectively 
by E and E', say, is the same as the transformation determined by E + E ' ) ,  and A > 0 
denotes each multiplicative parameter. Note that a multiplicative parameter h can 
be considered as e". 

4.1. The main results 
THEOREM 4.1. The full symmetry group for the two-dimensional water-wave problem 

in the absence of surface tension (i.e. (2.9) with cr = 0) is generated by the following nine 
one-parameter subgroups : 

Horizontal translation 

Time translation 
a,: b + E ,  y ,  t ,  $), 

G,: (2, y ,  t + e ,  $), 
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Variation of base-level for potential 

Vertical translation 
G,: (x, y, t ,  $+4, 

(74 : (2, y + € 3  t ,  $ - q t ) ,  

G5: ( X + d ,  y, t ,  $+Ex+k2t),  

Horizontal Calilean boost 

Vertical Galilean boost 

Ga : (2, y+st,  t ,  $ + E(y-&t2) +&'t), 

Vertical acceleration 

G,: (2, Y+&t2(1-Ah-2), A-lt, A{$+gty(l-Ah-2) 

+ k2 t3 (  1 - 3A-2 + 2X4)} ) ,  

Gravity-compensated rotation 

G,: (x cos s+(y+&t2) sin E ,  -x sin e+(y+$t2) cos e -b t2 ,  

t ,  $+gt{x sin E+(y+ht2)  (1-cos e)}), 

Scaling 
G,:  (Ax, hy,  Ait, A$$). 

New solutions given by transforming the free-surface elevation ~ ( x ,  t )  and velocity potential 
$(x, y, t )  are as follows: 

G,: r(x--s, t ) ,  $(x--e, y, t ) ,  

(72: r ( x ,  t - 4 ,  $b, 9, t - 4 ,  

G,: r(x, t ) ,  $(x, y, t)+E, 

G4: r ( x ,  t)+E, $Cx, y-6, t)-q$, 

G5: r(Z-Et, t ) ,  

G6: r ( ~ ,  t)+Et 

G,: ~ ( x ,  At)-$t2(1-h2),  

$(x-~Et, y, t)+Ex-&2t, 

$(z, Y-et, t)+e(y-&t2)-ie2t 

A#@, y + bt2( 1 - ha), At)  -sty( 1 - A$) - Q"3( 1 - 3h2 + 2h4), 

G,: ~ ( 5 ,  t )  cos e-5 sin e+$t2(cos E -  l) ,  

+gt{x sin e+(y+&t2) (cos E - l ) } ,  

$(x cos e-(y+$t2) sin e ,  x sin e+(y+&t2) cos E-&t2, t )  

where 2(x, t )  is  determined implicitly by 

x = 5 cos e-{q(5, t)+$t2} sin E ,  

G,: Ay(A-'x, A-it), AZ$(A-'x, k ' y ,  k i t ) .  

When surface tension is  operative (a > 0) ,  all the above groups except G, and G, remain 
symmetries. I n  this case, moreover, the following 'combination' of G, and G, (in effect 
G,oG, with A, = A - l ,  A, = A )  remains a symmetry: 

Scaled acceleration 

0, ( A X ,  ~ { y  + &t2( 1 - h2)} ,  hzt, hi{$ + Sty( 1 - h2) + ~ 2 t 3 (  1 - 3 ~ 2  + 2 ~ 4 ) } ) ,  
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hll(h-lx, A-&) -&,( 1 - h-2 1 7  

A@(h-lx, A-'{y+$t2(1 -A+ )}, h-tt) -Sty( 1 - h-,) - ~ 2 t 3 (  1 - 3h-2 + 2 ~ ~ ) .  

The physical interpretations attaching to  the various symmetry groups noted 
in this theorem are reasonably clear. The first four may seem trivial, being 
recognizable with little thought to  be symmetries; however, i t  is crucial to list them 
since they will be shown in 0 5 to underline significant conservation laws. The Galilean 
boosts G, and G6 represent the effects observed from frames of reference moving 
uniformly in the horizontal and vertical directions respectively. The group G, 
represents the corresponding effects for a frame that is accelerating uniformly in the 
vertical direction, so modifying the effective gravity constant. To understand the 
rotation group G,, i t  is helpful to  consider the special case where g = 0. Plainly, since 
there is then no preferred direction, any solution will remain a solution after being 
rotated about an arbitrary point in the (x, y)-plane. It can hence be appreciated that 
when g =i= 0 the group G, transforms solutions by first accelerating vertically to cancel 
the effect of gravity and then rotating. Finally, the scaling group G, is easily 
understood, being evident from dimensional considerations. For example, when = 0 
and so g is the only physical parameter including time in its dimensions, periodic 
waves of permanent form on water of unbounded depth evidently have a speed 
proportional to g:, and hence to A: in the case that both their amplitude and 
wavelength are varied in proportion to A.  

Several remarks are pertinent concerning the influence of further boundary 
conditions, both conditions at the bottom if the depth of water is finite and 
asymptotic conditions as 1x1 -+ 00. First note that the imposition of such additional 
constraints on solutions can only decrease the number of symmetries. For example, 
under the restriction that Ir,~l-+ 0 as 1x1 -+ co, only GI, G,, G,, G, and G9 are symmetry 
groups, preserving this property of solutions upon transformation. For waves on 
infinitely deep water that  are periodic in x (not necessarily in t ) ,  all the groups except 
G8 are relevant, although the mean height of the free surface changes according to 
G4, G, and G,. For finite geometries the reduction in symmetries is even more severe. 
I n  the case of a horizontal rigid bottom a t  finite depth, only GI, G,, G, and G, are 
symmetry groups; and for waves on water contained in a closed basin of any shape, 
only G, and G, remain. The non-physical character of some of the transformations 
should not, however, be judged to disqualify them from serious consideration. The 
relationship of all the present symmetry groups with conservation laws will justify 
our attention to them. 

Corresponding results for the three-dimensional problem are given next : 

THEOREM 4.2. The full  symmetry group for the three-dimensional water-wave problem 
in the absence of surface tension is generated by the following thirteen subgroups: 

Horizontal translations 

G,: ( z fe ,  y ,  z ,  t ,  $1, G,: ( X ,  y, Z + 6 ,  t ,  $), 
Time translation 

a,: (x, y ,  z ,  t+e,  $), 

Variation of base-level for potential 

Vertical translation 
G4: (2, y ,  z ,  t ,  $+.), 

(x ,  Y + E ,  z ,  t ,  $-@),  
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Horizontal rotation 

G,: (x cos E - z  sin E ,  y, x sin E + Z  cos E ,  t ,  q5), 

G,: (x+et,  y, z ,  t ,  q5+ex+ie2t), 

G,: (x, y, z+et, t ,  q5+sz+$EE2t), 

Horizontal Galilean boosts 

Vertical Galilean boost 

(2,: (2, y + d ,  Z ,  t, q5+E(y-&$2)+&2t), 

Vertical acceleration 

GI,: (x, y+&t(l  - A p 2 ) ,  z ,  A-lt, h{q5+gty(l - h P ) + k 2 t 3 ( l  -3hp2+2AP4)}) ,  

Gll: (x cos E +  (y+$t2)sin E ,  -x sin E +  (y+$t2) cos e-&t2, 

z ,  t ,  q5+gt{x sin c+(y+&t2) (1-cos E ) } ) ,  

G12: (x, - z  sin E+(y+itgt2) cos c-$t2, z cos E+(y+$t2) sin E ,  

t ,  q5+gt{z sin e+(y+&t2) (1-cos E ) } ) ,  

G,,: (Ax, h y ,  hz, Apt, &). 

When surface tension i s  operative, all the above groups except G,, and G,, remain 
symmetries, and the following ‘combination’ of G,, and G,, remains a symmetry: 

Gravity -compensated rotations 

Scaling 

Scaled acceleration 

Glo: (Ax, A(y+2jgt2(1-h2)}, hz, hk, h&{$+gty(l - h 2 ) + ~ 2 t 3 ( l - 3 h 2 + 2 h 4 ) } ) .  
Note that, except for the horizontal-rotation group G,, all the symmetry groups 

noted in this theorem are analogues of those for the two-dimensional problem. With 
the one exception, expressions for transformed solutions exactly correspond to those 
given in the second part of Theorem 4.1, and so can be omitted for brevity. The new 
solutions in the remaining case are 

G,: ~ ( x  cos e+z  sin E ,  -x sin E + Z  cos E ,  t ) ,  
#(x cos E + Z  sin E ,  y, -x sin E + Z  cos e ,  t ) .  

4.2. Derivations 
We now take up the proofs of the above theorems, applying the infinitesimal- 
transformation methods that are explained generally in Appendix 2. Since here and 
in $ 5  the mathematical arguments are necessarily quite technical, it is advised that 
the reader mainly interested in the physical bearing of the demonstrated symmetries 
and conservation laws can skip ahead to $6. For simplicity of illustration we 
concentrate on the two-dimensional problem without surface tension, but derivations 
of the other results proceed in a precisely similar way. 

= 0. Referring to the context of 
(A 10) in Appendix 2 for explanations of terms, take the vector field 

where a, /3, r ,  y are functions of (x, y, t ,  q5), to be the infinitesimal generator of a 
one-parameter group of symmetries for this problem. According to (A 21), the 
required invariance of Laplace’s equation in the problem implies that the 

(4.1) 
prolongation 

pr v(A$) = @,,+S$,, = 0 whenever Aq5 = 0. 

Consider the free-boundary problem (2.9) with 

v = aa, + pa, + 7a, + ya,, 
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The functions S$xx and &hyy are computable from (A 13); but (4.1) simply means, 
of course, that v is the generator of a group of conformal transformations in (5, y)-space. 
It can be shown (cf. Ovsiannikov 1982) that  consequently v is a projectable vector 
field, which means that a, P , T  are independent of $. Since this fact greatly simplifies 
the remaining calculations, we shall a t  once resort to it. Although with a little extra 
trouble i t  can be confirmed directly in the present example, we choose rather to rely 
on Ovsjannikov’s general result that  symmetries tied to Laplace’s equation are 
projectable. Moreover, since the conformal group in two dimensions is much larger 
than the group of symmetries expected to be delimited mainly by the free-boundary 
conditions of the problem (2.9), we can concentrate instead on the symmetry criteria 
that  apply at the free surface S. 

The prolongation of v to S is 

I n  these expressions D denotes total derivatives: for instance, D, y = y, + y6 $x. 
Note that 

DXCPS) = (DxP)s+ ( P J s r x  = (Px)s+ (P,)S7121 

and similarly for Dt(Ps). Note also that total derivatives of y only are needed in the 
first three expressions, since a, P, T are known to be independent of $. 

Now, for the two nonlinear equations in (2.9) applying a t  the free surface (with 
CT = 0), the symmetry conditions represented in general by (A 22) become 

8% - w y  + T x  w x  + $XS% = 0, (4.2) 

~$ t+$xWx+$y~$ ,+9P = 0, (4.3) 

evaluated a t  S. We proceed to  analyse (4.2) and (4.3) by use of the above prolongation 
formula, substituting for yt and from (2.9) wherever they occur. Since these 
conditions are required to hold over the whole class of solutions to (2.9), the coefficients 
of each mononomial term in powers of y, y,, and @(y) must vanish. The 
calculations on this basis are quite straightforward, and their outcome is as follows. 

I n  (4.2) the highest-order terms, in T&@?,), cancel independently of a, p, 7 ,  y and 
so reveal nothing, as also do terms in y;@(,). For the only other cubic mononomials, 
the coefficients of yx@ix) and yx@iy) are non-zero multiples of T,, while that of 
yx @(,) @(l / )  is a non-zero multiple of rY. Therefore T can depend only on t ,  which fact 
is also implied because 7 ,  occurs as a coefficient of @(,) @(Y) and gyqz, while rY occurs 
as a coefficient, of mix), @fy) and gy. 

It next follows from terms in yX@(,) that  

T t  +Y$ = 201x9 (4.4) 
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and from terms in either qzcD(y) or @(z. that 

ay+pz = 0. (4.5) 

Finally from (4.2), terms in cDDtz/), in qz and then the remaining terms which do not 
depend on any derivatives of or 4 lead to 

7 t  +Y$ = 2pyj 

at = Yx,  

Pt = Y y .  14.8) 

A similar analysis of (4.3) is found to give equations that, with a single exception, 
duplicate ones already established. The new equation, obtained from the terms not 
involving derivatives of q or q5, is 

Yt+gP = gY(Y$-Tt). (4.9) 

Proceeding to solve these equations, we first recognize (4.4) to imply that 

Y = c,(x, y ,  t )  4 + X k ,  Y, t ) ,  

where c, = 2 a , - ~ ~ .  Then, since a, P and 7 are independent of 4, equations (4.7)-(4.9) 
show that c, is a constant, and that 

X t  = d ( C 0 - 7 t ) Y - P P ) .  (4.10) 

Hence (4.4)-(4.6) lead a t  once to 

(4.11) 

in whichc,, p and v depend on t alone. But (4.7) and (4.8) imply that ayt = P z t ,  showing 
that c8 is in fact a constant. [The choice of numeration for constants ci will become 
clear presently.] Hence (4.7) and (4.8) show further that 

x = f ( 5 2 + Y 2 ) 7 t t + x p t + Y v t + E ( t ) ,  (4.12) 

By substituting (4.12) and the second of (4.11) into (4.10), we obtain the equations 
where f ;  is another function of t  alone. 

T t t t  = 0, 
V t t  = g(&o-&t), Et = - s v >  

7 = c, , t2+(-c7+&9)t+c2, 

p = +gc8t2+C5t+C1, 

v = -+gc,,t3+gC,t2+c6t+Cg, 

#$ = Qg2c1,t4--~g2c7 t3-+gc, t2-gc4t + c 3 ,  

Ptt = S C S ?  

whose general solution is 

where c l ,  . . . , c,, are constants with c, +$c9 = c,. The use of these results to evaluate 
(4.11) and (4.12) for a,  P and x gives the most general infinitesimal symmetry of the 
free-boundary conditions ; but we must verify finally that these symmetries generate 
conformal transformations. When the general expression obtained for x is substituted 
into (4.1), we thus expose the requirement that cl0 = 0. 

A basis for the Lie algebra of infinitesimal symmetries is given by setting each of 



154 T .  Brooke Benjamin and P. J .  Olver 

cl, . , . , cs in turn equal to  1, with the rest equal to 0. We thus establish the precursory 
version of Theorem 4.1 : 

THEOREM 4.3. The Lie algebra of injinitesimal symmetries for the two-dimensional 
water-wave problem in the absence of surface tension is  spanned by the following nine vector 
jields : v1 = a,, v, = a,, V, = a,, 

v, = a,-gta,, v, = ta,+Xa4, 

v, = gt2a, - tat + (4 + 2gty - QV) a,, 
v8 = ( y + ~ t 2 ) a 5 - X a y + g t x a , ,  
vs = xaz + yay  + tta, + ;$a,. 

v6 = tay  + ( Y - k t 2 )  

Exponentiation of each vector field vj specified in this theorem, which operation 
amounts to solving the corresponding system of ordinary differential equations 
(A l l ) ,  gives the one-parameter symmetry groups Gj of Theorem 4.1. The most 
general one-parameter symmetry group for the two-dimensional problem can be 
found by exponentiating an arbitrary linear combination of these nine vector fields ; 
however, no further enlightenment is to be gained by spelling out this formula. 

To obtain the corresponding result allowing for surface tension, the simplest way 
is to test which of the given symmetries or linear combinations of them are unaffected 
by the term crq,./( 1 + qi ) j  added to the dynamical free-boundary condition. While 
the sufficiency of such an approach is in general not automatically ensured, it is 
straightforward to confirm in the present case that no extra symmetry is induced by 
the additional term. The calculations covering the three-dimensional problem are 
very similar to those establishing Theorem 4.3, and they are marginally simplified 
by the fact that the conformal group in three dimensions admits only ten parameters. 

5. Derivation of conservation laws 
Noether’s famous theorem states that  every one-parameter group of symmetries 

for a variational problem determines a conservation law satisfied by solutions of the 
corresponding Euler-Lagrange equations. The general principle pinpointed by the 
theorem will now be applied to  find conservation laws for the water-wave problem, 
but there are two basic drawbacks to a direct use of Noether’s theorem for this 
purpose. First, the equations of the problem are in Hamiltonian form, and it is in- 
expedient to recast them as Euler-Lagrange equations. Second, not every symmetry 
tied to Euler-Lagrange equations (particularly any scaling symmetry) is necessarily 
a symmetry of the respective variational problem (for a full discussion of this point, 
see Olver 1980b, $4.1). These disadvantages have been obviated in a new, 
comprehensive theory that has been developed by Olver ( 1 9 8 0 ~ )  concerning the 
relationship between symmetries and conservation laws for Hamiltonian systems. We 
present as follows an outline of this theory, covering needs for the present 
application. 

Consider an evolution equation in the abstract Hamiltonian form 

5.1. Needed generalities 

where 4 = ( $ l ,  . . . , @) is the set of dependent variables, x = (xl, . . ., zp) the inde- 
pendent space variables, and J = ( J i j )  is a q x q skew-symmetric matrix of constant- 
coefficient differential operators. [The conclusions to be summarized can be extended 
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to certain cases of J depending on 4, and its spatial derivatives. An additional 
assumption, ensuring a closure condition on an associated symplectic form, is then 
needed to make (5.1) Hamiltonian, but we can pass over this generalization here.] 
A scalar Cm function T of x, t ,  Q and spatial derivatives of 4, is called a conserved density 
in a conservation law for (5.1) if, for any region SZ c [WP with piecewise smooth 
boundary dR and any interval to < t < t,, all solutions 4, of (5.1) satisfy 

for some p-tuple of functions A. I n  other words, the difference in a spatial integral 
of T at two different instants depends only on the behaviour of Q and its derivatives 
a t  the boundary of the region in question. I n  particular, if 4, and its derivatives vanish 
on 3 0 ,  then Jn T d x  will be independent of time t. Note that according to (5.2), if T 
is a conserved density, so also is T+Div P for any smooth p-tuple P. Conserved 
densities thus differing by a divergence will be called equivalent. 

We also need to  consider conservation properties associated with one-forms. A 
one-form is a finite sum having the representation 

where a standard notation explained below (A 14) in Appendix 2 is used (4; with 
j = 1, . . . , q and the multi-indices k is a representation of all the kth and lower 
derivatives of @) and where the Pi  are functions of X, t ,  4, and its derivatives as 
above. The one-form w is said to be conserved if, for any region SZ and any to < t ,  
as before, an equality 

holds for every one-parameter family of solutions of (5.1), written Q(x, t ,  A )  with 
0 < h < 1. Again as before, if w is conserved, so also is o' = w + Div p, where p is 
an arbitrary p-tuple of one-forms, and o' is said to be equivalent to o. [Note that 
the p terms in the divergence here can be worked out according to 
D,(Pid$j) = (Di Pi) d@ + Pjd$/ ,  etc.] Hence i t  is easily seen from integrations by parts 
that  every one-form is equivalent to another with the special, generally simpler 
representation 

w = z P i d $ i .  
i 

Corresponding to a given conserved density T, there is a conserved one-form defined 

(5.4) 

which is called the exterior derivative of T. Conversely, if w is a conserved one-form 
equivalent to  dT for some T, then this T is a conserved density for solutions of (5.1). 
The present method of deriving conservation laws for (5.1) accordingly consists in 
associating a conserved one-form with every symmetry group of (5. l ) ,  and then seeing 
which of these one-forms are equivalent to  the exterior derivative of some density. 
It may be noted that these conserved one-forms are generalizations of wave action 
as defined by Hayes (1970) in that they provide conservation properties of one- 
parameter families rather than single solutions. 

FLM 125 6 
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The needed theorem, proved in Olver (1980a), can be stated as follows: 

. a  a a 
a d  at ay 

THEOREM 5.1. Let 
v = xuz -  +7- + xy5- 

be the inJinitesimal generator of a one-parameter symmetry group of (5.1) [see context of 
(A 10) in Appendix 21. Then, if 

X Jii P' = yg-Eaj#-r#!, (5.5) 

the one-form w = Z P P i d &  is conserved. [In (5 .5) ,  #I can be evaluated from (5.1).] 
Moreover, i f  a T exists such that w is equivalent to dT, or correspondingly 

Pi = ST/S#8 

[here &/SgsZ denotes the variational derivative with respect to #, i.e. the gradient, or 
functional derivative, of j j  T d x d t  in the sense used in $21, then T is a conserved density 
for (5.1). 

Note that in the general case where J is a matrix of differential operators, P is not 
always well defined by (5.5). In the present application, however, J is an invertible 
matrix of constants, and so this difficulty does not arise. 

i I 

5.2. Present application 

Returning now to the water-wave problem, we recollect that the dependent 
variables are y and Q, = #s, which is the restriction, to the free surface 8, of the 
underlying solution of A# = 0 in D,. Also, according to (2.8), the operation J is just 
the matrix 

L; 8. 
Applied to this free-boundary problem, as explained generally in Appendix 2, 
Theorem 5.1 tells us that if the vector field 

v = aa, +pa, + rat + ya, 

is the infinitesimal generator of a symmetry, then the one-form 

w = - (y  - a@, -dt) d y  + (P-ay, - 7qt )  d@ 

is conserved. [Note that here Q,, = + @ ( l / )  7,: and similarly for the t-derivative.] 
Using this criterion, we proceed to test the various infinitesimal symmetries listed 
in Theorem 4.3. 

To recover v,, we take or. = 1, /3 = r = y = 0, and hence from (5.5) find the 
respective conserved one-form to be w1 = @, dy - q,  d@. As plainly appears from an 
integration by parts, this one-form is equivalent to 

9, = -@dy,-v,d@ = - d ( q , @ ) ,  

showing T, = - 7, @ to be a conserved density. 
Similarly, the conserved one-form associated with v, is seen to be 

w2 = Q , ~ d ~ - ~ , d @  = -Eqd7-E@d@ 

in the notation of (2.8). By a simple argument essentially retracing the steps that 
led to (2.8), it hence appears that w, is equivalent to - d X ' ,  where X' = R + hq2 
is the Hamiltonian density function whose integral over R equals E. This conclusion 
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reproduces the fundamental fact that for any Hamiltonian system (5.1), the 
Hamiltonian density is conserved, which fact is of course attributable to the 
time-invariance (autonomy) of such a system. 

The one-form corresponding to v3 is evidently w3 = d y ,  which confirms T3 = y to 
be a conserved density; and that corresponding to v4 is w4 = gt dy + dCD, which gives 
% = g ty  + CD as the conserved density. I n  the same way, V, leads to T5 = xy + t y ,  @, 
v, to $ = k2 - tCD -$t2y, and v8 to 

On the other hand, with N denoting equivalence, the one-forms generated by V, 
and v, are found to be 

= xCD + yyz @ + gtzy  + $t2y, @. 

0, = - (0 + 2gty - h2t3  +tot) d y  + (gt2 + tqt) dQ, - d ( t X  - Sty2 + gt2CD + &7't37) - CDdy 

W ,  = - (&D-xCD,-&CDt)dy+ ( ~ - x ~ , - & t ) d @  
s 

and 

N d( -it2 -ZT, CD + 70) -;CD dy,  

neither of which is the exact derivative of a density. Plainly, however, the linear 
combination w,- (7 /2 )  o, has the required property, and thus it transpires that  

% = (y - xy,) CD - 4 t x  + &sty2 - &t2@ - gg2t3y 

= (y-xys) CD-t(42-7gT,)+&t2T,-~2t3T3 

is a conserved density. 

conserved densities, we have : 
Collecting the results and anticipating physical connotations of the first three 

THEOREM 5.2. The two-dimensional water-wave problem (2.9) in the absence of surface 
tension has the following eight conserved densities : 

= - y, CD (horizontal impulse), 

T,  = 2 = i@(@D,,,-r,@,,,)+4m2 (energy), 

T,  = CD+gtq, 

= xq-tT1, 

= k"tT,+ht2%, 

= (y -xy,) CD - t ( 4 x  - 79%) +kt2% - & p t 3 T ,  

T3 = y (mass), 

T8 = (x + 77,) CD + g t T ,  +%t2T,. 

When surface tension is  operative, v, is  no longer a symmetry, and consequently the density 
% is  no longer conserved. Also, the appropriate term u{(l+yi)i-l}  i s  added to the 
Hamiltonian density H. Apart from these two changes, the results remain as above. 

= q ( x ,  t )  specified in this theorem are conserved densities 
in the general sense indicated by (5.2), which can now be appropriately particularized 
as follows. Take any time-dependent domain in Iw2 whose boundary is Y U r, 
comprising an interval of the free surface, Y = {(x, y ) :  y = y(x, t ) ,  a(t) < x < b(t)} with 
end points a 9  = { (a ,  y (a ,  t ) ) ,  (b ,  y(b, t ) ) } ,  and the remainder r underwater. Then the 
theorem can be read to mean that 

The eight functions 

6-2 
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for certain A j ,  Bi and Cj. It should not be supposed, however, that  in the case of a 
localized wave motion a t  the surface of an infinitely deep ocean, both the velocity 
potential $ and surface elevation 7 necessarily decay fast enough with distance for 
all the boundary terms on the right-hand sides of the identities (5.6) to make no 
contribution when r is removed to infinity, so that for each 

W I-, v x  

is independent of time. Such a supposition would lead to  some absurd conclusions, 
for example concerning the conserved density z. The explicit interpretations of (5.6) 
will be examined carefully in the next section. 

It should be noted that for a uniform ocean q is in effect the density of horizontal 
impulse, in the sense named after Kelvin (cf. Lamb 1932, $119). For the case that 
the water lies on a rigid bottom y = - h and is a t  rest (IV$l = 0) in the limits z If: co, 
integration of the obvious identity 

shows that the total horizontal momentum of the wave motion is given by 
00 

u d y d x =  ( $ , - $ - , ) h +  G d x .  (5.7) M = J *  - W  J" -h J-, 
For free wave motions (i.e. subsequent to the removal of external forces that 
generated them from rest), the difference between the asymptotic (constant) values 
$W and $-, of $ is independent of time, and is generally non-zero but finite. Thus 
M may be well defined in the case of finite depth, and the Kelvin impulse given by 
the integral of Tl is then merely the balance between a determinate total momentum 
and the opposing 'reaction ' of the fluid a t  infinity. I n  the limit h + CO, however, both 
these quantities become indeterminate, as is well known to be the outcome of an 
attempt to calculate directly the momentum of an unbounded expanse of incom- 
pressible fluid ; but the difference between them, defining the Kelvin impulse, remains 
determinate. The significance of T,  as an energy density has already been explained, 
and % is evidently a density of mass relative to  the motionless state of the fluid. 
Further physical connotations will be noted in $6. 

Let us now state the result obtained in a precisely similar way for the three- 
dimensional problem : 

THEOREM 5.3. When not affected by surface tension, the three-dimensional water-wave 
problem (2.2, 4, 5 )  has the following twelve conserved densities: 

= -@y,, = -@yZ (horizontal impulses), 
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When surface tension is  included, so that a term B(R-  1 )  is added to T,, all except TI, 
remain conserved densities. 

= T ( x ,  z, t )  listed in this theorem are conserved densities in the 
sense that twelve identities akin to (5.6) hold. The integrals on the left-hand sides 
are replaced by integrals over a two-dimensional horizontal domain, namely the 
projection of a patch Y of the free surface; the terms evaluated 89’ in the integrands 
on the right-hand sides become line integrals; and the integrals over r become surface 
integrals. 

are established 
through the consideration of symmetry groups, direct confirmation that they are 
conserved densities is a fairly straightforward matter. This aspect is to be exemplified 
below. We re-emphasize that present means of derivation has the prime advantage 
of being systematic, so presumably identifying all the relevant conservation laws ; 
and we can assert the absence of unlimited hidden (artificial) symmetries such as 
might perhaps have been expected by analogy with, for example, the KdV equation. 

The functions 

It should be acknowledged finally that once the forms of the 

6. Further investigation of conservation iaws 
The foregoing analysis revealed sets of conservation laws that hold in several 

versions of the water-wave problem, but it was not determined specifically how the 
functions shown to be conserved densities depend on the behaviour of solutions a t  
the boundaries of arbitrary ‘control volumes’. The matter will now be treated, 
including the delicate aspect pointed out after Theorem 5.2.  Needless to say, we shall 
in part merely recover representations of mass, energy and momentum conservation 
on already well-known lines. However, special care is needed in dealing with the less 
familiar conserved densities later in the lists, and our approach extends and is guided 
by the systematic development of the preceding results. For the sake of brevity, only 
the case of two-dimensional wave motions uninfluenced by surface tension will be 
studied, but it will be clear how analogous findings can be obtained for the other cases 
that have so far been included. 

I n  the first place, deferring ticklish questions about the asymptotic behaviour of 
solutions a t  large distances, we refer the conservation laws to an arbitrary bounded 
domain D c R2 with smooth boundary aD as indicated in figure 2. One possibility 
admitted is that D is the space within a rigid container partially filled by the fluid, 
but the more apposite possibility is that D includes only part of the total domain 
occupied by the fluid and part of the free surface. I n  general, fluid occupies a 
time-dependent subdomain 9(t) c D whose boundary a 9 ( t )  consists of (i) that part 
of the free surface lying inside D, to be denoted by 9, and (ii) the intersection of 
893 with aD, to be denoted by r. It is assumed that 9 ( t )  is simply connected for all 
t ,  so that the velocity potential for the motion in 9 is single-valued. The intersection 
of the free surface with aD is supposed to comprise a finite even number of (moving) 
points pn (n = 1,2, ...), denoted collectively by 8 9 ,  and it is assumed that in a 
neighbourhood of each p n  respectively aD is described by (x, Pn(x) )  with &(x)  =I= 0. 
(The simple case where r is vertical at any of the points 89’ will be treated 
separately.) The total number of pointsp, may be greater than two, as exemplified in 
the figure. For example, we allow that fixed rigid obstacles may dip into the fluid. 

Line integrals over the bounding curves r and Y will be taken in the sense indicated 
by the arrows in figure 2, such that the interior of 93 lies on the right as the curves 
are traversed. This reversal of the customary orientation has the advantage that the 
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I I 

FIGURE 2. Illustration of arbitrary domain D c R2, whose time-dependent part 9(t) 
is occupied by fluid. 

free surface Y is traversed in the direction of increasing x .  We shall need to consider 
various line integrals in the form 

r 

which vanish since Py = Q, identically in 9. These are 

G1 = ${-uwdx++(u2-w2)dy}, 

G3 = Q(-udx+udy)  = -J(a,$)ds,  

G4 = f { & ( t ~ ~ - ~ ~ ) d x + u ~ d y ) ,  

G5 = Q{-xvdx+(zu-$)dy) ,  

G6 = ${($-yw)dx+yudy},  
G7 = f{4(u2 - w') (y dx+xdy)  - uv(xdx -y  dy) } ,  

Gs = ${&(u2 - w 2 )  ( x  dx  - y dy)  + uw(y dx  + x dy) } ,  

being numbered in a way whose appropriateness will appear presently. The nullity 
of these integrals over 89 = r u 9, implying that G$ = -G;, is evident since the 
velocity field (u, v) is both solenoidal and irrotational (i.e. u, = -wy, uy = w,). 

We shall also consider various non-vanishing integrals in the form (6.1). To find 
their t-derivatives, care is needed when dealing with them directly in this form ; and 
it turns out that contributions arising from the variable end-points p ,  of Y and r 
are cancelled upon integrations by parts. The following derivation is perhaps simpler : 

= ~ s 9 ( P y , - Q , t ) d x d y + J ( P y - & X ) r , d ~  

= jr (pt dx + Qt + s {pt + Qt rx + (P, - &,) rt} dx-  (6.2) 
Y 

It is here assumed for simplicity that 11 is a single-valued; continuously differentiable 
function of x (although this assumption is in fact unessential to the main results that 
follow). Accordingly, dy  in integrals over 9' is replaceable by 7,dx. 



Hamiltonian structure, symmetries and conservation laws for water waves 161 

6.1. Interpretation of conserved densities 
All except one of the following line integrals have straightforward physical meanings, 
made plain by the respective equivalent integrals over 9 : 

# d y  (horizontal momentum), 

&4%#) ds+klY2dx) (energy), 

Tj = $ag y d x  (mass), 

# d x  (vertical momentum), 
I4 = kg 
IS  = $m 

x y d x  (horizontal coordinate of mass centroid times a), 

+yy2dx (height of mass centroid times P ) ,  

I- 

#(x  dx+ ydy) (angular momentum). 

Each integral has two components, thus 

I j=I&+I; ,  j = 1 ,  ..., 8; 

and when expressed as an integral with respect to x ,  each I& is seen to be just the 
integral of the part of the respective conserved density q, as given in Theorem 5.2, 
that is not explicitly dependent on t .  Therefore, according to Theorem 5.2, temporal 
changes of each I&, and hence of each I j ,  depend only on (i) the behaviour of # at 
the fixed part r of.the boundary 8 9  and (ii) f o r j  > 3 the values of other conserved 
densities lower in the hierarchy. 

To represent the boundary effects explicitly, we define 

B1 = G k S ,  (# t+gy)dy  = I ,r iPdy-u(vds-udY)17 

r 

= - 

B3 = G$, 

(r, +gy ++(u2 + vz)} (v d y  - u d x ) ,  

B4 = G t +  Jr(# l+gY)dr  = - j r ( p d x + v ( v d z - u d y ) ) ,  

B5 = Cf.+jr#dy = -S x ( v d x - u d y ) ,  
r 
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Here we use the identity (a, 4) ds = (v dx- u dy)  on r, and introduce the pressure p 
through the Bernoulli integral of the dynamical equations. The results in question 
can now be stated: 

THEOREM 6.1. Let y , $  be a solution of the two-dimensional water-wave problem in the 
absence of surface tension. Let the chosen domain 9 ( t )  be simply connected (c f .  jigure 2) .  
Then the eight integrals Ii satisfy 

d P / d t  = B’, 

d P / d t  = P + B5, 

d12/dt  = B2, 

d16/dt = I4 + B6, 
dH/dt = B3, d14/dt = -gP+ B4, 

d17/dt = 412-7g16+B7 = 4K-3Y+B7,  
d18/dt  = -g15  + B8. 

Proof. Each of these eight equations is demonstrable by use of the formula (6.2), 
the boundary conditions in (2.9) and Green’s theorem as exemplified by the identities 
@& = -GL. First, taking P = 0 and Q = -4  in (6.2) we obtain 

Second, putting P = #$,+by2, Q = -+&5x in (6.2) and noting that P,-Q, = 
+ ( u 2 + v 2 ) + g ~  = - # t  on 9, we obtain 

where again the last step follows by Green’s theorem. In a similar way it is found 
that 

dP dt = IY (v-uy,)dx = -G$ = B3. 



Hamiltonian structure, symmetries and conservation laws for water waves 163 

For the next case the use again of (6.2) gives 

= fr($t+gY)dx-G1, = B4.  

Similarly, 

- d15 -I1 = JY(xv tdx+$dy)+  J $ d y  

dt r 
r 

and 

d16 
- at - I4  = {y (vn t -$ )dx -  J r $ d x  

By some cancellation of terms in the integral over 9, it is next found that 

+J {$ t (ydx-xdy) -2$(d ,$)ds+~gy2dx}  r 

= -G$+ J$&+9?/) (Ydx--dY)--$(a,$)ds} = B', (6.9) 

where integrations by parts have reduced the terms proportional to g. Finally we 
obtain 

where again two integrations have reduced the terms in g. Thus the proof of the 
theorem is complete. 

It is evident from this proof that a corresponding set of identities holds for the 
integrals over the free surface, denoted by I&, which form part of the complete 
contour integrals P'. That is, there are corresponding boundary functions B$(t)  such 
that the equations for I j ( t )  given in Theorem 6.1 are duplicated for I$(t). Plainly, 
the new boundary functions are just 

where the 4 d x + Q j d y  are the integrands in the definitions of the I j  and the 
p j d x  + qjdy (j = 4,. . . ,8) are the integrands of those integrals appearing as coefficients 
of t  in the respective expressions for conserved densities (e.g. p ,  = gy, q4 = 0). Unlike 
the B j ,  the BGinclude some terms that cannot be expressed as integrals over r, being 
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due to  the moving end-points p ,  of 9. To express these terms concisely, we use the 
notation 

I: f = I: ( - 1 )"f( p , ) ,  
aY f l  

thus attaching signs in the sum (over the elements p ,  of aY) so that 

when such a representation is meaningful. We also write 5 = [ ( t )  for the x-coordinate 
of a point p n  E 8 9 ,  so that its y-coordinate is represented by P($) ; and since therefore 
q((( t ) ,  t )  = P([ ( t ) ) ,  i t  follows that qt = (Pz-qz. tt. For the moment, each Px is taken 
to be bounded (i.e. r is not vertical at any of the points d Y  of intersection with 9) ; 
but a simple modification covering the contrary case will be noted presently. 

Hence the boundary functions in the new statement of Theorem 6.1 are found to be 

B:, = G;- I: ( q 5 P x E t - h 1 2 ) ,  
aY 

B$ = Srt{$t(a,q5)-q5(anq5t)}dx+ aY z t { $ ( v - U P x ) + i g q 2 > t t ,  

B% = Gk+ I: {q5(k-+rP,)&-+g9113>. 
aY 

In  the case that r is vertical at any of the points d.40, these results are to be modified 
as follows: put & = 0 except where Et is multiplied by Px, and there put PX f = qt.  

The original and alternative forms of Theorem 6.1 embrace the same information, 
of course, and they fall in line with our general definition of conservation laws which 
was given in $5.1 and equation (5.6). The method of proof has been chosen to conform 
with our systematic derivation of the conserved densities, and the method will serve 
further in answering certain delicate mathematical questions to be treated in § 6.5. 
It should be noted, however, that  the following is a marginally more direct method 
of verifying equations (6.3)-(6.10), although not their alternative forms in terms of 
I& and B&. Identifying each contour integral Ii with an integral over 9, say of Hi, 
one uses the well-known general formula 

-jj9 d dt 
Hdxdy = j j9Ht dxdy+ j y q t  Hdx 

= j j 9 g d x d y - j r  (u .n)  Hds, 

where DHIDt = Ht + u.VH and the second identity follows from the kinematical 
boundary condition on Y and the fact that  div u = Aq5 = 0. Equations (6.3)-(6.10) 
are thus obtainable by use of D(x, y)/Dt = (u, v )  and the dynamical equation 
D(u, w)/Dt = - V p -  (0, 1)g. 
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6.2. Physical interpretations 

The eight identities in Theorem 6.1 can be appreciated to conform also with physical 
principles whose applications to water waves are for the most part well known. These 
interpretations are spotlighted by the second, equivalent forms for the boundary 
terms listed before Theorem 6.1. 

Thus, according to (6.3), the rate of change of horizontal momentum in the domain 
9 ( t )  is equated as expected to the sum of two terms comprising B1, first the net 
pressure force in the x-direction acting across the submerged boundary r, and second 
the rate a t  which horizontal momentum is convected inwards across J? (recall the 
adopted, clockwise sense of line integrals over I?). Similarly, (6.4) shows the rate of 
change of energy,in 9 to equal the rate of working by the pressure plus the rate of 
energy convection across r. Equation (6.5) is a plain expression of mass conservation; 
and (6.6) shows as expected that the rate of change of vertical momentum in 9 equals 
the rate of convection of vertical momentum across r plus the difference between 
the upward pressure force and the weight of the fluid in 9. 

The remaining results have less obvious physical meanings. Noting the listed form 
of B5, we recognize (6.7) to show that the x-moment of the mass in 9 changes a t  a 
rate equal to  I' plus the x-moment of the mass flux across r. Correspondingly, from 
the form of B6, (6.8) is seen to show that the y-moment changes at a rate equal to 
I4 plus the y-moment of the mass flux across r. These two relationships are 
kinematic, being demonstrable independently of the dynamical boundary condition 
a t  the free surface; and in fact they remain true whatever dynamical equations apply 
inside the (incompressible) fluid or at the surface (cf. Benjamin & Mahony 1971). The 
coincidental roles of I and I4 as components of the total momentum in 9 nevertheless 
provide an interesting link with the dynamics of the problem, as also does the fact 
that g16 = V, the potential energy. 

The last two results in Theorem 6.1 are recognizable as constituents of a virial 
theorem for the motion in 9 (cf. Truesdell & Toupin 1960, $$216, 219). This 
interpretation applies even more plainly to the corresponding set of four results for 
the three-dimensional problem (i.e. those relating to the conserved densities T to T12 
of Theorem 5.3, the last of which is the counterpart of the present result for 1 7 ) .  
Contraction of the virial tensor recovers the identity (6.9) for d17/dt, and the 
off-diagonal components give, as is usual, an identity expressing conservation of 
angular momentum. Among our eight results the seventh is the least amenable to 
simple physical explanation, apparently in keeping with its origin in a curious 
combination of the vertical-acceleration and scaling symmetries, and some further 
comment on it will be made in $6.3 below. Writing out this result as 

d17 
~ = - (xu+yv+2$) (vdx-udy)- p(ydx-xdy)+4K-3V, (6.9') 
dt 

we note that the first of the line integrals represents the rate of convection, inwards 
across r, of the quantity whose integral over 9 is equal to 17. The combination of 
the remaining terms on the right-hand side, which generally does not vanish when 
r is impermeable, has no immediate interpretation. I n  contrast, the eighth result 
which can be rewritten 

- = -Jr (xw-yu)(ffdx-udy)- p(xdx+ydy)-gP 
d I8 
dt 

(6.10') 
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is seen to have a simple meaning. As expected i t  equates the rate of increase of angular 
momentum in 9, about the origin of (2, y), to the rate of convection of angular 
momentum inwards across r plus the difference between the moment of the pressure 
force on l7 and the moment of the weight of the fluid in 9. 

It should be noted from these results that  when r is a finite impermeable (solid) 
boundary, Z 2  and I 3  are independent oft. Thus, as obviously expected, total energy 
and mass are completely conserved by the wave motion. But no other of the 
quantities Zj is so conserved. However, I’ is also conserved in the case that the fluid 
is bounded below by a solid plane y = -h and extends to the limits x + & co where 
it is at rest. I n  this case, Z1 is evidently equal to  M given by (5.7). 

6.3. Discussion of I’ 
In  general the main application of identities derived from the trace of a virial tensor 
are to  periodic motions or to other motions presumed to remain regular for 
indefinitely long times. Relations between the mean kinetic and mean potential 
energies may thus be established. Equation (6.9) provides such a relation ; however, 
since i t  includes a term involving the values of pressure on r, it  seems unlikely to 
give much useful information except in special cases. Supposing r to be a solid 
boundary and writing (.) for averages over one period of a periodic motion, or 
otherwise for asymptotic, long-time averages, we may conclude from (6.9) that 

(jrP(Ydx-xdy)) = 4(K)-33<V+ V,), (6.11) 

where K is the kinetic energy and V,+ V = gZ6 the potential energy of the fluid in 
9. Note that this result is compatible with a state of rest (K = 0), for then p = -gy 
and an integration by parts shows the left-hand side to  equal - 3 V,. 

For example, in respect of insnitesimal standing waves in a tank of whatever shape, 
i t  is well known that ( K )  = (V). Hence the averaged integral on the left-hand side 
of (6.1 1) must equal ( K )  -3V,. I n  the case of a rectangular tank, this conclusion can 
be confirmed directly by a simple calculation using Bernoulli’s theorem, but for tanks 
of other shapes a direct verification is hardly straightforward. The formula (6.11) is 
thus an incidental, albeit possibly interesting expression for the pressure integral, 
rather than a means of establishing facts about the more significant physical 
quantities ( K )  and ( V ) .  For waves of any amplitude in a finite tank, our other results 
show that I2 = K+ V +  V, = const. and P = const., also that 

(Il) = 0, ( I , )  = 0, 

( -JrP(Xdx+YdY) ) = 9<15). 
and finally that 

But these equalities generally will not help to  evaluate the left-hand side of (6.11). 
The following special use of the virial equation (6.9), serving as a check on its 

validity, may nevertheless be of interest. Anticipating some of the results to be 
gathered below in Theorem 6.2, for an infinite ocean lying on a solid plane y = - h, 
let us consider the case of a solitary wave which travels at velocity c in the x-direction 
without change of form. Both 7 and IV#l decay exponentially with large 1x1, but 
C = > 0 (cf. (5.7)).  For the infinite contour S U r comprising the entire 
free surface, the bottom and the two ends at infinity, Z, is written for the respective 
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version of 14, to which no contribution is made from the parts of the contour taken 
to the limits x --f f co. On the other hand, to have a convergent integral for the 
counterpart of (6 .9) ,  we take I7 = P,. The quantities I ,  = 13, and I ,  = 16, = V / y  are 
also finite for a solitary wave. Equation (6 .9)  now reduces to 

OD dI7 - = 4 K - 3 V + h  
dt 

where uB denotes the values of u on the bottom (along which the integral is taken 
here in the forward direction). Similarly, (6 .6)  reduces to 

But a solitary wave evidently has I ,  = 0 for all t by virtue of its symmetry (i.e. the 
upward vertical momentum forward of the wave crest is balanced by the downward 
momentum behind). Moreover, since $t = the integral of ( $ t ) B  in the last 
equation is just cC. Combining these conclusions, we have 

dl7 - = 4K-3V+chC-gh13. (6.12) 
dt 

According to the definition of 17, the left-hand side of (6.12) is 

where for a solitary wave CD and 7 are functions of x’ = x-ct alone; and so i t  equals 
m 

CD7,dx = CI, = c(I , -hC) ,  - cLm 
where fl is the horizontal impulse and I ,  the horizontal momentum as was denoted 
by M in equation (5 .7) .  Thus (6.12) gives 

4K-3V = - 2 ~ h C +  cI,+ghI,. (6.13) 

Two other relationships among solitary-wave properties are found more easily. 
From (6 .7)  it  is seen immediately that 

and we also have that 
I1 = CI,, 

m OD 

2 K =  [ CDq,dx = - c  [ CDq,dx = cf,. 
J - m  J -m 

Hence (6.13) reduces to 

The first and third of these last three relationships were discovered by Starr f1947), 
the second having already been established by McCowan (1891 ; see Longuet-Higgins 
1974 for a more recent discussion). 

As a final comment, it seems appropriate to warn against identifying I 7  with wave 
action, which too, like P ,  has the dimensions of energy times time. The following 
considerations indicate that I 7  is distantly related to action but does not carry its 
main attributes. Returning to a fundamental appraisal of the hydrodynamic problem 
as in $2,  we note that for a solid or infinitely distant submerged boundary the motion 
is determined completely a t  each instant by the functions 7 and 7 t ,  which together 

3V = cI1-ghI3 = ( ~ “ g h )  I,. 
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fix 0 = $(z, ~ ( z ,  t ) ,  t )  (except for arbitrary function of time alone) when the kinematic 
surface condition = R-lr,~~ completes the auxilliary Neumann problem for # on 
D,. Thus we may write 0 = g,vt ,  where for fixed 7 the operation B7 is linear and 
symmetric. The function CD was treated in $2 as a generalized momentum density 
in the Hamiltonian formulation; but we may also regard 

as a symmetric quadratic functional in Tt  for fixed 7, so that the functional derivative 
K,, = CD. It is also readily seen that 

- 
(Kq)gt-const. - - (K,h=const: 

Hence the dynamical boundary condition, hitherto expressed in Hamiltonian form by 
the second of (2.8), is alternatively representable by 

d 
dt O t  
-(L )-L,=O, 

where L = K -  V is thus the Lagrangian for the problem. Reproducing a common 
property of finite conservative systems, this conclusion means that trajectories of the 
water-wave system between arbitrary times to and t ,  are extremals of the action 
integral 

d = 1; L d t .  

This is the correct expression for the action as a characterization of particular 
solutions, for which initial values of 7 and T t  (or 0) are prescribed a t  t = t o ;  and the 
connection with I7 is illuminated by another standard concept from Hamiltonian 
theory. We may formally define an action density 

A = A(x ,  t )  = JQddy, 

reckoning this as an integral in the phase space, that  is, in the product of the function 
spaces to which the components 9 and 0 of solutions respectively belong. Thus A 
is not a property of single solutions, but rather characterizes a family of neighbouring 
solutions (cf. Hayes 1970). Considered in this special light, the one-form w7 shown 
in $5 to be generated by the symmetry v7 can be seen to  define a function akin to 
a conserved density, with A as the component without explicit dependence on t .  I n  
fact, as the equivalent form of w7 given in $5 plainly promises, an examination on 
the lines of $6.2 reveals that  if r is a solid boundary, then 

ds?/dt = K -  V ,  where d = J s o A d x .  

This outcome is expectable by analogy with finite-dimensional conservative 
systems, and i t  shows the formal but physically inconsequential relationship between 
A and the conserved density q, hence between d and 17. Namely, the one-form w7 
was combined with another, wg generated by the scaling symmetry v,, in order to 
make T7 a proper conserved density. 

6.4. The case of a uni form ocean 
For completeness, the conservation laws are now expressed collectively in the 

simpler forms that apply to a fluid lying on a horizontal solid plane y = -h, where 
h is finite. Some of these expressions have already been implied in our discussion of 
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the solitary-wave example, and they all follow more or less immediately from the 
respective equations introduced in explaining Theorem 6.1 [i.e. equations 
(6.3)-(6.1011. We note that v = 0 on the bottom y = -h,  and that according to the 
Bernoulli integral of the dynamical equations the pressure there is given by 

It is assumed that the solution 7, @ is smooth enough, and that 7 -P 0 and IV$l -P 0 
fast enough as 1x1 -+ CO, for the following integrals to converge. Here I,, I ,  and I ,  
representing momenta are complete contour integrals, just the respective versions 
of 11, I4 and I,; but the rest are integrals over the free surface alone (e.g. l3 = I;), 
being expressed as integrals with respect to x over So = R by use of the notation 
introduced in $2 and the relation dy = y x d x ,  which is justified by our supposing as 
before that )vX/ is bounded everywhere. Thus we consider 

p = gh- ($ ,+hu2) ,= - , .  

I ,  = - $dy= ($m-$-m)h- j  @yxdx  (horizontal momentum M ) ,  P SO 

R+$ggr12)dx (energy K +  V ) ,  
I2 = Lo 
I3 = l s n v d x  (excess mass m), 

I ,  = $dx  (vertical momentum), P 
I ,  = l s o X 7 d X  ( m a  

r 

r 

Q ( 7 - x ~ ~ )  dx (virial), 

I ,  = $(xdx+ydy)  (angular momentum). P 
The term localized will be used to  denote solutions such that lqXl is bounded and 

all these integrals converge. Since no existence and regularity theory is available for 
the full problem, we cannot ensure this property of solutions precisely by conditions 
on the initial values of 7 and @; however, i t  seems certain to hold for a finite time 
in a wide range of meaningful examples. Various more or less technical versions of 
the property can be stated in terms of function classes for 7 and 0, but we pass over 
this aspect here. 

On reference to  Theorem 6.1 or to  (6.3)-(6.10), the only non-zero boundary 
functions given by integrals along the bottom are found to be 

and 

B, = -I ($,+?gu2)dx, B, = h iu2dx ,  
b j b  

& = - J  b ($,+!juU2)xdx. 

Here b against the integral sign denotes evaluation of the integrand at y = - h, and 
integration over t% in the sense of x increasing. Accordingly, the results in question 
can be stated as follows: 
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THEOREM 6.2. For an infinite ocean lying on a horizontal solid bottom atJinite depth, 
suppose that the solution 7, of the two-dimensional problem without surface tension 
remains localized during a time interval [0, TI .  Then for  all t E [0, TI the eight quantities 

I ,  = const., I ,  = const., I ,  = const., 
I j  satisfy 

d14/dt = - g 1 3 +  B4, 

d15/dt = I,, dI,/dt = I ,  

dI,/dt = 41, - 7g16 i- B, = 4K- 3 V i- B,, 

dI,/dt = -g15+B0. 

The proof of this theorem consists merely in applying Theorem 6.1 to a bounded 
domain {(x, y): - X  < x < X ,  -h  < y < ~ ( x ,  t ) } ,  and then confirming that the stated 
identities are obtained in the limit X --+ co. Except for the component h(gbm-$-,) 
in the definition of I ,  and hence in the identities for I,(t) and 10(t), all contributions 
from integrals over the vertical sides of the domain are seen to cancel in the limit. 
Note that according to the Bernoulli integral both are independent of 
time, although not necessarily the same constants. 

The steady horizontal motion of the mass centroid, as expressed by the identity 
for I,, has been discussed in great generality by Benjamin & Mahony (1971). Albeit 
only in the case I ,  = 0, the identity for 1, was first recognized by Longuet-Higgins 
(1950) in the differentiated form 

and 

(6.14) 

and he used it to explain the generation of microseisms on the ocean floor. This result 
shows that on the floor y = - h the excess force due to disturbances of the free surface 
is (for unit density) equal to  d21,/dt2 plus, as would be expected, the weight gm of 
excess fluid. An integral like I ,  expressing angular momentum has been considered 
by Longuet-Higgins (1980) in the case ofperiodic progressive waves, but the form 
of the identity given here appears to be new, as also do those for I4 and I,. 

6.5. The case of infinite depth 
This case calls for careful interpretation as regards the linear momenta I ,  and I,, 

also the angular momentum I,. It has been seen that these quantities are unequivocally 
determinate, and have obvious dynamical connotations, in the case of a uniform ocean 
with finite depth h. But they are no longer so when the preceding results are taken 
to the limit h + 00, or when the ocean is otherwise reckoned to be unbounded below. 
On the other hand, i t  appears that  I, and I4 may determine or be determined by the 
temporal variations of I ,  and I,, which are properties of the free surface alone. 

A point deserving emphasis in the present connection has been noted in $ 5 ,  at the 
start of the paragraph including equation (5.7). Namely, the constituent f, = $ of 
I ,  (= M )  is the horizontal Kelvin impulse which is the more significant quantity 
dynamically. Correspondingly, f4 = I$ is the vertical Kelvin impulse. The cardinal 
attribute of the dynamical problem in the present case is that  when an external force 
is somehow applied to a finite part of the system, fl and f4 rather than I ,  and 1, 
change a t  rates equal respectively to the horizontal and vertical components of the 
force, say qzl and FLU,. Thus f, and f4 take roles like the momenta of an isolated finite 
system. 

For example, suppose that in an infinitely deep ocean a wave motion is generated 
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from rest by the application of a pressure P ( x ,  t )  to the free surface. Let P ( x ,  t )  be 
an L1 function of x for each t ,  and vice versa, which is non-zero only while 0 < t < to .  
On the assumption that lyxl remains bounded during this interval, the components 
of the total force exerted against the surface are given by 

At large distances r from the centre of the (compact) support of P, the asymptotic 
behaviour of $ cannot have more than dipole strength, i.e. $ = O(r-l)  and 
IV$l = O(r-2). Hence, for an infinitely distant submerged boundary J? (e.g. a semicircle 
of infinite radius), we have s, (8, $) ds = 0, 

which, by virtue of the fact that A$ = 0 everywhere in the fluid, implies that 
dI,/dt = 0 and therefore 

I, = Jsoy dx  = 0 for all t .  (6.15) 

The asymptotic property of $ also implies that 
,. c 

and that y + 0 as x + & 00. Accordingly, retracing the steps that led to (6.3) and 
(6.6), but allowing now that p = P in Bernoulli’s equation evaluated at the free 
surface, we find as expected that 

(6.16) 

Thus fl and f4 change in the interval [0, to] from their initial values (which are zero 
for a state of rest), and thereafter they have the constant values 

f, = F,,,(t)dt, f4 = ]yE;,](t)dt. c“ (6.17) 

By the same argument, the expressions (6.17) give the changes in fl and f4 caused 
by the application of an external force to a pre-existing wave motion with I ,  = 0. 
I n  the case that I3 = m $; 0, the conclusion about f, is unchanged, but the weight 
gm of excess fluid adds to the downward component of force, so that 

t 
f 4 ( t )  = 14(0)-gm+ F,,,(t’)dt’. 

[To clarify the significance of the results for f4, it  should perhaps be stressed that 
the identification of df4 /d t  with the net upwards force is by no means inconsistent 
with the simpler case where a uniform P is applied to the free surface of still water 
in a finite closed basin, obviously causing no motion a t  all. In  this case the uniform 
increase in pressure everywhere in the fluid corresponds to  q5t = - P in the residual 
form of Bernoulli’s equation, and therefore I4 = I4, + IF = 0 for all t even though I: 
changes.] 

It remains to reconcile this comparatively straightforward interpretation with the 
Dossibilitv that the identities 

d& = I,, - = 1, 
dt dt 

(6.18) 
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included in Theorem 6.2 carry over to the case of infinite depth. Unlike f, and f4 
whose significance is unequivocal, I ,  and I4 in the present case are found not to be 
calculable from the Hamiltonian conjugate variables 7 and CD unless conditions more 
precise than needed hitherto are imposed a t  infinite distances in the fluid. So the 
present meanings of (6.18) are not immediately evident. They become clear when one 
appreciates, amplifying a point made earlier (after (6.7) and (6.8)), that  (6.18) are just 
kinematic identities whose validity depends on a particular choice of conditions a t  
infinity. The forms of the identities change when other such conditions are arbitrarily 
chosen, but the difference is merely one of incidental interpretation to be attached 
to the quantities d15/dt and d16/dt which are intrinsic properties of the evolutionary 
process. 

To pinpoint the issue, let us carefully retrace the arguments that  demonstrate 
(6.18), considering now that the fluid has a submerged solid boundary r in the form 
of an infinite semicircle. The steps whereby d I J d t  is reduced are 

where the last equality is evident because r is solid. As the final step, the contour 
integral around X u r is reduced by Green's theorem to equal an integral over the 
enclosed domain D,, and so it is concluded that 

' I 5  = { ( x ~ ) , + ( x u ) ~ } d x d y  = u d x d y  = M -  I,, 
dt JD7 

since divu = u Z + v y  = 0 everywhere in D,. The second of (6.18) is demonstrable in 
a precisely similar way, with recourse to the incompressibility of the fluid and to the 
assumed condition on but without reference to any dynamical condition. The 
kinematic meaning of (6.18), tied to the particular model for the fluid a t  infinity, is 
thus made clear; but i t  can also be appreciated that the physical quantities to be 
identified with d15/dt and d16/dt are to an extent arbitrary, depending on delicate 
specifications about infinity in the fluid that have no effect on the main dynamical 
equations (2.8) or results such as (6.15) and (6.16). (It will be shown in due course 
that, irrespective of the precise conditions a t  infinity, I, = fl for all initial conditions 
that are realistic in a certain sense; however, for the time being we proceed generally 
without recourse to this simplification.) 

For example, an alternative model for the submerged boundary r a t  infinity is a 
compliant surface such that hydrostatic pressure is exactly maintained upon it. This 
specification implies that  $ = 0 exactly on r, and consequently I ,  = fl. But the first 

of (6.18) becomes d15 
~ = I,- x ( v d x - u d y ) ,  (6.19) 

the second term of which is generally not zero. The sum on the right-hand side turns 
out, of course, to have the same value as I ,  in the previous case (vide in f ra  for proof ), 
and only the physical interpretation of this quantity has changed. 

The matter is made transparent by working out the explicit asymptotic form of 
the velocity potential $. For any finite point x inside the fluid, a standard 
construction of potential theory (cf. Lamb 1932, p. 60) shows that 

dt I,- 

(6.20) 

where 1 1 
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FIGURE 3. Illustration of the fictitious boundary S", the reflection of the free surface S 
about the horizontal line y = 0. 

is Green's funcBion for the whole plane, and $' is the potential defined in R2\  D, 
satisfying an $f = a, $ (both normal derivatives in direction out o f  D?) on the lower 
boundary S and $' = U(r- l )  like $ = U(r- l )  as r + 00 (along rays respectively in 
R2 \ D, and D,). While depending on the basic supposition that $ = 0 ( r v 1 )  as r +a, 
the representation (6.20) is independent of limr+wr$, which we shall therefore be 
able to specify separately later. Writing x = r cos 8, y = - r sin 8 and taking (2 ,  9 )  E S, 
we find that 

as r + co. Hence an asymptotic approximation to $(x) correct to  O(r-l)  is seen from 
(6.20) to be 

(6.21) 

Now, referring to figure 3 for illustration of the ideas, consider the potential 
$"(x, y ,  t )  = $'(x, - y, t)  which is defined in y < - y(x, t)  and satisfies a, $" = - Ryt on 
the fictitious boundary y = -y(x, t )  labelled S in the figure. Note that S translates 
horizontally in step with S, but moves down where S moves up and vice versa. The 
representation of $"corresponding to (6.20) is a line integral over S ,  and plainly the 
factor in the integrand expressible as $"(2, -y(2, t ) ,  t )  -$"'(2, -y(2,  t ) ,  t )  is the same 

According to (6.20), the asymptotic behaviour of 4'' therefore reflects that  of $ in 

$ = G{cos8j 1 ($-$')dy+sin8js($-$')dx}. 

S 

as -{$@, y(2, t ) ,  t)-$'@ y(2, t ) ,  t)>. 

the sense that if 
$ = r-l(A cos 8+B sin 8)+O(r -2) ,  

$'f = r-l(A cos 8-B sin 6) + O(r-2).  then 

Hence arguments precisely corresponding to  those used above to  verify (6.18) show 
that 

irrespective of the precise conditions at infinity. That is, contributions from integrals 
of $ and $" over an infinite semicircle r cancel in these identities. It follows that the 
asymptotic expression (6.21) for $ is the same as 

(6.22) 
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This result makes the interpretation entirely clear. In  all cases it describes the dipole 
field that the wave motion produces a t  large distances, but this description can be 
modified as follows at infinity to represent the exact conditions arbitrarily imposed 
there. If the infinite semicircle r is taken to be a solid boundary, this dipole field 

$ = -(AcosB+Bsin8), say, 

* - - + - ( A  cos B+B sin 8 ) ,  

(6.23) 
1 
r 

is modified to 

+ - (: ;J 
which is a potential satisfying 8, $* = 0 on r = p. Then $* = ( 2 / p )  ( A  cos 8 + B sin 8) 
on r = p ;  and after integral properties of $* on this semicircle have been evaluated, 
i t  is unambiguous to take the limit p --r 00. In  the limit, of course, the difference 
between $ and $* disappears at all finite distances r ,  however large, but the exact 
behaviour a t  infinity has been accommodated. Since 

r m 

Jrp-'sin8dz = - sin28d8 = -1 271 3 

the argument proceeding from (6.22) thus recovers (6.18) in the case of a solid 
boundary at  infinity. In  the alternative case that r$ = 0 a t  infinity, the appropriate 
modification of the dipole field is 

s, 

$* = ($ - +) (Acos8+BsinB), 

from which and from (6.22) it appears that (6.19) is satisfied identically irrespective 
of the value of 1'. Similarly the identity for d16/dt becomes vacuous in this case. 
Needless to say, between these two extreme models for the boundary r at infinity, 
there is a continuous range of other models that  can be arbitrarily imposed, with 
corresponding incidental interpretations in physical terms but without effect on the 
evolutionary process at the free surface. 

[It is noteworthy that the foregoing analysis recovers some features exemplified 
in the comprehensive review of the linearized deep-water problem by Lamb (1932, 
§§238-241), who abstracted the important early contributions to the subject by 
Cauchy, Poisson, Rayleigh and others. In  particular, part of the expression (6.22) for 
the dipole field a t  large r recovers the leading terms of asymptotic expansions of $ 
according to the linearized theory. But the terms with coefficients $ dy and yyt dx 
do not arise in that theory, being of second-order smallness. The classic treatments 
of the linearized problem are also helpful here as precedents for our view that the 
case I ,  + 0 is entirely compatible with the theoretical model comprising an infinitely 
deep ocean of incompressible fluid. At first sight, according to standard results, this 
case may seem pathological in that the wave motion has Fourier components whose 
speed of propagation is unbounded. The apparent difficulty is illusory, however; or 
rather it is outweighed by another, tractable feature that remains even when the 
speeds of all Fourier components are finite. Namely, at any finite distance, however, 
large, from the centre of a localized initial disturbance, some effect is manifested 
instantaneously (cf. Lamb, p. 394). This feature is accountable, of course, to the 
specification that the fluid is strictly incompressible, so that pressure changes in it 
propagate at infinite speed. The compensating attribute of the theoretical model 
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which makes it amenable to decisive treatment is that  in all cases, whether I3  is zero 
or not, $ has only dipole strength a t  large distances and so qt = O ( ( X ~ - ~ ) . ]  

We come a t  last to the crucial aspect as regards realistic applications, which turns 
on the evaluation of the contour integral I ,  expressing angular momentum. The 
contribution to  I ,  from the infinite semicircle I? is evidently zero, irrespective of the 
values of $ there, but the contribution from the free surface S is indeterminate in 
the case that the coefficient A in (6.23) is non-zero. This conclusion is unaffected by 
the precise condition at infinity, and indeed an attempt to calculate the angular 
momentum directly (i.e. by integrating xv-yu over Ds) shows it to be infinite like 
limp ~ lnp if A + 0. We should duly appreciate that examples admitting this 
unrealistic feature do not conflict with any of the arguments given so far,j- and in 
other physical respects they are fully determinate when conditions at infinity are 
chosen. On practical grounds, however, it is reasonable to exclude such examples from 
the account of the water-wave problem, and this proviso simplifies the interpretation 
considerably. Accordingly, we now assume the additional condition x@ E L1( W ) ,  which 
ensures the existence of Is and concomitantly makes A = 0 always. This condition 
is evidently satisfied, for instance, when xPEL~(W x (0, t o ) )  in addition to P having 
this attribution, where P(x, t )  is the external pressure considered earlier to  generate 
a wave motion from rest. 

irrespective of the precise 
boundary conditions at infinity, and according to  (6.22) we have that 

dI,/dt = fl, (6.24) 

which is known to be a constant of any free wave motion. It is appropriate to recall 
that d15/dt has the equivalent expressions 

To sum up from this new standpoint, we have that I ,  = 

c c 

the first of which shows the prescription of d15/dt to be immediate according to the 
Lagrangian view of the initial-value problem. But, as the original discussion in $2 
made clear, the second expression also determines d15/dt from the Hamiltonian 
conjugate variables q and (D. It is noteworthy that I5 has a status comparable with 
that of ignorable coordinates in finite-dimensional Hamiltonian systems, for which the 
corresponding momenta (like f, here) are always constants. 

The significance of the non-negative quantity I6 is less conspicuous, no invariant 
property of the motion being indicated. On the supposition that the infinitely remote 
lower boundary is solid, dI,Jdt can be identified with the total vertical momentum 
I4 which, unlike f4, is not a constant. I n  consequence, as indicated by (6.6) which 
carries over unambiguously to the case of infinite depth, a varying downward force 
d21,/dt2 + gm is exerted against r additionally to the hydrostatic force. The same 

t Take, for instance, the quite legitimate initial-value problem in which at t = 0 the free surface 
S has a semicircular depression of radius a (so that I3 = -ina2) and vt = -cvz with c > 0. Thus the 
initial motion of S is a horizontal translation a t  velocity c, and accordingly the initial form of the 
velocity potential is $,, = -ma r-l cos 8 in r 2 a. Evaluating this on S, we have - m0 = ca2 2-l for 
121 3 a and -m0 = cx for 1x1 < a,  which describes the impulsive pressure on S needed to generate 
the motion from rest. The distribution of starting impulse amounts to an infinite (anticlockwise) 
impulsive couple exerted against the system, so imparting to it an infinite angular momentum when 
t > 0. Note that $,, continued analytically to the whole of the region r > a in R2 describes the motion 
of an unbounded incompressible fluid caused by the displacement of a circular cylinder perpendicular 
to its length (Lamb 1932, $68). Equal and opposite but infinite angular momenta are then generated 
in the upper and lower half-spaces. 
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conclusion has already been demonstrated by (6 .14)  in the case of finite depth. It 
deserves re-emphasis, however, that  the specification justifying this interpretation 
is arbitrary and can be changed without affecting the dynamical problem. 

The present counterparts of the other identities in Theorem 6 .2  are simpler. 
Unambiguously, I ,  still represents total energy which is constant. As already noted, 
the excess mass m is also constant. The quantity I,, which has been named virial after 
the discussion in $6 .3 ,  is a convergent integral over So by virtue of the dipole 
behaviour of 9 at large r ,  even if A =+ 0. Expressing dI, ldt ,  one encounters an integral 
over the infinite boundary r that reduces to 

B7 = - +(u'+v') ( Y d x - x d y )  s, 
if l7 is supposed to be solid. With the appropriately corrected dipole form $* 
substituted, the integrand is non-zero in the limit p + CO, but the conclusion is that 

1 1 
B7 = - -((A2+B2) 

277 
cos28dB = 0. 

Moreover) the same conclusion holds if any one of the alternative conditions on r 
is imposed. Hence it is concluded that 

5 = 412-7g16 = 4 K - 3 V  
dt 

(6 .25)  

in the case of infinite depth. 

difficulty in concluding from (6.10') and then (6 .24)  that  
Finally, as I ,  is bounded under the assumption introduced above, there is no 

5 = -gI ,  = -g[I,(O) + I; t ] .  
dt 

(6.26) 

As might be expected, the angular momentum I ,  is thus shown to vary at a rate equal 
to the moment of the weight attributable to the displaced fluid, which moment varies 
linearly with time. 

7. Conclusion 
Apart from throwing some new light on the water-wave problem, our investigation 

may be of interest in exemplifying ageneral line of attack on nonlinear boundary-value 
problems that model evolutionary processes. Other prospective applications in fluid 
mechanics can be envisaged. As the first step, explained here in $ 4  and Appendix 2 ,  
the symmetry groups for the simplest, unrestricted form of the problem are 
identified systematically by use of infinitesimal-transformation and prolongation 
theory. Then, as exemplified in $ 5 ,  an appeal to Hamiltonian structure or perhaps 
other variational characterization of the problem enables the corresponding conserved 
densities to be worked out. Having thus been disclosed, the set of conservation laws 
may yet be unclear as regards all their physical meanings, and our painstaking 
discussion in $6 showed how much further study may.be needed to  illuminate the 
significance of the formal mathematical results. 

Two deliberate limitations of the present treatment should again be acknowledged. 
First, for the sake of simplicity, we have based most analytical developments on the 
assumption that the elevation of the free surface remains a single-valued function 
of horizontal position. Upon re-examination in the way indicated by Appehdix 1 ,  
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however, it is readily seen that all the results obtained have extensions to the case 
where the free surface becomes folded and so must be described parametrically. 
Second, and more important, there was an absence of rigorous justification for our 
claim that the derived lists of symmetries and conservation laws for the water-wave 
problem are exhaustive. The adopted method of systematic derivation points 
strongly to the truth of this claim, but full proof has been deferred to a separate study 
(Olver 1982). 

We are indebted to the Science and Engineering Research Council for support of 
the programme that has included the investigation here reported. The paper was in 
part written during an extended visit by T. B. B. to the Mathematics Research Center, 
University of Wisconsin-Madison. 

Appendix 1. Parametric representation of free surface 
Here we reformulate the dynamical problem in order to cover the class of situations 

that was reviewed in $3, being precursory to  the breaking of water waves. The free 
surface S becomes folded as illustrated in figure 1 ( b ) ,  so that its elevation Y,I is no longer 
a single-valued function of position in the horizontal plane and a parametric 
representation of S is then necessary. 

To take advantage of the summation convention of Cartesian-tensor notation, the 
axes used in the main text are now relabelled (x,, x,, x3) = (x, z ,  y). Accordingly, 
S is supposed to be described parametrically by 

xi = X , ( p ,  u, t ) ,  i = 1, 2 ,  3, (A 1 )  

where (p, v) ranges over a fixed two-dimensional domain Q. With the same meaning 
as before, we again write 

and, further compressing the notation for spatial derivatives of 9 evaluated on S, 
we write 

Note that in terms of 

a) = 9s = 9CX1, x,, 1 3 ,  t ) ;  

qi, = (a$/axi)s. 

the components of the outward unit normal to  S are yi/ J ,  and the element of surface 
area on S is J d p  du. It can be assumed without significant loss of generality that J > 0 
everywhere. 

Needless to say, the representation (A 1)  is not unique. One of the possibilities, 
which is evidently suitable for certain other purposes, is to let (p, v) be Lagrangian 
coordinates specifying particular fluid particles in S, in which case we would have 
a, X i  = @(i). This choice has no special advantage a t  present, however, and moreover 
it is inconsistent with the simpler description used previously, which is, of course, 
recoverable from (A 1 )  by taking (p, v) = (x,, xz), X, = p, X, = u ,  X 3  = q(p, u ,  t ) .  We 
therefore proceed from (A 1 )  on a general basis, leaving open the choice of parameter 
system. It is immediately plain that on this basis the dynamical problem cannot be 
reduced to the standard Hamiltonian form (1.2), with time derivatives of the functions 
Xi given explicitly in terms of the instantaneous state (Xi, @) of the system. But an 
appropriately modified Hamiltonian form (1.4) may be recognized as follows. 

The kinematical boundary condition (2.4), expressing the velocity of AS normal to 
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itself in terms of the velocity potential for the fluid motion, is now replaced by its 
generalization y i  8, Xi  = JQ,(n) = y i  a(,,. 
Correspondingly, with the effect of surface tension included, the dynamical boundary 
condition (2.5‘) becomes 

(A 2 )  

= - ( $ q 2 + g X 3 - 2 u H ) + q i , a t x i ,  (A 3) 

in which the mean curvature H is expressible in the standard way for parametric 
representations. Just  as for their simpler versions, these generalized equations, 
coupled with the remaining, linear boundary conditions that determine q5 from its 
boundary values Q, on S, complete the specifications of the evolutionary system. As 
before, we consider the solution as a vector-valued function, in the present case 

and seek a quasi-Hamiltonian formulation in terms of U. 
Now, the kinetic energy of the system is given by 

and the potential energy by 
r r 

In  expressing the first variation of the total energy E = K + 8, we use the facts that 

and 

In  the reduction of K, Green’s theorem is again used as in $ 2 ;  and the reduction of 
V is made through integrations by parts. The details in respect of the superficial 
energy proportional to a are the same as are familiar from the theory of minimal 
surfaces. Thus, defining the gradient of E by the inner product corresponding to 
integration with respect to (p,  v) over n, we find the four components of grad E to  be 

I gradx, E = (+ p2 + gX3 - 2aH)  yi - JQ,(n) 

g r a h  E = = yiQCi,. 

Hence, with U defined by (A 4), equations (A 2 )  and (A 3) are seen to be equivalent 
to 

%(a, U) = grad E(U), 

where % is the skew-symmetric matrix defined as follows. In terms of 

ci j  = yi a(,) - yj qi, = - cji, 
we have 

Given (A 2 )  and (A 3),  substitution for d,Xi and a,@ confirms that the four 
components of (A 6) recover (A 5 ) .  Conversely, given (A 5) and (A 6),  equation (A 2) 
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is a t  once recovered as the fourth component of (A 6), and the first three components 
provide 

Multiplying by yi, summing over i, and then substituting for JQcn) from the already 
implied result (A 2), we obtain 

( ! jq2+gX3-2gH)y i -  JCD(n)CD(g) = ~ i j a , X j - y $ 8 , @ .  

J2{8, CD +$q2 + gX3 - 2gH) = yi cij 8, X.j + yi yj @(i) 8, Xj  = J2@(i) 8, X i ,  

which recovers (A 3) upon division by J2 > 0. 
Equation (A 6) exemplifies the quasi-Hamiltonian form (1.4), which is plainly the 

one concomitant with parametric representations of the free surface. It is readily 
confirmed that det [XI = 0, so that, as expected, X is generally not invertible. 

Note that a two-dimensional version of the problem is included in the preceding 
account. To obtain it, the description (A 1) of S is simplified to 

x1 = XI@), 2 2  = u ,  34 = U p ) ,  

y, = - 8, x3, 7 2  = 0, 7 3  = 8, Xl. 

corresponding to which we have 

I n  (A 2), (A 3) and succeeding equations, the summations are then over i = 1 , 3  only. 
It may be of interest to note also how, in the case that S is not folded and so a 

non-parametric description is possible, the present formulation collapses into the 
simpler one used in the main text. Putting X, = ,u = xl, X, = v = x2 and X 3  = 
v(,u, u ,  t ) ,  we have y1 = -q,, y, = -vy and y3  = 1 .  Although none of the entries in the 
matrix X is cancelled in this case, the first two components of (A 5 )  and the left-hand 
side of (A 6) are vacuous since X, and X, are invariable. Thus (A 6) reduces to 

which is equivalent to (2 .8 ) .  

Appendix 2. Symmetry groups for free-boundary problems 
The study of symmetry groups associated with partial differential equations, a 

subject pioneered by Sophus Lie, has been significantly advanced in recent years, 
notably by L. V. Ovsiannikov. There is now an extensive literature on the subject, 
and for basic concepts bearing on what follows reference may be made to the books 
by Bluman & Cole (1974) and by Ovsiannikov (1982) (see also Olver 19793, 1980b). 
It appears, however, that  no general discussion of free-boundary problems from this 
standpoint is yet available. Accordingly, a brief treatment of such problems in 
abstract is here presented, outlining a procedure whereby the symmetry groups can 
be identified systematically. 

For any free-boundary problem in the general class to be considered, the inde- 
pendent variables are written (x, y) = (d, . . . , xp, y)  E Rp+'. Time may be included as 
one of the variables xi with label i < p ,  and y (=  xP+l) is a distinguished coordinate 
such as that with the vertical direction in the water-wave problem. The dependent 
variables are written Q = (q5l, . . . , q5*) E RQ. The problem is supposed to  comprise a 
system of partial differential equations 

Nx,  y> d) = 0 
satisfied in a domain 

D, = ((x, y): y < q = h(x)) t Rpfl, 
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s = {(x, y): y = 7 = h(x)). 

(The need to introduce a separate notation 7 for the dependent variable describing 
the free surface, and to distinguish i t  from any particular function 7 = h(x), will 
become apparent in the treatment that follows.) This representation is somewhat 
restrictive, implying S to be definable as the graph of a single-valued function of x. 
More generally, S could be any surface described parametrically as in Appendix 1. 
For simplicity, however, the case where h(x) is single-valued will be discussed first, 
and the modifications needed for the more general case will be indicated at the end. 

The boundary conditions at S are represented by 

w, 79 4.54 = 0, (A 8) 

being equations in the p-component independent variable x. These will usually 
involve partial derivatives of 7 with respect to the components of x, as well as 71 itself. 
They will also usually involve both the evaluation Qs E Q(x, ~ ( x ) )  of the set of 
dependent variables at S and, as is left implicit in (A 8),  the corresponding evaluations 
of derivatives of Q with respect to y as well as x. The system of equations (A 7)  and 
(A 8), supplemented by conditions that can be left unwritten determining suitable 
asymptotic behaviour of Q far from S in D,, constitute the general form of 
free-boundary problem now in question. Its solution should be understood as a pair 
of functions h :  IWP + R and f :  D, -+ Rq, such that 7 = h(x) and Q = f(x, y) satisfy the 
system (A 7 , 8 ) .  Clearly, the problem of gravity waves on water of unbounded depth 
has this form. 

(Note that this form of problem, respective to a perturbed half-space D, in [WP+l, 

is the most fertile for any inquiry into symmetry groups. Further delimitations of 
DT as may be required for various practical models, such as the introduction of fixed 
spatial boundaries at finite distances or the imposition of initial conditions with regard 
to  a time variable included in x, obviously cannot result in any increase of symmetry. 
Note also that for present purposes it is wholly justified to treat h and f as C"O 
functions in the stated senses.) 

We consider a diffeomorphism of the whole space RP+' x R* to be given by 

2 = X(X, y, QL J = Y(X,  y, 4 1 7  J= P(X, y, 4). 
If this is sufficiently close to the identity map, a domain D, defined by 7 = h(x) and 
a function Q = f(x, y) : D, + R* will be transformed one-to-one into a new domain D+ 
with free boundary f = @), and a new function f: D; -+ RQ. These are defined 
implicitly by the identities 

} ( A 9 )  
Y{X, h(x), f(x, h(x))} = WWx, W), f(x, h(x))}, 

P{x, y, f(x, y)) = W X ,  y, f(x, y)), Y(X,  Y, f(x, y))). 

(Note that if the restriction to a neighbourhood of the identity is relaxed, then 
f ,  6 may not be defined as single-valued functions, so that in general the class of 
transformations in question is only locally well-defined. It will be seen, however, that 
this proviso is admissible without loss of scope for present purposes.) Such a 
diffeomorphism is to be called a symmetry of the free-boundary problem (A 7 ,8 )  i f f ,  
4 is a (local) solution whenever 7, 4 is a solution. 

Henceforth indices i and j  will denote labelling numbers in { 1,  . . . , p} and { 1, . . . , q}  
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respectively, and repeated indices will imply summation. According to  standard 
terminology of differential geometry, a vector field v on RP+' x R'J is a first-order 
differential operator acting on smooth functions Rip+' x R'J --* Iw, thus 

Such a vector field is the infinitesimal generator of a one-parameter group of diffeo- 
morphisms, obtainable by integrating the system of ordinary differential equations 

where xi, y, @ denote derivatives with respect to the group parameter c. (The value 
e = 0 is taken to correspond to  the identity element of the group.) The method used 
to establish sympetry groups for the present problem, just as for systems of partial 
differential equations without free-boundary conditions, consists in finding their 
infinitesimal generators as follows. 

First we consider the vector field v prolonged to the space of derivatives of the 
dependent variables, up to some requisite order. In  terms of the prolongation prv,  
to be defined (cf. (A 14)), the infinitesimal criterion 

(prv)A = 0 whenever A(x, y, 4) = 0, (A 12) 
then gives a number of elementary differential equations in the coefficient functions 
of v,  and their general solution defines the (infinitesimal) symmetry group for the 
system A = 0. 

To extend this notion t o  the free-boundary problem, we need to consider the 
prolongation of v on the boundary itself. This can most readily be done after adopting 
a perturbational description of the symmetries, which is now outlined. 

For small values of the group parameter c, the action of the group on a particular 
function 4 = f(x, y) is 

in which according to (A 9) 

6fj(x, y) = y j - a i S - p - ,  af* a p  
aY 

with the right-hand side evaluated a t  (x, y, f(x, y)). This may be written in the concise 
form 

where S@ = yj{x, y, f(x, y)) and 
(A 13) Sfj = S$7V-v1(p), 

is the projection of v, as determined by f, onto the space of independent variables. 
Now the prolonged vector field to any required order k 2 1 can be expressed by 

where 4; withj = 1 ,  . . . , q denotes all the k-th and lower-order derivatives of q5j with 
respect to the p +  1 independent variables. Thus, a t  order K (1 < K < k ) ,  there are 
included qp, = q(23 + K )  ! / p  ! K !  components 
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and the total number of components is q(p,+. . . + p , ) .  In the same sense we shall 
also use the notation akqbj = 4;. Since evidently 

s(afj/axi) = a(sp)/axi, i = 1 , .  . . , p +  1, 

equation (A 13) implies that 

w, @) = mcfj) +vl(a,fj) 

= - W j , >  + V l c a k p ) .  

Moreover, since this formula holds for all possible particular choices of the function 
4 = f(x, y), we may replace the derivatives a,fi by the derivatives 4; of the dependent 
variables q5j wherever they occur. This final step recovers the known formula 

I (A 15) 
Wi,) = a,{Yj-v,(P)>+vl(4i,)> 

v, = aia/axi +palay, 
which expresses the infinitesimal variation of & (cf. Olver 1979b, 1980b; also 
Eisenhart 1933, p. 106, eqn. (28.12), for the same result in a recursive form). Note 
that the coefficients ai, p, yj  in (A 15) are now all in their original form, depending 

To investigate behaviour a t  the free boundary, we writefl,(x) = f j ( x ,  h ( x ) )  as befdre 
on x, y, 4. 

and note that 

&x) = f”j(x, L(X)) 

= fqx,  R(x)) +sSfj(x, L(x)) + O ( 2 )  

= fj(x, h(x))  +s{$(x, h(x)) Sh(x) +Sfj(X, h(x))) + 0(€2). 
4fi) = ( W ) s  + (f;)s &. (A 16; 

Thus 

It will be helpful to introduce the notation W = pi, W;,, = (4),, in terms of which 
(A 16) evaluated on S becomes 

where 
S@ = S@) + V,(fi), 

a 
v, = d{x, h(x), fs(x)}- ax< 

is the restriction of v to S. Moreover, 

and therefore 
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The operations d and restriction to  S are thus shown formally to  commute. The same 
argument plainly extends to  derivatives of $ j ,  and so we also have 

W q k J  = (“i)sI = [S(&)Is, (A 18’) 

Finally, we must discuss the prolongation of v to the derivatives of 7. It is clear 
in which a(#$) is given by (A 15). 

that  

Moreover, since a(dh)/axi = d(8h/8xi), we have 

87 = Ps = dh+vo(h). 

S(7,) = d(8h/8xk) + vo(8h/8xk) 

= (8/dx”){p,-vO(h)} + ~o(dh/ax”) .  

As before, since this formula holds for all particular functions 7 = h ( x )  and 
9 = f ( x ,  y ) ,  we may replace 8h/8xk by y k  and (a , f i ) s  by ($L)s = wherever they 
occur. The result complementing (A 15) is therefore 

in which Ps and all the ak are evaluated a t  X, 7, #s. This is just the standard 
prolongation for the vector field 

vs = a“x, 7,  9 )  8/8xi +P(x,  7, 9 )  8/87, 

with 7 considered as a function of x and $ as an arbitrary function of x and 7. 
Accordingly, the infinitesimal criterion of invariance gives the following result : 

THEOREM A 1. Take the free-boundary problem (A 7) ,  (A 8). Let v be a vectorJield with 
prolongation pr v deJined by (A la), and with boundary prolongation deJined by 

pr vs = a$ 8/a xi + (d#j& a/8@{,, + 8(vk)  8/87,, (A 20) 

in which 
symmetry group for the problem i f  and only i f  

and 

is  given by (A 15) and d(7,) by (A 19). Then v is  a one-parameter 

pr v(A) = 0 whenever A = 0, (A 21) 

(A 22) pr v s ( T )  = 0 whenever r = 0. 

This theorem can readily be generalized to the case that the free surface S is defined 
parametrically, being represented in the form x = h(p), where the parametersp range 
over RP or some subdomain of W. Clearly the first two sums of terms in (A 20) are 
unchanged, with the restrictions to S given their appropriate meanings which are 
obvious. To modify the third sum of terms appropriately, one needs to  work out ~ ( X L ) ~  
with xi = axi/a,uk. By reasoning similar to that leading to (A 19), it  is found that 

&(xi) = 8ai /8pk .  (A 19’) 

Accordingly, Theorem A 1 holds as before, except that (A 20) is replaced by 

pr vs = a$ 8 / W +  (dq5$k)s8/a@&) + &(xi) 8/8x$, 
with d(xi) given by (A 19’). 
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