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[1] Improved turbulent closures for use in fully nonlinear Boussinesq-type models are
described here. The approach extends previous works in order to give a more flexible and
accurate description of the turbulence due to a breaking wave. Turbulent stresses are
handled by means of the Boussinesq hypothesis, and the eddy viscosity is assumed to vary
over the water depth according to different laws. The model is described in detail, and its
performances are evaluated both against available analytical solutions and against
experimental data of regular waves breaking over a slope. The influence of the vertical
structure of turbulence under a breaking wave is analyzed by means of four different
vertical profiles of eddy viscosity; the differences in terms of hydrodynamic features are
also discussed. Among the four selected profiles, two of them (the uniform one and that
with uniform eddy viscosity over the top half of the water column which linearly decreases
to zero over the lower half ) give better overall performances when compared with
experimental data concerning velocity profiles. INDEX TERMS: 4560 Oceanography: Physical:

Surface waves and tides (1255); 4546 Oceanography: Physical: Nearshore processes; 4568 Oceanography:
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1. Introduction

[2] The present study aims at improving the treatment of
wave breaking in Boussinesq-type equations (BTEs). Al-
though Boussinesq models can handle most of wave phe-
nomena occurring in the nearshore (like refraction,
diffraction, shoaling, frequency dispersion and nonlinear
interaction) they cannot predict either where and when a
wave breaks or, particularly, the hydrodynamic features of a
breaking wave. In order to overcome the latter limit, in the
last decade a number of approaches have been proposed
(see, e.g., Musumeci et al. [2003] (hereinafter referred to as
MSF) for a review). In the present work, on the basis of the
method initially proposed by Veeramony and Svendsen
[1999] (hereinafter referred to as VS), the fully nonlinear,
wave breaking Boussinesq-type model (BTM) of MSF is
taken as a starting point for analyzing the effects of
turbulence description within the surf zone. The model of
VS, which makes use of the roller approach, has been
chosen since in it the effects of wave breaking are estimated
from the knowledge of the vorticity structure inside the fluid
(i.e., the rotationality of the fluid is accounted for). How-

ever, since the dynamics of vorticity and that of turbulence
are strongly related to each other, the appropriate descrip-
tion of such mechanisms becomes a crucial point in mod-
eling wave breaking with a BTM. As we aim at modeling
spilling breakers by BTMs, which are most suited to
represent the flow due to long waves over gently sloping
beaches, knowledge of the structure of turbulence generated
in quasi-steady breakers [see Peregrine, 1992] is fundamen-
tal to our analysis.
[3] The many difficulties in understanding the various

aspects of wave-breaking often suggest to get quantitative
information from flows similar to those occurring in
spilling breakers but easier to handle from a theoretical
and experimental point of view. Hence the analogy be-
tween a spilling breaker and a hydraulic jump [Peregrine
and Svendsen, 1978] is often used. Quasi-steady breakers
can be obtained with various experimental approaches: like
the hydrofoil-induced breaker of Duncan [1981] or the
gate-generated hydraulic jump of Svendsen et al. [2000].
Although these different approaches lead to turbulent
flows sustained by different main flows, the main features
are common. In particular it seems that turbulence spreads
from a region characterized by high curvature of the water
surface [Lin and Rockwell, 1995] known as the ‘‘toe of the
breaker.’’
[4] Since turbulence develops because of an instability of

a vortical flow, turbulence injection can only be clarified
once the mechanisms for vorticity injection in a wave are
known. Indeed, different mechanisms dominate as functions
of the spatial scale [Tulin, 1996]. If surface tension is
important, for water at scales of about 1cm, capillary waves
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seem to be the main agent for vorticity injection [Longuet-
Higgins, 1992; Duncan et al., 1994]. On the contrary if
surface tension is unimportant a small jet develops at the
crest of the wave [Tulin, 1996] which, by impacting on the
water surface, injects vorticity by a ‘‘surface reconnection
mechanism’’ [e.g., Hornung et al., 1995]. However, other
mechanisms like viscous diffusion and surface shearing can
be important [Dabiri and Gharib, 1997]. For a detailed
analysis of these issues we refer the reader to the review of
Duncan [2001]. Thus any numerical model which aims at
reproducing the wave motion throughout the surf zone must
take into account the aforementioned effects, even through a
simplified approach.
[5] Among the most recent BTMs, the one proposed by

VS, as mentioned, removes the assumption of irrotational
flow, which is very often used, and regards the injection of
vorticity due to the roller as the fundamental ingredient for a
physically based description of the energy dissipation. VS
used the similarity between the flow of a spilling breaker
and that of a hydraulic jump to state boundary conditions
describing vorticity injection at the lower edge of the roller.
Hence a weakly nonlinear version of such a BTM, in which
the breaking terms are derived directly through a decompo-
sition of the velocity into a potential and a rotational part,
was coupled with the vorticity transport equation (VTE)
which, in turn, was used to evolve the horizontal component
of the vorticity needed to compute the rotational contribu-
tion to the flow velocity. For closing the turbulence prob-
lem, VS assumed a simple eddy viscosity model, i.e., an
uniform distribution over the depth. Such an assumption
allowed to solve the VTE by means of an analytical
approach.
[6] Although rather successful, the deliberately simple

approach of VS is not flexible as it does not allow for a
detailed description of the vertical structure of turbulence.
Therefore in the present work the limiting hypothesis of
uniform eddy viscosity has been removed and a numerical
solution of the VTE is proposed, so that investigation of the
effects of different eddy viscosity profiles is made possible.
The model we discuss gives more flexibility in the choice of
the shape of the eddy viscosity used to describe turbulence

and allows for direct inspection of the various contributions
to the transport of vorticity with the chosen turbulence
closure. Moreover use of a refined grid in the solution of
the VTE (by extending the regridding of MSF to our case)
allows to describe energy dissipation by reducing to the bear
minimum the use of stabilizing/dissipating mechanisms like
numerical filtering.
[7] The paper is organized as follows. In section 2 the

fully numerical solution is described and a sub-section is
devoted to testing the numerical scheme for the VTE by
means of an analytical solution. Numerical experiments of
wave propagation over a slope are also described, and
compared with two data sets coming from two suitable
benchmark flows [Hansen and Svendsen, 1979; Cox et al.,
1995]. A parametric analysis on the role of various eddy
viscosity profiles is finally carried out. A discussion on the
many problems affecting energy dissipation in BTMs
opens section 3 in which results are also discussed and
an indication is given of the most suitable profiles to be
used in computations. A brief conclusion rounds up the
paper.

2. A Fully Numerical Solution

[8] In the present study a fully nonlinear BTM (VS;
MSF) has been coupled with a numerical solver for the
VTE. Details of the governing equations are given in
Appendix A and a sketch of the flow variables is available
in Figure 1. It is worth pointing out that the assumption of
irrotational flow has been removed and thus the horizontal
component of the velocity can be decomposed as:

u ¼ up þ ur; ð1Þ

where up, representing the potential flow velocity, is
equivalent to the velocity of typical potential flow
formulations, while ur, i.e., the rotational velocity compo-
nent, is assumed to be only due to the vorticity caused by
breaking, any contributions coming from the bottom
boundary layer dynamics being neglected. Hence with this
formulation extra terms appear in the momentum equation

Figure 1. Sketch of flow characteristics and notation.
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representing contributions to the momentum flux due to
breaking. Such terms are only function of ur and are thus
referred to as ‘‘breaking terms’’ (terms inside the square
bracket of the last line of equation (A2). It is worth pointing
out that their computation requires knowledge of the
rotational velocity which is a further unknown of the
problem. In order to close the problem it is thus necessary to
introduce one equation which relates ur to the vorticity field
due to breaking. Such an equation is given by the following
relation, as in VS,

ur �
Zz
�h

wdz0 � m2
Zz
�h

Zz0
�h

Zz00
�h

w;xxdz
000dz00dz0 þ O m4

� �
; ð2Þ

in which the vorticity w is calculated by means of the VTE,
which, in terms of the same nondimensional variables of the
BTE reads:

w;t þ duw;x þ dww;z ¼ ntw;zz þ 2nt;zw;z þ nt;zzwþ O m2; hx
� �

; ð3Þ

where w is the vertical velocity, m = kh, with k wave number
and h water depth, is the dispersiveness parameter and d =
a/h, with a wave amplitude, is the nonlinearity parameter.
(Here the notation (�),x is used to represent partial
differentiation.) In equation (3) the eddy viscosity nt is
taken to be variable within the fluid, i.e., nt = nt(x, z). In VS
this quantity has been considered uniform over the water
column, i.e., nt = nt(x). The latter assumption allows for an
analytic solution to be found which is determined by a
suitable set of boundary conditions:

w z ¼ ze; tð Þ ¼ ws x; tð Þ; w z ¼ �h; tð Þ ¼ 0: ð4Þ

Hence in the following we refer to VS/MSF’s solution as a
semi-analytical solution: the VTE is solved analytically and
its solution allows to compute the breaking terms appearing
in the Boussinesq-type equations (A1) and (A2) which are
solved numerically.
[9] Although the assumption of depth-independence of nt

can be useful to derive VS’s analytical solution, the turbu-
lence structure of breaking waves is such that much of the
turbulence generated at the free surface penetrates into the
water body by vertical advection and diffusion [e.g., Ting
and Kirby, 1996; Chang and Liu, 1999; Melville et al.,
2002]. It is, thus, clear that the assumption nt,z = 0 is
theoretically rather crude and many experimental studies
reveal the need for an adequate description of the vertical
structure of nt [e.g., Cox et al., 1995]. We here attempt at
such a description which can only be possible if a suitable
procedure is used to solve the VTE with nt = nt(x, z). The
first step is to introduce a change of variables (as used by
VS) which allows for an easier treatment of the equation.
The variables used in such a transformation read:

x ¼ x; t ¼ t; s ¼ hþ z

hþ dze
; ð5Þ

with ze elevation of the lower edge of the roller. Such a
change of coordinates allows for solution of the problem
over a rectangular (x, s)–domain. Since s itself is a function

of time and space, in the VTE new terms due to the
coordinate variation in time and space appear. As in MSF,
the final form of equation (3) in the s–coordinates and
accurate up to O(m2, hx) reads:

@w
@t

� d
s

hþ dze

@ze
@t

� �
@w
@s

þ du
@w
@x

� d
us

hþ dze

@ze
@x

� �

� @w
@s

þ d
w

hþ dze

� �
@w
@s

¼ þ nt
hþ dzeð Þ2

" #
@2w
@s2

þ w

hþ dzeð Þ2

" #
@2nt
@s2

þ 1

hþ dzeð Þ2
@nt
@s

" #
@w
@s

;

ð6Þ

where, for the sake of clarity, we reverted to the standard
notation for differentiation.
[10] The associated boundary conditions are given along

iso-s lines and read:

w s ¼ 1; tð Þ ¼ ws x; tð Þ; w s ¼ 0; tð Þ ¼ 0: ð7Þ

[11] Equation (6), together with boundary condition (7),
can be coupled with the 1DH Boussinesq model equations
in which the breaking terms are accounted for. In order to
allow for a vertical variation of the turbulence (i.e., nt = nt(x,
z)) we here use a numerical approach to solve equation (6)
by means of a finite-difference technique. More specifically,
an Adams-Bashforth-Moulton (ABM) [Press et al., 1992]
predictor-corrector method is used to integrate both the
Boussinesq equations and the VTE.

2.1. Numerical Solver

[12] For the Boussinesq model the scheme is of third order
in time at the predictor stage and of fourth order at the
corrector stage. The ABM scheme which has been used to
solve the VTE is of second order in time at the predictor
stage and of third order at the corrector stage. The capability
of the BTM to correctly describe the energy dissipation
induced by wave breaking is largely dependent on the
accuracy of the description of the vorticity magnitude under
the breaking waves, hence the VTE solution requires an
accurate description of the roller region i.e., of the region in
which vorticity is produced. Since the length scale of the
roller region is smaller than that of the waves, it is necessary
to locally refine the computational grid. The use of a self-
adaptive moving grid, which follows the roller region during
the wave motion and refines the computation only where
needed, seems rather suited to the purpose. The approach
proposed in the work of MSF and R. Musumeci et al. (The
flow in the surf zone: A fully nonlinear Boussinesq-type
approach, submitted to Coastal Engineering, 2004, herein-
after referred to as Musumeci et al., submitted manuscript,
2004) has been extended to the present model. Starting from
the knowledge of the wave crest and trough position (re-
spectively xc and xt) at each time step, a moving subgrid is
defined according these two relations:

Dxg ¼
xt � xc

ng
; Dxsg ¼

Dxg

ng
; ð8Þ

where Dxg is the interval of the first subdivision of the
subgrid while Dxsg is the grid interval for the finer
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subdivision of the grid. The position xg
i inside the roller is

given by the relationship:

xig ¼ xi�1
g þ

Dxg; xc 	 xi�1
g < xt � Dxg

Dxsg; xt � Dxg 	 xi�1
g < xt:

8<
: ð9Þ

The number of grid points inside the roller is, then, equal to
2ng. The moving grid coincides with the fixed one at each
time step outside the roller. First-order derivatives both in x
and z have been calculated using a ‘‘three points centered
scheme’’ in the interior region while at the boundaries a
one-sided scheme has been used. In the roller region such a
scheme has been adapted to take into account the variability
of the grid size. It is well known that use of finite-difference
schemes with non-uniformly spaced grids increases the

truncation error of the scheme, hence a gradual variation of
the mesh is required. In this case, in order to describe the
physics of the phenomenon, it is impossible to follow this
approach. In order to increase the accuracy of the
computation of the derivatives in x, two additional points
spaced of Dxsg have been added upstream the toe where the
grid spacing shows the larger variation. Once the VTE is
solved, ur is computed on the moving grid and transferred
on the fixed grid by means of a linear extrapolation. A
sketch of the described grid is shown in Figure 2, further
details on finite-difference approximations of the spatial
derivatives and on the VTE scheme are reported in
Appendix B and more details on the definition of the
moving grid can be found in MSF. Since the stability
condition of the Boussinesq model is different, in particular
less restrictive, than the one of the VTE, a coupled
integration in time should be run by using the small time
step required for the VTE, hence drastically reducing the
computational efficiency. To avoid such a problem a
‘‘mode-splitting technique’’ has been used to separate the
time step of the Boussinesq model from the smaller one
used in the VTE solver. A number of time steps of the VTE
integration model (internal module) are carried out for each
time step of the Boussinesq model (external module), it is
generally sufficient to perform 4–5 internal time steps for
each external one. Being retained as boundary conditions,
the free surface elevation and the depth-averaged velocity
are calculated by the external module, a data reconstruction
by linear interpolation has been carried out in order to
obtain values of such variables in the internal module. This
technique is commonly employed in problems in which the
free surface has to be solved together with a scalar quantity
that diffuses in the fluid [Simmons, 1974; Blumberg and
Mellor, 1987]. A sketch which illustrates the variables
shared by the two modules is shown in Figure 3. The VTE
module needs as input data the boundary value of w (i.e.,
ws), the roller thickness zs and the depth-averaged velocity

Figure 2. Sketch of the grid refinement in the roller region
(adapted from MSF).

Figure 3. Sketch of variables shared between the external and the internal module in the technique used
to couple the Boussinesq solver with the VTE one.
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�u. Once rotational velocities have been computed, breaking
terms are calculated in the external module and used to
update the free surface and the depth-averaged velocity �u by
solving the BTE. A boundary condition for the vorticity has
been proposed by VS through the following empirical
relation, which is a best fit of the experimental data on
hydraulic jumps of Svendsen et al. [2000]:

ws ¼ 15:75 1� x� xt

lr

� �
1� e�40

x�xt
lr

 �
; ð10Þ

where xt is the position of the toe of the roller and lr is the
roller length. Equation (10) shows that the vorticity is
maximum at the toe of the breaker. The roller thickness is
also given by an empirical relation that reads:

zs
h2

ffiffiffiffiffiffiffiffiffiffiffiffi
h2=h1

p ¼ 0:78e�
x0
lr

x0
lr
�x02

lr

� �
; ð11Þ

where h2 and h1 represent respectively the water depths
upstream and downstream of the jump while x0 = �(x � xt)
(see also Figure 1).
[13] Finally, the local value of the velocity component u

is estimated by the expression:

u ¼ �up þ m2 h�up
� �

;xx

D1

2
� z

� �
þ m2

2
�up;xx

D2

3
� z2

� �
þ ur

þ O m4
� �

; ð12Þ

where the rotational velocity is given by equation (2) and:

D1 ¼ dz� hð Þ; D2 ¼ d2z2 � dzhþ h2: ð13Þ

[14] The component w is obtained by using the continuity
equation u,x + w,z = 0. Within the roller region the vorticity
distribution cannot be numerically computed as the domain
of integration is upper-bounded by the lower edge of the
roller. Since the breaking terms (DM),x, (DM1),x, Duw, Dw

and (DP),xxt contain contributions also coming from the
roller area (as shown in Appendix A), the vorticity in that
region is estimated by means of a linear extrapolation and
by assuming w = 0 on the water surface. The same
assumptions were also made by VS. Once w has been
computed, the above mentioned breaking terms can be
evaluated.
[15] The eddy viscosity distribution over the water col-

umn N(z) is assumed such that its maximum value is located
at the water surface except at the roller where the maximum
is located at the lower edge of the roller. This value is
estimated by a mixing length hypothesis and nt given in the
self-similar form:

nt z; xð Þ ¼ nt0h xð Þ
ffiffiffiffiffiffiffiffiffiffiffi
gh xð Þ

p
N zð Þ; ð14Þ

where nt0 typically assumes values in the range 0.01–0.04
[Cox et al., 1995].

2.2. Validation of the VTE Solver

[16] Performances of the VTE solver have been tested by
means of available analytical solutions for the evolution of a

passive tracer in the case of linear advection and diffusion in
an infinite domain. Since the vorticity is not a passive tracer
these tests are mainly useful for evaluating the ability of the
solver to adequately compute advection and diffusion. Other
tests are proposed in the next section which are more
suitable to evaluate the model performances in determining
a physically correct solution.
[17] The problem considered here is:

C;t þ UC;x ¼ KC;xx; ð15Þ

where C is the tracer concentration, U is the velocity of the
flow (not influenced by the presence of the tracer) and K is
the molecular diffusion coefficient of the tracer. The initial
condition for the problem here considered is:

C x; 0ð Þ ¼ dD xð Þ; ð16Þ

i.e., the tracer has unitary concentration at the origin of the
infinite domain at t = 0 (here dD indicates the Dirac’s delta
distribution). The analytical solution of this problem is the
so-called ‘‘fundamental solution’’:

C x; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pKt

p e
� x�Utð Þ2

4Kt : ð17Þ

The proposed numerical scheme has been tested using U = 1
and K = 1. Figure 4 shows the comparison between the
aforementioned analytical solution and the numerical
solution obtained with the proposed numerical scheme.
Results have been plotted at different values of

ffiffiffiffiffiffiffiffi
4Kt

p
, i.e.,ffiffiffiffiffiffiffiffi

4Kt
p

= 2, 4, . . . A very good agreement exists between the
two solutions. We also compared the chosen ABM with the
higher-order one used to solve the BTE. No differences
could be found between the two methods at least within
the machine round-off errors accuracy. Hence to increase
the stability of the model without affecting the accuracy, the
ABM scheme of second order at the predictor stage and of
third order at the corrector stage has been used.

2.3. Comparison of the Fully Numerical Model (BTE +++
VTE) With Experimental Data

[18] The performances of the present model have been
tested against two sets of experimental data from Hansen
and Svendsen [1979] (hereinafter referred to as HS) and
from Cox et al. [1995] and Cox and Kobayashi [1997]
which share the same data set. The tests are mainly aimed at
gaining information on the features of the numerical solu-
tion of the VTE by comparing the results with those
obtained by means of VS/MSF’s semi-analytical solution.
We also try to assess the effects of turbulence description by
assuming different depth-varying eddy viscosity profiles,
i.e., different N(z). Such an analysis has been carried out by
making comparisons with the data of Cox et al. [1995],
which are the most valuable, since velocity profiles are
given along with other synthetic (wave-averaged) data like
the wave height decay.
[19] The experimental studies in HS on the propagation of

regular waves over a uniformly sloping beach have been
carried out at the Technical University of Denmark. The
flume was 0.6m wide, 32m long, the slope of the beach was
1:34.26 and its toe was 14.78m far from the wavemaker.
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Being the primary object of the experiments the evaluation
of the wave height decay, wave heights were accurately
measured by using a wave gauge mounted on a movable
carriage. Unfortunately surface profile measurements are
available only seaward of the breaking point, while no
measurements were made of the flow velocities. Among
the 18 wave conditions simulated in the experiments two
cases of spilling breakers were chosen for the comparison.
A summary of wave conditions of these two tests together
with those concerning the other tests are shown in Table 1,
in terms of the wave frequency f, the wave height H and the
surf similarity parameter x0 = tan(as)/

ffiffiffiffiffiffiffiffiffiffiffi
H=L0

p
, where as is

the beach slope and L0 is the wavelength close to the
wavemaker. In Table 1 the flow parameters for all the
considered data set are reported.
[20] The experimental setup of Cox et al. [1995] is quite

similar to that described above. The experimental flume was
33 m long, 0.6 m wide and 1.5 m deep, the steepness of the
sloping part was of 1:35. The bottom was made of concrete
and it was made rough by gluing natural sand to the bottom
(d50 = 1.0 mm). The water depth on the horizontal bottom
was h0 = 0.4 m. A schematic view of the experiment is given
in Figure 5. Six measuring lines, L1, L2, L3, L4, L5, L6, were
located along the slope. The position of the lines was chosen
in order to have L1 in the shoaling region, L2 at the breaking
point, L3 was in the transition region, L4, L5 and L6 were all
in the inner surf zone (the position of the lines is given in
Table 2). In correspondence of the six measuring lines, both
surface elevation and flow velocities over the water column
(significant only under the level of the wave trough) were
measured. Cox and co-workers simulated only one wave
condition obtaining spilling breakers. The same experimen-
tal setup has been used in the work of Cox and Kobayashi
[1997] for measurement of the undertow current. The

numerical flume used in the present study differs from the
real one as it is not necessary to model the whole length of
the depth-uniform region of the flume. The total length of the
computational domain is of 18 m, where the horizontal
bottom is 1 m long, with a water depth of h0 = 0.4 m. At
the onshore boundary a sponge layer is used, the onshore
shelf is 5.65 m long with a depth of 0.04 m. In all the
performed simulations cnoidal waves have been generated at
the offshore boundary using a generating-absorbing bound-
ary condition [Van Dongeren and Svendsen, 1997]. The
breaking criterion has been introduced on the basis of a
critical value for the surface slope.
[21] The first set of results shown here aims at comparing

the fully numerical solution of the problem (VTE + Boussi-
nesq) and the semi-analytical approach by VS/MSF (analyt-
ical VTE + numerical Boussinesq), using an uniform profile
of eddy viscosity over the water column. All tests were run
with spatial and temporal discretizations equivalent to those
used in VS and MSF and best results were obtained by using
a moving grid with ng = 5.
[22] Figure 6 shows the comparison between the wave

heights along the flume obtained from the present model
and from the experiments; the semi-analytical solution of

Table 1. Summary of the Wave Characteristics of the Performed

Testsa

Test f, Hz H, m x0
HS test O 0.5 0.0375 0.38
HS test Q 0.4 0.04 0.44
Cox et al. [1995] 0.45 0.115 0.23

aHere f is input frequency, H is wave height, and x0 is surf similarity
parameter.

Figure 4. Comparison between the analytical solution of linear advection-diffusion of a passive tracer
over an infinite domain (solid line) and the numerical solution of the same problem computed with the
proposed scheme for the VTE (dots). Results have been shown at

ffiffiffiffiffiffiffiffi
4Kt

p
= 2, 4, 8, 10, 12.
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MSF’s model is also reported for the sake of completeness.
The wave height in the shoaling region is the result of the
superposition of the incoming waves and those reflected
off the beach. Only the latter contribution can be different
in dependence of the approach (analytical or numerical)
used to solve the VTE over the surf zone. For the case at
hand this is negligible. Moreover, both models underesti-
mate the wave height at breaking. In the transition region,
both models predict almost the same wave height dissipa-
tion rate, which is different from that typical of the inner
surf zone. The most important evidence which is brought
up by these results is the difference between the models of
VS/MSF and the present one in predicting the wave height
distribution in the inner surf zone: the numerical solution
of the VTE seems to give a lower dissipation. The source
of this difference becomes more evident when looking at
the velocity profiles predicted by the models and those
coming from the experiments of Cox et al. [1995]. Also
comparison with the wave height data of Cox et al. [1995]
shows that the dissipation rate in the inner surf zone is
higher in MSF’s model than in the present one. (In both
models waves begin to break in correspondence of L3,
where, as shown in the experiments, breaking has already
occurred). However, more useful is the comparison of the
flow profiles.
[23] From the comparison of the evolution in time of

the profiles of the vorticity (Figure 7, each panel shows
surface profiles and vorticity profiles over a wave period at
three chosen gauges: top panel L3, middle panel L4, bottom
panel L6) it is clear that both models similarly represent the
vorticity dynamics under the breaking wave. However,
several remarkable differences require discussion. For ex-
ample, even if vorticity downward penetration at the toe

region is similar between the two models it should be
noticed that the present model predicts a reduced vorticity
penetration in the water body all along the wake of the
roller. Moreover, the model of MSF predicts a rather intense
vorticity upstream of the wave crest. Although the same
fully nonlinear model of MSF is here used, a main differ-
ence arises in the solution of the VTE: here the solution is
fully numerical while in MSF a numerical integration of an
analytical solution is used. Hence assuming that such
analytical solution is correct, two sources of differences
are left. In order of increasing importance, the first cause of
discrepancy can come the from the numerical quadrature
method used in MSF, the second comes from the numerical
scheme we use to solve the VTE. As already mentioned, we
have used an ABM scheme which, however, is not the most
suited for evolving shock-type solutions describing fronts
associated to impulsive phenomena like the sudden vorticity
injection here described. These differences largely influence
the computation of the rotational velocities. Smaller abso-

Figure 5. Experimental setup of Cox et al. [1995].

Figure 6. Wave height comparison among MSF’s model,
present model and data from HS ((top) test O; (bottom)
test Q). Diamonds represent experimental results from HS,
dots results from MSF’s numerical simulations. Solid black
line: present model. In both tests nt0 = 0.01 and ab = 30

have been used (see also VS and MSF).

Table 2. Position x and Depth h of the Measuring Lines in the

Experimental Setup of Cox et al. [1995]

Line x, m h, m

L1 0.0 0.28
L2 2.4 0.211
L3 3.6 0.177
L4 4.8 0.143
L5 6.0 0.109
L6 7.2 0.0743
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lute values of ur are computed by means of the numerical
solver of the VTE (Figure 8). However, from a qualitative
point of view, the profiles of ur computed from the analyt-
ical solution are, especially in the inner surf zone, charac-
terized by stronger vertical gradients than both the
numerical solutions and the experimental data.
[24] Comparison of the profiles of the total velocity u

shows that this is overestimated by both models in corre-
spondence of the crest (see Figure 9). Since MSF’s solution
predicts a rotational flow with strong vertical gradients, a
similar feature can be seen in the total velocity, which
differs from the measured profile, particularly in the upper
part of the water column. However, as a result of the
underestimate of energy dissipation, the present model
predicts a larger velocity. Nevertheless, the profiles seem
to be qualitatively similar to the measured ones. This is
particularly true away from the wave crest where velocities
predicted by the present solver, because of the smaller
vorticity generation, fit better the experimental data than
MSF’s solution.

2.4. Sensitivity Analysis on Different Profiles N(z)

[25] In order to estimate the importance of the eddy
viscosity distribution N(z) over the water column, four
possible test profiles have been chosen, which share the
same maximum nt0. Figure 10 illustrates the shape of such
profiles, N0(z) being the uniform profile for which results
have already been shown in the previous section. The other
three profiles are possible parameterizations of the turbu-
lence structure all stemming from the observation that much
of the vorticity and turbulence is introduced in the water

body by the breaking wave near the surface. All the
experimental observations available in the literature [e.g.,
Peregrine and Svendsen, 1978; Okayasu et al., 1988; Cox et
al., 1995; Svendsen et al., 2000] suggest that the eddy
viscosity distribution over the upper half of the water
column differs significantly from that in the lower half.
Profiles with continuous derivative with respect to z (e.g.,
linear profile) have not been considered with the only
exception of the uniform one which is used for comparison
with MSF. Hence profiles N1(z) and N3(z) embody the
assumption that turbulent stresses are non-zero only in the
region of the water column directly influenced by the wave
motion i.e., approximately the upper half of the normalized
water column. This approach seems to be supported by
experimental evidence of turbulence in hydraulic jumps
[e.g., Svendsen et al., 2000]. Profile N2(z) is the one similar
to those reported by the experimental analysis of Cox et al.
[1995] and also discussed in the work of Deigaard et al.
[1991]. In summary, N0(z) and N2(z) are representative of
turbulent stresses distributed over the whole water column
while N1(z) and N3(z) represent turbulence localized in the
upper part of the water column. It is obvious that the choice
of the profiles is completely arbitrary and other possible
profiles can be used. However, sensitivity analysis on
these profiles can shed light on the structure of the most
appropriate one to adequately represent the natural flow
dynamics.
[26] Figures 11, 12, and 13 show the evolution in time

respectively of the vorticity, of the rotational horizontal
velocity and of the total horizontal velocity profiles as
computed by the present model with both N2(z) and N3(z)

Figure 7. Time evolution of the vorticity profiles at three of the six locations ((top) L3, (middle) L4,
(bottom) L6) of the gauges of Cox et al. [1995]. Surface profile: dashed line, experimental results; solid
line, results from the present model using N0(z), (x�) line results from MSF’s model. Vorticity profiles:
solid line, results from the present model; dash-dotted line, results from MSF’s model. nt0 = 0.03 and
ab = 26
.
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Figure 8. Time evolution of the rotational velocity at three of the six locations: (top) L3, (middle) L4,
and (bottom) L6 of the gauges of Cox et al. [1995]. Surface profile: dashed line, experimental results;
solid line, results from the present model using N0(z), (x�) line results from MSF’s model. Rotational
velocity profiles: solid line, results from the present model; dash-dotted line, results from MSF’s model.
Dots represents the horizontal velocity measurements from LDV. c is the wave celerity computed as

ffiffiffiffiffi
gh

p
.

Figure 9. Time evolution of the total velocity at three of the six locations: (top) L3, (middle) L4, and
(bottom) L6 of the gauges of Cox et al. [1995]. Surface profile: dashed line, experimental results; solid
line, results from the present model using N0(z), (x�) line results from MSF’s model. Velocity profiles:
solid line, results from the present model; dash-dotted line, results from MSF’s model. Dots represents the
horizontal velocity measurements from LDV. c is the wave celerity computed as

ffiffiffiffiffi
gh

p
.
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and with nt0 = 0.03. Note that, due to numerical reasons,
even for N3(z) a non-zero eddy viscosity has been used over
the lower half of the water column. However, its size was
kept to 0.01 times the maximum value achieved by nt over
the top half of the water column thus it can be regarded as
uninflect for physical purposes.
[27] Weak vorticity is predicted by both N2(z) and N3(z)

in the transition region (L3). However, in the inner surf
zone (L6) more intense vorticity is predicted far from the
roller region by means of N3(z) than by using N2(z) (see
Figure 11): if the almost vanishing eddy viscosity in the
lower half of the water column of N3(z) both inhibits
vorticity diffusion and provides a limited vorticity dissi-
pation. More details on vorticity evolution can be found in
sections 3.2 and 3.3. Analysis of the velocity profiles
reveals that differences among the various profiles of the

rotational velocity (Figure 12) are more evident over the
‘‘wake region’’ (i.e., upstream of the crest) than over the
crest area due to the aforementioned reasons. Hence at L4
and L6 the velocity away from the crest is better approx-
imated by the simulations carried out with profile N2(z).
When comparing the profiles of the total velocity
(Figure 13) no major differences can be found between
N2(z) and N3(z). The analysis also shows that the profile
N1(z) (not reported here) leads to unreal spiky profiles of
vorticity and velocity and, hence, cannot be considered as
a good candidate for our modeling purposes. Such a
behavior is clearly caused by the discontinuity of N1(z)
at (z + h)/h = 0.5. For the above reasons the profile N1(z)
is not analyzed in more detail in the following.
[28] In order to quantitatively discuss the differences

among the various models we have decided to measure
the distance between the computed un

C and the experimental
un
M velocity profiles (n being the discrete vertical level) in
terms of the relative quadratic error:

� ¼
PN

n¼n0
uCn � uMn
� �2

PN
n¼n0

uMn
� �2 : ð18Þ

Note that the lowest level n0 has been taken to coincide with
the top of the bottom boundary layer, while N is the level of
the water surface.
[29] We report relative errors of MSF’s solution and of

computations with N2(z) and with N3(z) in Figure 14.
Inspection of the figure reveals that a rather large error
characterizes the analytical solution over the ‘‘wake region’’
both within the transition region (L3) and over the surf zone

Figure 10. Eddy viscosity profiles chosen for the
numerical simulations. The water column is normalized
through the s�coordinates transformation of equation (5).

Figure 11. Time evolution of the vorticity profiles at three of the six locations (top panel L3, middle
panel L4, bottom panel L6) of the gauges of Cox et al. [1995]. Solid line, N2(z) (with water surface and
roller area); dashed-dotted line, N3(z). Dashed line surface profile of the experimental results of Cox et al.
[1995].
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Figure 12. Time evolution of the rotational velocity at three of the six locations: (top) L3, (middle) L4,
and (bottom) L6 of the gauges of Cox et al. [1995]. Solid line, N2(z) (with water surface and roller area);
dashed-dotted line, N3(z). Dots and dashed line respectively give the rotational velocity and the surface
profile of the experimental results of Cox et al. [1995]. c is the wave celerity computed as

ffiffiffiffiffi
gh

p
.

Figure 13. Time evolution of the total velocity at three of the six locations: (top) L3, (middle) L4, and
(bottom) L6 of the gauges of Cox et al. [1995]. Solid line, N2(z) (with water surface and roller area);
dashed-dotted line, N3(z). Dots and dashed line respectively give the rotational velocity and the surface
profile of the experimental results of Cox et al. [1995]. c is the wave celerity computed as

ffiffiffiffiffi
gh

p
.
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(L4, L6). On the contrary good performances are achieved
by the same method over the crest region. The overall best
performances seem to be those of the numerical solution
with either uniform (N0(z)) or linear-uniform eddy viscosity
(N2(z)) while a worse comparison characterizes the numer-
ical solution obtained with the parabolic profile N3(z). A
synthetic description of the quadratic error for all the
profiles considered over the surf zone is given in Table 3.

2.5. Undertow Profiles

[30] The ‘‘undertow current’’ plays a key role in the
sediment transport processes within the nearshore region
and, consequently, also in the morphodynamics of beach
profiles. BTMs, in general, cannot predict the undertow
profiles, because they do not consider the roller effect on the
velocity field. The present model, being derived from MSF,
drops the hypothesis of irrotational flow and takes into

account the roller effects. Hence the undertow current may
be evaluated according to the relation:

uundertow zð Þ ¼ umean zð Þ �
�Q

h0 þ �z
; ð19Þ

in which the first term at the right hand side is the mean
horizontal velocity (properly defined only for �h < z < ztr,
ztr being the surface elevation at the trough level), h0 is the
offshore water depth and z is the free surface elevation. The
second term represents the correction for the sloshing in
the experimental wave tank. �Q is defined as:

�Q ¼ 1

T

ZtþT

t

Zztr
�h

udzdt: ð20Þ

[31] Results of the models have been compared with the
measurements of Cox and Kobayashi [1997] collected at six
sections over the slope, which coincide with those of Cox et
al. [1995]. Undertow profiles estimated with MSF’s model
and the present one with N0(z) and N2(z), are shown, for the
three locations L4, L5 and L6 only, in Figure 15.
[32] The comparison of the profiles shows that results are

similar even if the profiles at L4 and L5 seem to be better
represented by the fully numerical solver which, with any
chosen profiles of nt, gives vertically more uniform profiles
than MSF’s model. Quadratic errors have been summarized
in Table 4. It is worth pointing out that the overall best
performances have been obtained using the fully numerical
solver with the N2(z) and N3(z) profiles. Even the profile
N3(z) performs better than MSF’s solution especially for the
data of sections L4 and L5. In L6 performances are worse
than those of the other models, this is probably due to the
differences, already pointed out in the previous sections, in
the velocity profiles. Another possible source of error is the
incorrect use of the flow velocity at the top of the bottom
boundary layer.

3. Discussion

[33] Some salient issues which have risen from the results
shown in the previous sections are here discussed.

3.1. Energy Dissipation in BTMs

[34] One fundamental issue brought to our attention
running the computations discussed in the previous section
concerns the energy dissipation in BTMs. This is usually the
sum of three main contributions: the theoretical contribution
coming from the breaking-type terms (e.g., (DM),x, (DP),xxt,
etc. in the present model), the intrinsic numerical contribu-

Table 3. Summary of the Quadratic Error on the Velocity Profile

for the Various Solvers Over the Surf Zone

Solver L3 L4 L5 L6

Analytical crest � � 2 crest � 	 1 crest � � 1 crest � 	 3
wake � � 5 wake � � 5 wake � � 2

Numerical N0(z) crest � � 2 crest � 	 1 crest � � 1 crest � 	 5
wake � 	 3 wake � � 1 wake � � 1

Numerical N1(z) crest � � 2 crest � 	 1 crest � � 1 crest � 	 2
wake � 	 5 wake � 	 2 wake � � 2

Numerical N2(z) crest � � 2 crest � � 1 crest � � 1 crest � 	 5
wake � � 2 wake � 	 1 wake � � 1

Numerical N3(z) crest � � 2 crest � � 1 crest � � 1 crest � 	 2
wake � � 4 wake � 	 2 wake � � 3

Table 4. Summary of the Quadratic Error on the Undertow for the

Various Solvers Over the Surf Zone

Solver L4 L5 L6

Analytical 0.1028 0.3670 0.0720
Numerical N0(z) 0.0688 0.0237 0.0446
Numerical N1(z) 0.0776 0.0123 0.0461
Numerical N2(z) 0.0704 0.0269 0.0425
Numerical N3(z) 0.0606 0.0214 0.1829

Figure 14. Quadratic error between the experimental and
the computed velocity profiles over a wave period at three
of the six locations: (top) L3, (middle) L4, and (bottom) L6
of the gauges of Cox et al. [1995]. Circles represent MSF’s
solution; diamonds represent numerical computations with
N2(z); crosses represent computations with N3(z). The solid
line and the dashed line give the experimental water surface
from Cox et al. [1995] and the computed one with the
numerical model using N2(z), respectively.
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tion coming from the numerical scheme in use and the
extrinsic numerical contribution coming from any stabiliz-
ing mechanisms ad-hoc introduced to get stable solutions.
In the case of most BTMs (like that of VS/MSF, of Kirby et
al. [1998], etc.) the latter is represented by the so-called
‘‘Shapiro filter’’ [Shapiro, 1970] which is used to get rid of
high-frequency oscillations. Note that, due to the dispersive
nature of the BTM, the presence of breaking-type terms and
to the characteristics of the ABM scheme, the Shapiro filter
can become a powerful agent of energy dissipation. In fact
frequency dispersion, highly promoted by the ABM scheme
to the prejudice of nonlinear steepening (bore-like solutions
are hard to get with the ABM), removes large amounts of
energy from the fundamental frequencies in favor of higher
frequencies falling in the range of operation of the Shapiro
filter. Hence massive use of such filter leads to a substantial
energy dissipation being caused by an extrinsic numerical
mechanism capable of overshading the physical mechanism.
An example of such effect is discussed in the work of
Musumeci et al. (submitted manuscript, 2004) in which
filtering was used within the surf zone at each computa-
tional time step (about 200 times each wave period). A more
reasonable use of the filter in wave breaking simulations
(i.e., a few times each wave period) is reported in the work
of Kirby et al. [1998]. We here try to describe, as physically
as possible, with the equations at hand, energy dissipation.
Hence the use of the filter has been limited to 5–10 times
each wave period and the efficiency of the physical dissi-
pation (breaking) has been improved by means of the
regridding described in section 2 [see also Musumeci et
al., 2003; MSF; Briganti, 2004; Musumeci et al., submitted
manuscript, 2004]. All the above leads to question the value
of the ABM scheme for this type of solutions. The way
forward as discussed in the work of Brocchini et al. [2001]
and Bernetti et al. [2003], is to devise a numerical approach
which properly weights the two competing mechanisms of
nonlinear steepening and frequency dispersion. This can be

achieved, for example, by means of the ‘‘operator splitting
method’’ [e.g., Bernetti et al., 2003] which allows for the
most suitable scheme to be used for each operator. In more
detail shock-capturing, Godunov-type methods should be
used for the nonlinear convective operator in conjunction
with higher-order schemes for the dispersive operator.

3.2. Vorticity Transport Under Breaking Waves

[35] The results obtained so far can be used to briefly
discuss the important issue of vorticity transport as de-
scribed by the model. Since no detailed experimental data
are available on the vorticity transport in breaking waves
and since vorticity penetrates from the surface in the fluid
body because of the same mechanisms that govern transport
of the turbulent kinetic energy [e.g., Melville et al., 2002]
we discuss vorticity transport with reference to available
experimental descriptions of the transport of turbulent
kinetic energy [e.g., Ting and Kirby, 1996; Chang and
Liu, 1999; Melville et al., 2002].
[36] Figures 16 and 17 show the magnitude of different

terms of the VTE as numerically computed by using the
N2(z) profile both at L3, L4 and at L6. Figure 16 shows in
detail the magnitude of terms over the crest region, while
Figure 17 is focused on the wake region. Note the difference
in the adopted plotting scales. Inspection of Figure 16
reveals that at the leading edge of the breaker vertical
advection and vertical diffusion are positive over the whole
water column (upward motion of the vorticity field) and
larger in size than the horizontal advection which is nega-
tive. This means that vertical diffusion and advection
dominate vorticity transport in that region. However, around
the crest region horizontal advection becomes positive and
larger than vertical transport contributions which have the
same sign (negative near the surface) and, approximately
the same size. A complicated transition between these two
regimes is clearly shown by the data of L6. Moving from
the toe to the crest vertical diffusion inverts sign (from

Figure 15. Undertow profiles: circles, data from Cox and Kobayashi [1997]; (+�) line, results from
MSF’s model; solid line, computation with N2(z); (x�) line, computation with N3(z). Panel (a) section L4,
(b) section L5, (c) section L6.
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positive to negative) near the surface before the vertical
advection does and is characterized by a rather complex
profile. At this section the leading term is the vertical
advection which balances both vertical diffusion and hori-
zontal advection. Moving closer to the wave crest also the
vertical advection becomes negative and greatly decreases
to become almost negligible with respect to the other two
terms. Thus the effects of vertical advection dominates
vorticity dynamics near the toe of the breaker but become
negligible downstream of the wave crest. Over the so-called
‘‘wake region’’ (see Figure 17) vertical diffusion is negative
and dominates meaning that the maximum of the vorticity
profile moves downward into the water column. This
dynamics of vorticity is in accordance with the interpreta-
tion given by Ting and Kirby [1996] who suggest that
transport of turbulent kinetic energy within a spilling
breaker is dominated by diffusion (or turbulent transport),
vertical advection being important only near the surface.
Finally, note that this scenario is substantially the same from
the transition region (L3) to the inner surf zone (L6) as
shown by the top and bottom panels of both figures.

3.3. A Suitable Profile for the Eddy Viscosity

[37] We here attempt at a choice of an eddy viscosity
profile which, among the considered ones, seems more
suitable to modeling purposes. The choice is guided both
by the results already described and by interpretation of the
dynamics associated with each profile (each profile corre-
sponds to a different assumption on the turbulence structure).
[38] It is worth noticing that changes in eddy viscocity

profiles mainly influence the profiles of the vorticity
(Figure 11). It should be also pointed out that the profile
N3(z), which prescribes a region with zero eddy viscosity,
induces vorticity distributions rather different from those
obtained with the uniform profile (especially over the ‘‘wake
region’’) which has been shown to adequately model the flow

dynamics. Over the ‘‘roller region,’’ which is interested by
the beginning of vorticity transport in the fluid, differences
seem to reduce due to the fact that vorticity is confined in the
upper half of the water column, over which all profiles
prescribe approximately the same value of eddy viscosity.
[39] As already seen the vertical extension of the vortical

flow is governed both by advection (important in the roller
between the toe of the breaker and the crest of the wave)
and diffusion (dominating the ‘‘wake region’’). The latter is
function of the size of nt, hence N3 prescribes a negligible
vertical diffusion over the lower half of the water column.
However, a small eddy viscosity also induces a small
dissipation of vorticity (better enstrophy) so that vorticity
pushed down by vertical advection remains unrealistically
intense also for long times. This is has already been shown
in section 2.4 through the results in the lower panel of
Figure 11.
[40] For the aforementioned reasons we think that the

profile N3 is less suitable than both N0 and N2 to describe
the turbulence structure of breaking waves. We are now left
with the choice between N0, which has been tested both by
VS/MSF and by us has showing good performances, and
N2. The latter, similar to N0 over the top portion of the water
column, seems the best candidate for modeling purposes as:
(1) gives comparably good results of N0 in terms of wave
height decay; (2) gives moderately better results than N0 in
terms of velocity profile and undertow; (3) gives a sound
description of the vorticity dynamics within a breaking
wave; and (4) is supported by the accurate measurements
of Cox et al. [1995].

3.4. A Suggestion for Further Improvements

[41] After the analysis of the above results we feel that the
present model, independently on the profile Ni chosen for
the eddy viscosity, does not predict very accurately the

Figure 16. Illustration of some transport terms of the VTE
as numerically calculated with the N2(z) profile at three of
the six locations, (top) L3, (middle) L4, and (bottom) L6 of
the gauges of Cox et al. [1995]. Horizontal advection (solid
line), vertical advection (dots-) and vertical diffusion
(dashed line) in the crest region.

Figure 17. Illustration of some transport terms of the VTE
as numerically calculated with the N2(z) profile at three of
the six locations (top panel L3, middle panel L4, bottom
panel L6) of the gauges of Cox et al. [1995]. Horizontal
advection (solid line), vertical advection (diamonds) and
vertical diffusion (dashed line) in the wake region. Note the
difference in scale with respect to Figure 16.
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experimental velocity profiles: indeed, the computed pro-
files are shifted with respect to the measured ones. This shift
does not seem to depend only on the representation of the
water surface as it is evident even when the computed water
surface exactly matches the experimental one. We feel that
the shift is linked to a poor prediction of the flow velocity
just outside the bottom boundary layer ub. In the present
paper, as in VS/MSF, such a velocity is prescribed through
the following approximate relationships,

ub;x ¼ �up;x þ O m2
� �

; ub;xx ¼ �up;xx þ O m2
� �

; ð21Þ

and has been used to obtain equation (12) in which u is
dependent on �up and ur. The potential component �up is
calculated with the relation:

�up ¼ �u� �ur; ð22Þ

in which �u is computed directly with the Boussinesq module
and �ur is estimated from equation (2). It is clear that, since in
the case of breaking �up is computed as function of the
vorticity generated by the breaking wave, also ub,x and ub,xx,
computed according to equation (21), are functions of
the vorticity injected by breaking at the water surface.
This seems a likely source of errors in the evaluation of
equation (12) as ub should be linked to the vorticity/
turbulence generated within the bottom boundary layer with
no major influences from the wave turbulence.
[42] In other words we think that the value of ub appear-

ing in the expression for the potential velocity

up ¼ ub þ a ub; hð Þzþ b ub; hð Þz2 ð23Þ

should come from a model of the bottom boundary layer
rather than from approximate analytical relationships as
done here. Work is underway to define a suitable model of
bottom boundary layer to be used in conjunction with the
present Boussinesq model. Such model would also allow for
a more flexible inclusion of either laminar or turbulent
bottom boundary layer.
[43] We have also identified one second line of research

with the aim of removing the present criterion for breaking
which is based on the knowledge of the water surface slope
and substitute it with a more physical and flexible criterion
based on a comparison of the horizontal component of the
flow velocity with the local wave speed. Finally, differences
in the eddy viscosity distribution over the water column
between the hydraulic jump described in the work of
Svendsen et al. [2000] and the profile described for breaking
waves in the work of Cox et al. [1995] have been found. We
are currently evaluating such differences as depending on
the different flow conditions (i.e., bore versus hydraulic
jump). The main difference between the two flows comes
from the unsteadiness of the bore and from the consequent
different evolution of turbulence. Hence a detailed analysis
of the transport properties of vorticity/turbulence in the
flows is being performed.

4. Conclusions

[44] In the present study, VS/MSF’s BTM for breaking
waves in shallow waters has been extended to give a more

flexible and accurate description of the effects of turbulence
due to breaking waves. This has been achieved by allowing
the eddy viscosity, used to represent turbulent stresses, to
vary over the water column.
[45] A vertically varying eddy viscosity, in turn, requires

a fully numerical solution of the VTE to be coupled with the
Boussinesq solver. Hence a numerical solver based on the
ABM predictor-corrector scheme has been implemented to
solve the VTE. This scheme has been chosen as it allows for
an adequate accuracy and for an optimal interlacing with the
Boussinesq-type solver (the data-structure is basically the
same). In order to improve the computational efficiency a
‘‘mode-splitting technique’’ has been used such that a
number of time steps of the VTE integration model (internal
module) are carried out for each time step of the Boussinesq
model (external module). A self-adaptive, moving grid
similar to that of MSF has been implemented in our solver.
The high resolution of the roller dynamics allows for an
efficient wave breaking energy dissipation and a reduced
use of numerical filtering with respect to that typical of this
sort of computations.
[46] The flow solutions of the fully numerical solver with

uniform eddy viscosity profile have been compared both
with the semi-analytical VS/MSF’s solution and with ex-
perimental data. The data sets used for the comparison are
those of Hansen and Svendsen [1979] and of Cox et al.
[1995]. Analysis of the results reveals that the fully numer-
ical solver injects in the flow less vorticity than that
predicted by MSF’s solution. Moreover, the vorticity seems
to remain more confined in the upper half of the water
column, never reaching the bottom as predicted by MSF’s
solution. As a consequence of the reduced energy decay we
find that within the inner surf zone wave crests are less
rounded and wave height decay is weaker. However, the
profiles of the velocity (both rotational and total) seem to be
qualitatively better predicted, especially away from the
wave crests, than by MSF’s model. The major discrepancy
with the experimental data is caused by a shift, also
characterizing MSF’s solution, in the velocity profiles with
respect to the experimental ones. We believe this shift is
partly due to an incorrect prediction of the bottom boundary
condition i.e., of the flow velocity at the top of the bottom
boundary layer.
[47] We pushed forward our analysis to gain some

knowledge on the most suitable profiles of eddy viscosity
to be used for modeling. Hence a sensitivity analysis has
been carried out aimed at comparing four possible profiles.
We found that the uniform profile and that with uniform
plus linearly decaying toward the bottom eddy viscosity
give similar good overall comparisons in terms of wave
height decay. Slightly better overall results have been
obtained with the non-uniform profile which also gives a
satisfactory description of the vorticity dynamics. Because
of these results and supported by the experimental results of
Cox et al. [1995] we find that such a profile is a good
candidate for modeling breaking waves with the present
BTM.

Appendix A: Equations of the Chosen BTE

[48] In VS/MSF, the Boussinesq equations have been
derived by integrating the Reynolds equations over the
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depth and by applying the kinematic and dynamic boundary
conditions at the bottom and at the free surface. In particular
(see Figure 1), using a cartesian reference frame (x, z) and
by taking (u, w) as the horizontal and vertical velocity
components respectively, the surface elevation, z, and the
depth-averaged velocity, �u, can be used as the dependent
variables of the BTE. These are made dimensionless with
the following scales: the wave number k, the local water
depth h and the wave amplitude a. The following equations
are thus obtained which are characterized by two dimen-
sionless parameter m = kh (measuring the frequency disper-
sion) and d = a/h (measuring the nonlinearities):

z;t þ �u hþ dzð Þ½ ;x¼ 0 ðA1Þ

�u;t þ d�u�u;x þ z;x þ m2 B� 1

3

� �
h2�u;xxt �

1

2
hh;xx�u;t � hh;x�u;xt

� �

þ Bm2h2z;xxx þ dm2 � 1

3
h2�u�u;xxx � hz;x�u;xt þ

1

3
h2�u;x�u;xx

�

� 2

3
hz�u;xxt �

3

2
hh;xx�u�u;xx�

1

2
hh;xxx�u

2 � hh;x�u�u;xx � zh;x�u;xt

� h;xz;x�u;t �
1

2
zh;xx�u;t þ Bh2 �u�u;x

� �
;xx

�
þ d2m2

1

6
z2�u;xxt

�

� 1

3
hz�u;x�u;xx �

1

3
h�u;xx z�uð Þ;xþ h z�u2;x

 �
;x
� 1

2
z2�u;xt
� �

;x

� 2

3
h z�u�u;xx
� �

;x
� z;xh;xx�u

2 � zh;x�u�u;xx �
1

2
zh;xxx�u2 �

3

2
zh;xx�u�u;x

� z;xh;x�u�u;x

�
þ d3m2 � 1

3
z2�u�u;xxx � zz;x�u�u;xx þ zz;x�u

2
;x

�

� 1

3
z2u;x�u;xx

�
þ
�
d DMð Þ;xþ m2 DPð Þ;xxt�Ds

 �
þ dm2 DM1ð Þ;x



þ Dw þ Duw

��
hþ dzð Þ�1¼ 0; ðA2Þ

where the linear operator,

L ¼ 1þ Bm2h2
@2

@x2
; ðA3Þ

introduced by Madsen et al. [1991] to improve the
dispersion properties has also been applied (the value of B
is chosen so that the model’s dispersive characteristics better
mimic the linear theory in deep waters). In equations (A1)
and (A2), the flow velocity is computed by differentiating
the stream function y which, in turn, can be obtained
by integrating in space the equation which defines w in
terms of y.
[49] The breaking terms read as:

DP ¼ �
Zdz
�h

Zdz
z0

Zz00
�h

ur � �urð Þdz000dz00dz0 ðA4Þ

DM ¼
Zdz
�h

u2r � �u2
� �

dz0 ðA5Þ

DM1 ¼ ��up;xx

Zdz
�h

2hz0 þ z02
� �

ur � �urð Þdz ðA6Þ

Dw ¼
Z dz

�h

@

@x

Z z0

�h

ur � �urð Þdz00
 !"

� @

@x

Z z0

�h

2�uþ ur � �urð Þdz00
 !#

dz0 ðA7Þ

Ds ¼
Zdz
�h

@2

@x2

Zdz
z

nt
@u

@z0
dz0 ðA8Þ

Duw ¼
Zdz
�h

@2

@x2

Zdz
z0

ur � �urð Þ @

@x

Zz00
�h

�udz000 þ �uþ ur � �urð Þ

2
4

� @
@x

Zz00
�h

ur � �urð Þdz000
3
5dz00dz0: ðA9Þ

[50] In particular, Ds is related to the shear stress inside
the fluid, (DM),x and (DM1),x give the excess of momentum
flux due to the vertical variation of the rotational velocity,
(DP),xxt is the contribution to the pressure due to the vertical
motion, Dw is the excess of momentum due to the vertical
motion and Duw represents the interaction between
the waves and the mean flow.

Appendix B: Finite Differences Schemes for
the VTE

[51] As previously mentioned the VTE is solved by
means of a third-order ABM scheme to step the model
forward in time and a ‘‘three-point finite difference scheme’’
to evaluate the spatial derivatives. The VTE may be written
using physical variables in a form that makes it convenient
to apply the selected scheme:

wt ¼ W ; ðB1Þ
where W contains quantities known from previous
calculations:

W ¼ s
hþ ze

@ze
@t

� �
@w
@s

� du
@w
@x

þ d
us

hþ ze

@ze
@x

� �
@w
@s

� w

hþ ze

� �
@w
@s

þ nt
hþ zeð Þ2

" #
@2w
@s2

þ w

hþ zeð Þ2

" #
@2nt
@s2

þ 1

hþ zeð Þ2
@nt
@s

" #
@w
@s

: ðB2Þ

[52] At the predictor stage the ABM time stepping
scheme reads:

wnþ1
i ¼ wn

i þ
Dt

2
3Wn

i �Wn�1
i

� �
; ðB3Þ

while at the corrector stage it is:

wnþ1
i ¼ wn

i þ
Dt

12
5Wnþ1

i þ 8Wn
i � 1Wn�1

i

� �
: ðB4Þ
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[53] As it is known this scheme is accurate to O(Dt2) at
the predictor stage and up to O(Dt3) at the corrector stage.W
involves time derivative of the difference between the
surface elevation and the roller thickness, which is calcu-
lated according to the relation:

@ze
@t

þ c
@ze
@x

¼ 0; ðB5Þ

in which c represents the phase velocity of the wave crest.
[54] First-order spatial derivatives (along x and s) are

computed with a ‘‘three-point central differences scheme’’
in the interior region of the fluid. Since a nonuniform grid is
used locally to solve the VTE, an expression of the
derivatives evaluated in a point xi which takes in account
the unequal mesh size has to be used:

wx �
1

2

w xi þ Dxrð Þ � w xið Þ
Dxr

þ w xið Þ � w xi � Dxlð Þ
Dxl

� �

� Dxr � Dxl

4

@2w

@x2
� @3w

@x3
Dx2r þ Dx2l

2 � 3! ; ðB6Þ

where Dxr = xi+1 � xi and Dxr = xi � xi�1. Equation (B6) has
been approximated with the first order of accuracy. Second-
order spatial derivatives in the diffusive term are discretized
using a ‘‘three-point scheme’’ in the interior of the fluid. A
‘‘four-point scheme’’ is used at the boundaries:

wssð Þi¼
1

Dw2
wiþ1 � 2wi þ wi�1½ ; i ¼ 2; ::;Nz� 1 ðB7Þ

wssð Þ1¼
1

Dw2
2w1 � 5w2 þ 4w3 � w4½  ðB8Þ

wssð ÞNz¼
1

Dw2
2wNz � 5wNz�1 þ 4wNz�2 � wNz�3½ : ðB9Þ
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M. Brocchini, DIAM, Università di Genova, Via Montallegro 1, I-16145,

Genova, Italy.
E. Foti and R. E. Musumeci, DICA, Università di Catania, Viale A. Doria
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