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Transverse stability and instability of solitary waves correspond to a class of pertur-
bations that are travelling in a direction transverse to the direction of the basic solitary
wave. In this paper we consider the problem of transverse instability of solitary waves
for the water-wave problem, from both the model equation point of view and the full
water-wave equations. A new universal geometric condition for transverse instability
forms the backbone of the analysis. The theory is first illustrated by application to
model PDEs for water waves such as the KP equation, and then it is applied to the
full water-wave problem. This is the first theory proposed for transverse instability of
solitary waves of the full water-wave problem. The theory suggests the introduction of
a new functional for water waves, whose importance is suggested by the mathematical
structure. Without explicit calculation, the theory is used to argue that the basic class
of solitary waves of the water-wave problem, which bifurcate at Froude number unity,
are likely to be stable to transverse perturbations, even at large amplitude.

1. Introduction
Given a solitary wave travelling uniformly in one space direction, a transverse

instability of the solitary wave is an instability associated with a class of perturbations
that are travelling in a direction transverse to the basic direction.

The problem of transverse instability of solitary waves was first considered by
Kadomstev & Petviashvili (1970), and the model equation they constructed to address
the question of the transverse instability of the Korteweg–de Vries (KdV) solitary wave
is the celebrated KP equation

ut + uux + uxxx = vy and vx + σuy = 0, σ = ±1. (1.1)

Kadomstev & Petviashvili (1970) studied the stability of the KdV solitary wave to
transverse perturbations by linearizing (1.1) about it and approximating the stability
exponents. They found that the KdV solitary wave is transverse unstable when
σ = −1 and transverse stable when σ = +1. Shortly thereafter it was recognized that
the KP equation is a completely integrable Hamiltonian partial differential equation.
Therefore the transverse instability result for KP and other integrable models could
be deduced a number of different ways, including explicit calculation (cf. Zakharov
1975; Makhankov 1978; Kuznetsov, Rubenchik & Zakharov 1986; Infeld & Rowlands
1990; Alexander, Pego & Sachs 1997; Allen & Rowlands 1997).

Since the KP results, transverse instability of solitary-wave states of several model
PDEs have been studied. The most well-studied example is the nonlinear Schrödinger
(NLS) equation (cf. Makhankov 1978; Laedke & Spatschek 1978; Janssen & Ras-
mussen 1983; Rypdal & Rasmussen 1989); see Kivshar & Pelinovsky (2000) for a
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recent review of transverse instability for NLS and related models including the
Davey–Stewartson equation. The Zakharov–Kuznetsov equation, which is another
generalization of the KdV equation to higher space dimension, has also been studied
for transverse instability (cf. Zakharov & Kuznetsov 1974; Spatschek, Shukla & Yu
1975; Iwasaki, Toh & Kawahara 1990; Allen & Rowlands 1993). Methods which
have been used to study the linearized stability equation associated with transverse
instability include analytical techniques based on integrable models (cf. Kuznetsov
et al. 1986 for a review), theories based on modulation equations (cf. Kadomstev
& Petviashvili 1970; Ostrovsky & Shrira 1976; Shrira 1980; Janssen & Rusmussen
1983; Shrira & Pesenson 1984), variational approximations such as the Rayleigh–Ritz
method (cf. Laedke & Spatschek 1978; Allen & Rowlands 1993, 1995; Bettinson &
Rowlands 1997) and direct numerics (cf. Iwasaki et al. 1990; Infeld, Rowlands &
Senatorski 1999).

In order to distinguish between transverse instabilities and instabilities travelling
in the same direction as the basic state, the latter will be referred to throughout as
longitudinal instabilities.

While model equations for the water-wave problem such as the KP equation have
been studied for transverse instability, the transverse instability question for the full
water wave problem has never been studied. Indeed, as far as we are aware, there
are only three papers on the longitudinal instability – where the class of perturbations
travels in the same direction as the basic wave – of solitary waves of the full water
wave problem: Tanaka (1986), Tanaka et al. (1987) and Longuet-Higgins & Tanaka
(1997). In fact there is a close connection between all three of these papers and
Saffman’s theory for the superharmonic instability of periodic travelling waves.

The superharmonic instability of periodic travelling waves corresponds to an insta-
bility where the perturbation has the same wavelength as the basic travelling wave
(this is in contrast to the Benjamin–Feir instability or the subharmonic instability
where the wavelength of the perturbation differs from the basic wavelength). For
gravity waves, superharmonic instability occurs at very large amplitude and was
first discovered numerically (Longuet-Higgins 1978), and later Tanaka (1985) found
numerically that an exchange of stability occurs at precisely the value of the wave
speed c where dI/dc first changes sign, where I is the impulse of the solitary wave.
Saffman (1985) then proved that when dI/dc changes sign, an eigenvalue of the
linear stability problem changes from stable to unstable (or vice versa), generically.
An important implication of this result is that information about stability can be
deduced by plotting the impulse I against the wave speed c for a family of periodic
travelling waves.

The main result of Tanaka (1986) was to show numerically that a similar result
was true for gravity solitary waves. By calculating the eigenvalues of the linearization
of the full water-wave problem about finite-amplitude solitary gravity waves, he was
able to show that there was a change from stability to instability at precisely the point
where the slope of the impulse I of the solitary wave plotted against the wave speed c
first changed sign. For solitary gravity waves, the plot of I against c when continued
beyond the first change of slope has additional points where dI/dc changes sign. A
qualitative description of the impulse plotted as a function of the wave speed for
gravity solitary waves is shown in figure 1.

This connection between the sign of dI/dc and instability motivated Longuet-
Higgins & Tanaka (1997) to study the linear stability problem in more detail to
see if additional unstable eigenvalues in the linearization about a solitary wave are
generated by these sign changes. Indeed, they computed eigenvalues associated with
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I

c

Figure 1. Schematic of the impulse I versus wave speed c for gravity solitary waves.

the first two changes of sign of dI/dc and confirmed that unstable eigenvalues were
generated at each point, and they conjectured that further changes in sign of dI/dc
would generate more unstable eigenvalues.

These longitudinal instabilities are often referred to as crest instabilities. In a
remarkable paper following up on the numerical observations of Tanaka (1986),
Tanaka et al. (1987) showed a connection between this type of instability of the
solitary wave and a form of wave breaking. This connection was established by
integrating the initial-value problem for water waves with initial data chosen to be
an eigenfunction associated with an unstable solitary wave. Although not all initial
data evolved to wave breaking, in cases where wave breaking occurred the connection
with instability was clearly established. A representative example of this is shown in
figure 5 of Tanaka et al. (1987). This observation is of interest here because we find
that transverse instability also occurs when dI/dc has a negative sign, and therefore
it is reasonable to conjecture that the generated transverse crest instability may lead
to a form of wave breaking with transverse modulation.

The connection between the sign of dI/dc and instability can be deduced from the
Hamiltonian structure alone. For periodic waves, this is precisely the argument used
by Saffman (1985). It is associated with the fact that such states are associated with a
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symmetry and can be classified as relative equilibria, and there are established results in
Hamiltonian dynamics for such states. For solitary waves of model equations, there are
now many results in the literature on the sign of dI/dc and the longitudinal instability
of solitary waves (cf. Grillakis, Shatah & Strauss 1990; Pelinovksy & Grimshaw
1997, and references therein). As a way of leading into the discussion on transverse
instability using multi-symplectic structure, we point out that – even for longitudinal
instabilities of solitary waves – much more information about the connection between
dI/dc and instability can be obtained by multi-symplectifying the governing equations.
For example, in Bridges & Derks (1999, 2000), it is shown that it is possible to deduce
which sign of dI/dc corresponds to instability, without information about the spectral
problem, and it can be shown that dI/dc must be corrected by another term – which
occurs naturally in the multi-symplectic formulation – when the solitary wave has
oscillatory or other non-trivial tails.

In this paper, the transverse instability problem for the full water-wave problem
is formulated and studied for the first time. The backbone of the analysis is a new
universal instability condition for transverse instability (Bridges 2000). This condition
is universal in the sense that it can be derived independent of a particular equation.
It is a property of the multi-symplectic structure of the equations, and applies to
solitary states of any system of PDEs which has this structure.

Another way to view this transverse instability condition is as a generalization of
the above idea where changes of sign of dI/dc, when I(c) is evaluated on a solitary
wave, are associated with the generation of unstable eigenvalues in the linearization
about the solitary wave. We will introduce a pair of functions A(c, `) and B(c, `)
where A(c, `) has the property that

lim
`→0
A(c, `) = −I(c). (1.2)

The functionA(c, `) is a one-parameter extension of the impulse. The function B(c, `)
is new, and it is the function that carries information about transverse instability. For
the water-wave problem, with velocity potential φ and wave height η, we will show
in § 6 that it is given explicitly by

B(c, `) = `

∫ +∞

−∞

[
τη̂2

θ√
1 + (1 + `2)η̂2

θ

+

∫ η̂

0

(φ̂θ)
2 dz

]
dθ, (1.3)

where the hats indicate that η̂ and φ̂ are evaluated on a solitary wave, τ is the
coefficient of surface tension and θ = x − ct + `y + θ0. The second parameter here,
`, represents a rotation of the uni-directional travelling solitary wave away from the
x-axis.

There is no apparent physical interpretation of the functional B(c, `). As far as
we are aware the importance of this function for solitary waves – or water waves in
general – has not been previously recognized, and it is not obvious that this function
carries information about the transverse instability of solitary waves. It arises nat-
urally in the derivation in § 6 from the transverse component of the multi-symplectic
structure. It is an example of a functional whose importance has been dictated by the
mathematical structure of the equations rather than physical considerations.

Using the above two functions, we will show the following: if

det

[ Ac A`

Bc B`

]
> 0, (1.4)

when evaluated on a solitary wave, it is transverse unstable. This result is a special
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case, applied to water waves, of the result in Bridges (2000). We will show that it is
a sufficient condition for transverse instability, and the converse is a necessary but not
sufficient condition for transverse stability.

An even more remarkable result – which does not hold in general, but does apply
to water waves – is the following. Suppose the solitary wave is restricted to travel in
a direction parallel to the x-axis (i.e. ` = 0) and let

B̂(c) = lim
`→0

1

`
B(c, `). (1.5)

Then, defining A(c, 0) = −I(c), we will show, for any solitary water wave for which

the expressions B̂(c) and dI/dc exist, the solitary wave is transverse unstable if

B̂(c)
dI

dc
< 0. (1.6)

This result uses information from the strictly one-dimensional problem (i.e. without
rotating the wave into the transverse direction) to deduce instability information in

the transverse direction. This result is particularly useful for water waves because B̂(c)
is strictly positive. The simplification of (1.4) to (1.6) does not occur in all systems.
It is shown in § 5 that the simplification (1.6) arises only in systems with a transverse
reflection symmetry, which is present in water waves.

Using numerical results of Longuet-Higgins (1974) and Tanaka (1986) on I(c),
which are qualitatively represented by figure 1, it is apparent that dI/dc > 0 for
gravity solitary waves for most of the branch of waves, with the first change of sign
occurring at large amplitude. The above theory suggests that these waves are quite
robust against transverse perturbations – until dI/dc becomes negative. However, this
statement must be qualified, because ‘stability’ is only with respect to transverse
perturbations with large spanwise wavenumber (see § 7 for precise specification of the
class of perturbations).

The result (1.6) also applies to capillary–gravity solitary waves – i.e. whenever
dI/dc < 0 a capillary–gravity solitary wave is transverse unstable. However, there is
very little information available in the literature about the value of the momentum
along branches of capillary–gravity solitary waves.

The key to the instability theory is a formulation of Hamiltonian PDEs as multi-
symplectic systems. Multi-symplecticity is a generalization of Hamiltonian structure
where a distinct symplectic structure is assigned for time and each space direction
(cf. Bridges [1996, 1997a, b, 1998, 1999]). Given a classical Hamiltonian PDE it is
straightforward to reformulate it as a multi-symplectic system. The function B(c, `)
is then deduced precisely from the transverse symplectic structure. The framework
is relatively straightforward to set up, and – more importantly – the results obtained
in the multi-symplectic setting can be translated back into the original physical
coordinates for combination with analysis or numerics of water waves or other
Hamiltonian PDEs with solitary wave states.

In § 2 we take as a starting point a Hamiltonian PDE formulated as a multi-
symplectic system, and show that this form leads to a new constrained variational
principle for solitary waves travelling in one dimension, but dependent on two
parameters (c, `) rather than just c. In § 3 we introduce the new geometric instability
condition for transverse instability first presented in Bridges (2000), and to illustrate
it, it is applied to transverse instability of the KP model.

In § 4, a detailed example of how the theory is applied to a particular problem is
given, using KP as an example. Starting with the PDE in its classical form, it is first
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reformulated as a multi-symplectic system. The structure then generates the required
functionals A(c, `) and B(c, `), which are then evaluated on a two-parameter family
of solitary waves.

In § 5 the implications of a transverse reflection symmetry – which appears in many
PDEs including KP and the water-wave problem – is considered and we show that
it leads directly to the intriguing result (1.6). In § 6 the multi-symplectic form of the
water-wave problem is given and the properties of the transverse instability condition
studied. The theory shows that B(c, `) defined in (1.3) above is indeed the relevant
function which encodes information about transverse instability of oceanographic
solitary waves. In § 7 the stability problem is formulated, and it is shown that when
(1.4) is satisfied for a basic solitary wave, there exists an unstable eigenvalue of the
linearized stability problem whose growth rate has magnitude of order β, where β
is the wavenumber in the transverse direction of unstable eigenfunction. The result
shows that there is a non-zero angle between the direction of travel of the unstable
eigenfunction and the direction of travel of the basic state.

The theory should apply to a large range of other examples in ocean dynamics,
internal wave dynamics, atmospheric dynamics, and with suitable generalization to
NLS type models in optical fibre transmission, as well as other Hamiltonian PDEs.
In § 8 we present a sample of other intriguing systems related to water waves to
which the theory presented here can be applied. In the Appendix, some technical
details needed for transforming the multi-symplectic structure for water waves into a
standard form are recorded.

2. Multi-parameter families of solitary waves and transverse symplecticity
The starting point for the analysis is the following abstract formulation of Hamil-

tonian partial differential equations:

MZt + KZx + LZy = ∇S(Z), Z ∈X, (2.1)

where X is the phase space. For example, X = R8 for the KP equation (see § 4) and
for the water-wave problem it is a space of functions dependent on one variable over
a finite interval (the vertical direction).

The operators M, K and L are constant skew-symmetric operators, and ∇S(Z) is
the gradient of a function S : X→ R with respect to an inner product on X, which
will be denoted by 〈·, ·〉 throughout, and S(Z) is normalized so that S(0) = 0. The
three skew-symmetric operators M, K and L define closed two forms by

ω(1)(U ,V ) = 〈MU ,V 〉, ω(2)(U ,V ) = 〈KU ,V 〉 and ω(3)(U ,V ) = 〈LU ,V 〉, (2.2)

where U and V are any vectors in X. We will be predominantly interested in solitary
waves that are travelling in the x-direction or at small angles to the x-axis. Therefore
we refer to the symplectic structure associated with ω(3) as the transverse symplectic
structure.

The theory of transverse instability to be presented here is independent of any
particular PDE, it depends only on the abstract form (2.1). Therefore the theory will
apply to any system which can be cast into the form (2.1). It will be assumed that a
uni-directional travelling solitary wave exists and satisfies (2.1). The theory does not
require an explicit form for this wave – only that it exists, is differentiable and decays
exponentially to zero. The basic solitary wave is taken to be of the form

Z(x, y, t) = Ẑ(θ; c, `) with θ = x− ct+ `y + θ0. (2.3)



Transverse instability of solitary waves 261

The parameters c and ` represent the speed and transverse wavenumber respectively,
and θ0 is an arbitrary real parameter.

The function Ẑ is required to satisfy the asymptotic boundary conditions

lim
θ→±∞ ‖Ẑ(θ; c, `)‖ = 0, (2.4)

where ‖ · ‖ is a norm on X. Moreover the decay as θ → ±∞ is assumed to be
exponential.

Substitution of this form into (2.1) leads to the following differential equation for Ẑ:

J(c, `)Ẑθ = ∇S(Ẑ), where J(c, `) = K− cM+ `L. (2.5)

The matrix J(c, `) is skew symmetric and defines the two form

Ω(U ,V ) = 〈J(c, `)U ,V 〉. (2.6)

The system (2.5) is in standard form for a classical Hamiltonian system with pre-
symplectic structure Ω, but with evolution in the θ-direction. When the system (2.5)
reduces to an ODE, for example when X is finite-dimensional, and J(c, `) is in-
vertible, the basic solitary wave can be characterized as a homoclinic orbit of a
finite-dimensional Hamiltonian system.

Another view of the basic family of solitary waves, which will be important in the
stability analysis, is as a solution of a constrained variational principle. Define

H(Ẑ) =

∫ +∞

−∞
[S(Ẑ)− 1

2
〈KẐθ, Ẑ〉] dθ, (2.7)

A(Ẑ) = −
∫ +∞

−∞
1
2
〈MẐθ, Ẑ〉 dθ = −

∫ +∞

−∞
1
2
ω(1)(Ẑθ, Ẑ) dθ, (2.8)

B(Ẑ) =

∫ +∞

−∞
1
2
〈LẐθ, Ẑ〉 dθ =

∫ +∞

−∞
1
2
ω(3)(Ẑθ, Ẑ) dθ. (2.9)

With the hypothesis (2.4), the exponential decay and differentiability of Ẑ , and
the normalization S(0) = 0, these integrals will exist.

The functional H(Ẑ) is the classical Hamiltonian function for the one-space-
dimensional problem. The classical Hamiltonian function for the two-space-
dimensional problem is in fact H − `B. Therefore, H and B can be thought of
as giving a decomposition of the two-dimensional Hamiltonian function into a longi-
tudinal part and a transverse part.

Solitary waves of the form (2.3)–(2.4) can then be formally characterized as critical
points of the functional H(Ẑ) restricted to level sets of the two functionals A(Ẑ)
and B(Ẑ), with c and ` as Lagrange multipliers. The Lagrange functional is

F(Ẑ , c, `) =H(Ẑ)− cA(Ẑ)− `B(Ẑ), (2.10)

and it can be formally differentiated to obtain

∇F(Ẑ , c, `) = ∇S(Ẑ)− KẐθ + cMẐθ − `LẐθ = ∇S(Ẑ)− J(c, `)Ẑθ;
that is, ∇F(Ẑ , c, `) = 0 formally recovers (2.5). Let I1 and I2 be the values of the
constraint sets. Then the constrained variational principle is said to be non-degenerate
when

det

[
∂c/∂I1 ∂c/∂I2

∂`/∂I1 ∂`/∂I2

]
6= 0. (2.11)
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It follows from Lagrange multiplier theory that c = ∂H/∂I1 and ` = ∂H/∂I2, in
which case (2.11) can be written

det HessI (H) = det

(
∂2H/∂I2

1 ∂2H/∂I1∂I2

∂2H/∂I2∂I1 ∂2H/∂I2
2

)
6= 0. (2.12)

In general, it is not expected that solitary waves will be maxima or minima of
this constrained variational principle. In fact, for most interesting examples, the
functionals involved are strongly indefinite. However, we will show that – regardless
of the critical point type of the solitary wave – the parameter structure associated with
the constrained critical point characterization of the solitary wave plays an important
part in the transverse stability analysis.

Dual to the matrix in (2.11) is the Jacobian( Ac A`

Bc B`

)
=

(
∂c/∂I1 ∂c/∂I2

∂`/∂I1 ∂`/∂I2

)−1

. (2.13)

Assuming the function describing the solitary wave Ẑ(θ; c, `) is sufficiently smooth,
this matrix can be written in the following interesting form, by formally differentiating
the expressions in (2.8)–(2.9), using an integration by parts and the hypothesis (2.4):( Ac A`

Bc B`

)
=

∫ +∞

−∞

(
−ω(1)(Ẑθ, Ẑc) −ω(1)(Ẑθ, Ẑ`)

+ω(3)(Ẑθ, Ẑc) +ω(3)(Ẑθ, Ẑ`)

)
dθ. (2.14)

The importance of this formula is that it connects the (c, `) parameter structure
of the two-parameter family of solitary waves with geometric properties of the
equation, namely the symplectic structures associated with the time direction (ω(1))
and transverse direction (ω(3)). It will be established in § 7 that these two distinct
symplectic structures encode geometric information about the temporal instability
associated with the transverse direction.

3. A universal geometric condition for transverse instability
The main result needed for the study of transverse instability is the following

geometric condition. Suppose

det

[ Ac A`

Bc B`

]
> 0 (3.1)

then the basic solitary wave is linearly transverse unstable. This condition was first
presented in Bridges (2000) and the details of the argument from that paper needed
here are given in § 7.

To illustrate how this result may be applied, consider the following generalization
of the KP equation:

(2ut + f(u)x + uxxx)x + σuyy = 0, (3.2)

where σ = ±1, f(u) can be any smooth function, and the 2 multiplying ut is added
for convenience. Let

f(u) =
up+1

p+ 1
, (3.3)
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then this form of the KP equation has an oblique uni-directional travelling solitary-
wave solution of the form

u(x, y, t) = û(θ; c, `) = a(c, `) sech2/p(γ(c, `)θ), (3.4)

where θ = x− ct+ `y + θ0,

γ(c, `) = 1
2
pb(c, `), a(c, `) = [ 1

2
b(c, `)2(p+ 1)(p+ 2)]1/p, b(c, l) = [2c−σ`2]1/2, (3.5)

with the assumption that 2c− σ`2 > 0.
In order to apply the instablity criterion (3.1) we need the two functions A(c, `)

and B(c, `). The functional A(c, `) is just an extended (i.e. when ` 6= 0) form of the
momentum or impulse for the KP model which is

A(c, `) = −
∫ +∞

−∞
(û(θ; c, `))2 dθ. (3.6)

(We will also deduce this expression from the multi-symplectic structure in § 4.)
However the form of the functional B(c, `) is not obvious and only becomes apparent
from the transverse symplectic structure. The transverse symplectic structure for the
KP model is constructed in § 4. The resulting form for B(c, `) is found to be

B(c, `) = σ`

∫ +∞

−∞
(û(θ; c, `))2 dθ = −σ`A(c, `). (3.7)

It follows immediately from this expression that

det

[ Ac A`

Bc B`

]
= −σAAc,

and therefore the condition (3.1) is satisfied precisely when σAc > 0. When ` = 0
A(c, `)|`=0 is the momentum of the solitary wave of the generalized KdV, and for
this wave it is well-known that the sign of Ac(c, 0) = sign(p− 4). Therefore condition
(3.1) leads immediately to the condition σ(p− 4) > 0 for transverse instability of the
solitary wave (3.4)–(3.5) when ` = 0. This recovers the well-known result for transverse
instability of the generalized KdV solitary wave (cf. Kadomtsev & Petviashvili 1970;
Zakharov 1975; Ostrovsky & Shrira 1976; Alexander et al. 1997; Allen & Rowlands
1997). The case ` 6= 0 can also be considered (i.e. apply condition (3.1) for finite `)
but leads to the same result (see § 4).

For the case of longitudinal instability of KdV-type equations results are known
even for p = 4. Pelinovsky & Grimshaw (1996) expand the Evans-type function for
solitary waves to higher order and show that when p = 4 the KdV-type solitary
wave is unstable. It is not difficult to show that this result carries over to the case of
transverse instabilities.

4. Transverse instability problem for the KP equation
In this section we justify the application of the instability criterion (3.1) to the

KP model in § 3, by showing that the KP model is a Hamiltonian system on a
multi-symplectic structure and then deducing the form of the function B(c, `) from
the transverse symplectic structure. This section also provides an example of how
one goes about applying the theory in a particular example. In constructing the
multi-symplectic structure of the KP equation, we follow Bridges (1999).
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Starting with the form of the KP equation given in (3.2), introduce new variables

Z =

(
q
p

)
∈ R4 ×R4. (4.1)

These coordinates will be defined as follows, and used to reformulate the generalized
KP equation as a system of first-order PDEs. Define q1, q2, q3 and p3 by

u
def
= p3 =

∂

∂x
q2 =

∂2

∂x2
q1 and q3 =

∂

∂x
p3. (4.2)

Define p1, p2 and p4 by

p1 = −∂p3

∂t
− ∂p2

∂x
− σ∂p4

∂y

p2 = f(p3) +
∂q2

∂t
+
∂q3

∂x
− ∂q4

∂y

p4 =
∂q2

∂y
+

1

σ

∂q4

∂x
.


(4.3)

Then the KP equation (3.2) is recovered by

∂p4

∂x
− ∂p3

∂y
= 0 and

∂p1

∂x
= 0. (4.4)

This can be verified by substituting (4.1)–(4.3) into the two equations in (4.4). Com-
bining these equations leads to a system of eight first-order PDEs which can be
written in the form

MZt + KZx + LZy = ∇S(Z), Z ∈ R8, (4.5)

where

M =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, K =



0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


,

L =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −σ
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 σ 0 0 0 0 0 0


,

and

S(Z) = p1q2 + p2p3 + 1
2
σp2

4 − 1
2
q2

3 − F(p3), where F(u) =

∫ u

0

f(s) ds.



Transverse instability of solitary waves 265

The three skew-symmetric matrices M, K and L are constant and therefore define
closed two forms,

ω(1) = dp3 ∧ dq2, ω(2) =

4∑
j=1

dpj ∧ dqj and ω(3) = dq4 ∧ dp3 + σdp4 ∧ dq2.

Moreover, J(c, `) = K− cM+ `L is non-degenerate for any (c, `) ∈ R2.

The functions A and B needed for the instability theory are deduced as follows.
According to the definition in (2.8),

A(c, `) = −
∫ +∞

−∞
1
2
ω(1)(Ẑθ, Ẑ) dθ = −

∫ +∞

−∞
1
2
〈MẐθ, Ẑ〉 dθ

= −1

2

∫ +∞

−∞

(
q̂2

d

dθ
p̂3 − p̂3

d

dθ
q̂2

)
dθ

= −
∫ +∞

−∞
p̂3

d

dθ
q̂2 dθ (after integration by parts).

In the integration by parts, the hypothesis (2.4) has been used. Now, noting that
p̂3 = û and (d/dθ)q̂2 = p̂3,

A(c, `) = −
∫ +∞

−∞
û2 dθ,

which is the expression used in § 3 (see equation (3.6)). The minus sign is a consequence
of the choice of coordinates and the choice of moving frame. (Once the sign is fixed,
it carries through the stability analysis: the instability criterion (3.1) is independent
of this choice.)

A similar argument leads to an expression for B; using (2.9),

B(c, `) =

∫ +∞

−∞
1
2
ω(3)(Ẑθ, Ẑ) dθ =

∫ +∞

−∞
1
2
〈LẐθ, Ẑ〉 dθ

=
1

2

∫ +∞

−∞

(
σ

(
p̂4

d

dθ
q̂2 − q̂2

d

dθ
p̂4

)
+ q̂4

d

dθ
p̂3 − p̂3

d

dθ
q̂4

)
dθ.

For the solitary-wave state (3.4)–(3.5), it is straightforward to show that q̂4 = 0 and
p̂4 = `p̂3 = `û. Therefore, after an integration by parts (using the hypothesis (2.4)),

B(c, `) = σ`

∫ +∞

−∞
û2 dθ,

recovering the function used in the instability calculation in § 3. The condition (3.1)
applies to any f(u) in (3.2) for which a solitary-wave solution exists. We finish this
section by giving the complete calculation of the determinant (3.1) for finite `, when
f(u) = up+1/(p+ 1).

With the expression for the solitary wave (3.4)–(3.5), the functions A and B are
computed as follows

A(c, `) = −
∫ +∞

−∞
û2 dθ = −a

2

γ
m(p),
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where m(p) =
∫ +∞
−∞ sech4/pξ dξ is independent of c and `, and clearly B(c, `) =

−σ`A(c, `). Hence

det

[ Ac A`

Bc B`

]
= det

[ Ac A`

−σ`Ac −σA− σ`A`

]
= −σAAc = σ|A|Ac,

since A < 0. Therefore any solitary wave with 2c− σ`2 > 0 is transverse unstable if

σAc > 0. (4.6)

For any admissible (c, `) the second term in this expression is

Ac =
a2m(p)

pγb2
(p− 4),

which is essentially the same as the case ` = 0. In other words the transverse instability
for KP is independent of the angle between the direction of travel of the basic state
and the x-axis. However, this is a special property of the KP equation and is not true
in general. For example, the transverse instability of the basic solitary-wave state of
the Zakharov–Kuznetsov equation shows a strong dependence on the angle between
the direction of propagation of the wave and the x-axis (cf. Allen & Rowlands 1993).

5. Implications of a transverse reflection symmetry
It is evident that equations like the KP equation and the water-wave equations

have a reflection symmetry in the transverse direction. The immediate implication of
this reversibility for the KP equation is that u(x,−y, t) is a solution whenever u(x, y, t)
is a solution. This reflection symmetry will also arise in some form in the functions
A(c, `) and B(c, `). In fact, we will prove that an implication of transverse reflection
is the following property:

A(c,−`) =A(c, `) and B(c,−`) = −B(c, `). (5.1)

To prove this we need a precise definition of transverse reversibility. A system in
multi-symplectic form,

MZt + KZx + LZy = ∇S(Z), Z ∈X, (5.2)

is transverse reversible if there exists a reversor R acting on X satisfying

RM = MR, RK = KR, RL = −LR, and S(RZ) = S(Z). (5.3)

An operator R is a reversor if it is an involution and an isometry,

RR = I and 〈RU ,RW 〉 = 〈U ,W 〉, ∀U ,W ∈X. (5.4)

Act on (5.2) with R,

RMZt + RKZx + RLZy = R∇S(Z),

and use (5.3),

M(RZ)t + K(RZ)x − L(RZ)y = ∇S(RZ).

An immediate implication is that RZ(x,−y, t) is a solution of (5.2) whenever Z(x, y, t)
is a solution.

Before proving (5.1), we will construct a reversor for the KP equation; let

RKP = diag[1, 1, 1,−1, 1, 1, 1,−1]. (5.5)
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It is evident that RKP is an involution and an isometry – with respect to the standard
inner product on R8 – and it is straightforward to verify that RKP satisfies the relations
(5.3), using the definitions of M, K and L for the KP equation given in § 4. Therefore
the KP equation has the transverse reversibility property. For the water-wave problem
a transverse reversor will be constructed in § 6.

To verify (5.1), we start with the definitions

A(c, `) = −
∫ +∞

−∞
1
2
〈MẐθ, Ẑ〉 dθ and B(c, `) =

∫ +∞

−∞
1
2
〈LẐθ, Ẑ〉 dθ, (5.6)

with Ẑ(θ, c, l) satisfying J(c, `)Ẑθ = ∇S(Ẑ), or

KẐθ − cMẐθ + `LẐθ = ∇S(Ẑ). (5.7)

Act on this equation with R and use (5.3),

K(RẐ)θ − cM(RẐ)θ − `L(RẐ)θ = ∇S(RẐ).

For each (c, `), suppose Ẑ(θ, c, `) is a unique solution of (5.7). It then follows that

RẐ(θ, c, `) = Ẑ(θ, c,−`). (5.8)

Now, use this identity in (5.6),

A(c,−`) = −
∫ +∞

−∞
1

2

〈
M

d

dθ
Ẑ(θ, c,−`), Ẑ(θ, c,−`)

〉
dθ

= −
∫ +∞

−∞
1

2

〈
M

d

dθ
RẐ(θ, c, `),RẐ(θ, c, `)

〉
dθ

= −
∫ +∞

−∞
1

2

〈
RM

d

dθ
Ẑ(θ, c, `),RẐ(θ, c, `)

〉
dθ

= −
∫ +∞

−∞
1

2

〈
MẐθ, Ẑ

〉
dθ =A(c, `).

Similarly,

B(c,−`) =

∫ +∞

−∞
1

2

〈
L

d

dθ
Ẑ(θ, c,−`), Ẑ(θ, c,−`)

〉
dθ

=

∫ +∞

−∞
1

2

〈
L

d

dθ
RẐ(θ, c, `),RẐ(θ, c, `)

〉
dθ

= −
∫ +∞

−∞
1

2

〈
RL

d

dθ
Ẑ(θ, c, `),RẐ(θ, c, `)

〉
dθ

= −
∫ +∞

−∞
1

2

〈
LẐθ, Ẑ

〉
dθ = −B(c, `).

This completes the proof of (5.1). An immediate and important consequence of this
result is that

lim
`→0

det

[ Ac A`

Bc B`

]
=Ac(c, 0)B̂(c) where B̂(c) = lim

`→0

1

`
B(c, `). (5.9)
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The functions A(c, 0) and B̂(c) can be determined from the y-independent state. In
other words, when the system has a reflection symmetry in the transverse direction,
the transverse instability determinant can be determined from properties of the `-

independent state. For example, for the KP equation, B̂(c) = σ|A|, and so the result
(4.6) follows immediately from (5.9).

6. Solitary-wave states of the water-wave problem
The purpose of this section is threefold: (a) to show that the instability condition of
§ 3 formally applies to the full water-wave equations, (b) to introduce a new functional
relevant to water waves, particularly the transverse instability of water waves, based
on the transverse symplectic structure, and (c) to show that the analogue of the

functional B̂(c) for water waves is strictly positive. Point (c) is the most intriguing,
because qualitative stability results can be deduced without calculation.

Verification of the above statements reduces essentially to showing that the water-
wave problem can be formulated as a Hamiltonian system on a multi-symplectic
structure, and this has been shown in Bridges (1996, 1997a). However, in that multi-
symplectic formulation for water waves, the skew-symmetric operators M, K and L
depend explicitly on the dependent variables. The theory of this paper can be modified
to treat this case. However, it turns out to be easier to transform the water-wave
problem so that the three operators M, K and L reduce to constant operators, and
then the theory of this paper applies in a straightforward way.

Consider the water-wave problem in standard form for irrotational inviscid flow
with a single-valued free surface. The principal dependent variables are the velocity
potential φ(x, y, z, t) and free-surface position η(x, y, t). The function φ is required
to be harmonic in the interior and to satisfy the kinematic and dynamic boundary
conditions at the free surface. These equations can be formulated as a Hamiltonian
system on a multi-symplectic structure,

MZt + K(u)Zx + L(v)Zy = ∇S(Z), (6.1)

by taking

Z =



Φ
η
w1

w2

φ
u
v


where


Φ = φ|z=η,
u = φx,
v = φy,
u = u|z=η,
v = v|z=η.

(6.2)

and

w1 =
ηx√

1 + η2
x + η2

y

and w2 =
ηy√

1 + η2
x + η2

y

.

Choose z = 0 at the fluid bottom for simplicity and then 0 6 z 6 η(x, y, t). The
functional S(Z) in the above system is

S(Z) =
1

2

∫ η

0

(u2 + v2 − φ2
z) dz − 1

2
gη2 + τ(1−

√
1− w2

1 − w2
2) (6.3)

where τ is the coefficient of surface tension.
Although the symplectic operators are not constant, they are exact and therefore
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closed, and the one-forms associated with the three symplectic forms are

α(1) = −Φdη, α(2) =

∫ η

0

udφ dz + τw1dη, α(3) =

∫ η

0

vdφ dz + τw2dη,

and from these we find that ω(j) = dα(j) for j = 1, 2, 3 or

ω(1) = dα(1) = −dΦ ∧ dη,

ω(2) = dα(2) =

∫ η

0

du ∧ dφ dz + udη ∧ dΦ+ τdw1 ∧ dη,

ω(3) = dα(3) =

∫ η

0

dv ∧ dφ dz + vdη ∧ dΦ+ τdw2 ∧ dη.

The relation with the skew-symmetric operators M, K(u) and L(v) is as follows.
Introduce the inner product

〈U ,V 〉η = U1V1 +U2V2 +U3V3 +U4V4 +

∫ η

0

[U5V5 +U6V6 +U7V7] dz (6.4)

then it is easily verified that

ω(1)(U ,V ) = 〈MU ,V 〉η, ω(2)(U ,V ) = 〈K(u)U ,V 〉η, ω(3)(U ,V ) = 〈L(v)U ,V 〉η.
Explicit expressions for the operators M, K(u) and L(v) are given in Bridges (1996,
§ 2).

The water-wave equations have a transverse reflection symmetry. In the multi-
symplectic coordinates (6.2), the reversor is

RWW = diag[1, 1, 1,−1, 1, 1,−1].

This operator is clearly an involution and an isometry with respect to the inner
product (6.4). Moreover, given the explicit expressions for M, K(u) and L(v) it is
straightforward to verify the conditions (5.3). The theory in § 7 requires that M,
K(u) and L(v) are constant operators. The above multi-symplectic structure can be
transformed so that these operators are constant, and the details of the transformation
are given in the Appendix. In the remainder of this section, the implications of the
multi-symplectic structure of the water-wave problem for transverse instability are
considered.

Given any solitary-wave solution, denoted by Ẑ(θ, z; c, `), of the water-wave prob-
lem, which is differentiable, satisfies (6.1) and decays exponentially as θ → ±∞, it can
be characterized formally as a critical point of a constrained variational principle as
in § 2, where θ = x− ct+ `y + θ0. The governing equation for this solitary wave is a
generalization of (2.5):

J(c, `)Ẑθ = ∇S(Ẑ), Ẑ ∈X, (6.5)

where J(c, `) = K(u)− cM+ `L(v), and in this case the solitary wave when it exists is
a homoclinic orbit of this symplectic PDE on an infinite-dimensional space, X.

The form of the functionsA andB evaluated on a solitary wave follow immediately
from the multi-symplectic structure,

A(Ẑ) = −
∫ +∞

−∞
1
2
〈MẐθ, Ẑ〉η dθ = −

∫ +∞

−∞
1
2
ω(1)(Ẑθ, Ẑ) dθ, (6.6)



270 T. J. Bridges

and

B(Ẑ) =

∫ +∞

−∞
1
2
〈L(v)Ẑθ, Ẑ〉 dθ =

∫ +∞

−∞
1
2
ω(3)(Ẑθ, Ẑ) dθ. (6.7)

Evaluating these expressions, and using (6.2), results in

A(Ẑ) =

∫ +∞

−∞
Φ̂η̂θ dθ, and B(Ẑ) =

∫ +∞

−∞

(
τŵ2η̂θ +

∫ η̂

0

v̂φ̂θ dz

)
dθ. (6.8)

The first expression is (minus) the familiar impulse or momentum for water waves
evaluated on a solitary wave, but here also considered as a function of `, as well
as c. The dependence of the momentum or impulse for solitary gravity waves as a
function of c (but not as a function of `) has been studied in the water-wave literature
(cf. Longuet-Higgins 1974) including its consequences for longitudinal instability of
solitary waves (cf. Tanaka 1986).

The second functional is new. For the solitary wave,

v̂ = `φ̂θ and ŵ2 =
`η̂θ√

1 + (1 + `2)η̂2
θ

,

and therefore

B(Ẑ) = `

∫ +∞

−∞

(
τ

η̂2
θ√

1 + (1 + `2)η̂2
θ

+

∫ η̂

0

(φ̂θ)
2 dz

)
dθ. (6.9)

There is no obvious physical significance of this functional. For example, when surface
tension vanishes, it reduces to

B(Ẑ) = `

∫ +∞

−∞

∫ η̂

0

(φ̂θ)
2dz dθ.

It is not related to the transverse momentum. It is similar to a kinetic energy, but is
lacking the vertical velocity squared in order to be related to twice the true kinetic
energy. It is an example of a functional whose importance has been dictated by the
mathematical structure of the equations rather than physical considerations.

It can be immediately deduced from the expression for B(Ẑ) in equation (6.9) –
regardless of whether the solitary wave is a gravity wave or capillary–gravity wave –
that

B̂(c) = lim
`→0

1

`
B(c, `) > 0.

This result is remarkable, because – when combined with the fact that the water-wave
problem has a transverse reflection symmetry – it says that transverse instability for
the case ` = 0 is determined precisely by the sign of Ac. But

signAc(c, 0) = −signIc(c)

where Ic(c) is the momentum for solitary wave travelling in the x-direction. Therefore
a sufficient condition for transverse instability of solitary water waves is

dI

dc
< 0.

For classical gravity solitary waves with monotone decay of the tails as θ → ±∞,
it is known from the numerical results of Longuet-Higgins (1974) that dI/dc > 0 for
finite-amplitude solitary waves up to almost the highest wave, as shown schematically
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in figure 1. The present result shows that this solitary wave is also unstable when
dI/dc < 0 to weakly transverse perturbations as well.

From the work of Tanaka et al. (1987), it is known that the longitudinal instabilities
that arise at the point where dI/dc first changes sign can lead to wave breaking.
Now, the above theory shows that transverse instability also occurs at the same point.
Therefore, if the initial data in a numerical calculation such as Tanaka et al. (1987)
were chosen to be an unstable eigenfunction with non-zero transverse component, it is
reasonable to conjecture that it would lead to wave breaking with transverse variation.
This would be a natural mechanism for the appearance of three-dimensionality in
wave breaking.

The condition dI/dc < 0 implying transverse instabilty also applies to capillary–
gravity waves; indeed, given any solitary wave of the water-wave problem of the form
Ẑ(θ, z; c, `) as in (6.5) with ` = 0, a negative sign for dI/dc indicates immediately that
it is transverse unstable. However, there is little information in the literature about
the value of I(c) along branches of capillary–gravity solitary waves.

One of the main conclusions one can draw from the above theory is the importance
of plotting the surfaces A(c, `) and B(c, `) as functions of c and `. These plots would
be a natural generalization of plots of the momentum or impulse against the wave
speed c as in figure 1.

Given the graphs ofA(c, `) and B(c, `), the idea would be to look for points where
∇A and the gradient of ∇B become collinear (where ∇ represents the gradient with
respect to c and `). These points are neutral points and candidates for a change from
transverse stability to transverse instability.

7. Formulating the stability problem for transverse perturbations
The linear stability problem for transverse perturbations is formulated as follows.

Let

Z(x, y, t) = Ẑ(θ; c, `) + Û (θ, y, t), (7.1)

where Ẑ(θ; c, `) is a solitary wave solution of the form (2.3)–(2.4), and any cross-
section variables (such as z in the water-wave problem) are suppressed. Substitute
(7.1) into (2.1) and formally linearize about Ẑ ,

MÛt + J(c, `)Ûθ + LÛy = D2S(Ẑ)Û , (7.2)

where D2S(Ẑ) is the Hessian of S evaluated at Ẑ .
Since the coefficients in this PDE are independent of y and t, consider solutions of

(7.2) of the form

Û (θ, y, t) = Re[U (θ; λ, β)eiβyeλt]; (7.3)

then the complex vector-valued function U (θ; λ; β) satisfies the differential equation

LU = λMU + iβLU , U ∈Y, (7.4)

where Y is the complexification of X, and

L def
= D2S(Ẑ)U − J(c, `)Uθ. (7.5)

The basic state Ẑ(θ; c, `) is said to be linearly unstable or spectrally unstable if, for
some β ∈ R, there exists λ ∈ C with Re(λ) > 0 such that (7.4) has a solution
U (θ; λ, β) which is bounded for all θ ∈ R and decays exponentially to zero as
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θ → ±∞. If ` = β = 0 then we recover the case of one-dimensional instabilities of a
one-dimensional solitary wave travelling in the x-direction.

The idea is to derive an instability criterion for |λ| + |β| sufficiently small by
projecting the right-hand side of (7.4) onto the kernel of L.

By differentiating (2.5), it is clear that Ẑθ ∈ Ker(L). We take as a hypothesis that
the kernel is not larger; in other words there are no other solutions which are square
integrable and in the kernel ofL. The kernel may be larger if symmetries are present,
or for particular values of the parameters, but generically we can expect this condition
to be satisfied.

Formally the operator L is self-adjoint, and therefore the condition for (7.4) to be
solvable is that the right-hand side be in the range of the operator L. This condition
leads to

∆(λ, β) = [[Ẑθ, λMU + iβLU ]] = 0, (7.6)

with U satisfying (7.4). The inner product is defined by

[[U ,V ]]
def
=

∫ +∞

−∞
〈U (θ),V (θ)〉dθ, (7.7)

where 〈·, ·〉 is the inner product on Y.
The central result needed for the theory is that the complex function ∆(λ, β) has

the following Taylor expansion for |λ|+ |β| sufficiently small:

∆(λ, β) = C(−Acλ
2 + (A` +Bc)iλβ +B`β

2) + o(|λ|2 + |β|2) as |λ|+ |β| → 0, (7.8)

where C is a non-zero complex constant.
The instability criterion (3.1) can be deduced from this expression immediately.

Solving ∆(λ, β) = 0 for |λ|+ |β| sufficiently small leads to

λ = i
A`

Ac

β ± β

Ac

√AcB` −A`Bc + O(β2) (7.9)

(noting that A` = Bc) and therefore if β 6= 0 but |β| � 1 and the determinant (3.1)
is positive there is an unstable exponent λ with positive real part, with the magnitude
of the growth rate of order |β|. Reference to equation (7.3) shows that the unstable
eigenfunction is travelling in a direction transverse to the x-axis.

The Taylor expansion (7.8) is verified as follows. Differentiation of (2.5) with respect
to x, c and ` leads to the following identities:

J(c, `)
∂

∂θ
Ẑθ = D2S(Ẑ)Ẑθ,

J(c, `)
∂

∂θ
Ẑc = D2S(Ẑ)Ẑc +MẐθ,

J(c, `)
∂

∂θ
Ẑ` = D2S(Ẑ)Ẑ` − LẐθ.

Using the definition of L in (7.5) these three equations can be written

LẐθ = 0, LẐc = −MẐθ and LẐ` = LẐθ. (7.10)

Therefore, by letting

U (θ; λ, β) = C(Ẑθ − λẐc + iβẐ` + O(|λ|2 + |β|2)), (7.11)

it is clear that U (θ; λ, β) satisfies (7.4) to order |λ|2 + |β|2. Substitution of (7.11) into
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(7.6) then leads to

∆(λ, β) = C[[Ẑθ, λM(Ẑθ − λẐc + iβẐ`)]] +C[[Ẑθ, iβL(Ẑθ − λẐc + iβẐ`)]] + · · · .
But, due to the skew-symmetry of M and L,

[[Ẑθ,MẐθ]] = [[Ẑθ, LẐθ]] = 0.

Hence,

∆(λ, β) = C{−λ2[[Ẑθ,MẐc]]+iβλ[[Ẑθ,MẐ`]]−iλβ[[Ẑθ, LẐc]]−β2[[Ẑθ, LẐ`]]}+· · · . (7.12)

It remains to evaluate the inner products in this expression. But

[[Ẑθ,MẐc]] =

∫ +∞

−∞
〈Ẑθ,MẐc〉dθ = −

∫ +∞

−∞
ω(1)(Ẑθ, Ẑc) dθ =Ac,

using (2.14). Similar evaluation of the other three inner products leads to(
+[[Ẑθ,MẐc]] +[[Ẑθ,MẐ`]]

−[[Ẑθ, LẐc]] −[[Ẑθ, LẐ`]]

)
=

( Ac A`

Bc B`

)
,

using (2.14). Substitution of this expression into (7.12) then completes the verification
of (7.8).

8. Concluding remarks
The main advantage of the instability condition (3.1) for transverse instability

is that it is universal in the sense that it does not require an explicit solution or
an explicit PDE: it relies only on geometric properties of a class of PDEs. It is a
sufficient condition for instability. However, when the determinant has the opposite
sign, it is a necessary but not sufficient condition for transverse stability. For example,
for gravity solitary waves of the water-wave problem when dI/dc > 0 the condition
suggests transverse stability but this is true only for transverse instabilities with long
wavelength. It is possible in this case to have transverse instability with finite or short
wavelength.

An asymptotic approach to extending the validity of the instability condition (3.1)
to larger values of β is to expand the characteristic function ∆(λ, β) in (7.8) to higher
order in λ and β. For example, this has been done for the case of longitudinal
instabilities (i.e. β = 0) by Pelinovsky & Grimshaw (1996) and Skryabin (2000).
These asymptotic expansions should also extend to the case β 6= 0. However, the
higher-order terms in these expansions do not appear to be characterizable in terms
of properties of the basic state, and would therefore require direct analysis of the
linear-stability equation.

Many of the model equations proposed for water waves can be formulated as
multi-symplectic systems and therefore the theory of this paper can be applied to
solitary wave states. Examples are given below.

The (2 + 1)-dimensional Boussinesq equation,

utt − uxx + 3(u2)xx + εuxxxx − uyy = 0, ε = ±1, (8.1)

has been derived by Johnson (1996) as a model for interacting shallow-water waves,
including solitary waves. It is in fact multi-symplectic, and therefore the theory here
would be immediately applicable to (c, `)-parameter families of such waves (note
however that the equation is ill-posed when ε = −1).
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The nonlinear Schrödinger equation in two (or more) space dimensions,

−iAt + Axx + σAyy + ε|A|2A = 0, ε = ±1, (8.2)

and its various generalizations such as fourth-order models and the Davey–Stewartson
equation are important equations as models for water waves. In fact these equa-
tions have been widely studied for transverse instability phenomena (see the review
by Kivshar & Pelinovsky 2000). These models are Hamiltonian generally and also
multi-symplectic. However the theory presented here would require some interesting
modification, since even the y-independent basic state can depend on two parameters,
so it is expected that the transverse instability condition would be more complex than
(3.1).

Coupled KP equations arise as models for the interaction between solitary waves,
such as gap solitary waves in meterological flows (cf. Gottwald, Grimshaw & Malo-
med 1998). These systems have intriguing classes of solitary waves. The transverse
instability has not been studied, but these systems have a multi-symplectic structure.

The Benney–Luke equation

utt − ∆u+ µ(a∆2u− b∆utt) + ε(ut∆u+ ∂t|∇u|2) = 0, (8.3)

where ∆ = ∂xx + ∂yy and b > 0 and a > 0 are real parameters, first derived by
Benney & Luke (1964) is a model for shallow-water waves more general than the
Boussinesq models and the KP equation. In addition to solitary-wave solutions, it is
known to have two-dimensional lump solitary waves as well (cf. Pego & Quinterro
1999). However, the stability problem has never been studied, but it is not difficult to
show that this equation has a multi-symplectic structure.

The range of classes of solitary waves of the water-wave problem gets much richer
when capillary forces are added, and very little is known about their stability, even
the longitudinal stability. When the Bond number is near 1/3 and the Froude number
is near unity, the relevant model equation is the fifth-order KdV equation. Therefore
a good starting point for addressing the transverse instability of solitary waves near
this critical point is the generalization of the fifth-order KdV to include transverse
variation due to Hărăguş-Courcelle & Ilichev (1998),

(ut + uux + uxxx + γuxxxxx)x + σuyy = 0. (8.4)

It is straightforward to show that this system is multi-symplectic (the multi-symplectic
structure of this equation when σ = 0 is given in Bridges & Derks 2000). While it is
known from the analysis of the KP equation that weakly nonlinear solitary waves are
transverse unstable for Bond number greater than 1/3 (cf. Ablowitz & Segur 1979),
this result does not hold for Bond number very near 1/3, where the equation (8.4) is
relevant.

Appendix. Transforming the free surface and multi-symplectic structure
In this appendix, the details of the transformation of the water-wave equations

which leads to a constant multi-symplectic structure are given. The starting point is
the multi-symplectic form of the water-wave equations given in § 6, and the goal is to
transform them to the form (2.1), where the operators M, K and L are constant.

Flatten the free surface by introducing the new coordinate ξ defined by

ξ =
z

η
with 0 6 ξ 6 1 (A 1)
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and then introduce new field variables which depend on ξ instead of z,

Z̃ =F(Z) = (Ψ, η,W1,W2, ψ,U, V ), (A 2)

with the components of Z̃ defined as follows:

ψ(x, y, ξ, t) = φ(x, t, ξη, t), Ψ = ψ|ξ=1,

U(x, y, ξ, t) = ηu(x, t, ξη, t), V (x, y, ξ, t) = ηv(x, t, ξη, t),

and

W1 = τw1 − 1

η

∫ η

0

zuφzdz = τw1 − 1

η

∫ 1

0

ξUψξdξ,

W2 = τw2 − 1

η

∫ η

0

zvφzdz = τw2 − 1

η

∫ 1

0

ξVψξdξ,

since

ψξ = ηφz, Uξ = η2uz and Vξ = η2vz.

The advantage of introducing this transformation in the multi-symplectic setting –
instead of transforming the water-wave equations explicitly – is that the equations are
automatically transformed by transforming the two-forms and the function S , which
are much simpler to transform.

Under the transformation F the Hamiltonian function S(Z) becomes

S̃(Z̃) = S(F−1(Z̃))

=
1

2η

∫ 1

0

(U2 + V 2 − ψ2
ξ)dξ − 1

2
gη2 + τ(1−

√
1− w2

1 − w2
2), (A 3)

where it is to be understood that

w1 =
1

τ

(
W1 +

1

η

∫ 1

0

ξUψξdξ

)
and w2 =

1

τ

(
W2 +

1

η

∫ 1

0

ξVψξdξ

)
. (A 4)

It remains to transform the three differential forms, which will in turn automatically
transform the operators M, K(u) and L(v). The transformation of ω(1) is straightfor-
ward since dΦ = dΨ and so

F∗ω(1) = −dΨ ∧ dη.
In order to transform ω(2) and ω(3) we need the following identities:

dφ = dψ − ξ

η
ψξdη, ηdu = dU − 1

η
(U + ξUξ)dη, ηdv = dV − 1

η
(V + ξVξ)dη,

and

τdw1 = dW1 +
1

η

∫ 1

0

ξψξdU dξ +
1

η
U|ξ=1dΨ − 1

η

∫ 1

0

(U + ξUξ)dψ dξ + (· · ·)dη,

τdw2 = dW2 +
1

η

∫ 1

0

ξψξdV dξ +
1

η
V |ξ=1dΨ − 1

η

∫ 1

0

(V + ξVξ)dψ dξ + (· · ·)dη.
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The terms proportional to dη in dw1 and dw2 are not recorded since they drop out
of the wedge product dwj ∧ dη (j = 1, 2). We are now in a position to transform ω(2)

and ω(3):

F∗ω(2) =

∫ η

0

du ∧ dφdz + udη ∧ dΦ+ τdw1 ∧ dη

=

∫ 1

0

ηdu ∧ dφdξ +
1

η
U|ξ=1dη ∧ dΨ + τdw1 ∧ dη

=

∫ 1

0

dU ∧ dψdξ + dW1 ∧ dη

and similarly

F∗ω(3) =

∫ η

0

dv ∧ dφdz + vdη ∧ dΦ+ τdw2 ∧ dη

=

∫ 1

0

dV ∧ dψdξ + dW2 ∧ dη.

In summary the transformed Hamiltonian system on the constant multi-symplectic
structure is as follows. The Hamiltonian functional S̃(Z̃) is given in (A 3), the coordi-
nates Z̃ are defined in (A 2) and the three symplectic forms are

ω̃(1) =F∗ω(1) = −dΨ ∧ dη,

ω̃(2) =F∗ω(2) =

∫ 1

0

dU ∧ dψdξ + dW1 ∧ dη,

ω̃(3) =F∗ω(3) =

∫ 1

0

dV ∧ dψdξ + dW2 ∧ dη.

The gradient of S̃ and the transformed symplectic operators M̃, K̃ and L̃ are defined
with respect to the following inner product, which does not depend on Z̃:

〈F ,G〉 = F1G1 + G2G2 + F3G3 + F4G4 +

∫ 1

0

[F5G5 + F6G6 + F7G7]dξ

from which we find

ω̃(1)(F ,G) = 〈M̃F ,G〉, ω̃(2)(F ,G) = 〈K̃F ,G〉, ω̃(3)(F ,G) = 〈L̃F ,G〉,
with

M̃ =



0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,
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K̃ =



0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0


, L̃ =



0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 1 0 0


,

and so the governing equations take the form

M̃Z̃t + K̃Z̃x + L̃Z̃y = ∇S̃(Z̃), Z̃ ∈X, (A 5)

where the phase space is now a linear space of functions defined on the interval [0, 1].
Equation (A 5) is now qualitatively in the form (2.1).
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