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The motivation for this work is the stability problem for short-crested Stokes waves.
A new point of view is proposed, based on the observation that an understanding
of the linear stability of short-crested waves (SCWs) is closely associated with an
understanding of the stability of the oblique non-resonant interaction between two
waves. The proposed approach is to embed the SCWs in a six-parameter family of
oblique non-resonant interactions. A variational framework is developed for the
existence and stability of this general two-wave interaction. It is argued that the
resonant SCW limit makes sense a posteriori, and leads to a new stability theory for
both weakly nonlinear and finite-amplitude SCWs. Even in the weakly nonlinear case
the results are new: transverse weakly nonlinear long-wave instability is independent
of the nonlinear frequency correction for SCWs whereas longitudinal instability is
influenced by the SCW frequency correction, and, in parameter regions of physical
interest there may be more than one unstable mode. With explicit results, a critique of
existing results in the literature can be given, and several errors and misconceptions
in previous work are pointed out. The theory is developed in some generality for
Hamiltonian PDEs. Water waves and a nonlinear wave equation in two space
dimensions are used for illustration of the theory.

1. Introduction
The aim of this paper is to develop a theory for the long-wave instability of short-

crested Stokes waves (SCWs). These waves are one of the simplest classes of doubly
periodic three-dimensional water waves and are therefore of fundamental interest,
and they are of practical importance since they appear in models for coastal sand
transport, reflection off vertical seawalls, and wave propagation along channels.

Historically, the problem of stability of SCWs has been approached directly. Roskes
(1976b) proposed the use of coupled nonlinear Stokes (NLS) equations to model SCW
instability, Mollo-Christensen (1981) proposed the use of Whitham modulation theory,
Ioualalen & Kharif (1994) computed eigenvalues of the exact linear stability problem
numerically, and Badulin et al. (1995) presented a qualitative analysis based on the
Zakharov (1968) Hamiltonian formulation for water waves. As far as we are aware
these are the only papers in the literature on a theoretical approach to the linear
stability of SCWs.

However, Roberts (1983) points out that SCWs are a special case of two-phase
wavetrains, and he proposes that the theory of Ablowitz & Benney (1970), where
modulation equations for multi-phase wavetrains are derived, be used for the stability
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Figure 1. Schematic of the deformation of an SCW into a two-wave interaction.

analysis. It is possible that this approach would work, but the Ablowitz–Benney
equation is non-local and not easy to work with. However, embedding the SCWs in
a two-phase wavetrain turns out to be the correct approach.

The basic observation is that an understanding of the linear stability of SCWs – even
weakly nonlinear SCWs – is closely associated with understanding the stability of the
oblique non-resonant interaction between two waves. One way to see the connection
between SCWs and two-wave interaction is to note that when an SCW becomes
unstable to long-wave perturbations, the resonant SCW plus the perturbation is a
wave with a wavenumber vector which is no longer resonant.

This observation is a generalization to two space dimensions of the geometry of
sideband instability. A weakly nonlinear Stokes wave is stable to perturbations of the
same wavelength. However, if a perturbation of a slightly longer wavelength is added,
it is unstable. This instability is determined by the susceptibility of the Stokes wave to
waves with slightly longer wavelength. In the case of SCWs there are two sidebands:
sidebands in wavenumber space associated with both the x and y directions. Therefore
the perturbed wavenumber vector is perturbed in both length and direction.

In the theory proposed here, the SCW is first embedded in a six-parameter family
of multi-phase wavetrains, as shown schematically in figure 1, and then a posteriori
the limit to resonant SCWs is taken, accumulating along the way enough information
to predict all the long-wave instabilities of SCWs. Effectively, the embedding provides
information about the susceptibility of the SCW to distortion in wavenumber space
by the perturbation.

A by-product of this analysis is a stability theory for the general two-phase wave-
train, which may be of independent interest. For example Onorato et al. (2003) show
that the instability of the non-resonant two-wave interaction may explain the double-
peaked power spectrum of waves in shallow water observed by Smith & Vincent
(1992).

The existence of the SCWs is assumed throughout, and attention is restricted to
gravity waves on a fluid of infinite depth, although the implications for other classes
of waves will be apparent. There is now a range of analytical and numerical existence
results in the literature that we can appeal to (e.g. Hsu, Silvester & Tsuchiya 1980;
Roberts 1983; Roberts & Peregrine 1983; Ioualalen 1993; Kimmoun, Branger &
Kharif 1999; Craig & Nicholls 2000, 2002 and references therein). A rigorous theory
for the existence of gravity SCWs has been elusive and Craig & Nicholls (2002) point
out that there are technical problems associated with small divisors. However, in the
case of capillary–gravity SCWs there is a well-developed existence theory (Craig &
Nicholls 2000).
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In addition to the existence of SCWs, the theory also uses an embedding of SCWs
in a general non-resonant two-phase wavetrain. Historically, the analyses of two-
wave and n-wave interactions have been considered independently of SCWs. The
only results in the literature for the general two-wave interaction are for the weakly
nonlinear case (e.g. Longuet-Higgins 1962; Willebrand 1975; Weber & Barrick 1977;
Pierson 1993; Elfouhaily et al. 2000 and references therein). It is easy to show that
applying the SCW limit to the (weakly nonlinear) two-wave interaction results in the
usual (weakly nonlinear) SCW solutions. However, a key new feature of the theory
here is that information is extracted from the embedding, before the limit to SCWs is
taken.

In this paper, a theory for the stability of weakly nonlinear SCWs and finite-
amplitude SCWs is developed. The only restriction is on the perturbation wave-
numbers, which are restricted to long-wave perturbations. These perturbations are
generalizations of the Benjamin–Feir instability of plane travelling waves.

A Stokes-type expansion for SCWs is singular in the long-crested limit (see
Roberts & Peregrine 1983, where an alternative theory is proposed which avoids
the singularity). Since this paper is primarily concerned with periodic SCWs, it is
assumed throughout that the parameter values for the SCWs are chosen away from
the long-crested limit. Since the waves under consideration in this paper are in infinite
depth, mean flow will be ignored. It is important to note that neglect of mean flow is
an assumption. It is certainly true for weakly nonlinear SCWs in infinite depth, but it
is an open question whether wave-generated mean flow can occur for finite-amplitude
SCWs. The formulation presented here is amenable to including mean flow effects
(see discussion in § 10). However, it is assumed in this paper that the SCWs are not
accompanied by wave-generated mean flow.

The water-wave problem is Hamiltonian, and it will be advantageous to recognize
this in the development of the theory. The Hamiltonian approach was first applied by
Badulin et al. (1995) to the analysis of SCWs and it was shown to have advantages.
This idea is taken a step further here with the use of the multi-symplectic formulation
of Hamiltonian PDEs. Since water waves and other Hamiltonian PDEs for SCWs
can be reformulated as multi-symplectic systems, a general formulation of multi-
symplectic Hamiltonian PDEs can be taken as the starting point

MZt + KZx + LZy = ∇S(Z), Z ∈ �, (1.1)

where M, K and L are constant skew-symmetric operators, � is a linear space (either
�n for the nonlinear wave equation or an inner-product space of functions on the
cross-section for water waves), and the gradient of S is with respect to the inner
product on �. Details of this formulation for water waves and other Hamiltonian
PDEs can be found in Bridges (1996, 1997a, b) and the details needed here are
recorded in § 2, including a new multi-symplectic formulation of the nonlinear wave
equation in two space dimensions. This nonlinear wave equation provides a simple
model problem for SCWs and an example where the long-wave transverse instability
of SCWs can disappear at low amplitude.

The advantage of the multi-symplectic framework is five-fold: (a) it is clear and
unambiguous how to formulate the long-wave stability theory, using only the structure
of the equations; (b) embedding the stability problem in the two-wave interaction is a
natural part of the multi-symplectic approach and provides further information about
the nature of the instability; (c) explicit results for weakly nonlinear water waves can
be obtained; (d ) general conclusions about SCW instability for other systems are also
deduced; (e) it is straightforward to include meanflow effects.
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What is a SCW? The definition is implicit in the literature, and in Appendix A an
explicit definition of SCWs is given. A solution, say Z(x, y, t) of (1.1), is called an SCW
if it is periodic in x, y and t , travelling in the x-direction (a function of x and t in linear
combination only), and is invariant under reversibility in the y-direction. A definition
of y-reversibility with examples is given in § 2. An immediate and illuminating
consequence of this definition is that SCWs have zero transverse momentum –
but certainly have non-zero longitudinal momentum. This property of SCWs is useful
for interpreting the embedding of SCWs in a two-phase wavetrain: the embedding
deforms the SCWs into waves with non-zero transverse momentum, thereby testing
the susceptibility of SCWs to perturbation of the transverse momentum.

Much of the paper is devoted to the existence, properties and stability of the oblique
two-wave interaction. Let η(x, y, t) represent the free-surface elevation. The oblique
two-wave interaction of water waves is a solution of the form

η(x, y, t) = η̂(θ1, θ2), (1.2)

where

θj = kjx + �jy + ωj t + θ0
j (j = 1, 2), (1.3)

and (kj , �j ) are the wavenumbers, ωj are the frequencies, θ0
j are phases, and η̂ is a 2π

periodic function of θ1 and θ2. A short-crested wave is the special case: k2 = k1 = k,
�2 = −�1 = −� and ω2 = ω1 = −ω, and it is reversible in the y-direction (invariant under
change of sign of y; precise definition given in § 3 and Appendix A). In the linear
and weakly nonlinear limit this latter condition reduces to the familiar requirement
of equal amplitudes of the two component waves.

The strategy is to construct variational principles for the general two-wave interac-
tion. The variational principles provide natural Jacobians which contain information
about the susceptibility of the SCW to distortion into oblique non-resonant two-wave
interaction.

The linear stability problem for the general two-wave interaction is then formulated
and a stability condition derived. Long-wave perturbations are of the form

η(x, y, t) = η̂(θ1, θ2) + Re
(
N(θ1, θ2)e

i(αx+βy+Ωt)
)

with |α|, |β| � 1.

The basic state is unstable when Im(Ω) < 0. This condition can be strengthened to
Im(Ω) �= 0 by noting that the Hamiltonian symmetry assures us that there exists an
eigenvalue with Im(Ω) < 0 whenever one exists with Im(Ω) > 0.

The main result is that all long-wave instabilities (of SCWs or the two-wave
interaction) are predicted by the zeros of the quartic polynomial

�(Ω, α, β) = det[N2Ω
2 + N1Ω + N0] (1.4)

where Nj are 2×2 matrices dependent on α, β and the basic state. Precise expressions
for these matrices are given in § 5. Taking the limit to SCWs in the matrices Nj leads
to a linear stability quartic for SCWs. Details of the results for SCWs are given in
§ § 6 and 7.

The general result (i.e. not just for water waves) for the weakly nonlinear case can
be summarized as follows. Let D(ω, k, �) be the dispersion relation for the linear
problem, and suppose parameter values are chosen so that

Dω �= 0, Dk �= 0, D� �= 0.

Consider a weakly nonlinear solution of (1.1) of the form

Z(x, y, t) = Ẑ(x, y, t) = A1 ξ ei(kx+�y−ωt) + A2 ξ ei(kx−�y−ωt) + c.c. + · · · , (1.5)
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where ξ is an eigenvector determined by the linearized operator, A1 and A2 are
complex amplitudes and the higher-order terms are higher order in |A1| and |A2|. To
leading order, the complex amplitudes satisfy

0 = A1(D(ω, k, �) + a|A1|2 + b|A2|2 + · · ·),
0 = A2(D(ω, k, �) + b|A1|2 + a|A2|2 + · · ·),

 (1.6)

where a and b are the coefficients for the nonlinear correction terms of the dispersion
relation.

Clearly when |A2| = 0 and |A1| �=0 (or vice versa) the basic state is a travelling wave
with frequency change

ω = ω0 + ωTW
2 |A1|2 + · · · where ωTW

2 = − a

Dω

, (1.7)

where D(ω0, k, �) = 0 and Dω is evaluated at ω = ω0. On the other hand, SCWs satisfy
|A1| = |A2| and so their frequency change is

ω = ω0 + ωSCW
2 |A1|2 + · · · where ωSCW

2 = − (a + b)

Dω

. (1.8)

Now, add a long-wave perturbation to (1.5)

Z(x, y, t) = Ẑ(x, y, t) + Re
(
Ξ ei(αx+βy+Ωt)

)
with |α|, |β| � 1. (1.9)

For the linearization about weakly nonlinear SCWs, the stability quartic (1.4) for
perturbations (1.9) has an interesting factorization into four branches (noting that
|A1| = |A2| := |A| for these waves)

Ω =



−Dkα − D�β

Dω

− σ+ |A| + · · · ,

−Dkα − D�β

Dω

+ σ+ |A| + · · · ,

−Dkα + D�β

Dω

− σ− |A| + · · · ,

−Dkα + D�β

Dω

+ σ− |A| + · · · ,

(1.10)

when β �= 0 (transverse instability) with

σ 2
+ = (ωkkα

2 + 2ωk�αβ + ω��β
2)ωTW

2 ,

σ 2
− = (ωkkα

2 − 2ωk�αβ + ω��β
2)ωTW

2 .

 (1.11)

The derivatives of ω(k, �) are obtained by differentiating D(ω(k, �), k, �) = 0. Note
that it is the TW correction and not the SCW correction to the frequency which
appears at leading order in the stability exponents for transverse instability.
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(a) (b)

Figure 2. A schematic showing the typical qualitative position of the eigenvalues λ= ±iΩ
for (1.10) when (a) |A| = 0 and (b) |A| > 0.

When β =0 (longitudinal instability), the factorization changes to

Ω =



− Dk

Dω

α − µ+ |A| + · · · ,

− Dk

Dω

α + µ+ |A| + · · · ,

− Dk

Dω

α − µ− |A| + · · · ,

− Dk

Dω

α + µ− |A| + · · · ,

(1.12)

with

µ2
+ = ωkkω

SCW
2 α2,

µ2
− = ωkk

(
2ωTW

2 − ωSCW
2

)
α2.

 (1.13)

A weakly nonlinear SCW is unstable if any of the four quantities σ 2
+, σ 2

−, µ2
+ or µ2

−
is negative.

Throughout it is assumed that σ+, σ−, µ+ and µ− are non-vanishing and of order
one. There are lines in perturbation wavenumber space, and particular values of the
wavenumber vector of the SCWs, where these coefficients vanish. Equation (1.19)
shows an example of these resonance lines, and further discussion is given in § 7.
When one of these coefficients vanishes, the weakly nonlinear stability properties are
determined at the next order in |A|.

The stability exponents are λ= ± iΩ with Ω given by (1.10) or (1.12). When |A| = 0
and β �= 0 there is a double resonance, as shown schematically in figure 2(b), plotted
in the complex λ-plane. The precise position of the resonances depends on the values
of (k, �) and (α, β). For β = 0, both pairs coalesce and the resonance is fourfold. When
|A| > 0 the resonances split, and may become unstable. The most dramatic situation
where β �= 0 and two modes become unstable is shown in figure 2(b).

The information contained in (1.10) and (1.12) can be summarized as follows. Let
D(ω, k, �) be the dispersion relation of the linearized problem and let (ω, k, �) be
the frequency and wavenumbers of the weakly nonlinear SCW (or to leading order
the values for the linearized problem). Then there are two alternatives for instability
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when β �= 0. First, if Dω �= 0 and

det


Dωω Dωk Dω� Dω

Dkω Dkk Dk� Dk

D�ω D�k D�� D�

Dω Dk D� 0

 > 0, (1.14)

the weakly nonlinear SCW is unstable. Secondly, if the determinant (1.14) is negative
but

ωkk ωTW
2 < 0, (1.15)

the basic SCW is unstable, where ωTW
2 is the frequency correction in (1.7), and ωkk is

the second derivative of ω associated with the x-direction only.
Longitudinal instabilities (β = 0) are determined by the signs of µ2

± in (1.13). The
first condition,

ωkkω
SCW
2 < 0,

is similar to the condition proposed by Molloo-Christensen (1981), although ωkk here
depends on � whereas in Mollo-Christensen (1981) the �-dependence is neglected (see
discussion below). The second condition is

ωkk

(
2ωTW

2 − ωSCW
2

)
< 0.

This condition is related to the condition proposed by Roskes (1976b). Clearly a
sufficient condition for longitudinal instability is µ2

+µ2
− < 0 which results in

0 > µ2
+µ2

− = ω2
kkα

4ωSCW
2

(
2ωTW

2 − ωSCW
2

)
=

ω2
kk

D2
ω

α4(a2 − b2) (1.16)

or |b| > |a| which is precisely the condition proposed by Roskes (1976b). However, this
is only a sufficient condition. It misses the case where both µ2

− and µ2
+ are negative,

which occurs for water waves.
The condition (1.14) is a sufficient condition for the right-hand side in (1.11) to

be factorizable with real factors. When σ 2
+ is factorizable, there is always a wedge

emanating from the origin in the (α, β)-plane where at least one of the roots of (1.10)
is unstable. The determinant condition (1.14) is satisfied for all weakly nonlinear
SCWs. However, the other potential transverse and longitudinal instabilities are
worth investigating as they may produce more than one unstable mode, and unstable
modes with higher growth rates.

Figure 3 shows a schematic of the position of the principal modes for SCWs when
� is small. In the small wedge around β = 0 (the longitudinal instabilities) there is
one pair of unstable modes; in the second wedge there are two unstable modes; in
the third wedge this reduces to one unstable mode, and then for β sufficiently large,
there are no unstable modes. This figure changes for other (k, �) values, and the other
possible diagrams are shown in § 8.

For water waves in deep water with gravity forces only, the dispersion relation is

D(ω, k, �) = ω2 − gν, ν =
√

k2 + �2, (1.17)

and substitution into (1.14) shows that the determinant is always positive. It is im-
mediate that there is a long-wave instability of weakly nonlinear short-crested water
waves. There is, however, more information about the regions of instability contained
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β

α

Figure 3. Position of unstable modes for weakly nonlinear gravity water waves (SCWs),
in each wedge in the (α, β)-plane when 2�2 < k2.

in (1.11). Let

s1(k, �) =

√
2� − k√
2k + �

, s2(k, �) =

√
2� + k√
2k − �

, (1.18)

then the coefficients (1.11) for the case of transverse instability of short-crested water
waves can be factorized into

σ 2
+ = − a

8ν4
(2k2 − �2)(β − s1α)(β − s2α),

σ 2
− = − a

8ν4
(2k2 − �2)(β + s1α)(β + s2 α),

 (1.19)

where a is as defined in (1.6). For deep-water waves, a = −2gν3 < 0. This factorization
divides the (α, β)-plane into wedges of stability and instability as shown schematically
in figure 3. The results shown in figure 3 give a qualitative description of the transverse
instability for weakly nonlinear short-crested Stokes waves when k2 > 2�2.

The results in figure 3 agree with the numerical results of Ioualalen & Kharif (1994)
for small |α| + |β|: see figures 8 and 9 in Ioualalen & Kharif (1994), where they are
referred to as class Ia and class Ib instabilities. However, Ioualalen & Kharif (1994)
do not remark on the fact that two instabilities can occur at the same parameter
values, but it appears to be implicit in their figures 8 and 9.

A weakly nonlinear analysis of the stability of SCWs is given by Badulin et al.
(1995) (hereinafter referred to as BSKI). Their results are predominantly qualitative,
and therefore it is difficult to make explicit comparison. They also reduce the weakly
nonlinear analysis to a quartic polynomial (see their (3.10)). However, they do not
give explicit expressions for the coefficients and, more importantly, they do not find
explicit expressions for the roots. In this paper, explicit expressions for the coefficients
(see (7.10)), and explicit leading-order expressions for the roots are found.

The results presented here agree only partially with the earlier SCW stability
results of Roskes (1976b) or Mollo-Christensen (1981). While these results have been
criticized previously, we now have enough information to give a precise account of
how these results are incorrect or incomplete.

In the paper of Mollo-Christensen (1981), it is proposed to use the Whitham
criterion to predict longitudinal instability with respect to perturbations travelling
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in the same direction as the basic SCW. Using notation from this paper, Mollo-
Christensen (1981) proposes that the SCW is unstable when

ωkkω
SCW
2 < 0. (1.20)

This condition agrees with the condition µ2
+ < 0 in (1.13), but it misses the condition

µ2
− < 0. The condition is missing because Mollo-Christensen assumes that SCW is a

single-phase wavetrain rather than a two-phase wavetrain.
On the other hand, as first pointed out by Roberts (1983), there is an error in Mollo-

Christensen (1981) in implementing the criterion (1.20). The derivative ωkk with � =0
is used, resulting in ωkk < 0 for all �. Hence the change of stability occurring when
ωkk changes sign is missed. See § 9 for discussion of the sign of µ2

+. The condition
(1.20) also misses the transverse instabilities of SCWs.

Roskes (1976b) proposes a system of coupled NLS equations as a model for the
long-wave instability of SCWs,

∂A1

∂t
= iγ1

∂2A1

∂x2
+ iA1(p11|A1|2 + p12|A2|2),

∂A2

∂t
= iγ2

∂2A2

∂x2
+ iA2(p21|A1|2 + p22|A2|2).

 (1.21)

In Roskes (1976b), β is used instead of p. Notation is changed here to avoid confusion
with the use of β for the perturbation wavenumber.

The parameters are adjusted to represent SCWs: γ1 = γ2, p11 = p22 = p < 0, where
p is proportional to a in (1.6), and p12 = p21 is proportional to b in (1.6). A basic
state representative of an SCW is taken and then a linear stability analysis is given.
Roskes (1976a) shows that in general such a state is unstable when

γ1γ2 det

[
p11 p12

p21 p22

]
< 0.

Applied to (1.6) this condition states that SCWs are unstable when |p12| > |p| which
is the condition stated in Roskes (1976b). This agrees with the sufficient condition
(1.16), but misses the instability when both µ2

− and µ2
+ are negative.

With (1.21) as a starting point, Roskes’ analysis of this NLS system, as a repre-
sentative model for longitudinal instability of SCWs, is correct. However, this coupled
NLS model is not uniformly valid as a model equation for modulation of weakly
nonlinear SCWs since it misses the transverse instabilities. This can be seen by looking
at the derivation of this coupled NLS system in Roskes (1976a). The transformed
slow space scale (denoted by x here) is defined by

x = u · X − c̃gT (1.22)

in Roskes (1976a) where c̃g is the group velocity in the direction u where the group
velocity of the two waves overlap, X = (X1, X2) are slow space scales, and T is a
slow time scale. However, in order to balance the time derivative, Roskes introduces
a new time scale t = εT (this t is the variable in (1.12). Therefore, x in (1.22) must be
interpreted as

x = u · X − 1

ε
c̃gt.

This expression shows that the scaling is not valid unless the group velocity overlap
c̃g is of order ε. However, for SCWs of the water-wave problem it is of order unity.
In the limit of long-crested waves the group velocities are nearly the same, but the
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weakly nonlinear expansion for SCWs can also be singular in this limit (Roberts &
Peregrine 1983).

The problem of deriving modulation equations for two-wave interaction when the
group velocity overlap is of order one has been considered in detail by Knobloch &
Gibbon (1991) and Pierce & Knobloch (1994). They show that in this case, the coupl-
ing terms change to non-local terms: one wave senses the other wave only through an
average property of the other wave. The distinction is important as the stability results
for modulation equations with non-local averaging differ significantly from the results
for local equations such as (1.21). Pierce & Knobloch (1994) derive the appropriate
equations for modulation of standing waves, and it is reasonable to conjecture that
the modulation equations for transverse instability of weakly nonlinear SCWs will be
of a similar non-local form. The modulation equations derived by Pierce & Knobloch
(1994) for weakly nonlinear standing waves predict that the coupled wave is unstable
if and only if the component travelling waves are unstable. Although the modulation
equations of Pierce & Knobloch (1994) do not apply to SCWs, if we extrapolate their
results to SCWs, we find that they are consistent with the results found for transverse
instability in this paper.

2. Multi-symplectic structure of wave equations
The theory for instability of short-crested waves is developed for the general class of

PDEs (1.1). In this section, first a semilinear wave equation in two space dimensions
will be used to illustrate the transformation to multi-symplectic form, and then the
multi-symplectic formulation of water waves is recorded.

2.1. Multi-symplectifying nonlinear wave equations

Consider the class of semilinear wave equations,

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
+ V ′(u) = 0, (2.1)

where u(x, y, t) is scalar valued and V (u) is a smooth nonlinear function with
V ′′(0) > 0. The canonical form of the Lagrangian is

L =

∫
L(u, ut , ux) dt dx dy, L(u, ut , ux) = 1

2
u2

t − 1
2
u2

x − 1
2
u2

y − V (u). (2.2)

The canonical Hamiltonian formulation for the nonlinear wave equation is obtained
by taking the Legendre transform with respect to time only, v = ∂L/∂ut = ut , and
then the governing equations take the form

∂

∂t

(
u

v

)
=

[
0 1

−1 0

]
δH
δu

δH
δv

 , H(u, v) =

∫ (
1
2
v2 + 1

2
u2

x + 1
2
u2

y + V (u)
)
dx dy. (2.3)

Hamiltonian formulations of the nonlinear wave equation are widely used in analysis
(see Kuksin 2000 and references therein). However a disadvantage of this formulation,
when studying pattern formation, is that the Hamiltonian function and symplectic
structure associated with (2.3) require definition of a space of functions over the x-
and y-directions a priori . In the case of modulation instabilities, the basic state is
periodic in space, but the perturbation class is in general quasi-periodic.
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Multi-symplecticity puts space and time on an equal footing. The governing equa-
tions are obtained by taking a Legendre transform with respect to all directions
(a covariant or ‘total’ Legendre transform), v = ∂L/∂ut = ut , w = ∂L/∂ux = −ux and
p = ∂L/∂uy = −uy . The Legendre transform generates a new Hamiltonian functional

S(u, v, w, p) = vut + wux + puy − L = 1
2
(v2 − w2 − p2) + V (u). (2.4)

The new Lagrangian for the system is

L =

∫
L(u, v, w, p) dt dx dy, L(u, v, w, p) = vut +wux +puy −S(u, v, w, p), (2.5)

and the governing equations are given by

0 = Lu = −vt − wx − py − Su,

0 = Lv = ut − Sv,

0 = Lw = ux − Sw,

0 = Lp = uy − Sp,

using standard fixed-endpoint conditions for the variations. However, these equations
do not have a nice multi-symplectic structure, since the triple of symplectic operators
are always degenerate. This structure is improved by observing that v, w and p satisfy
the constraints px −wy = 0, pt +vy = 0 and vx +wt = 0. Therefore add these constraints
to the Lagrangian (2.5) with Lagrange multipliers α1, α2 and α3. A divergence-free
condition is imposed on the Lagrange multipliers: ∂tα1 + ∂xα2 + ∂yα3 = 0. That this
equation is the correct one is justified a posteriori: with this condition, the resulting
multi-symplectic system provides an equivalent system of PDEs. With this additional
constraint, the Lagrangian density is

L(u, v, w, p, α1, α2, α3, α4) = vut + wux + puy − S(u, v, w, p)

+ α1(px − wy) + α2(pt + vy) − α3(vx + wt )

+ α4(∂tα1 + ∂xα2 + ∂yα3). (2.6)

The governing equations are now

MZt + KZx + LZy = ∇S(Z) Z ∈ �8, (2.7)

M =



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0


, K =



0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1
0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0


,



158 T. J. Bridges and F. E. Laine-Pearson

and

L =



0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


, Z =



u

v

w

p

α1

α2

α3

α3


,

The formulation (2.7) is remarkable in that all three of the operators M, K and L are
non-degenerate, and so they each define canonical symplectic structures on �8.

A fundamental property of the scalar nonlinear wave equation (2.1), that is impor-
tant for the existence of short-crested waves, is reversibility in y. If u(x, y, t) is a solu-
tion of (2.1), then clearly u(x, −y, t) is also a solution. In the multi-symplectification
of (2.1), this reversibility is defined by the action

R Z(x, y, t) := RZ(x, −y, t) with R = diag(1, 1, 1, −1, −1, −1, 1, −1). (2.8)

The matrix R is an involution (has the property R2 = I) and satisfies

RM = MR, RK = KR, RL = −LR, S(R Z) = S(Z). (2.9)

In turn, the properties (2.9) imply that R Z is a solution of the wave equation in the
form (2.7) whenever Z is a solution. The nonlinear wave equation (2.1) is reversible in
x and t as well, and a multi-symplectic t-reversor and x-reversor can also be defined,
but they are not required in the general theory for short crested waves.

In addition to being a simple example, the nonlinear wave equation has an
interesting property which is quite different from water waves: the determinant
condition (1.14) is not violated. The dispersion relation for (2.1) linearized about the
trivial state u =0 is

D(ω, k, �) = ω2 − k2 − �2 − V ′′(0),

where V ′′(0) > 0 by hypothesis. Hence,

det


Dωω Dωk Dω� Dω

Dkω Dkk Dk� Dk

D�ω D�k D�� D�

Dω Dk D� 0

= det


2 0 0 2ω

0 −2 0 −2k

0 0 −2 −2�

2ω −2k −2� 0

= −16V ′′(0) < 0. (2.10)

Therefore, by choosing V ′′′(0) = 0 and V ′′′′(0) > 0 (since sign(ωkk ωTW
2 ) = sign(V ′′′′(0))

in this case), the weakly nonlinear SCWs of (2.1) are stable to long-wave transverse
perturbations. They may, of course, still be unstable to short-wave transverse
perturbations or longitudinal perturbations.

2.2. Multi-symplectic structure of water waves

The multi-symplectic formulation of water waves of Bridges (1996, 1997a) is used,
and the details required are recorded here. Restrict attention to inviscid irrotational
water waves of constant density on an infinite depth fluid.

Let (x, y) ∈ �2 denote the horizontal coordinates and z the vertical coordinate.
Denote by φ(x, y, z, t) the velocity potential. The fluid is bounded above by the surface
z = η(x, y, t). In the interior of the fluid, the velocity potential satisfies Laplace’s
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equation

�φ = φxx + φyy + φzz = 0 for − ∞ < z < η(x, y, t) (2.11)

and is quiescent far from the surface

∇φ → 0 as z → −∞. (2.12)

At the free surface, the functions (φ, η) satisfy the kinematic and dynamic boundary
conditions

ηt + φxηx + φyηy − φz = 0

φt + 1
2

(
φ2

x + φ2
y + φ2

z

)
+ gη = 0

 at z = η(x, y, t), (2.13)

where g is the gravitational constant.
To multi-symplectify, introduce new variables Z = (Φ, η, φ, u, v) where

Φ = φ|z=η, u = φx, v = φy, u = u|z=η, v = v|z=η.

The functions (Φ, η) are, for each (x, y, t), real numbers whereas (φ, u, v) are
dependent also on the cross-section z ∈ (−∞, η). Using the fact that

Φt = [φt + φzηt ]|z=η,

with similar relations for Φx and Φy , and the kinematic condition, leads to the identity

Φt + uΦx + vΦy =
[
φt +

(
φ2

x + φ2
y + φ2

z

)]∣∣
z=η

. (2.14)

With these coordinates, the governing equations can be written in the form

M(Z)Zt + K(Z)Zx + L(Z)Zy = ∇S(Z) (2.15)

with

S(Z) = 1
2

∫ η

−∞

(
u2 + v2 − φ2

z

)
dz − 1

2
gη2, (2.16)

and the associated side conditions on elements of Z,

φ|z=η = Φ, |∇φ| → 0 as z → −∞. (2.17)

The operators M(Z), K(Z) and L(Z) are defined by

M(Z) =


0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , K(Z) =


0 −u 0 0 0
u 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

 , (2.18)

and

L(Z) =


0 −v 0 0 0
v 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 1 0 0

 . (2.19)

To verify that the right-hand side of (2.15) is the gradient of some functional S,
we first introduce a suitable inner product. For vector-valued functions of the type Z,
where the first two components are scalar-valued and the last three components are
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defined on the cross-section z ∈ (−∞, η), we use the following inner product

〈U, V 〉η = U1V1 + U2V2 +

∫ η

−∞
(U3V3 + U4V4 + U5V5) dz. (2.20)

Note that the inner product is dependent on η, and this is indicated by the subscript
on the inner product. The gradient of S(Z), (2.16), with respect to the inner product,
(2.20), is

∇S(Z)
def
=


δS/δΦ

δS/δη

δS/δφ

δS/δu

δS/δv

=


−φz|z=η

1
2

(
u2 + v2 + φ2

z

)∣∣
z=η

− gη

φzz

u

v

 . (2.21)

The water-wave problem has the appropriate y- reversibility that is required for the
existence of SCWs. Let

R = diag(1, 1, I, I, −I).

Then it is easily verified that

RM(R Z) = +M(Z)R, RL(R Z) = +K(Z)R, RL(R Z) = −L(Z)R,

and S(R Z) = S(Z), where R Z = RZ(x, −y, t).
The skew-symmetric operators M(Z), K(Z) and L(Z) are non-constant. However,

with a simple transformation, they can be reduced to constant skew-symmetric
operators (see Bridges 2001). Therefore, it will be assumed hereinafter that the water-
wave equations are transformed and so are in the standard form (1.1).

The multi-symplectic formulation of water waves is a generalization of the classical
Hamiltonian formulation of water waves due to Zakharov (1968). Defining,

∇̃H (Z) = ∇S(Z) − K(Z)Zx − L(Z)Zy, (2.22)

where ∇̃ is a gradient operator defined with respect to an inner product that includes
integration over x and y, the equations can be written in the form

M(Z)Zt = ∇̃H (Z).

This system is the Zakharov formulation rewritten in terms of the Z-variables. The
multi-symplectic structure provides a refinement of the classical Hamiltonian structure,
in that it decomposes the Hamiltonian to generate independent symplectic structures
for the x- and y-directions.

3. The general oblique two-wave interaction
Motivated by the nonlinear wave equation and the water-wave problem, the starting

point for the analysis is the general class of abstract Hamiltonian PDEs of the form

MZt + KZx + LZy = ∇S(Z), Z ∈ �, (3.1)

under the hypotheses that M, K and L are any constant skew-symmetric operators,
S is any given smooth function, which does not depend explicitly on x, y or t . The
linear space � is either �n or in the case of water waves it is an inner product space
of functions in the z-direction. The precise specification of � is not required in the
sequel. On �, the standard inner product will be denoted by 〈·, ·〉.
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It is also assumed that there is a reversibility in y with a multi-symplectic action of
the reversor:

RZ(x, y, t) = RZ(x, −y, t), (3.2)

for some linear operator R : � → � which is involutive (i.e. R2 = I) and preserves the
inner product, and satisfies (2.9) for (3.1). In this setting, an abstract definition of a
short-crested wave can be given (see Appendix A).

In this section, the general two-wave interaction is considered; that is, general
solutions of (3.1) of the form

Z(x, y, t) = Ẑ(θ1, θ2) where θj = kjx + �jy + ωj t (j = 1, 2), (3.3)

and Ẑ is a 2π-periodic function of θ1 and θ2. There is an arbitrary phase shift in each
θj which is suppressed for brevity.

In addition to its importance as an embedding for SCWs, the oblique two-wave
interaction has independent interest in remote-sensing stochastic models, and a model
for the double-peaked power spectrum observed in shallow water-wave dynamics
Longuet-Higgins 1962; Willebrand 1975; Weber & Barrick 1977; Pierson 1993;
Elfouhaily et al. 2000 and references therein).

The main result of this section is a constrained variational principle for the two-
wave interaction which generalizes previous variational principles for quasi-periodic
patterns (Bridges 1998) and collinear two-phase wavetrains (Bridges & Laine-Pearson
2001). Variational principles can be derived for SCWs directly, as in Bridges, Dias &
Menasce (2001) for example, but these variational principles for SCWs do not contain
enough information for a stability analysis.

The solutions Ẑ(θ1, θ2) can also be interpreted as steady waves travelling in some
oblique direction (Milewski & Keller 1996). Let

Θ1 =
�2θ1 − �1θ2

k1�2 − k2�1

, Θ2 =
k2θ1 − k1θ2

k1�2 − k2�1

.

Then clearly,

Θ1 = x − cxt, Θ2 = y − cyt, with (cx, cy) =

(
ω2�1 − ω1�2

k1�2 − �1k2

,
ω2k1 − ω1k2

k1�2 − �1k2

)
.

The transformation (θ1, θ2) �→ (Θ1, Θ2) is invertible if k1�2 − k2�1 �= 0. Note that this
non-degeneracy condition holds even in the SCW limit (reducing to k� �= 0). In
transformed coordinates, a doubly periodic wave can be expressed in the form

Ẑ(θ1, θ2) = Ŵ (Θ1, Θ2) = Ŵ (x − cxt, y − cyt),

i.e. a steady wave travelling with phasespeed vector c =(cx, cy). However, for the varia-

tional characterization, the primitive form of Ẑ(θ1, θ2) is used as the parameter struc-
ture is more useful.

The extension from SCWs to the non-resonant two-wave interaction takes a
resonant wave to a non-resonant wave, and therefore we would expect small divisors.
However, it is not this embedding that gives rise to small divisors, because there
is a continuous symmetry (the translation invariance in the y-direction on periodic
functions gives an O(2) symmetry), and so the variation of the frequencies and wave-
numbers is smooth. In finite dimensions this is reminiscent of the spherical pendulum,
and in infinite dimensions it is reminiscent of the similar issues with standing waves
and their embedding in a collinear two-wave interaction (see Bridges & Laine-Pearson
2004 for further discussion of this issue).
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On the other hand, there is an intrinsic issue of small divisors that arises owing to the
countable number of pure imaginary eigenvalues in the spectrum of the linearization
about the trivial state. See Craig & Nicholls (2002, § 4.4), for a discussion of this issue
for three-dimensional water waves. However, when we consider capillary–gravity
three-dimensional waves instead of pure gravity waves three-dimensional waves, the
small-divisor issue disappears and a rigorous proof of such doubly periodic waves
can be obtained (Craig & Nicholls 2000).

The governing equation for a general two-wave interaction Ẑ(θ1, θ2) is obtained
from (3.1) which transforms to

J1

∂Ẑ

∂θ1

+ J2

∂Ẑ

∂θ2

= ∇S(Ẑ) where Jj = ωjM + kjK + �jL. (3.4)

The operators Jj ∂θj
are formally gradient operators, and this is the basis of a

variational principle. The product of the skew-symmetric operator Jj and the
derivative ∂θj

is symmetric. Therefore the product can define a quadratic form whose
gradient then formally recovers the operator.

For j = 1, 2, define the following six functionals for the two interacting waves

Aj (Z) =

∮
1
2

〈
M

∂Z

∂θj

, Z

〉
dθ, Bj (Z) =

∮
1
2

〈
K

∂Z

∂θj

, Z

〉
dθ,

Cj (Z) =

∮
1
2

〈
L

∂Z

∂θj

, Z

〉
dθ where

∮
( ) dθ =

1

(2π)2

∫ 2π

0

∫ 2π

0

( ) dθ1 dθ2.

 (3.5)

For the case of water waves, these functionals are expressible in the classical form

Aj (Z) =

∮
−Φ

∂η

∂θj

dθ, Bj (Z) =

∮ ∫ η

−∞
u

∂φ

∂θj

dz dθ, Cj (Z) =

∮ ∫ η

−∞
v

∂φ

∂θj

dz dθ.

(3.6)

The functionals Aj can be identified with a multi-phase form of wave action
and the functionals Bj and Cj can be identified with wave action fluxes (Whitham
1974). The difference here is that we do not use a Lagrangian formulation, and the
actions and action fluxes have a geometrical characterization (Bridges 1997b). With the
geometrical formulation, the actions and action fluxes enter the linear stability analysis
in an explicit way and so stability results can be obtained without having to use a
modulation equation such as the multi-phase modulation equation of Ablowitz &
Benney (1970).

Consider the Lagrange functional

F(Z; ω, k, �) = S(Z) −
2∑

j=1

(ωj Aj +kj Bj +�j Cj ) where S(Z) =

∮
S(Z) dθ. (3.7)

Then using an inner product that includes integration over θ , the first variation of F
is the governing equation (3.4).

This functional leads to the following constrained variational principle. Let

C(Z) = {Z : Aj (Z) = Ij , Bj (Z) = I2+j , Cj (Z) = I4+j , j = 1, 2, I ∈ �6},

where I = (I1, . . . , I6) are assigned level sets of the functionals. Then a two-wave

interaction solution Ẑ(θ1, θ2) can be characterized as a critical point of S with Ẑ

restricted to the set C. The Lagrange necessary condition is ∇F = 0 (3.4).
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There are two immediate consequences of the Lagrange multiplier theory. First, the
six parameters (ωj , kj , �j ) j = 1, 2 are Lagrange multipliers and therefore satisfy

ω1 =
∂S
∂I1

, k1 =
∂S
∂I2

�1 =
∂S
∂I3

ω2 =
∂S
∂I4

, k2 =
∂S
∂I5

, �2 =
∂S
∂I6

. (3.8)

Secondly, the constrained variational principle is non-degenerate if

det



∂ω1

∂I1

∂ω1

∂I2

∂ω1

∂I3

∂ω1

∂I4

∂ω1

∂I5

∂ω1

∂I6

∂k1

∂I1

∂k1

∂I2

∂k1

∂I3

∂k1

∂I4

∂k1

∂I5

∂k1

∂I6

∂�1

∂I1

∂�1

∂I2

∂�1

∂I3

∂�1

∂I4

∂�1

∂I5

∂�1

∂I6

∂ω2

∂I1

∂ω2

∂I2

∂ω2

∂I3

∂ω2

∂I4

∂ω2

∂I5

∂ω2

∂I6

∂k2

∂I1

∂k2

∂I2

∂k2

∂I3

∂k2

∂I4

∂k2

∂I5

∂k2

∂I6

∂�2

∂I1

∂�2

∂I2

∂�2

∂I3

∂�2

∂I4

∂�2

∂I5

∂�2

∂I6



�= 0. (3.9)

Using (3.8), the condition (3.9) is equivalent to the non-degeneracy of the Hessian of
S with respect to I1, . . . , I6. A condition which is equivalent to (3.9) is

det



δA
δω

δA
δk

δA
δ�

δB
δω

δB
δk

δB
δ�

δC
δω

δC
δk

δC
δ�

 �= 0, (3.10)

where

δA
δω

=


∂A1

∂ω1

∂A1

∂ω2

∂A2

∂ω1

∂A2

∂ω2

,
δA
δk

=


∂A1

∂k1

∂A1

∂k2

∂A2

∂k1

∂A2

∂k2

,
δA
δ�

=


∂A1

∂�1

∂A1

∂�2

∂A2

∂�1

∂A2

∂�2

, (3.11)

with analogous 2 × 2 matrices for B and C.
It follows from the variational principle that the matrices in (3.9) and (3.10) are

symmetric. Hence

δB
δω

=
δA
δk

T

,
δC
δω

=
δA
δ�

T

,
δC
δk

=
δB
δ�

T

. (3.12)

Although we have restricted attention to the two-wave interaction here, it should
be apparent that the basic formulation can be generalized to N-wave interactions.
When there are N interacting waves, there will be 3N functionals and 3N Lagrange
multipliers. For the case of the three-wave interaction of water waves, this variational
principle has been applied by Laine-Pearson (2002) to obtain results for the weakly
nonlinear three-wave interaction.
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4. Weakly nonlinear oblique two-wave interaction of water waves
In this section, the variational principle of § 3 is applied to weakly nonlinear water

waves. The motivation is twofold: to derive existing results in the literature on the two-
wave interaction (e.g. Longuet-Higgins 1962; Weber & Barrick 1977; Pierson 1993)
from a variational perspective, and secondly, to obtain information which is used for
the limit to SCWs. Some generalities about the weakly nonlinear two-wave interaction
are also discussed.

At the linear level, a two-wave interaction solution of (3.1) is of the form

Ẑ(θ1, θ2) =

2∑
j=1

(Aj ξ j exp(iθj ) + c.c.) with D(ωj , kj , �j ) = 0, j = 1, 2,

for any complex numbers A1 and A2, where ξ j is an eigenvector and D(ω, k, �) is the

dispersion function. For gravity water waves in infinite depth, D(ω, k, �) = ω2 −
g

√
k2 + �2.

The simplest nonlinear problem of pairwise interaction is then to study the persist-
ence of such a wave interaction in the nonlinear problem for small amplitude. Such
an interaction will not persist for all (A1, A2) ∈ �2 and one purpose of a weakly
nonlinear analysis is to determine under what conditions we can expect such an
interaction to persist. The weakly nonlinear theory leads to a set of amplitude
equations of the form

0 = A1(D(ω1, k1, �1) + Λ11|A1|2 + Λ12|A2|2 + · · ·),
0 = A2(D(ω2, k2, �2) + Λ21|A1|2 + Λ22|A2|2 + · · ·),

 (4.1)

with Λ12 = Λ21. These equations generalize the amplitude equations (1.6) for SCWs
to amplitude equations for the two-wave interaction. Here we give a brief account of
the derivation of this equation for weakly nonlinear two-wave interaction for water
waves.

According to the variational principle, the solutions correspond to critical points of
S restricted to level sets of the functionals (Aj , Bj , Cj ) for j = 1, 2. The necessary
condition for the variational principle is to find critical points of the unconstrained
functional (3.7). We seek solutions that are 2π-periodic in θ1 and θ2 through a double
Fourier series of the form

Ẑ(θ1, θ2) =
∑

(m,n)∈�2

Zmn exp(i(mθ1 + nθ2)).

Since Z = (Φ, η, φ, u, v)T we can determine Φ , u and v from φ and η using

Φ = φ|z=η,

(
u

v

)
=

(
k1 k2

�1 �2

)(
∂φ/∂θ1

∂φ/∂θ2

)
.

The problem is then reduced to solving for the velocity potential and free-surface
elevation. A leading-order expansion for them is

η(θ1, θ2) = A1 eiθ1 + A2 eiθ2 + a21 + a22 e2iθ1 + a23 e2iθ2

+ a24e
i(θ1+θ2) + a25 ei(θ1 − θ2) + c.c. + · · · ,

φ(z, θ1, θ2) = b1 eυ1z+iθ1 + b2 eυ2z+iθ2 + b22 e2(υ1z+iθ1) + b23 e2(υ2z+iθ2)

+ b24 eχ+z+i(θ1+θ2) + b25 eχ−z+i(θ1−θ2) + c.c. + · · · ,
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where

υ1 =
(
k2

1 + �2
1

)1/2
, χ+ = [(k1 + k2)

2 + (�1 + �2)
2]1/2,

υ2 =
(
k2

2 + �2
2

)1/2
, χ− = [(k1 − k2)

2 + (�1 − �2)
2]1/2.

Define cos γ = (k1k2 + �1�2)/(υ1υ2). The angle γ is the angle between the wave vectors
(k1, �1) and (k2, �2). In terms of γ ,

χ2
+ = υ2

1 + υ2
2 + 2 cos γ υ1υ2, χ2

− = υ2
1 + υ2

2 − 2 cos γ υ1υ2.

The above expressions for η, φ, Φ , u and v are substituted into the definitions of
the functionals S, Aj , Bj and Cj for j = 1, 2 in order to construct the functional
F(a1, b1, . . . , ω, k, �). The Fourier coefficients b1, b2, . . . and a22, a23, . . . are eliminated
using

∂F
∂b1

= 0,
∂F
∂b2

= 0, . . . ,
∂F
∂a22

= 0,
∂F
∂a23

= 0, . . . ,

resulting in a21 = 0 to leading order and

b1 = i
ω1

υ1

A1 + · · · ,

b22 = 0 + · · · ,
b24 = ib̂24 A1A2 + · · · ,
a22 = υ1 A2

1 + · · · ,
a24 = â24 A1A2 + · · · ,

b2 = i
ω2

υ2

A2 + · · · ,

b23 = 0 + · · · ,
b25 = ib̂25 A1A2 + · · · ,
a23 = υ2 A2

2 + · · · ,
a25 = â25 A1A2 + · · · ,

where

â24 = 1
4
χ+K+ + (υ1 + υ2) − 2

g
ω1ω2 sin2 1

2
γ,

â25 = 1
4
χ−K− + (υ1 + υ2) +

2

g
ω1ω2 cos2 1

2
γ,

b̂24 = 1
4
(ω1 + ω2)K+,

b̂25 = 1
4
(ω1 − ω2)K−,

and

K+ =
16ω1ω2 sin2 1

2
γ

[gχ+ − (ω1 + ω2)2]
, K− = −

16ω1ω2 cos2 1
2
γ

[gχ− − (ω1 − ω2)2]
.

Back substitution into F results in the reduced functional

F̂(|A1|2, |A2|2, ω, k, �) =

(
ω2

1

υ1

− g

)
|A1|2 +

(
ω2

2

υ2

− g

)
|A2|2 +

− 2υ1ω
2
1|A1|4 − 2υ2ω

2
2|A2|4 + Υ |A1|2|A2|2 + · · · , (4.2)

where

Υ =
ω1ω2

g
(ω1 + ω2)

2K+ sin2 1
2
γ − ω1ω2

g
(ω1 − ω2)

2K− cos2 1
2
γ

− 8ω1ω2(υ1 + υ2) cos γ +
2

g
ω2

1ω
2
2(3 + cos2 γ ). (4.3)
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Taking the gradient of F̂ with respect to A1 and A2 results in[(
ω2

1/υ1 − g
)

− 4υ1ω
2
1|A1|2 + Υ |A2|2 + · · ·

]
A1 = 0,[(

ω2
2/υ2 − g

)
+ Υ |A1|2 − 4υ2ω

2
2|A2|2 + · · ·

]
A2 = 0,

 (4.4)

which is in the standard form (4.1).
First note that if |A2| =0 and |A1| �=0 or |A1| =0 and |A2| �= 0, we recover the weakly

nonlinear dispersion relation for a plane monochromatic wave. When |A1| · |A2| �= 0
the nonlinear frequency change as a function of amplitude for the (generically) quasi-
periodic two-wave interaction is obtained.

The coefficients in (4.4) agree with existing results on the two-wave interaction
(Longuet-Higgins 1962; Weber & Barrick 1977; Willebrand 1975; Pierson 1993), and
when the SCW limit is taken, the coefficient Υ reduces to the coefficient b in (1.6)
for SCWs which agrees with the expression for SCWs in Bridges, Dias & Menasce
(2001) (denoted α3 on their p. 165). An explicit expression for the SCW limit of Υ is
given in § 9.

5. Linear stability problem for the oblique two-wave interaction
Take the governing equations in the form (3.1) and suppose there exists a smooth

six-parameter family of two-phase waves as in § 3. Consider a perturbation of this

basic state of the form Z �→ Ẑ +Z and linearize (3.1) about the basic state. The result
is the linear system of PDEs

M
∂Z

∂t
+ K

∂Z

∂x
+ L

∂Z

∂y
= HessZS(Ẑ)Z, (5.1)

where HessZS(Ẑ) is the Hessian of S(Z) evaluated at Ẑ.
Consider the following class of perturbations

Z(θ1, θ2, x, y, t) = Re
{
U (θ1, θ2) ei(αx+βy+Ωt)

}
, (5.2)

with α and β real, Ω ∈ �, and U (θ1, θ2) a 2π-periodic function of θ1 and θ2.
Substitution results in the following eigenvalue problem for the stability exponent
Ω ∈ �,

LU = iΩ MU + iα KU + iβ LU (5.3)

where

L = HessZS(Ẑ) − J1

∂

∂θ1

− J2

∂

∂θ2

= HessZS(Ẑ) − ω1M
∂

∂θ1

− ω2M
∂

∂θ2

− k1K
∂

∂θ1

− k2K
∂

∂θ2

− �1L
∂

∂θ1

− �2L
∂

∂θ2

= HessZF(Ẑ), (5.4)

using (3.4) and the definition of F in (3.7).
Attention will be restricted to long-wave instabilities where |α|2 + |β|2 � 1. This

hypothesis does not put any restriction on the amplitude of the basic state, it restricts
only the class of perturbations. When α = β = 0, the eigenvalue problem for Ω has
(at least) a double zero eigenvalue because the kernel of L is non-trivial. The strategy
is to expand the solution of (5.3) in a Taylor series in α and β . Then a solvability
condition will lead to the leading-order behaviour of the stability exponent.
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When Ω = α = β = 0, (5.3) has two solutions,

Ker(L) = span{ψ1, ψ2} where ψ j =
∂Ẑ

∂θj

for j = 1, 2.

This follows since differentiation of (3.4) with respect to θ1 and θ2 results in

L(∂θj
Ẑ) = 0, j =1, 2. Therefore Ker(L) ⊇ span{ψ1, ψ2}. For particular parameter

values (or with additional symmetry), the kernel may be larger, but generically we
have equality, and this is assumed hereinafter.

The general solution of (5.3) can be expressed in the following form to leading
order

U = c1U1 + c2U2

= c1

(
ψ1 + iα

∂Ẑ

∂k1

+ iβ
∂Ẑ

∂�1

+ iΩ
∂Ẑ

∂ω1

)

+ c2

(
ψ2 + iα

∂Ẑ

∂k2

+ iβ
∂Ẑ

∂�2

+ iΩ
∂Ẑ

∂ω2

)
+ O(|Ω |2 + |α|2 + |β|2), (5.5)

where (c1, c2) are at present arbitrary complex constants whose properties are to
be determined as part of the analysis. This form of the leading-order solution is
confirmed by noting that differentiation of (1.1) results in

L
(

∂Ẑ

∂ωj

)
=Mψ j , L

(
∂Ẑ

∂kj

)
= Kψ j , L

(
∂Ẑ

∂�j

)
= Lψ j for j = 1, 2.

An expression for the stability exponent is obtained by using (5.5) and applying
the solvability condition to (5.3). Introduce the following inner product for functions
Z ∈ � that are 2π-periodic in θ1 and θ2,

[[U, V ]] =

∮
〈U (θ1, θ2), V (θ1, θ2)〉 dθ =

1

(2π)2

∫ 2π

0

∫ 2π

0

〈U (θ1, θ2), V (θ1, θ2)〉 dθ1 dθ2, (5.6)

where 〈·, ·〉 is the inner product on �. Since Ker(L) = span{ψ1, ψ2} by hypothesis
and L is formally symmetric, we have the following two solvability conditions for
(5.3),

[[ψ j , (iαK + iβL + iΩM)U ]] = 0 for j = 1, 2. (5.7)

However, since (5.3) is linear and U = c1U1 + c2U2, the solvability condition is
equivalent to

N(Ω, α, β) c = 0,

where N(Ω, α, β) is the 2 × 2 matrix

N(Ω, α, β)

=

[[ψ1, (iαK + iβL + iΩM)U1]] [[ψ1, (iαK + iβL + iΩM)U2]]

[[ψ2, (iαK + iβL + iΩM)U1]] [[ψ2, (iαK + iβL + iΩM)U2]]

 and c =

(
c1

c2

)
.

The matrix N(Ω, α, β) has complex-valued entries dependent on Ω ∈ � and (α, β) ∈
�2. Clearly, there is a non-trivial solution, i.e. ‖c‖ �= 0, of the linear stability problem
if and only if

�(Ω, α, β)
def
= det[N(Ω, α, β)] = 0. (5.8)
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This leads to the following definition of instability: If for some (α, β) ∈ �2 there exists
an Ω ∈ � such that �(Ω, α, β) = 0 and Im(Ω) �= 0 the basic state is linearly unstable.

An unstable eigenfunction is constructed as follows. For some (α, β), suppose
�(Ω, α, β) has an unstable root Ω . Then substitute this (α, β, Ω) into the expression
for U (θ1, θ2) which in turn is substituted into the expression for the perturbation
(5.2). The resulting function Z(θ1, θ2, x, y, t) is then an approximation to an unstable
eigenfunction of (5.1), valid for |Ω |, |α| and |β| sufficiently small.

The expression for U in (5.5) is used to construct the leading-order Taylor expansion
of N(Ω, α, β), and hence �(Ω, α, β), to obtain a sufficient condition for linear
instability valid for |Ω |2 + |α|2 + |β|2 sufficiently small.

Our main result is that the matrix N can be expressed in terms of known quantities.
First, the expression will be given, and then it will be verified,

N(Ω, α, β) = N0 + N1Ω + N2Ω
2 + o(|Ω |2 + |α|2 + |β|2), (5.9)

with

N0 = α2 δB
δk

+ αβ

(
δB
δ�

+
δC
δk

)
+ β2 δC

δ�
,

N1 = α

(
δA
δk

+
δB
δω

)
+ β

(
δA
δ�

+
δC
δω

)
,

N2 =
δA
δω

,


(5.10)

where the matrices δA/δω etc. are defined in (3.11). The Jacobians from the varia-
tional principle of § 3 appear in a central way in the analysis of long-wave instability:
the leading-order terms in the stability problem can be obtained from known infor-
mation about the basic state.

The derivation of the entries of the matrix N2 is given, with the verification of the
other two following the same argument. By definition

N(Ω, 0, 0) =

iΩ[[ψ1, MU1]] iΩ[[ψ1, MU2]]

iΩ[[ψ2, MU1]] iΩ[[ψ2, MU2]]

 .

Substitute the leading-order expression for U1 and U2 from (5.5),

N(Ω, 0, 0) =

iΩ[[ψ1, M(ψ1 + iΩẐω1
)]] iΩ[[ψ1, M(ψ2 + iΩẐω2

)]]

iΩ[[ψ2, M(ψ1 + iΩẐω1
)]] iΩ[[ψ2, M(ψ2 + iΩẐω2

)]]


= Ω2

[[Mψ1, Ẑω1
]] [[Mψ1, Ẑω2

]]

[[Mψ2, Ẑω1
]] [[Mψ2, Ẑω2

]]

 ,

where we have used the identities [[ψ i , Mψ j ]] = 0 for i, j = 1, 2. Now, let Aj (Ẑ) be
the actions (3.5) evaluated at the basic state. Then

δA
δω

=


∂A1

∂ω1

∂A1

∂ω2

∂A2

∂ω1

∂A2

∂ω2

 =

[[M∂θ1
Ẑ, ∂ω1

Ẑ]] [[M∂θ1
Ẑ, ∂ω2

Ẑ]]

[[M∂θ2
Ẑ, ∂ω1

Ẑ]] [[M∂θ2
Ẑ, ∂ω2

Ẑ]]

 .
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Comparing the above two results proves that

N(Ω, 0, 0) = Ω2 δA
δω

.

The leading-order part of N in (5.9) is of the form of a lambda matrix (Lancaster
1966). Solving for the Ω roots, is equivalent to solving the nonlinear in the parameter
eigenvalue problem,

[N0 + N1Ω + N2Ω
2]c = 0,

for the eigenvalue Ω and eigenvector c. These quadratic eigenvalue problems fre-
quently arise in the theory of vibrating systems in mechanics. This quadratic eigenvalue
problem is equivalent (when det(N2) �= 0) to the problem of finding the eigenvalues Ω

of the classical generalized symmetric eigenvalue problem[(
0 N2

N2 N1

)
Ω +

(
−N2 0
0 N0

)](
d
c

)
=

(
0
0

)
(Lancaster 1966, pp. 58–59). However, we have found no advantage to studying this
linear eigenvalue problem, rather than the nonlinear form.

The main result of this section is: given a basic state (Ẑ, ω1, k1, �1, ω2, k2, �2), there
are accompanying Jacobian matrices δA/δω, . . . , δC/δ� which arise naturally in the
variational principle of § 3, and the long-wave instability is completely determined
by these Jacobian matrices. This stability result is for the general oblique two-wave
interaction. A special case is a stability result for SCWs.

6. The stability quartic for long-wave instabilities
Expanding the determinant �(Ω, α, β) leads to a quartic polynomial for the stability

exponent Ω

�(Ω, α, β) = det[N0 + N1Ω + N2Ω
2] = g4Ω

4 + g3Ω
3 + g2Ω

2 + g1Ω + g0, (6.1)

where

g4 =det

(
δA
δω

)
,

g3 = tr

[(
δA
δω

)�(
α

[
δA
δk

+
δB
δω

]
+ β

[
δA
δ�

+
δC
δω

])]
,

g2 =det

(
α

[
δA
δk

+
δB
δω

]
+ β

[
δA
δ�

+
δC
δω

])
+ tr

[(
δA
δω

)�(
α2 δB

δk
+ αβ

[
δB
δ�

+
δC
δk

]
+ β2 δC

δ�

)]
,

g1 = tr

[(
α2 δB

δk
+ αβ

[
δB
δ�

+
δC
δk

]
+ β2 δC

δ�

)�(
α

[
δA
δk

+
δB
δω

]
+ β

[
δA
δ�

+
δC
δω

])]
,

g0 =det

(
α2 δB

δk
+ αβ

[
δB
δ�

+
δC
δk

]
+ β2 δC

δ�

)
.



(6.2)

where tr( ) is the trace, and the superscript � indicates adjugate. The it adjugate of
a matrix is the transpose of the cofactor matrix. If a matrix R is invertible then
R� = det(R)R−1.



170 T. J. Bridges and F. E. Laine-Pearson

τ3

τ2 τ1

Figure 4. The discriminant surface for the quartic.

Dividing through the quartic by g4 and introducing the transformation Ω = X −
(g3/4)/g4 reduces the quartic to standard form,

�(X) = X4 + τ1X
2 + τ2X + τ3,

with

τ1 =
1

g2
4

(
− 3

8
g2

3 + g4g2

)
,

τ2 =
1

g3
4

(
1
8
g3

3 − 1
2
g4g3g2 + g2

4g1

)
,

τ3 =
1

g4
4

(
− 3

256
g4

3 + 1
16

g4g
2
3g2 − 1

4
g2

4g3g1 + g3
4g0

)
,


(6.3)

Since g3 and g4 are real, the Im(Ω) �= 0 if and only if Im(X) �= 0. Therefore, we can
appeal to standard results for the quartic to determine when there is at least one zero
of �(X) with non-zero imaginary part.

There are three diagnostic functions

d1 = τ1, d2 = Discriminant, d3 = τ 2
1 − 4τ3.

where Discriminant = 16τ3τ
4
1 − 4τ 2

2 τ 3
1 − 128τ 2

3 τ 2
1 + 144τ 2

2 τ3τ1 − 27τ 4
2 + 256τ 3

3 . The
conditions for instability (the existence of at least one root with non-zero imaginary
part) are

d1 > 0 or d1 < 0, d2 < 0 or d1 < 0, d2 > 0, d3 < 0. (6.4)

The discriminant surface is plotted in τ space in figure 4. If τ1 > 0 it is immediate
that there is at least one unstable eigenvalue. When τ1 < 0 we must check additional
diagnostics. A section through the discriminant surface for τ1 < 0 is shown in figure 5.
Unless τ2 and τ3 are in the enclosed central region (marked with a 4 in the figure)
there is a root which is unstable (having a non-zero imaginary part).

Therefore, given a basic state with associated Jacobian matrices, the problem of
long-wave instability reduces to checking the above conditions on the quartic. The
problem of long-wave instability for SCWs reduces to checking the above conditions –
after the SCW limit is taken. This programme will be carried out for weakly nonlinear
SCWs in the next section.
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0 0

τ2

τ3

2 2

22

4 4

Figure 5. A constant τ1 section through the discriminant surface with τ1 < 0. The number
of real roots of the quartic in each region of parameter space is labelled 0, 2 or 4.

7. Long-wave instability of weakly nonlinear SCWs
A general theory for long-wave instability of weakly nonlinear SCWs is now given,

starting with the results for the weakly nonlinear two-wave interaction.

Z(x, y, t) = A1ξ 1e
i(k1x+�1y+ω1t) + A2ξ 2e

i(k2x+�2y+ω2t) + c.c. + · · · ,

where ξ j satisfies

[HessZS(0) − ikjK − i�jL − iωjM]ξ j = 0, (7.1)

with associated dispersion relation D(ωj , kj , �j ) = 0. When the phase space is finite
dimensional (such as the nonlinear wave equation in § 2.1), the dispersion relation is
defined by

D(ω, k, �) = det [HessZS(0) − ikK − i�L − iωM] ,

and in infinite dimensions it is the condition for solvability of (7.1).
The reduced equation which generalizes (4.2) is

F̂(|A1|2, |A2|2, ω, k, �) = D(ω1, k1, �1)|A1|2 + D(ω2, k2, �2)|A2|2

+ 1
2
Λ11|A1|4 + Λ12|A1|2|A2|2 + 1

2
Λ22|A2|4 + · · · . (7.2)

By construction, the two-wave interaction determined by this reduced equation is a
deformation of a family of SCWs. Therefore, in the SCW limit,

k2 = k1 = k, �2 = −�1 = −�, ω2 = ω1 = −ω, |A2| = |A1| = |A|, (7.3)

the coefficients of the nonlinear quartic terms reduce to

Λ11 → a, Λ22 → a, Λ12 → b, (7.4)

where a and b are the coefficients associated with SCWs as in (1.6).
In the SCW limit, the quadratic coefficients in (7.2) also simplify. The SCW

symmetry (3.2) is inherited by the dispersion relation: D(ω, k, �) = D(ω, k, −�),
and the Hamiltonian structure induces the symmetry D(−ω, −k, −�) = D(ω, k, �).
Hence the dispersion relation for SCWs can always be expressed in the form

D(ω, k, �) = d̂(ω2, ωk, k2, �2).

These symmetry properties are useful for evaluating the stability matrices for the
general weakly nonlinear SCW stability analysis, without explicitly knowing the
dispersion relation.
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Differentiating F̂ in (7.2) with respect to the amplitudes, results in the following
expression for the amplitudes to leading order(

|A1|2
|A2|2

)
= −Λ−1

(
D(ω1, k1, �1)
D(ω2, k2, �2)

)
where Λ =

[
Λ11 Λ12

Λ12 Λ22

]
. (7.5)

To compute the stability matrices δA/δω, . . . , δC/δ�, we take as a starting point
the abstract form (3.5). To leading order, the general form for Aj , Bj and Cj , j = 1, 2
is

Aj =
∂D

∂ωj

|Aj |2 + · · · , Bj =
∂D

∂kj

|Aj |2 + · · · , Cj =
∂D

∂�j

|Aj |2 + · · · , (7.6)

where D is a function of (ωj , kj , �j ), and the amplitudes |Aj | are considered functions
of (ω, k, �) through (7.5).

The details of the construction and limit process for δA/δω are given, and then
the results for the other stability matrices is summarized,

δA
δω

=


∂A1

∂ω1

∂A1

∂ω2

∂A2

∂ω1

∂A2

∂ω2



= −

∂ω1
D(ω1, k1, �1) 0

0 ∂ω2
D(ω2, k2, �2)

Λ−1

∂ω1
D(ω1, k1, �1) 0

0 ∂ω2
D(ω2, k2, �2)



+

∂ω1ω1
D(ω1, k1, �1)|A1|2 0

0 ∂ω2ω2
D(ω2, k2, �2)|A2|2

+ · · · . (7.7)

Hereinafter all expressions are evaluated at the SCW limit in (7.3)–(7.4). Evaluating
δA/δω in this limit,

δA
δω

= −(Dω)2(Λ)−1 + Dωω|A|2
(

1 0
0 1

)
+ · · · . (7.8)

The other stability matrices in the SCW limit are

δA
δk

= −DωDkΛ
−1 + Dωk|A|2

(
1 0
0 1

)
+ · · · ,

δA
δ�

= −DωD�Λ
−1

(
1 0
0 −1

)
+ Dω�|A|2

(
1 0
0 −1

)
+ · · · ,

δB
δk

= −D2
kΛ

−1 + Dkk|A|2
(

1 0
0 1

)
+ · · · ,

δB
δ�

= −DkD�Λ
−1

(
1 0
0 −1

)
+ Dk�|A|2

(
1 0
0 −1

)
+ · · · ,

δC
δ�

= −D2
�

1
|Λ|Λ + D��|A|2

(
1 0
0 1

)
+ · · · ,



(7.9)

with the other matrices given by the symmetry relations (3.12).
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We are now in a position to compute the coefficients of the stability quartic
(6.1)–(6.2),

�(Ω, α, β) = g4Ω
4 + g3Ω3 + g2Ω

2 + g1Ω + g0, (7.10)

with

g4 =
D4

ω

|Λ| − 2a
DωωD2

ω

|Λ| |A|2 + D2
ωω|A|4 + · · · ,

g3 = 4α

[
D3

ωDk

|Λ| − a
Dω

|Λ| (DωDωk + DωωDk)|A|2 + DωωDωk|A|4
]

+ · · · ,

g2 = 2
D2

ω

|Λ|
(
3α2D2

k − β2D2
�

)
− 2a

|Λ|
[
α2

(
4DωDkDωk + D2

ωDkk + DωωD2
k

)
+β2

(
− 4DωD�Dω� + DωωD2

� + D2
ωD��

)]
|A|2

+ 2
[
α2

(
2D2

ωk + DωωDkk

)
+ β2

(
DωωD�� − 2D2

ω�

)]
|A|4 + · · · ,

g1 =
4

|Λ| [−αDωDk(βD� − αDk)(βD� + αDk)]

− 4a

|Λ|
[
α3(DkDωk + DωDkk)Dk

+αβ2
(
D��DωDk + D2

�Dωk − 2D�[Dk�Dω+ DkDω�]
)]

|A|2

+ 4α[α2DkkDωk + 2β2(D��Dωk − Dk�Dω�)]|A|4 + · · · ,

g0 =
1

|Λ| (βD� − αDk)
2(βD� + αDk)

2 +

− 2
a

|Λ|
[
α4DkkD

2
k + α2β2

(
D2

�Dkk + D2
kD�� − 4D�DkDk�

)
+ β4D2

�D��

]
|A|2

+ (α2Dkk − 2αβDk� + β2D��)(α
2Dkk + 2αβDk� + β2D��)|A|4 + · · · .

Details of the calculation of these coefficients can be found in Laine-Pearson (2002).
The only place that the coefficient b in the frequency correction to SCWs appears

in the coefficients is in |Λ| = a2 − b2. Multiplying �(Ω, α, β) by |Λ| shows that the
effect of b does not appear in the coefficients at order |A|0 or |A|2, but appears in the
terms of order |A|4.

In the zero-amplitude limit, the stability quartic (7.10) has a nice factorization

�(Ω, α, β) =
1

|Λ| (DωΩ + Dkα + D�β)2 (DωΩ + Dkα − D�β)2 . (7.11)

It is clear from this expression that the hypotheses

Dω �= 0, Dk �= 0, D� �= 0, (7.12)

when evaluated at the SCW frequency and wavenumbers, are required to avoid
degeneracy. When the conditions (7.12) are not satisfied, it is an indication that
resonances or other degeneracies of the dispersion relation will occur.

The eight eigenvalues λ = ±iΩ with Ω a root of (7.11) are purely imaginary and
are grouped into four pairs. Their location on the imaginary axis depends on the
values of k and �. In figure 6, the principal cases are shown. When β = 0, the four
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(b)(a) (c)

Figure 6. Position of the eigenvalues λ = iΩ with �(Ω,α, β) = 0when the amplitude |A| is
zero: (a) the case β =0; (b) generic case; (c) case where Dkα = ±D�β when two pairs meet at
the origin.

roots of (7.11) coalesce into a degenerate quartic resonance, as shown in figure 6(a).
When Dkα = ±D�β , one of the pairs in (7.11) vanishes, and so two pairs coalesce at
the origin, as shown in figure 6(c). For other values of k and �, the roots are in the
qualitative form shown in figure 6(b).

For the case |A| > 0, the general stability conditions for the quartic (6.4) can be
applied to (7.10), but it is easier and more instructive to note that for |A| small the
polynomial again factorizes leading to the four expressions for the stability exponents
given in (1.10) for transverse instabilities and (1.12) for longitudinal instabilities.

The results of this section are general and apply to any Hamiltonian PDE (which
can be cast into multi-symplectic form) with SCWs. The coefficients in the stability
quartic require only the dispersion relation, and the parameters a and b associated
with the nonlinear correction to the frequency.

7.1. Derivatives of the frequency and the dispersion relation

Consider a dispersion relation D(ω, k, �) = 0 with the hypotheses Dω �= 0, Dk �= 0 and
D� �= 0, and treat ω as a function of k and �. Then, differentiating D(ω(k, �), k, �) = 0
leads to

ωk = − Dk

Dω

, ω� = − D�

Dω

.

Differentiating again then leads to

Dωωkk + Dωωω2
k + 2Dωkωk + Dkk = 0,

Dωωk� + Dωωωkω� + Dωkω� + Dω�ωk + Dk� = 0,

Dωω�� + Dωωω2
� + 2Dω�ω� + D�� = 0.

Combining the above expressions then leads to

ωkk =
δ1

D3
ω

, ωk� =
δ3

D3
ω

, ω�� =
δ2

D3
ω

,

where

δ1 = det

Dωω Dωk Dω

Dkω Dkk Dk

Dω Dk 0

, δ2 = det

Dωω Dω� Dω

D�ω D�� D�

Dω D� 0

,
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and

δ3 = Dω�DkDω + DωkD�Dω − DωωD�Dk − Dk�D
2
ω.

Combining these expressions leads to the formula

−D4
ω det

(
ωkk ωk�

ω�k ω��

)
= det


Dωω Dωk Dω� Dω

Dkω Dkk Dk� Dk

D�ω D�k D�� D�

Dω Dk D� 0

, (7.13)

which we have not seen in the literature. The proof of this formula follows from a
direct calculation.

The sign of the determinant in (7.13) is independent of the choice of coordinates
in the following sense. The dispersion function D(ω, k, �) is not unique. Any other
function E(ω, k, �) with the same zeros, say E(ω, k, �) = d(ω, k, �)D(ω, k, �) for some
non-vanishing function d(ω, k, �) is also a dispersion function. However, it is easy to
show that the determinant (7.13) based on any other dispersion function E(ω, k, �)
has the same sign as the determinant based on D(ω, k, �).

8. Transverse instabilities of weakly nonlinear short-crested water waves
In this section, expressions for the stability exponents are explicitly computed for

weakly nonlinear short-crested gravity water waves on an infinite depth fluid when β

is small, but outside a neighbourhood of β = 0.
The dispersion relation for water waves is given in (1.17). The coefficient a for

water waves is strictly negative, and

det


Dωω Dωk Dω� Dω

Dkω Dkk Dk� Dk

D�ω D�k D�� D�

Dω Dk D� 0

 = det



2 0 0 2ω

0 −g�2

ν3

gk�

ν3
−gk

ν

0
gk�

ν3
−gk2

ν3
−g�

ν

2ω −gk

ν
−g�

ν
0


= 2

ω6

ν4
> 0. (8.1)

The Hessian of ω with respect to k and � has the simple form[
ωkk ωk�

ω�k ω��

]
=

g

4ων3

[
2�2 − k2 −3k�

−3k� 2k2 − �2

]
=

ω

4ν4

[
� k

−k �

]
2 0
0 −1

[
� −k

k �

]
.

By applying (1.14) to (8.1), it is immediate that weakly nonlinear SCWs are unstable
to long-wave perturbations.

The dependence of the transverse instabilities on the perturbation wavenumbers
(α, β) is obtained from (1.10). For water waves the stability exponents are λ = ±iΩ
with

Ω =



g

2νω
(kα + �β) − σ+|A| + · · · ,

g

2νω
(kα + �β) + σ+|A| + · · · ,

g

2νω
(kα − �β) − σ−|A| + · · · ,

g

2νω
(kα − �β) + σ−|A| + · · · ,

(8.2)

with σ+ and σ− defined in (1.19).
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Figure 7. Position of unstable modes for each wedge in the (α, β)-plane when (a) 0 <

� < 1/
√

2k, (b) 1/
√

2k < � <
√

2k, (c) � >
√

2k. In terms of the angle of incidence θ (see (8.3)
for a definition) these regions correspond to (a) 54.73◦ < θ < 90◦, (b) 35.26◦ < θ < 54.73◦, (c)
0 < θ < 35.26◦.

For all admissible values of k and � for SCWs there are unstable wedges in the
(α, β)-plane. However, the properties of these instabilities depend on the values of
k and �. There are three regions in (k, �) space and for each of these regions the
unstable wedges in the (α, β)-plane are shown in figure 7.

For weakly three-dimensional SCWs, that is; when � is small (and �2 < k2/2), there
are two unstable wedges, a as shown in figure 7(a). In the lower unstable wedge,
there are two unstable modes and in the middle wedge, there is one unstable mode
(as shown in figure 3).

In the intermediate region, when 1/k22, < �2 < 2k2, there is only one unstable wedge,
as shown in figure 7(b), and it has only one unstable mode. In the large � region,
where �2 > 2k2, there are again two unstable wedges with the higher wedge (darker
shading) now having two unstable modes, as shown in figure 7(c). The location of
the unstable wedges in figure 7(c) is the reverse of that in figure 7(a).

The results in figure 7 can also be interpreted in terms of a wave reflection off a
wall. Consider the case of an incident wave of wavelength 2π/ν, where ν =

√
k2 + �2,

being fully reflected off a vertical wall. Let k = ν sin θ and � = ν cos θ . Then, θ is the
angle between the direction of propagation of the incident wave and the normal to
the wall (cf. Roberts 1983). In terms of the angle θ , the critical values in figure 7 are

�/k =
√

2 ⇒ θ = tan−1(1/
√

2) ≈ 35.26◦,

�/k = 1√
2

⇒ θ = tan−1(
√

2) ≈ 54.73◦.

 (8.3)

The limit θ → 90◦ corresponds to the limit where the two waves are collinear Stokes
travelling waves. Hence, figure 7(a) corresponds the the region closest to the travelling,
wave limit. Note that this limit is singular so the results are not valid in the limit
θ → 90. Figure 7(a) is consistent with the fact that the Stokes travelling-wave is
modulation unstable, but it also shows a difference from the travelling-wave case: the
darker shaded region has two modes of instability, whereas a Stokes travelling wave
would have only one unstable mode. The limit θ → 0◦ corresponds to the standing-
wave limit. Near θ = 0, the instability regions in figure 7(c) are just the opposite of
figure 7(a), with the strongest region of instability predominantly in the y-direction.
This limit is consistent with the modulation instability of pure standing waves; further
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details of the instability of pure standing waves using the multi-symplectic framework
can be found in Bridges & Laine-Pearson (2004).

9. Longitudinal instabilities of weakly nonlinear short-crested water waves
When β =0, the leading-order term for the roots of the stability quartic (7.10)

depends also on the terms of order |A|4 in the coefficients. When β = 0 and |A| = 0,
the stability quartic (7.10) has a quartic root

�(Ω, α, β) =
1

|Λ| (DωΩ + Dkα)4.

Hence, the perturbation of this root for |A| �= 0 has a leading-order term of the order
of the fourth root of the perturbation. Since the perturbation is of order |A|2, the
leading-order expansion for the perturbed quartic root is of the form

Ω = − Dk

Dω

α + Ω1|A|1/2 + Ω2|A| + · · · .

However, owing to symmetry, the term Ω1 = 0 and the leading-order term is of order
|A|, but the coefficient Ω2 then depends on the terms of order |A|4 in the coefficients of
(7.10). Let δ1 be as defined in § 7.1, then a calculation shows – to leading order in |A| –
that the quartic root associated with β = 0 perturbs into the four roots (expressing
the four values of Ω2 as ±µ±)

Ω =



− Dk

Dω

α + µ+|A| + · · ·

− Dk

Dω

α + µ+|A| + · · ·

− Dk

Dω

α − µ−|A| + · · ·

− Dk

Dω

α + µ−|A| + · · · ,

with µ2
± = − (a ± b)

D4
ω

δ1α
2. (9.1)

However, in § 7.1 it was shown that δ1 = ωkkD
3
ω. Substituting this expression into µ2

±
and using the definitions of ωTW

2 and ωSCW
2 recovers the expressions in (1.13).

The eight stability exponents are given by λ = ±iΩ , with Ω taking the four values
above. Clearly, stability is determined by the signs of µ2

±, and the signs of µ2
± are

determined by the signs of (a + b), (a − b) and δ1. With k = ν sin θ and � = ν cos θ ,
the coefficients a and b (= Υ in (4.3) in the SCW limit) can be expressed in the form

a= −4gν2,

b= 4gν2

(
−2 + 6 cos2 θ +

8 cos4 θ

sin θ − 2
+ 2 cos4 θ

)
.

The normalized (divided by 4gν2) expressions for (a + b) and (a − b) are shown in
figure 8.

However, longitudinal stability is determined by the the product of (a ± b) with
δ1 (or ωkk). The sign of δ1 is determined by the sign of 2�2 − k2 and this function
is positive for θ small and changes sign when θ ≈ 54.74◦. Therefore, longitudinal
instability for |A| small is determined by the inequalities

(a + b)(k2 − 2�2) < 0 or (a − b)(k2 − 2�2) < 0.
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Figure 8. Plot of (a + b) and (a − b), normalized by 4g(k2 + �2), as functions of θ . The
decreasing function is (a + b) and it passes through zero when θ ≈ 21.96◦. The function (a − b)
vanishes when θ ≈ 63.26◦.
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Figure 9. Plot of (a + b)(k2 − 2�2) (the predominantly lower curve) and (a − b)(k2 − 2�2)
as functions of θ .

90~63~55~22 θ

Figure 10. Schematic position in the complex λ-plane of the eigenvalues associated
with longitudinal instability for each θ region.

The two functions in these inequalities are plotted as functions of θ in figure 9.
Instability is signalled when either of the functions in figure 9 is negative.

There are four distinct θ regions separated by the zeros of (a +b), (a −b) and δ1, as
shown in figure 10. In the region 0 <θ < 22◦, there is one (complex conjugate) pair of
unstable eigenvalues; for 22◦ < θ < 55◦, all roots are stable. In the region 55◦ < θ < 63◦,
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there are two pairs of unstable eigenvalues, and then in the region 63◦ < θ < 90◦, there
is one pair of unstable eigenvalues.

The two unstable regions 0 <θ < 22◦ and 63◦ < θ < 90◦ agree with the predictions of
Roskes (1976b). The angle used by Roskes is equal to 2(90−θ), so θ ≈ 22◦ corresponds
to Roskes’ 136◦ and θ ≈ 63◦ corresponds to Roskes’ 55◦. However, his analysis misses
the unstable region 55◦ <θ < 63◦ because both µ2

± are negative in that region.
The qualitative position of the roots for β =0 will persist for β small. Therefore,

we expect the position of the roots in figure 10 to persist in a small wedge around
the axis β = 0. This small wedge of longitudinal instabilities is consistent with the
numerical calculations reported in figures 8 and 9 in Ioualalen & Kharif (1994).

9.1. Instability of short-crested capillary–gravity water waves

The addition of capillarity brings new features that are worthy of mention. The issues
are just sketched in this subsection. The first new feature is that a rigorous theory of
existence for capillary–gravity SCWs – and their deformation into the non-resonant
two-wave interaction – is available (Craig & Nicholls 2000), suggesting that they are
more robust than pure gravity waves. Indeed, it is conceivable that a rigorous theory
for instability could also be developed for the case of capillary–gravity SCWs. The
second issue is the larger range of possibilities for instability. For example, all the
critical coefficients (the determinant (8.1), and the parameters σ 2

+, σ 2
− µ2

− and µ2
+) have

additional sign changes in parameter space. A clue to the range of possibilities for
transverse instabilities can be seen from the range of instabilities of oblique capillary–
gravity travelling waves (cf. § 5 of Bridges 1996). When capillary forces are ad-
ded, the longitudinal instabilities will also change. For example, it is shown inBridges,
Dias & Menasce (2001) that the coefficients a and b have sign changes along lines in
the (θ, τ ) plane where τ is the Bond number.

10. Concluding remarks
Two directions in which the theory here can be extended are the stability of SCWs

in shallow water, and the stability of the resonant and non-resonant three-wave
interaction.

The issue with shallow-water and finite-depth SCWs is the mean flow which can
influence stability. However, the theory presented here can be combined with the
theory in Bridges et al. (2001). The idea would be to couple the six-parameter
two-wave interaction with the three-parameter mean flow in Bridges et al. (2001),
leading to a nine-parameter problem. The stability polynomial will be a sixth-order
polynomial in this case. Theoretically the strategy is clear, but the details will be
lengthy for this case. There are questions to be tackled, however. It would be of great
interest to have analytical results for weakly nonlinear SCWs in shallow water, and
also there are open questions about the stability of two-wave interactions in shallow
water (cf. Onorato et al. (2002)).

The resonant and non-resonant three-wave interaction is the next logical step. There
is enough symmetry (when the three waves are oblique), so the idea of embedding the
resonant interaction in a three-phase non-resonant interaction still makes theoretical
sense. In infinite depth this will be a nine-parameter problem, and the stability
polynomial will be sixth order. In finite depth, when mean flow effects are accounted
for, there will be twelve parameters, and the stability polynomial will be eighth order.
Some results on the weakly nonlinear three-wave interaction of water waves in infinite
depth have been obtained by Laine-Pearson (2002).
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Appendix. Some properties of short-crested wave solutions of multi-symplectic
PDEs

What precisely is a short-crested Stokes wave? Key features are (a) periodicity in
all space directions and time; (b) uniformly travelling; (c) reflection symmetric in the
direction orthogonal to the direction of propagation. In the multi-symplectic setting,
the concept of a reversor is used to give a precise definition.

A solution, Ẑ(x, y, t) of (3.1), is called a short-crested wave if it is periodic in x, y

and t , is travelling in the x-direction (depends on x and t in linear combination only)

and satisfies R Ẑ(x, y, t) = Ẑ(x, y, t).
An immediate consequence of this definition is that the transverse momentum of

a short-crested wave is identically zero. An application of Noether’s theorem shows
that the appropriate form for the density of the momentum vector is

M =
(

1
2
〈MZx, Z〉, 1

2
〈MZy, Z〉

)
.

This form can be verified by using Noether’s theorem, as in the Appendix of Bridges &
Laine-Pearson (2004), or by direct calculation as below.

For functions satisfying (3.1), we have the following conservation law for the
transverse momentum

∂

∂t

(
1
2
〈MZy, Z〉

)
+

∂

∂x

(
1
2
〈KZy, Z〉

)
+

∂

∂y

(
S(Z) − 1

2
〈MZt, Z〉 − 1

2
〈KZx, Z〉

)
= 0,

and soon a space of functions that are periodic in x and y (and normalizing the
period to 2π in each direction)

My =

∫
�2

1
2
〈MZy, Z〉 dx dy =

1

(2π)2

∫ 2π

0

∫ 2π

0

1
2
〈MZy, Z〉 dx dy

is conserved in time. For water waves, this functional can be expressed in the form

My =

∫
�2

−Φηy dx dy.

One implication of the above definition of SCWs is that it implies immediately
that My – when evaluated on an SCW – is identically zero for all time. This follows
since

My(R Z) =

∫
�2

1
2
〈MR(Z(x, −y, t))y, RZ(x, −y, t)〉 dx dy (by definition),

= −
∫

�2

1
2
〈MRZy(x, −y, t), RZ(x, −y, t)〉 dx dy,

= −
∫

�2

1
2
〈RMZy(x, −y, t), RZ(x, −y, t)〉 dx dy (using RM = MR),

= −
∫

�2

1
2
〈MZy(x, −y, t), Z(x, −y, t)〉 dx dy

(since R preserves the inner product),

= −
∫

�2

1
2
〈MZy(x, y, t), Z(x, y, t)〉 dx dy

(transforming y �→ −y and using periodicity),

= −My(Z).

Therefore, if Ẑ(x, y, t) is an SCW and so R Ẑ = Ẑ, it is immediate that My(Ẑ) = 0.
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Momentum

Energy SCWs

region

Two-
wave

OTW OTW

Figure 11. Location of SCWs and the two-wave interaction in the
energy-(transverse)momentum diagram.

The energy and transverse momentum are useful for distinguishing SCWs from
oblique travelling waves (OTW). OTWs have non-zero transverse momentum. A
schematic of the energy–momentum (transverse) space is shown in figure 11. The two
OTWs correspond to the arms shown, with SCWs along the vertical (zero-momentum)
axis. The oblique two-wave interaction then fills out the space between the OTWs
and SCWs. The embedding of SCWs in the two-phase wavetrain extends the SCWs
into this two-wave region.

This energy momentum diagram is very similar to the energy-momentum diagram
for the spherical pendulum and for standing waves (cf. Bridges & Laine-Pearson
2004).
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