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ABSTRACT

The aim of this paper is the calculation of mass-consistent wind velocity field in a two-dimensional domain
Q on the basis of sparse measurements collected by wind-measuring stations. Measured data are used to estimate
an initial field. The result is obtained by a weighted interpolation method. An iterative scan procedure is used
in which the radius of influence of each station over the surrounding grid points is decreased at each step of
iteration. To adjust the initial field into a mass-consistent velocity wind field, a new technique is presented that
is meant to extract only the purely divergent component of the wind velocity field. This component is then
either suitably manipulated, reduced and reintroduced in the total wind field, or completely neglected. The
main idea of the method is to obtain a mass-consistent wind by controlling the magnitude of the purely divergent
component without completely destroying all the information connected with its spatial pattern. On the basis
of a test case, the quality of the proposed method is assessed, and a good agreement with observations is found.

1. Introduction

Since the first attempt at numerical weather predic-
tion by Richardson (1922), in which the raw diver-
gence of the observed wind field was vertically inte-
grated to produce a forecast pressure change of 125
mb in 6 h, it has been realized that some technique
must be adopted to control this most sensitive derived
field from observed wind data.

This is equally true on the cyclonic scale and on the
mesoscale. When the wind field is to be used directly,
and no dynamical modeling is involved, this difficulty
is at its most acute because the network grid distance
is so comparatively small. An error of | m s™! in wind
observations separated by 20 km will result in a rate
of increase in the height of a 1-km inversion of 360 m
per hour. This is not to say that the divergence is zero
or even small: on this scale, flow divergence does exist
and in fact approaches the vorticity in magnitude.

On the other hand there exists a need of mass-con-
sistent wind velocity fields among the meteorological
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fields for the initialization of numerical models. This
need is well reflected in the large literature (Liu and
Goodin 1976; Dickerson 1978; Sherman 1978; Goodin
et al. 1979; Moussiopoulos and Flassak 1986; Ludwig
et al. 1991) devoted to the analysis of methods for ob-
taining mass-conserving wind fields. Most of this lit-
erature is devoted to large-scale initialization for NWP
or a GCM, but the mesoscale surface wind field has
also received a share of attention (Ku and Rao 1987;
Lu and Turco 1994). These models along with trans-
port and diffusion models are often based on a pre-
sumption of mass-conserving flows (Ku and Rao
1987).

A velocity wind field characterized by excessively
divergent (or convergent) flows might be a misleading
input both for dynamic models and for models used
in the air quality management activities.

The problem may be stated as follows: any numerical
interpolation of the usually sparsely observed winds to
a network of grid points will result in a field with ki-
nematic properties that render it unsuitable for the
purposes for which it is intended. In particular, the
interpolated wind fields will in general have an asso-
ciated divergence that is both unrealistically large in
magnitude and variable on the scale of the grid itself.
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If such a wind field is used in computing the dis-
persion of poliutants, or in ocean wave forecast models,
the results will exhibit similar distortions of scale and
magnitude. What is desired, therefore, is a means of
manipulating the two-dimensional wind field, already
interpolated to a grid, in such a way as to control its
kinematic properties.

To achieve the intended goal, the sparse input ve-
locity wind measurements are interpolated over the
grid by means of a weighting procedure (Goodin et al.
1979; Ku and Rao 1987). A decreasing scan radius is
deﬁned to evaluate the weighting function in such a
way that the small-scale motions are not transmitted
all over the domain Q but dominate only within an
influence area around each station.

A new method is proposed in this paper and is based
on the position that when a relatively high-quality ob-
served wind field is available, there is some information
contained in its divergence pattern, and although the
magnitude thereof must be controlled, the gross fea-
tures of the pattern should be preserved.

To achieve this, the method adopted to minimize
the divergence of the wind field cannot be based on a
purely numerical technique, that is, one that essentially
moves the divergence around (see Liu and Goodin
1976), but must retain the spatial charactenstlcs of the
initial divergence field.

The fundamental idea is that the wind field is a hnear
superposition of components: rotation, divergence, and
deformation. At first the divergent wind component is
isolated from the others by solving the Poisson equation
where the divergence itself acts as the source for the
field. Then the purely divergent (convergent) com-
ponent is either manipulated in order to reduce its
magnitude and reinserted in. the total wind field or
subtracted from the total field.

- The method proposed herein is specific to produce
a smooth field of divergence not to exceed some spec-
ified maximum value, but it could also be applied to
control vorticity or deformation if this were needed.
The particular maximum divergence value specified
will depend on the use to be made of the data; for
purpose of this work, it is arbltrary

The material that follows is presented according to
a simple scheme. In the second section, the procedure
to obtain an initial interpolated wind field from sparse
measures is considered. The proposed new method for
minimizing the divergent wind field is analyzed in sec-
tion 3. Sections 4 and 5 summarize, respectively, the
results of the chosen test for validating the procedure
and an application of the method to a project of en-
vironmental management that is currently carried out
in Venice, Italy. Finally, some conclusions are given
in sectlon 6.

2. The iritial field

The generation of a continuous wind field from dis-
crete datasets is achieved by a two-step procedure. The
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first step is the interpolation of the raw station data to
a finer mesh that covers the area of interest. The in-
terpolated wind field is then used as an initial guess to
the objective analysis procedure, which applies physical
constraints ( minimum field divergence in out case) to
adjust the wind vectors at each grid point.

A procedure is considered based on the hypothe51s
that the values of the variables at each grid point are
weighted averages of the surrounding data. Therefore,
if u = (u, v) is the two-dimensional wind velocity vec-
tor, its value at each grid point is computed according
to :

N

Z wWi(r)

w =y,

2 Wi(r)
k=1

(1)

where u, is the value measured at the kth station, Wy.(r)
is the weighting function, r the distance from the con-
sidered point (i, j) to the station, and N the number
of stations. Cressman (1959) suggested the following
weighting factor to be adopted:

R2_r2

W =z

(2)

where R is the radius of influence of every station on
the surrounding grid points. It represents the distance
at which the weighting function W, (r) = 0. Every grid
point (i, j) is then influenced by the stations located
at distances r < R.

This procedure is based on a series of successive scans
of the entire domain Q with decreasing values of R
(called the scan radius) at each scan. Some improve-
ments to the interpolation procedure have been intro-
duced with respect to Cressman’s original method.

The first one'is related to the scan radius R, which
can be used either as a fixed value for each iteration
over the whole grid or as a variable quantity for each
grid point. When using a fixed radius of influence, R
is decreased at a fixed rate from a maximum value that
is comparable to the typical Ilength scale of the area of
interest to a minimum value. For the minimum scan
radius, the estimate R = 1.6(A4/N)!/? is adopted, where
A represents the total area of the region of interest and
N the number of measuring stations available in that
area (Stephens and Stitt 1970). This relationship was
derived after a number of attempts to optimize R. On
the other hand, when a variable scan radius is adopted,
R is decreased at each iteration in such a way that a
fixed minimum number of stations will be contained
in the influence area of each grid point. The advantage
of this latest strategy is that the effects of small-scale
motions are confined to the influence area of each grid
point with dependence on the local station density.
The choice between fixed or variable radius depends
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on the density and spatial distribution of measuring
stations within each considered domain.

A second change has been introduced in the weight-
ing factor, which has been chosen to be

(R2 —re
L)

2 k2
wihirkp = | R
0, ri’j > R,

2
), rf-‘,st
(3)

where r¥ ; 1s the distance from the grid point (i, j) to
the station k. This is a function that decreases more
rapidly with increasing distance than that used by
Cressman. Therefore, the influence of each station on
the interpolated wind field is more localized. For a more
detailed analysis concerning these arguments the cor-
respondence between Glahn (1981) and Goodin et al.
(1981) is a good reference.

The initial field is chosen to be u = 0 except, of
course, at the stations. At each step of iteration m the
value of the field at each grid point depends on the
weighting W £ ; and on the correction duf’ defined at
the mth iteration for the kth station. The value of the
correction factor is obtained by subtracting the ob-
served value at the kth station w, from the value that
the same station had the previous iteration step
u?"!, that is,

da? =wl!' — w. (4)
Then the error is redistributed over all the domain
Q weighting it for each grid point
N
2 Wﬁ jdﬂ/’?
w7y = upy+ Sy
z Wi,
k=1

, (3)

where the weight W & ; is evaluated using the grid points
falling within the circle of radius R. This procedure is
run until the percentual error e at the mth iteration is
less than a chosen value (10%-15%), where the per-
centual error 1s given by

(6)

3. The spurious divergence method

The methodology under investigation (SD method
hereafter) allows the definition of a wind field where
the “spurious divergence” is reduced to a minimum
assigned value. The spurious divergence is the field di-
vergence component artificially introduced by the in-
terpolation of sparse data on a regular grid. In the fol-
lowing, the considered problem is described and the
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method is explained, this involves both the analysis of
the chosen boundary conditions and the analysis of the
numerical methodology adopted.

a. The problem and the method

It may be instructive to consider the general problem
of the kinematic manipulation of a two-dimensional
vector field. We know that such a field consists of di-
vergence, vorticity, and deformation—the latter being
so-called shearing and stretching fields, which are re-
lated by a simple rotation of the coordinate axis. Let
us say that we wish first to identify and then to control
the magnitude of each of these quantities. Is this pos-
sible? Is it even a well-posed problem?

The mathematical theorems necessary to answer
these questions are recorded in any treatment of ki-
nematics or potential theory (e.g., Batchelor 1967,
chapter 2). We represent the two-dimensional vector
field as decomposed into vorticity, divergence, and de-
formation, respectively, by

u=u tu+u.

(7)

Given an observed wind field, how may these three
components thereof be determined? We know that
nondivergent vector fields and irrotational vector fields
may be expressed in terms of scalar quantities. Thus,

k-V Xu =V ={(x,y) (8)
V-u; =V’ = D(x, y) ®)
k-VXu =Veu="x=0. (10)

So stated, this is a complex boundary value problem
(Batchelor 1967, 84-108). We can in principle apply
two different methods to (9) to recover this component
field of the observed field from which the divergence
D is calculated. They are, respectively, based on the
technique of Green’s function applied to the above-
mentioned equations and the direct solution of the
equation by Poisson solvers. The rotational field (8)
we can solve for with certain assumptions about the
boundary values. These may be considered particular
solutions. In the case of the deformation (10), we re-
quire the homogeneous solution: a vector field that has
neither divergence nor curl. Here, theory tells us that
the field is determined solely by its boundary values.
These are not known as separate from those of the
other components, but the field can perhaps be deter-

. mined as a residue when the other two have been cal-

culated. It is not necessary to write explicitly the integral
solution to this problem since this is not the method
pursued in the present article. The point is that some
assumptions or approximations must be incorporated
in any solution procedure to the total problem. A sys-
tematic treatment of this total problem would be useful.
However, we consider in this paper the control of only
one of these components, the divergent velocity field.
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We choose to use the fast procedure guaranteed by
Poisson solvers to separate the purely divergent field
u, from the other components. In principle this com-
ponent can be either minimized at wish or completely
eliminated from the original interpolated wind field to
obtain a final mass-conserving flow field.

b. The boundary conditions

Since we choose a direct method of solution of (9),
we now address the question of the boundary condi-
tions for the potential function ¢. We will consider
boundary conditions leading to minimum kinetic en-
ergy of the divergent flow (see Pedersen 1971).

By using an obvious extension of Pedersen’s argument
to the present problem, we conclude that the boundary
condition that minimizes the divergent kinetic energy is

¢=0 (11)
on 09Q.

¢. The numerical procedure

As already mentioned, the total field is separated
into two main components: the purely divergent com-
ponent u, and a residual component combining the
rotational, shearing, and stretching contributions:

(12)

Thus, the whole numerical procedure can be subdi-
vided as a sequence involving the following four steps:

Uy = Uy + Upes.

1) Evaluation of the initial field divergence (coming
from the interpolation iterative procedure) by means
of a scheme of second-order accuracy, that is,

D = Uivr,j — Ui-1,j | Vijr1 — Vij
b 2Ax 2Ay )

2) Solution of the Poisson equation V?¢ = D(x, y),
with boundary condition ¢ = 0 on d%. Poisson’s equa-
tion is thus written according to the following finite-
difference scheme:

p. < birri = 20i + dicy,
" (Ax)?

(13)

Gijr1 — 20+ di 1
(Ay)?

(14)
Equation (14) is solved by a successive overrelaxation
procedure where the potential function is stepped ac-
cording to the following weighted average:
T = el + (1 - w)ell;
w being the overrelaxation parameter and
(AJ’)Z(‘f)ﬂl,j‘i' ¢x"’11,j) + (Ax)z R
X (@71 + ¢7-1) — D {Ax)*(Ay)
2[(Ax)* + (4y)?] '

(15)

xm _
bij =

(16)
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The method is convergent for 0 < w < 2, and the op-
timal choice for w is given by

o= 2
L+ (1 = phac)'?’

(17)

where the Jacobi radius of convergence for a rectan-
gular I X J grid is

_cos(w/I) + (Ax/Ay)?* cos(w/J)
1 + (Ax/Ay)? '

The number of iterations »n to reduce the overall error
by a factor 107 is therefore estimated:

_ sIInl10 _ 1 7

"R T3
showing that the asymptotic rate of convergence de-
pends linearly on both the required accuracy s and the
size of the analyzed domain /. However, this asymp-
totic convergence rate is not attained until of order I
iterations, but at that stage usually the error has grown
by about one order of magnitude. A simple modifi-
cation of the scheme is obtained allowing for a variable
relaxation parameter, which is time stepped according
to the recurrence relation of Chebyshev polynomials
(Golub and Varga 1961). Since the optimum asymp-
totic relaxation parameter w is not necessarily a good
initial choice, w is changed at each step according to
the following rule:

(18)

Plac

(19)

2
4

2 b
pJacw(m)]

w(mfl)=[4__ m=2>3a°'. (20)
optimizing both the initial and the asymptotic value
for w itself. However, it is well known that the con-
vergence of this iterative procedure is rather slow for
large numbers of grid points. Therefore, a more suitable
algorithm when dealing with a large number of grid
points should be based on multigrid techniques.

3) Computation of the divergent wind field com-

ponent u, is performed according to
u; = Vo. (21)

4) Subtraction of the divergent component from the
total wind field w,:

(22)

Theoretically at this stage the residual component
should contain no divergence at all. On the other hand,
we have experience that running the procedure just
once decreases the initial divergence by about one order
of magnitude all over the domain ©, reaching a max-
imum divergence of about 10~ s~! at each grid point.
This value represents the upper acceptable limit for the

Upes = Wyt — Ud.
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natural divergence, usually found within the atmo-
spheric boundary layer. The reason for this persistance
of divergence after applying the procedure is related to
the boundary conditions. In fact it is evident that most
of the residual divergence is found at the boundary of
the domain. However, in order to improve the result
and reach a final divergence of O(107®s™') or even
less, the above-mentioned procedure can be iterated.
Iterating the procedure reduces the divergence at the
boundaries and, consequently, all over the domain.

4. Test results

To verify the performance of both the interpolating
procedure and of the SD method, a test case has been
set up in which meteorological data relative to the “Los
Angeles basin,” have been used. This has been made
possible by the availability at the University of Cali-
fornia, Los Angeles, of a set of 24 graphic maps rep-
resenting wind speed measures averaged over 24 years
(1950-73) for each month of the year. The 24 daily
measures (one each hour) were collected by 60 stations
within the Los Angeles basin and interpolated by Keith
and Selik (1977). The maps give both the average wind
values at the stations and the interpolation of the values
by streamlines. The whole procedure (interpolation
and SD method ) has been tested against the wind field
of September and comparison with given streamlines
has been tried. The month of September has been cho-
sen since the streamlines coming from Keith and Selik
were accurately checked and improved by J. G. Edinger
(1978, personal communication).

Even if this sort of comparison may seem subjective,
it gives a good description of the quality of the repro-
duced field. However, it must be coupled with the
analysis of the final vector field and with an error anal-
ysis between interpolated and final field to definitively
assess the validity of the method. Thus, for the SD
method a more quantitative analysis has been per-
formed based on the percentual error of the modulus
of the final wind field with respect to the modulus of
the interpolated one. On the other hand, it has to be
pointed out that no objective comparison can be done
between the initial wind field (available only in sparse
locations) and the final one since it would make no
sense to obtain a good agreement on the station loca-
tions if the field at large was wrong.

Figure 1 shows the distribution of the measuring
stations with the domain Q used for the simulations.
This is a rectangular mesh of 51 X 35 squares with a
grid size of 2514 m. The left and the top boundaries
of the domain will be referred to, respectively, as the
geographical west and north,

Only two particular cases among those available have
been chosen as typical situations occurring in the Los
Angeles basin. They are relative to hours 0000 and
1500 Pacific standard time (PST). The first case (0000
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PST) is a typical situation where the wind field is not
driven by sea-breeze phenomena and a marked direc-
tional pattern is not present. The winds are relatively
weak, and the topography can generate small local vor-
ticity effects. On the other hand, in the 1500 PST case
there is a moderate sea breeze blowing from southwest
to east. The wind pattern is almost uniform all over
the domain .

In Figs. 2 and 3 are shown the measured sparse data
field and the interpolated field, respectively, for each
of the two situations. In these two cases the model gives
a good interpolation of the sparse data field. Compu-
tation was stopped when the total percentual error de-
fined in section 2 was of ¢ = 10% for the 1500 PST
case, while for the case 0000 PST the error could not
be decreased under ¢ = 20%. In both cases, however,
the differences between the maximum wind values were
sufficiently small: 3.0 m s™! for the given field and 3.5
m s~! for the interpolated one at 0000 PST; 7.5 m s~
for the given field and 8.4 m s~ for the interpolated
one at 1500 PST.

We now analyze, in more detail, the performance
of the SD method.

a. The 0000 PST case

The first comparison to be considered is between the
initial divergence field and the final one, that is, after
removing the purely divergent wind component by
means of the SD method (see Fig. 4). Maximum values
of initial divergence are of about 1 X 10™*s~! in the
south region of the considered domain (Santa Ana area:
SNA) and in the area centered on the station UCLA.
On the contrary, minimum values of the same order
of magnitude are found in the east region of Pomona
(POM) and above San Pedro Promontory (see stations
TIH and HBR). The final divergence field is charac-
terized by maximum and minimum values of one order
of magnitude smaller. It is evident that the method
adopted “smooths” the initial field and consequently
adjusts the velocity wind field, but it also retains many
characteristics of the positive-negative divergence field
pattern. Excess of divergence is forced to move toward
the closest boundaries of the domain without any pre-
ferred direction.

Figure 5 shows the streamlines of the wind field taken
from Keith and Selik (1977) and revised at UCLA by
J. G. Edinger and those coming from the SD technique.
The two streamlines patterns are in good agreement,
though the Edinger’s field better represents the small
local features. In fact the main features of the field are
properly reproduced, for example, the two regions of
flow rotation centered on the LAX and POM stations,
respectively.

Comparison of the vector plots of the interpolated
and final wind velocity field (Fig. 5) reveals that most
of the changes to the interpolated wind field due to the
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FIG. 1. Locations of observation sites and terrain contour, and the domain adopted
) for the simulations in the Los Angeles basin.

action of the SD procedure occurs in the northeast re-
gion of the domain, in the area centered on the POM
station, and in the region of San Pedro Promontory
(see stations TIH and HBR). This is an expected result,

as we have previously seen that those areas are char-
acterized by the highest initial divergence values. The
final wind field maximum values are of about 3.0
m s~!, which compare well with both the interpolated
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F1G. 2. Wind analysis for 0000 PST (September): (a) the measured data field and (b) the interpolated velocity wind field.
The maximum wind speeds are measured 3.0 m s™!, interpolated 3.5 m s™".
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FIG. 3. Wind analysis for 1500 PST (September): (a) the measured data field and (b) the interpolated velocity wind field.
The maximum wind speeds are measured 7.5 m s™!, interpolated 8.4 m s™'.

value 3.5 m s~! and the initial maximum value of 3.0
m s~' (Fig. 6).

A final comparison is given by analyzing the contour
plots of the difference between vector magnitude of the
interpolated and final field (Fig. 10). In most of the
domain the difference between the two fields is less
than 40%. However, there are a few regions where this
difference reaches up to 80%, and they are again
regions where most of the changes of the wind diver-
gence occur.

b. The 1500 PST case

The same sort of comparisons of the case 0000 PST
are carried out. In this case, maximum values of initial
divergence are larger than for the previous case (see
Fig. 7) and are of about 5 X 107*s7! in the south

region of the considered domain (San Pedro Promon-
tory), in an area north of the station UCLA, and in
the area centered on the POM station. Minimum values
of the same order of magnitude are found in the north-
west corner of the domain and in an area north of the
station WHI. Again the final divergence field is char-
acterized by maximum and minimum values of one
order of magnitude smaller. And again the excess of
divergence is forced to move toward the closest bound-
aries of the domain where maximum values of diver-
gence are found 3 X 1075 s71,

Figure 8 shows the streamlines comparison against
Edinger’s streamlines. The comparison in this case is
even better than for the 0000 PST case. In fact now
the wind pattern is strongly dominated by the breeze
pattern, which generates an almost uniform offshore—
inland direction for the flow. Moreover, the wind ro-
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FiG. 4. Divergence field analysis for 0000 PST (September): (a) initial divergence field and (b) final divergence field.
Solid lines and broken lines are used, respectively, for positive and negative contour values.
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FIG. 5. Wind fields comparison. Final field at 0000 PST: (a) streamlines from the interpolation by J. G. Edinger and
(b) streamlines from the proposed SD technique.

tation occurring north of MAL is well represented by
the computed streamlines.

Comparison of the vector plots of the interpolated
and final wind velocity field (Fig. 8) shows that the
major effects of the use of the SD method are felt in
the region of the San Pedro Promontory (stations TIH
and HBR), where the strong inland-offshore flow field
is transformed into a weaker rotational pattern. Max-
imum wind velocity is of about 8.1 m s™! against the
7.5 and 8.4 m s™! values of the initial and interpolated
fields, respectively (Fig. 9).

However, the best comparison is given in this case
by the contour plots of the relative error between vector
magnitude of the interpolated and final field (Fig. 10).
Regions where the difference exceeds a value of 40%
are a very small fraction of the whole domain and are
located at the northwest corner of the domain.

5. The Venice Lagoon case

We now apply the already described method to the
analysis of the wind fields above the Venice Lagoon.
The importance of this sort of analysis is both in de-
fining proper wind fields for air quality management
and in initializing the numerical hydrodynamic models
applied to the internal circulation of the lagoon itself.
The water circulation inside the lagoon has been stud-
ied so far as essentially triggered by the water levels at
the lagoon mouths. These depend on the Adriatic Sea
astronomical and meteorological tides, as well as the
second-order effects produced by the atmospheric
pressure and the wave setup. The effect of storm surge
induced by the wind blowing directly over the lagoon
is known, but its study has been almost neglected in
the past, apart from the works of Dazzi et al. (1987)
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FiG. 6. Wind field comparison. Final field at 0000 PST: (a) vector representation for the interpolated field and (b) vector representation
for the proposed SD technique. The maximum wind speed is 3.5 m s for the interpolated field and 3.0 m s! for the SD technique.
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FI1G. 7. Divergence field analysis for 1500 PST (September): (a) initial divergence field and (b) final divergence field.
Solid lines and broken lines are used, respectively, for positive and negative contour values.

and Pirazzoli (1981). It goes without saying that the
precise determination of the wind field over the lagoon
is of chief importance in this context. For this aim, a
network of five stations measuring the wind field has
been recently set up in the Venice Lagoon. This allows
simultaneous collection of wind data, which is then
transmitted in quasi-real time to the Istituto per lo Stu-
dio della Dinamica delle Grandi Masse (1.S.D.G.M.)
where the data analysis takes place. The study of the
storm surge inside the lagoon is carried out using a
hydrodynamic model that requires a wind field input
over a regular grid. The necessity of an interpolation
scheme to transform the measured winds into a regular
spaced wind field is one of the primary reasons for
developing the present objective analysis methodology.

Unfortunately, only four of the five mentioned sta-
tions are operational at present, and a sample of data

80

40

Distance North (Km)

20
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20 40 60 80
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collected on the 21 October 1994 is analyzed. It refers
to the data sample obtained at 1800 hours.

In Fig. 11a the adopted geometry for the Venice La-
goon is shown with the locations of the four considered
stations (PETTA, VAL, S.GIO, and TES). The region
southeast of the lagoon boundary represents the Ad-
riatic Sea, while northwest of the lagoon we find the
inland Venetian area. Three large isles are present
within the lagoon, the northernmost of which repre-
sents the area where most of the city of Venice is built.

This dataset is mainly intended to show how the SD
method works rather than being used as a comparison
case. We also consider here a situation in which the
method is used iteratively rather than in a single com-
putation step.

The initial field (maximum velocity of 12.7 m s~!)
has been interpolated, and the interpolation procedure
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FIG. 8. Wind fields comparison. Final field at 1500 PST: (a) streamlines from the interpolation by J. G. Edinger and
(b) streamlines from the proposed SD technique.
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FIG. 9. Wind fields comparison. Final field at 1500 PST: (a) vector representation for the interpolated field and (b) vector representation

for the proposed SD technique. The maximum wind speed is 8.4

has been stopped when the relative error reached a
value of ¢ = 2%. The good accuracy obtained for this
test is basically related to the little number of available
data; that is, the redistribution of wind errors at the
stations is only forced by four constraints. In other
words, the good accuracy only states that the available
data have been properly used to build the interpolated
wind field; however, this does not guarantee that a lo-
cally physically sensible wind field has been obtained
because of the coarse coverage of the area by measured
winds. The final wind field is characterized by a max-
imum velocity value of about 13.7 m s™! (see Fig. 11b).

We now concentrate our attention to the extraction
of the purely divergent wind field from the total wind.
In Fig. 12, the purely divergent component is shown
at two different iterations of the SD method. The initial
divergent field has a magnitude of about 5 m s™! while

m s~ for the interpolated field and 8.1 m s™! for the SD technique.

the same component is reduced, after 10 iterations of
the SD method, to a value of about 0.2 m s~ !.

As a consequence of that, the divergence itself is
reduced as seen in Fig. 13. The initial divergence con-
tours are characterized by a maximum value of about
2 X 1073 57!, Contour plots of the divergence after 1
and 10 iterations show that divergence has been de-
creased by one and two orders of magnitude, respec-
tively. It is, however, significant that the maximum
and minimum of divergence are still found at the same
location where the initial ones were placed.

6. Conclusions

An accurate procedure and methodology to inter-
polate sparse data onto a regular grid has been
achieved. A new technique to determine a diver-
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F1G. 10. Contour plots of the percentual error between modulus of the interpolated wind field and modulus
of the final wind field: (a) 0000 PST and (b) 1500 PST.
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thereof must be controlled, the pattern should be
preserved. The purely divergent wind component is
therefore extracted from the total wind field, which
can be separated into three main contributions: ro-
tational, divergent, and deformation components.
The procedure allows for a reduction of one order
of magnitude of the initial divergence. Iterating the
procedure can reduce the initial divergence up to
100 times. However, the initial divergence cannot
be decreased to any required level.

The results obtained by this method show that both
the flow pattern and the magnitude of the highest
wind values can be well reproduced even when the
input sparse data field is characterized by strong gra-
dients.

A possible improvement to the SD method can be
- introduced if the purely divergent wind component is
extracted by means of the Green’s function technique
applied to the Poisson equation where the field diver-
gence acts as the source. This would in fact overcome
the problem presented by a residual divergence at the
boundary, which characterizes the direct solution of
Poisson’s equation.
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