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In this and the companion paper (Part 2) we examine experimentally, computationally,
and analytically the behaviour of breaking-wave-induced macrovortices during startup
conditions. Widely separated breakwaters and rip current topographies are chosen
as opposite ends of the parameter space. Part 1 examines generation mechanisms
using phase-resolving and phase-averaged approximations, and suggests several simple
predictive relations for general behaviour. Vortex trajectories and shedding periods
for wave breaking on widely spaced breakwaters are also considered in detail. Results
show broad agreement with theoretical trajectories. Predictions of vortex shedding
periods on breakwater heads show excellent agreement with computations. Part 2
examines startup macrovortices on rip current topographies using computations and
laboratory experiments, and changes in behaviour as the system transitions from wide
to narrow gap width.

1. Introduction
In the nearshore ocean, variations in longshore bathymetry are ubiquitous. These

may be natural, as bottom sand is rearranged in a complex feedback among waves,
currents and sediment; they may be manmade, as found on jetty or breakwater heads.
In all cases, these bathymetric variations modify the incident wave field. In many
cases waves break on these features, with different intensity at different locations. As
shown theoretically (Peregrine 1998, 1999; Bühler 2000), differential wave breaking
generates vorticity which reorganizes in the form of large-scale horizontal eddies with
a vertical axis, also known as macrovortices.

The only detailed numerical study of breaking-wave-generated vortices to date has
focused on vortex generation on longshore-uniform topographies (Bühler & Jacobson
2001). Here, ad hoc offshore amplitude variations in wave height were necessary to
give longshore variability in breaking and thus generate vortices. However, longshore
variation in bottom elevation is the theoretically most sound source of stationary
long-term longshore variations in wave height. Numerical studies of topographically
controlled rip currents have predicted vortex shedding on bar edges (e.g. Chen et al.
1999; Yu & Slinn 2003) with vortices advected offshore. Numerical studies of wave
breaking on single breakwaters (Brocchini et al. 2002) have shown similar vortex
generation, but with vortices advected towards the shoreline.
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Field observations of nearshore vortices are rare. Smith & Largier (1995) observed,
using acoustic techniques, rip current vortices with radii R of order 10s of m, but
did not investigate their source. To our knowledge there are no reported laboratory
observations specifically focused on breaking-wave-generated macrovortices, in part
because they are difficult to measure using fixed current meters.

The generation and transport of startup macrovortices for topographically
controlled wave breaking forms the subject of this paper and its companion, Part 2
(Kennedy et al. 2004). Two typical situations are to be examined in detail: wave
breaking at breakwater heads and on rip current topographies. Each represents an
extreme of the problem parameter space. Vortices generated on opposite ends of a
breakwater are widely separated, typically have little mutual interaction and travel
towards the shoreline mainly because of the wave field and self-advection. The latter
represents the contribution to the vortex motion due to the presence of a sloping bed
which forces the vortex to move along isobaths. The intensity of the self-advection of
a large-scale vortex on a beach can be modelled by regarding the macrovortex as a
portion of a vortex ring with radius equal to the distance between the macrovortex and
the shoreline (e.g. Bühler & Jacobson 2001). In contrast, oppositely signed vortices in
a rip current topography are extremely close together, have significant interactions,
and may travel offshore as a pair. In this case the vortex pair made of two vortices
of approximately equal strength (Γ ) but opposite sign and with separation a move
under the action of mutual interaction at a speed of about Γ/(2πa). The problem is
highly complex as many processes of similar strength operate simultaneously.

Vortex shedding at the lee-side of a topographic obstacle is a well-documented
phenomenon and various results are available to characterize the main features of the
instability of the wake both in marine (e.g. Lloyd & Stansby 1997) and atmospheric
environments (e.g. Schär & Smith 1993b; Schär & Durran 1997). Once transition to
vortex shedding occurs a number of parameters like the vortex size and the shedding
period are analysed as useful for both hindcasting and forecasting purposes (e.g.
Schär & Smith 1993b). However, most of those studies have used simple approaches
in which a steady current meets the obstacle over a flat bottom. Only very recently have
attempts been made to quantify the wake instability caused by an oscillatory shallow-
water flow around an island (Lloyd, Stansby & Chen 2001). We here aim to evaluate
the properties of startup macrovortices in more realistic nearshore flow configurations
in which breaking waves interact with topographic features like longshore bars or
submerged breakwaters over a uniformly sloping beach.

In the first portion of this paper (§ 2), we define the problem and introduce scaling
arguments; next we examine and tie together several different approaches to looking
at the generation of vorticity and circulation on longshore-varying topographies. In
§ 3, we examine startup vortices on breakwater heads with numerical solutions of the
nonlinear shallow-water equations (NSWE). The focus here is mainly on determining
characteristics of startup vortices like the shedding period and the vortex trajectory.
Section 4 summarizes results and concludes the paper.

The companion paper (Kennedy et al. 2004) examines vortex generation and
transport on rip current topographies, and bridges the two extremes represented by
single breakwaters and rip current configurations.

2. Theoretical development and scaling
Here, we analyse vorticity and circulation arising from wave dissipation using

three different approaches. In the bore evolution approach, the amount of vorticity
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or circulation generated by the bore is directly related to the depth jump across a
bore and no modelling is required other than suitably following the breaker. This is
naturally embodied in the wave-resolving NSWE. Other wave-resolving approaches
can be used, like Boussinesq-type models, in which the energy dissipation process
and the induced circulation are accounted for by a parametric formulation which
models the dynamics occurring at the breaker’s front. A third approach stems from
scale-separating fluid motion into short waves and currents, and then averaging over
the short timescale. In the following, we examine the circulation arising in various
representations of dissipating waves, and show how they interrelate.

2.1. Bore dissipation models

The two greatest advantages of studies based on the wave-resolving NSWE approach
are that they have some fundamental validity for finite wave heights, and that
dissipation follows directly from the bore geometry. This was exploited by Peregrine
(1998, 1999), who showed that the instantaneous rate of change of circulation around
a closed material curve passing once only through a single bore is equal to the rate
of energy loss through that bore:

DΓ

Dt
= ED (2.1)

where

Γ ≡
∮

U · dl and ED ≡
∮

D · dl =
g(d1 − d2)

3

4d1d2

(2.2)

and d1 and d2 are the first and second water levels encountered by the curve on
either side of the bore while U = (U, V ) and D = (Dx, Dy) are respectively the depth-
averaged velocity and the dissipative body force caused by turbulent bores.

If we approximate the instantaneous bore height as HB = d1 − d2 and the mean
water level (which may differ from the still water level) as d =(d1 + d2)/2, this may
be rewritten as

DΓ

Dt
=

gH 3
B

4d2 − H 2
B

(2.3)

where, again, we consider the instantaneous wave height and water depth at the
bore. Care must be taken here to ensure that the sense of the curve is consistent: if
the material curve encounters the crest first and then the trough the wave height is
positive, but is negative if the curve first encounters the trough.

2.2. Phase-resolving models with parametric breaking

The best examples of phase-resolving models without bore dissipation built into
the numerical discretization are the various types of wave breaking schemes for
Boussinesq wave models (Brocchini, Drago & Iovenitti 1992; Schäffer, Madsen &
Deigaard 1993; Chen et al. 1999; Kennedy et al. 2000; Veeramony & Svendsen
2000; and numerous others). These schemes differ considerably from each other but
generally have two commonalities, which tend to give them similar performance:
dissipation is localized on the front face of the breaking wave and dissipative forces
are momentum-conserving.

Localizing breaking forces on the front face of waves mimics bore dissipation,
as bores do not form naturally in these nonlinear-dispersive models. Momentum-
conserving breaking is essential for the proper representation of breaking-wave-
induced processes such as setup – without it, all predictions are completely wrong.
(Veeramony & Svendsen (2000) also include a term arising from breaking-induced
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differences in bottom pressure that is proportional to bottom slope. Other represen-
tations neglect this as being small compared to other processes.)

A typical representation is

uα,t + (uα · ∇)uα + g∇η + many other terms = D (2.4)

where ( · ),t represents partial differentiation with respect to t and uα is a specific
characteristic Boussinesq velocity (there are innumerable definitions for characteristic
Boussinesq velocities). Note that the dissipative breaking force must be defined as
D ≡ (∇ · F)/d , where F is a symmetric two-dimensional tensor. As noted by both
Bühler (2000) and Kennedy et al. (2000), division by the total water depth d = h + η

(h being the still water level and η the water surface displacement) is necessary in
such representations for a momentum-conserving process.

Generation of circulation then arises naturally: ignoring bottom friction terms etc.
gives

DΓ

Dt
=

∮
D · dl + O(µ2) (2.5)

where O(µ2) represents contributions from dispersive Boussinesq terms. It is not in
general possible to make statements about rotational dispersive flow in Boussinesq
models as significant deficiencies are found in many derivations (see Gobbi, Kirby
& Kennedy 2000). This leads to the result that leading-order rotational motion in
Boussinesq-type equations follows discussions in Bühler & Jacobson (2001) very
closely.

2.3. Phase-averaged models

Neglecting bottom slope effects, surface shear stresses, and variations in atmospheric
pressure, it may be shown, after Mei (1983), that

∂Ũ
∂t

+ Ũ · ∇Ũ = −g∇η̄ −
∇ ·

(
S + S′)
d̄

− τ

d̄
(2.6)

where d̄ = h + η̄ is the phase-averaged total water depth, Ũ is the mass-transport
velocity, defined as Ũ ≡ U + M/d̄ , M being the wave-induced volume transport, and
τ is the bottom frictional stress. All definitions of stresses and energies here neglect
densities, as these are unimportant in discussions of circulation for constant-density
fluids. Radiation stresses here are divided into organized wave-induced stresses S
and contributions from turbulent fluctuations S′. Typically these turbulent stresses
are ignored, since they are important only in the surf zone, and this is exactly the
region where commonly used small-amplitude radiation stress approximations show
considerable error. The overall error then includes contributions from both terms in
uncertain proportion.

Phase-averaged equations for wave evolution vary considerably. To a reasonable
level of approximation, wave action relations based on geometrical optics show many
relevant features. Consistent with the purposes of this paper, and for simplification, we
look at the initial stages of vorticity generation, when mean currents and departures
from still water levels are small. In some ways this resembles the analysis of Bühler
& Jacobson (2001), in which a Reynolds-type decomposition of the flow was used
to separate wave and current components, and in which seabed friction effects
were neglected. However, we here allow for frequency dispersion which gives our
analysis a somewhat broader area of application. This also builds on previous
analyses by Longuet-Higgins (1973) and Dingemans, Radder & De Vriend (1987)



Topographically controlled, breaking-wave-induced macrovortices. Part 1 293

who examined the relationship of breaking dissipation to mean current forcing, but
did not specifically examine generation of circulation although it would have been
straightforward in either case.

In summary, equation (2.6) can be simplified by neglecting the nonlinear advective
term because of the ‘small current approximation’, by neglecting the turbulence-
induced stresses with respect to the wave-induced ones, by neglecting the bed
friction as important only over long time spans (Bühler & Jacobson, 2001) and
by approximating d̄ with h. This is added to the other four relations available for the
problem, i.e. to the wave energy flux equation, the linear dispersion relationship, the
ray-tracing equation (to examine varying depth), and the definitions for the radiation
stresses. In detail the five sets of equations to be solved are

E,t + ∇ · (ECg) = −DhCg, (2.7)

Ũ ,t + g∇η̄ = −1

h
∇ · S, (2.8)

ω2 = gk tanh kh, (2.9)

cos θθ,x + sin θθ,y − sin θ
C,x

C
+ cos θ

C,y

C
= 0, (2.10)

Sxx = En cos2 θ + E
(
n − 1

2

)
, Sxy = En sin θ cos θ, Syy = En sin2 θ + E

(
n − 1

2

)
, (2.11)

n=
1

2

(
1 +

2kh

sinh 2kh

)
, (2.12)

where E ≡ gH 2/8 is the kinematic wave energy per unit surface area, D is the breaking
pseudo-force per unit volume (acting in the opposite direction to the group velocity),
θ is the wave angle relative to the x-coordinate, C = ω/k is the wave phase speed,
Cg = nC is the group velocity, and Cg = Cg(cos θ, sin θ).

Considering only the x-momentum for simplicity, and substituting definitions for
radiation stresses directly into (2.8) we obtain

Ũ,t = −1

h
[cos θ([En cos θ],x + [En sin θ],y) − En sin θ(cos θθ,x + sin θθ,y)

+ [E(n − 1/2)],x] − gη̄,x. (2.13)

The first set of terms on the right-hand side can be used to introduce the dissipation
directly using (2.7)

Ũ,t = − 1

h

[
cos θ

(
−E,t

C
− Dhn − En cos θ

C,x

C
− En sin θ

C,y

C

)
− En sin θ(cos θθ,x + sin θθ,y) + [E(n − 1/2)],x] − gη̄,x. (2.14)

Collecting terms, using trigonometric identities and reverting back to two horizontal
dimensions:

Ũ ,t = Dn +
E,t

Ch
− g∇η̄ − ∇

[
E(n − 1/2)

h

]
(2.15)

where D ≡ (Dx, Dy) =D(cos θ, sin θ), and similarly E ≡ E(cos θ, sin θ).
As the mass transport velocity is appropriate for examining rates of circulation

change, we take a line integral and arrive at

Γ,t =

∮ (
M ,t

h
+ nD

)
· dl. (2.16)
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The second term related to wave breaking dominates in most cases. Thus the
generation of circulation is directly related to the wave-breaking pseudo-force per unit
volume, as might be expected. A comparison of (2.3), (2.5) and (2.16) shows almost
identical formulations, with dispersive effects in the scale-separated formulation as
the only difference.

To our best estimation, the M ,t /h term exists in non-conservative form because
the wave evolution equations used do not include diffraction, which would modify
energy transport and radiation stresses (see also Dingemans et al. 1987). Clearly, from
Kelvin’s circulation theorem, circulation cannot be generated in the absence of wave
breaking. As a side note, if the Eulerian velocity U were used in (2.16) instead of
the mass transport velocity Ũ , the offending term would disappear. However, as the
mass-transport velocity is the time-averaged velocity of a water column in shallow
water, it is the proper choice. For the strong current case, it would be straightforward
to include advective terms in the forced shallow-water equations: combined with a
conservation of mass equation, and following the usual steps in examining circulation,
the partial derivative Γ,t in (2.16) would change to the material derivative DΓ/Dt .
However, as the wave evolution equations do not include the effects of wave–current
interaction, this would not be consistent. In any case, we do expect that the rate
of change of circulation of a material curve should also depend on the dissipation
strength D as given in (2.16), since no circulation can be generated in the absence of
breaking.

2.3.1. Relationship between setup and circulation

As irrotational forcing, wave-induced setup cannot generate steady circulation.
However, both setup and circulation are generated by breaking-wave forces. Because
of this, setup may be used to estimate generation of circulation across a breaking
event in the somewhat restrictive situation of small velocities at the ends of the path
considered.

To do this, we integrate along the wave ray from point ‘1’, offshore of the breaking
event, i.e. of coordinate x1, to point ‘2’, which is onshore, i.e. of coordinate x2.
Assuming quasi-steady breaking and using equation (2.15) we find∫ x2

x1

nD dx = g (η2 − η1) +

(
E(n − 1/2)

h

)
2

−
(

E(n − 1/2)

h

)
1

,

(Γ,t )12= g (η2 − η1) − g(ηsd2 − ηsd1),


 (2.17)

where ηsd1 and ηsd2 are the steady-wave setdowns at each location (e.g. Dean &
Dalrymple 1984). Thus, the rate of generation of circulation associated with a wave-
breaking event is directly linked to the change in mean water surface elevation across
that breaking event, with corrections for the irrotational pressure setdown associated
with the waves. Summation of all corrected surface elevation jumps in the closed
circuit gives the total rate of generation of circulation. As with Peregrine (1998), the
correct sense of the summation must be preserved: jumps in the direction of wave
travel are positive, while those opposite to the wave direction are negative.

2.3.2. Estimates of phase-averaged circulation change

The phase-averaged approximation suffers from the disadvantage that breaking
dissipation is arbitrary in the derivation. Here, we make some simple approximations
to estimate circulation change at startup for waves breaking on a bar or breakwater
with crest height hc, but not in an adjacent deeper channel. The differential breaking
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H

hc

H2H1

hB
hB hc

H = γh H = βhc

Figure 1. Sketch of three types of wave breaking at a bar-like topographic obstacle.

caused by this non-uniform topography thus generates circulation. All breaking waves
are assumed to be in shallow water and all waves are assumed to be shore-normal.
We further use the rigid-lid assumption of small departures from the still water level,
and quasi-steady breaking waves so that the unsteady wave contribution in (2.16)
vanishes. These estimates may prove useful for many different applications.

Three different breaking assumptions are to be used. These are (see figure 1):
(a) waves break only on the bar crest at depth hc and finish with height H =βhc

(steep-fronted wide reef);
(b) waves break on the slope according to the depth-limited criterion H = γ h,

h � hB in which hB gives the depth at which breaking first occurs (gentle slope,
narrow crest);

(c) waves break on the slope according to the depth-limited criterion H = γ h, and
continue breaking on the bar crest, finishing with height H = βhc (gentle slope, wide
crest). Breaking types (a) and (b) are probably bracketing estimates, as waves are
unlikely to break only on the bar crest as assumed in type (a), but are also unlikely
to stop breaking as soon as the local slope becomes flat, as assumed in type (b). Type
(a) always leads to a greater circulation for the same incident waves, as breaking is
in shallower water. Type (c) is a combination of types (a) and (b), and may be the
most physically plausible scenario in many situations.

For breaking type (a), the constant water depth on the bar crest simplifies things
considerably and (2.16) may be integrated analytically to arrive at

Γ,t =

∮
D · dl =

1

hc

(E1 − E2) (2.18)

where E1 and E2 are the energies at the seaward and shoreward ends of the bar
crest, computed without density. Since energy is proportional to the square of the
wave height in the leading-order formulation, the rate of change of circulation is
proportional to the difference of the squares of the wave heights, measured just
before and just after the bar (figure 1). This case is most appropriate for steep bar or
breakwater fronts with a wide flat crest, or for waves breaking on coral reefs.

Assuming that the wave height at the shoreward end of the bar or breakwater crest
is represented by H2 = βhc, we arrive at

Γ,t =
g

8

[
H 2

0

Cg0

g1/2h
3/2
c

− β2hc

]
(2.19)

where H0 and Cg0 are the wave height and group velocity at a given location offshore
of the bar.

For breaking type (b), depth-limited breaking is assumed on the front slope of
the breakwater, with cessation of breaking once the bar slope reaches zero. For
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shore-normal waves breaking in shallow water, the breaking dissipation becomes

Dx = −5g

16
γ 2h,x, h � hB. (2.20)

After a change of integration variable in (2.16) from x to h, the integral may be
evaluated analytically to give

Γ,t =
5gγ 2

16
(hB − hc). (2.21)

Finally, the depth for shore-normal waves breaking in shallow water may be
estimated as (e.g. Dean & Dalrymple 1984)

hB =
(
H 2

0 Cg0

)2/5
γ −4/5g−1/5 (2.22)

or through any other appropriate method for more complex situations.
One further option (type (c)) may be considered, where the wave breaks like H = γ h

on the slope, and continues to break on the flat top of the bar, finishing with height
H = βhc. The final rate of change of circulation here becomes

Γ,t =
5gγ 2

16
(hB − hc) +

ghc

8
(γ 2 − β2). (2.23)

Estimates of circulation here always lie in between those of types (a) and (b).
Thus, if E1 � E2, circulation increases with the square of wave height for breaking

type (a), while if hB � hc in types (b) and (c), circulation increases proportionally
to wave height to the four fifths power. We should emphasize again that differences
between still water level and mean water level have been neglected in all cases, but
due to the simplistic nature of the breaking assumptions, this hardly seems significant.

Estimates of rates of circulation generation are tested in the companion paper
Part 2, and in related papers. In Kennedy (2003), these estimates are combined with a
very simple dynamical model of rip currents to predict steady and unsteady properties
in a rip neck, while Kennedy & Thomas (2004) relate them to overall properties in a
rip current, including mean circulation and characteristic timescales.

2.4. Geometrical controls on startup vortices

For general breakwater/bar geometries, the quantitative prediction of vortex strengths
and trajectories becomes quite difficult: as startup vortices are found in areas with
strong variations in breaking, it can be difficult to define a characteristic depth. Even
characteristic background velocities can become difficult in strongly sheared regions.
However, using circulation relations combined with conservation of mass, some vortex
self-interaction and mutual interaction relations, relating general vortex behaviour to
changing geometry becomes relatively straightforward. In some relatively simple cases,
good quantitative predictions may be found.

First, consider a long string of breakwaters (bars) parallel to the coast, separated
by gaps (rip channels). Each breakwater has crest length parallel to the shoreline Lc,
and crest depth hc. The shore-parallel gap between breakwaters has width Lt , and
depth ht . Here we assume that the flow on the bar crest is directly onshore, and flow
in the channel directly offshore.
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The velocity of a vortex then has three components: advection by the background
velocity, mutual interaction with other vortices, and self-interaction on a sloping bed.
For steady wave forcing we identify four stages of startup:

(i) All components of equation (2.15) are significant except surface elevation
gradients, which are approximately zero. This is the very first fluid motion before
setup has developed.

(ii) Irrotational components are in balance and contribute only to water level
variations. Mutual interaction between vortices and self-interaction for vortices on a
slope are the dominant processes.

(iii) Macrovortices leave the areas of generation and self-interaction slope effects
become less important than mutual interaction.

(iv) Interaction between consecutively generated vortices becomes important, and
friction and instabilities dissipate vortex strengths. This stage at least approaches the
beginning of stochastically steady-state conditions.

In stage (i) conditions, the velocity of the vortex has three components: advection by
the background velocity, mutual interaction with other vortices, and self-interaction
on a sloping bed. Background velocities may be related to larger scale currents or to
the fluid accelerations that eventually lead to wave setup; in any case they include all
motions not specifically caused by the breaking-wave-induced macrovortices. Noting
again that mean surface elevations immediately at startup are approximately zero
and if there are no significant pre-existing larger scale currents, the general shoreward
acceleration at the crest can be estimated from (2.15). Of the terms on the right-hand
side, analysis of typical situations shows that the strongest by far is that related to the
breaking wave dissipation, i.e. Ubg,t ≈ Dx , whose magnitude is approximately ED/LB ,
LB being the size of the breaking region. Neglect of mass transport and pressure
setdown terms produces some uncertainty, but uncertainties in estimating the size
of the breaking region are likely to be the dominant source of error in estimating
background velocities. This approximation also assumes that macrovortex cores are
near the crest of the bar, where the general breaking-wave-induced accelerations are
strong. In reality, they travel between the shallow crest and the deeper gap, but sound
theoretical attempts to represent this have proved elusive. However, as will be seen
soon, this may be less important than might be supposed.

Using standard expressions for mutual advection of oppositely signed point vortices
(e.g. Bühler & Jacobson 2001), the shoreward velocity is

Uma =
Γ

2π

(
1

Lc

− 1

Lt

)
. (2.24)

Again, this is highly approximate. Depending on whether the gap width is wider than
the breakwater or vice versa, this may accelerate the vortex either onshore or offshore,
as indicated by Peregrine (1999). Additionally, this velocity becomes small as both
breakwater lengths and gap widths become large.

Finally, self-advection over a slope gives a velocity (Bühler & Jacobson 2001)

Usa =
Γ s

d

1

4π

[
log

(
8d

sR

)
− 1

4

]
(2.25)

where s is the slope considered, R is the radius of the vortex, and d is the mean local
water depth. As the vortex is likely to span shallower water on the crest and deeper
water in the gap, and topography can be strongly three-dimensional, representative
choices for slope (side breakwater slope, back breakwater slope, general bed slope),
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and depth become difficult. Additionally, the steep slopes often found near areas of
strong differential breaking introduce further complications.

Adding these together gives the total acceleration of the vortex in terms of the
dissipation, ED ,

Uv,t = Ubg,t + Uma,t + Usa,t

= ED

{
1

LB

+
1

2π

(
1

Lc

− 1

Lt

)
+

s

d

1

4π

[
log

(
8d

sR

)
− 1

4

]}
. (2.26)

The first and third terms in the curly brackets always force onshore flow, while
the second can either force onshore (wide gap) or offshore (narrow gap) flow. As
all the terms in the curly brackets are either directly (s, d , Lt , Lc) or indirectly (LB ,
R) dependent on geometry, initial vortex transport is mainly governed by geometric
considerations.

This analysis is highly approximate but does show many of the relevant features.
However, care must be taken in following it blindly: stage (i) of startup is only
valid before setups have developed and while the vortex is close to the top of
the breakwater or bar. Choosing a representative slope and water depth can also
be problematic. Additionally, even in the best conditions (small side slopes, long
breakwater), the rip channel width must be very small according to this analysis for
offshore flow to occur: Lt < LB/2π. Thus the gap width must be much smaller than
the breaking-width-related lengthscale, which seems unlikely.

In stage (ii) of startup, irrotational transients arising from the beginnings of
setup have died down, but generation of circulation continues. The direction of
travel then becomes determined by the ratio of self-advection on the slope and
mutual advection by oppositely signed vortices. It thus becomes much easier for
vortices to travel offshore in rip current topographies. This is a dynamically pleasing
approach as the uncertainty in estimating Ubg,t then becomes much less important,
since after irrotational startup transients die down, mass transport is a consequence
of vorticity dynamics, which is mainly a function of breaking waves. Furthermore,
even if macrovortices coexist with irrotational long waves, the net transport of a fluid
particle by the long waves over one wave cycle is generally small when compared to
the vortex motions for the cases considered.

However, even this does not tell the full story – when startup transients have
become negligible, analysis may still indicate that the direction of vortex travel in
rip current topographies is onshore, mainly from self-advection on the sloping bar
sides, while observation shows them going offshore. This is because the side slopes
of the breakwaters or bars are very limited in size. Once vortices are accelerated
and self-advected into deeper water, the side slope becomes much less effective in
self-advecting the vortices. In this stage (iii), mutual advection dominates for narrowly
spaced periodic topographies. Such an assumption was used by Kennedy (2003) in a
simplified model of a rip current neck, and was found to account for much of the
observed velocity variations at startup and at other times. Companion paper Part 2
also addresses in large part phenomena during stage (iii) of startup.

Processes become much more complex during stage (iv). Interactions between
consecutively generated vortices can modify strongly mutual interactions, and bottom
friction begins to limit growth. As this stage continues, simple estimates of processes
become more difficult. Finally, as dissipation of circulation begins to balance
generation of circulation, stage (iv) gradually leads to stochastically steady-state
conditions.
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3. Startup vortices on a breakwater head
As already mentioned in these conditions macrovortices evolve under the action

of the wave field and of self-advection. The latter is particularly intense for steep
beach conditions. We are primarily interested in giving a characterization of some
macrovortex properties like the detachment period, the size of the vortices and their
typical trajectory. This has been performed by means of numerical experiments.

3.1. Numerical setup

A shock-capturing, finite-volume model was used to solve the NSWE written in
conservation form (see Brocchini et al. 2001):

d,t + (Ud),x + (V d),y = 0,

(Ud),t +

(
U 2d + g

d2

2

)
,x

+ (UV d),y = gdh,x − dDx − cf U |U |,

(V d),t + (UV d),x +

(
V 2h + g

d2

2

)
,y

= gdh,y − dDy − cf V |U |,




(3.1)

in which D is non-zero only in the presence of bores and cf is a coefficient measuring
the seabed friction expressed by a Chezy-type contribution.

The model accounts for energy dissipation at shocks (ED of equation (2.1)),
equivalent to that occurring at a hydraulic jump, through the well-known Rankine–
Hugoniot conditions. The crossflow gradient of ED determines the rate of vorticity
generation at bores (e.g. Pratt 1983; Peregrine 1998). Note that it can be demonstrated
that such vorticity flux is independent of the formulation of the dissipation D. In
other words the flux of vorticity is the same if D is modelled either through jump
conditions in a pseudo-inviscid framework or by means of a specific, explicit viscous
formulation (Schär & Smith 1993a).

The numerical solver is based on the second-order-accurate WAF method (e.g. Toro
2001) where intercell fluxes are evaluated by means of an exact Riemann solver which
allows, at a limited computational cost, a very accurate description of the solution. A
flux limiter is, finally, employed to obtain non-oscillatory solutions at steep gradients.
For more details on the implementation of the solver we refer the reader to Brocchini
et al. (2001).

Being particularly suited to represent jump conditions, the shock-capturing solver
models well the generation of vorticity at depth jumps and the evolution of spatially
well-confined structures like macrovortices (see Brocchini et al. 2002).

We use a numerical domain which closely represents real-life topographic conditions
in which coastal defences are placed or sand bars evolve (figure 2), and to assess the
role of the beach slope s two configurations were used such that s = 1:10 and s =1:30.
A radiating boundary condition has been enforced at the seaward boundary of the
domain (left end in figure 2) while open conditions have been used at the lateral
boundaries. All test waves as generated were sinusoidal with periods Tin = 5, 10 s
and five different wave heights Hin = 0.5, 1.0, 1.5, 2.0, 2.5m. The bottom friction was
accounted for by varying cf over two values only cf =0, 0.01.

Preliminary computations have been run to assess an optimal mesh size. This is
empirically defined as the mesh which provides:

(i) an adequate resolution of the flow features of interest, i.e. of the macrovortices;
(ii) a reduced amount of numerical diffusion. Numerical diffusion is due to the

local reduction to first-order accuracy of the scheme near steep fronts. Here the
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(a)

(b)

Figure 2. Sketch of domain used in the numerical tests for the case of a single breakwater:
(a) top view, (b) side view.

leading-order truncation error is of the form

νN∇2U in which νN = 1
2
(1 − C)λ
x (3.2)

is the numerical viscosity which gives a measure of the numerical diffusion. This is
proportional to the mesh size 
x, the celerity λ of the propagating signal and the
Courant number C;

(iii) numerically cheap computations.
A rectangular mesh with size (
x, 
y) = (1, 2) m has therefore been chosen.

3.2. Computational results

We here focus our attention on the analysis of the main features of the flow evolution
of macrovortices at startup. Vortex trajectories and detachment period of vortices
have been analysed with respect to the various wave-geometry parameters. One first
important result is that, confirming the intuition of Bühler & Jacobson (2001), the bed
friction does not influence at all the results at hand. Also the input wave steepness
weakly influences the shedding period of the vortices, which is much more strongly
linked to the vortex, radius and to the lateral slope of the breakwater sl .

3.2.1. The flow evolution and the vortex trajectories

The description of the trajectory traced by the vortices in their motion towards the
shoreline is of both scientific and practical interest. On one hand the trajectory can
be used as a benchmark for comparing any analytical models aimed at representing
the vortex motion. The practical relevance of predicting vortex trajectories resides
in the possible estimate of the extent of the area over which vortices can transport
passive tracers like sediments or pollutants. In other words it is, in principle, possible
to give a measure of the area of influence of the vortices for any given topography
and sea-state.
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Figure 3. Flow patterns and shoreward macrovortices migrations for flow conditions of s =
1:30, Tin = 5 s, Hin = 0.5 m and cf = 0. The contour plots of the vorticity field are superposed on
the instantaneous streamlines for times (a) t =45 s, (b) 130 s, (c) 195 s, (d) 250 s. Vorticity con-
tour lines are solid for positive (counterclockwise) vorticity and dashed for negative (clockwise)
vorticity with contour interval of 0.2 s−1.

In figures 3 and 4 we illustrate the evolution of the flow due to waves which,
breaking over the breakwater, generate macrovortices which subsequently propagate
towards the shore over beaches of different slopes (figure 3 s = 1:30, figure 4 s = 1:10).
These two examples characterize well the flow evolution of all the other cases and,
hence, are taken as representative of the different vortex motion over a 1:30 and a 1:10
beach. The streamlines quite clearly show the motion of the macrovortices towards
the shoreline. For clarity, contour lines of the vorticity field defined through the single
vorticity component ω = V,x − U,y have been superposed to better identify the cores
of the vortices. Arrows have also been used to locate a given pair of vortices which,
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Figure 4. Flow patterns and shoreward macrovortex migrations for flow conditions of
s = 1:10, Tin =5 s, Hin = 0.5 m and cf = 0. Snapshots are for times (a) t = 5 s, (b) 25 s, (c) 45 s,
(d) 65 s. For other details see caption of figure 3.

shed at the breakwater, move towards the shore along tracks which are reproduced
in detail on figure 5.

We can see that for the milder slope conditions macrovortices move along a rather
complex route. In the following description the generation instant is taken as the zero
time datum. The majority of the early motion (t < 60 s) is of stage (ii) type where
vortices, due to the strong interaction with the steep slopes of the breakwater, self-
advect around the corner from the side slope, and propagate parallel to the breakwater
itself (figure 3a). Once the vortices meet along the centreline of the breakwater, they
mutually advect towards the shoreline under stage (iii) conditions. Until t ≈ 190 s,
the route is almost shore normal and almost coincides with the breakwater mid-line
(figure 3b, c). This shoreward migration is due to coupling with the opposite-signed
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Figure 5. Typical cases of macrovortex trajectories for different beach slopes. The thicker
black line represents the breakwater berm, while trajectories of positive vortices are given in
continuous lines and those of negative vortices in dotted lines. (a) Trajectories of vortices
emitted for flow conditions of s = 1:30, Tin =0.5 s, Hin =0.5 m, cf = 0, shoreline at x =150 m.
(b) Trajectories of vortices emitted for flow conditions of s = 1:10, Tin = 0.5 s, Hin = 0.5 m,
cf =0, shoreline at x =115 m.

vortex shed from the opposite edge of the breakwater, hence forming a vortex
pair. Nearer the shoreline, the pair splits and for the last 50 s of motion vortices
move diagonally, i.e. still towards the shore but away from the breakwater mid-
line (figure 3d), the separation distance from the mid-line increasing with the flow
intensity. This shoreline motion is qualitatively similar to experiments reported by
Centurioni (2002), and readers should consult this reference for a detailed experimental
investigation of vortex couples near shorelines.

Complicating matters are oppositely signed vortices generated both at the shoreline
and at the breakwater during the previous/later wave cycles. They do not appear
to have a large initial influence on the bar-generated macrovortices as they travel
to the shoreline. However, by the end of the simulation, stage (iv) conditions are
obvious, where interactions between consecutively generated vortices are important.
In particular the oppositely signed pair generated at the breakwater (figure 3b) and
located slightly seaward of the pair under analysis (figure 3c) moderately interacts
with it, being advected towards the shoreline.

For the steep slope (figure 4) macrovortices are shed from the breakwater side slope
but their route to the shore is less complex. After reorganization, vortices migrate
along a diagonal track which bends away from the breakwater. The overall effect
of the steep breakwater slopes which controlled vortex movement for the gentler
1:30 beach slope appears much reduced. Here, breakwater-generated vortices seem to
interact more strongly with the shore vortices generated at around x =120 m which
are a factor 3 closer to the shore and stage (iii) behaviour begins much sooner.
Mutual advection with these shore vortices tends to move macrovortices away from
the breakwater centreline and into the gap, as observed. During the later stages,
consecutively generated vortices again become important.



304 M. Brocchini, A. Kennedy, L. Soldini and A. Mancinelli

In figure 5 we summarize the information on the vortex trajectories for the two
cases illustrated in figures 3 and 4. With similar graphs it is quite easy to analyse
many important features of macrovortex evolution.

To summarize, for both the steep and gentle slopes, vorticity patches are generated,
strengthened, and reorganized into coherent vortices which are transported shoreward
by the background flow acceleration and self-advection along the sloping breakwater
sides. The major difference occurs once vortices reach the shoreward edge of the
breakwater. For the gentle slope, stage (ii) self-interaction remains the strongest
process and vortices continue migrating along the shoreward end of the breakwater,
while for the steep slope, mutual interaction with closer shore vortices (or possibly self-
interaction of the breakwater vortices with the shoreline) appears stronger and stage
(iii) mutual-interaction-dominated conditions begin much earlier. In both simulations,
the situation becomes progressively more complex as vortices continue to be generated.

3.2.2. Detachment period

For widely spaced breakwaters, we examine the detachment period Td of the
first vortex, which appears early enough that stage (i) conditions represent a good
approximation for most cases. We can give a theoretical estimate for Td using simple
dimensional arguments. We define Td as the time taken for a vortex to reach, under
the action of the breaking waves and of self-advection, a distance from the breakwater
equal to its own size R. Then if we designate by Ad the onshore acceleration at which
the vortex speeds away from the breakwater we have

R ≈ AdT
2
d

2
=⇒ Td ≈

√
2R

Ad

. (3.3)

Equation (2.26) may then be used to compute the vortex onshore acceleration and
thus the detachment period. For the special case of widely separated breakwaters,
significant simplifications are possible. To begin, the mutual interaction term (middle
term in the curly brackets in (2.6)) is small and is eliminated (numerical experiments
show it influences by less than 1% the estimated value of Td). Numerical and
experimental evidence shows that LB ≈ 2R so we introduce this. Then taking the
reference local depth as the computed mean depth at detachment, dd , we obtain the
following estimate:

Td ≈

√√√√√√√ 2R

ED




1

1

2R
+

sl

d

1

4π

[
log

(
8d

slR

)
− 1

4

]

 (3.4)

in which sl is the side slope of the breakwater, here sl = 1:2, accounting for the self-
advection in the onshore direction. The dependence on the local breaking intensity is
measured through ED which is computed with (2.3).

Note that according to (3.4) Td is evaluated on the basis of local flow properties
rather than on global properties as with other available descriptions (e.g. Schär &
Smith 1993b). This is obviously due to the much more complicated flow investigated
here in comparison to that evaluated in the available literature.

A comparison between estimated detachment period, Td , evaluated using (2.3), and
(3.4), and results from the numerical simulations is given in figure 6. It is clear
that the dimensionless evaluated detachment period T e

d /(
√

hc/g) of equation (3.4),
reported along the ordinate, slightly overestimates the dimensionless measured value
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Figure 6. Comparison of the dimensionless detachment period predicted by (2.3) and (3.4)
with that measured from the numerical experiments of § 3. Detachment periods have been
made dimensionless with the timescale

√
hc/g.

T m
d /(

√
hc/g) reported along the abscissa. In fact most of the solid circles lie above

the dashed line which represents perfect agreement. Error bars have been superposed
which correspond to the sampling time for T m

d and the confidence range of 95% for
T e

d .
The discrepancy between T e

d and T m
d can, alternatively, be measured by the relative

error


Td =

N∑
i =1

∣∣T m
di

− T e
di

∣∣/ N∑
i = 1

T m
di

(3.5)

which is found to be of about 28%.
Note that a natural lower limit of one detachment period per wave is seen for

conditions of large waves and/or small vortices.
We believe that, notwithstanding the number of estimated parameters (like ED and

R) influencing (2.3), such an equation provides a quite accurate and useful means for
predicting Td .

4. Conclusions
Analytical examination of breaking-wave-generated macrovortices has shown a

range of possible behaviours, which are mainly dependent on geometry. Startup
conditions have been divided into different stages, with different processes dominant
in each stage. Of these, initial acceleration of the background flow, self-advection
by sloping beds, and mutual advection by oppositely signed vortices are the
most important between breakwaters. The greater the tendency for deviations
from the idealized conditions presented here, and very quick temporal changes
in the flow regime make definitive predictions highly approximate for complex
cases. Representation of the momentum-conserving processes using breaking pseudo-
forces shows commonalities between considerably different phase-resolving and
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phase-averaged representations: circulation is generated by the line integral of
breaking pseudo-forces, with deeper water corrections in some cases.

Predictive estimates have been given for the rate of change of circulation for waves
breaking on a bar or breakwater next to a deeper gap, and for the initial acceleration
and detachment of macrovortices at startup. Excellent agreement has been found
between predicted and computed initial detachment periods for macrovortices on
isolated breakwaters. Analysis of the flow patterns and of the macrovortex trajectories
allows us to clarify the fundamental role played by the beach slope in determining
the features of the vortex propagation. For the case here with widely separated
breakwaters, self-advection controls the dynamics. For closely space breakwaters or
rip currents, the dynamics are very different. Here, vortex couples travel offshore
instead of shoreward, and mutual interaction effects may become significant as the
vortices travel into deeper water. This flow has been investigated in detail as reported
in Part 2.
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