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Secondary criticality of water waves. Part 2.
Unsteadiness and the Benjamin–Feir instability

from the viewpoint of hydraulics

By T. J. BRIDGES AND N. M. DONALDSON
Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, UK

(Received 5 November 2003 and in revised form 15 March 2006)

The theory for criticality presented in Part 1 is extended to the unsteady problem, and
a new formulation of the Benjamin–Feir instability for Stokes waves in finite depth
coupled to a mean flow, which takes the criticality matrix as an organizing centre,
is presented. The generation of unsteady dark solitary waves at points of stability
changes and their connection with the steady dark solitary waves of Part 1 are also
discussed.

1. Introduction
A curiosity in the theory of water waves is the gap between concepts in hydraulics

such as mass flux, total head, flow force and criticality and concepts associated with
the time-dependent problem, such as the Benjamin–Feir (BF) instability. On the one
hand, it is well known that it is mean flow that stabilizes the BF instability in shallow
water, and clearly mean flow is analogous to a uniform flow. On the other hand, the
connection between the hydraulic properties of uniform flows coupled to a Stokes
waves and the BF instability has not been clearly established. The Whitham (1967)
theory for BF instability in finite depth comes closest to linking these two concepts.
The Whitham theory produces the correct result for BF instability, but it does not
produce the parameter structure of uniform flows correctly. Specifically, it treats the
total head as a pseudofrequency which is associated with time dependence, so in the
limit as a steady flow is approached, the connection with uniform flows is lost (see § 7
for elaboration).

Linking the properties of the time-dependent problem and the hydraulic properties
of steady flows turns out to be possible by putting space and time on an equal
footing whereby steady properties can be deformed in a natural way into the unsteady
problem. This idea formed the basis of the new theory for criticality presented in Part 1
(Bridges & Donaldson 2006), and is elaborated further here for the unsteady problem.

The main result of this paper is that a steady periodic Stokes wave in finite
depth, coupled to uniform flow, is linearly unstable to long-wave perturbations if
the determinant of the deformed criticality matrix, N(Ω), has a root with non-zero
imaginary part, where

N(Ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂R

∂h0

∂R

∂u0

∂R

∂k

∂Q

∂h0

∂Q

∂u0

∂Q

∂k

∂B

∂h0

∂B

∂u0

∂B

∂k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ Ω

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
∂A

∂h0

1 0
∂A

∂u0

∂A

∂h0

∂A

∂u0

2
∂A

∂k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ Ω2

⎡⎢⎢⎢⎣
0 0 0

0 0 0

0 0
∂A

∂ω

⎤⎥⎥⎥⎦ . (1.1)
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The parameter Ω represents the stability exponent for the time-dependent problem.
The determinant of N(Ω) will be called the stability polynomial. It is a quartic
polynomial in Ω when Aω �= 0.

The most important feature of the above result is that the criticality matrix is at
the centre of the stability polynomial. For example, it is clear that there is a zero root
of the stability polynomial if and only if the basic state is critical.

The new function A(Z) is related to the wave action, but is not precisely the wave
action because it is evaluated on the steady problem. It is obtained by deformation
of the variational principle for the steady waves, use of conservation of wave action,
and then deforming back to the steady problem. All entries in the three matrices in
N(Ω) are evaluated on the steady wave. For example, to obtain Aω, the basic steady
state is deformed to a modulated time-dependent state with frequency ω, the wave
action is evaluated on this deformed state, the derivative with respect to ω is taken,
and then the limit ω → 0 is introduced, resulting in a function of the steady-state
solution only. In fact, the wave action can be expressed in terms of the mass flux of
the steady wave (cf. Appendix). The deformation and derivative provide information
about the susceptibility of the basic steady-state wave to unsteadiness (see Bridges
2004 for a similar susceptibility argument arising in the stability analysis of bright
solitary waves).

A sketch of how the theory proceeds is as follows. Consider a Hamiltonian PDE
in multi-symplectic form

MZt + JZx = ∇S(Z), Z ∈ �, (1.2)

where � represents the phase space. In (1.2), both M and J are skew-symmetric
operators, and S is a given smooth function. The symbol S is used in anticipation that,
for physical problems such as water waves and its model counterparts, coordinates
are chosen so that S is the flow force.

The steady part of (1.2)

JZx = ∇S(Z), Z ∈ �,

is a classical Hamiltonian system in the x-direction. With coordinates chosen correctly
(cf. Part 1), systems based on water waves have three invariants

Sx = 0, Rx = 0, Qx = 0,

where S, Q and R are precisely the physical quantities of flow force, mass flux and
total head, and more importantly, in the Hamiltonian setting these bulk quantities are
related to symmetry. Bringing the time-dependence back into the equation converts
these invariants to fluxes of conservation laws,

Sx + It = 0, Qx + Pt = 0, Rx + Ft = 0. (1.3)

The first of these is the conservation of impulse which is discussed in detail in Benjamin
(1984). The second is conservation of mass, and the third is the conservation form of
Bernoulli’s equation (the third conservation law is sometimes called conservation of
energy, but conservation of energy for water waves takes a different form). Each
of these conservation laws is associated with some symmetry via Noether’s theorem.
Conservation of impulse is associated with translation invariance in the x-direction
of the governing equations. Conservation of mass is associated with translation of
the velocity potential – that is, an arbitrary function of time can be added to the
velocity potential. Heretofore, the association of the third conservation law with a
symmetry has gone unnoticed. It is a hidden symmetry which becomes apparent
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when a potential is introduced for the free-surface elevation. This new symmetry was
introduced in Part 1 for steady waves, and is extended to the unsteady problem in § 2.

Let A(Z) represent the wave action. Then, adding in conservation of wave action,
∂tA + ∂xB = 0, to (1.3) leads to a set of 8 functionals: four spatial (the fluxes), which
are central to the steady problem, and four temporal functionals, which come into
play in the analysis of the unsteady equations.

To motivate the importance of the embedding of the steady wave in the unsteady
problem, the linear stability problem is formulated for the steady waves of Part 1,
without embedding. The required deformation will then arise naturally, and the theory
for this is given in § § 4 and 5. The linear stability analysis for long-wave instabilities
is then completed in § 6. The similarities and differences with the instability theory of
Whitham are then considered in § 7. In § 8, it is shown that the stability polynomial
obtained from (1.1) reproduces the classical stabilization of the BF instability due to
mean flow which occurs in the weakly nonlinear limit. Some comments on bandwidth
of unstable wavenumbers are given in § 9. The final section gives an overview and
summarizes the results of Parts 1 and 2.

2. A Boussinesq model for modelling unsteady criticality
A Boussinesq model will be used to illustrate the theory of unsteady criticality.

Since this paper will restrict attention to stability of periodic waves, the Boussinesq
model with third-order dispersion is sufficient. An exemplar in this class which is
sufficient for the present purposes is,

ht + uhx + hux + 1
3
uxxx = 0,

ut + uux + ghx − τhxxx = 0,

}
(2.1)

where, to match the dispersion relation for water waves we require τ to be proportional
to the coefficient of surface tension (equivalently, proportional to the Bond number)
(cf. Dingemans 1997, pp. 507, 515). (The presence of surface tension in the model (2.1)
is not important for the later discussion of unsteady criticality or stability of water
waves, as the interest is predominantly in gravity waves. However, surface tension is
straightforward to include, and simplifies the structure of the equations.) For some
parameter values these equations are ill-posed and can be replaced by other members
of the Boussinesq equivalence class. However, since the system (2.1) is used in this
paper for illustration only, and the applications later will be to the full water-wave
problem, this ill-posedness is not important.

Extending the idea of Part 1, a potential for both the velocity and the surface
elevation is introduced,

u(x, t) =
∂

∂x
φ(x, t), h(x, t) =

∂

∂x
γ (x, t). (2.2)

Now, by introducing new variables η = τhx , v = −ux/3, q and r (defined below), it is
easily verified that the Boussinesq model (2.1) is equivalent to the system of first-order
PDEs

−rx = 0,

−ht − qx = 0,

φt − ηx = r − gh − 1
2
u2,

−vx = q − hu,

γx =h,

φx = u,

hx = η/τ,

ux = −3v,

⎫⎪⎬⎪⎭ (2.3)
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and this system can be written in standard form for a multi-symplectic PDE

MZt + JZx = ∇S(Z), Z ∈ �8, (2.4)

where Z = (γ, φ, h, u, r, q, η, v) ∈ �8,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

S(Z) = rh + qu − 1
2
hu2 − 1

2
gh2 +

1

2τ
η2 − 3

2
v2. (2.5)

The steady conservation equations of § 2 of Part 1 extend to unsteady conservation
laws. Let g1 = e1 and g2 = e2 where ej be the standard j th unit vector in �8. Then,
the fact that S(Z) is independent of γ and φ can be represented by the statement

S(G(θ )Z) = S(Z), ∀ θ ∈ �2. (2.6)

where

G(θ )Z = Z + θ1g1 + θ2g2, ∀ θ = (θ1, θ2) ∈ �2. (2.7)

The above two-parameter group of symmetries can be related to the conservation of
mass and Bernoulli’s equation as follows. Let 〈·, ·〉 be a standard inner product on
�8, and define

R(Z) = 〈Jg1, Z〉 = 〈e5, Z〉 = r and Q(Z) = 〈Jg2, Z〉 = 〈e6, Z〉 = q. (2.8)

Then

∂

∂x
R(Z) = 〈Jg1, Zx〉 = −〈g1, JZx〉 = −〈g1, ∇S(Z) − MZt〉

and so

∂

∂t
〈Mg1, Z〉 +

∂

∂x
R(Z) = − ∂

∂θ1

S(G(θ )Z)|
θ=0 = 0;

resulting in Bernoulli’s equation in conservation form, a conservation law for total
head,

Ft + Rx = 0 with F = 〈Mg1, Z〉.

However, because of the special form of M, the vector g1 is in the kernel of M and
so F = 0 and conservation of total head has a flux only: Rx = 0, even in the time-
dependent problem. A geometric formulation of conservation of mass can be derived
similarly leading to

Pt + Qx = 0 with P (Z) = 〈Mg2, Z〉 = h.

The geometric formulation of the conservation of wave action is extended to the
unsteady problem as follows. Let Z(x, t, s) be a closed curve (an ensemble) of
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solutions of (2.4), parameterized by s; that is, Z(x, t, s + 2π) = Z(x, t, s) and Z(x, t, s)
satisfies (2.4) for each s with 0 � s < 2π. Then ∂tA(Z) + ∂xB(Z) = 0 with

A(Z) = 1
2

∮
〈MZs, Z〉 ds, B(Z) = 1

2

∮
〈JZs, Z〉 ds,

∮
· ds :=

1

2π

∫ 2π

0

· ds.

3. Long-wave stability of periodic waves on a uniform flow
In this section, the linear stability problem for the three-parameter family of steady

waves introduced in Part 1 is formulated.
For simplicity of presentation, the theory will be developed in detail for the

Boussinesq system in multi-symplectic form introduced in § 2, and then results of the
theory for water waves will be discussed.

The theory is in fact based only on the multi-symplectic form of the governing
equations with the symmetries as discussed in § 2,

MZt + JZx = ∇S(Z), Z ∈ �, (3.1)

where M and J are skew symmetric, and � is the phase space, which is an inner
product space, and for simplicity will be assumed finite-dimensional here.

Consider a perturbation of the basic state of § 5 of Part 1, that is, let

Z(x, t) = G(θ(x))[Ẑ + Û ] := Ẑ(θ3) + Û (θ3, x, t) + θ1(x)g1 + θ2(x)g2.

Substituting this expression into (3.1) and linearizing about the basic state Ẑ leads to
the linear constant coefficient PDE

MÛt + JÛx = L( p)Û , (3.2)

where

L( p) = D2S(Ẑ) − kD2B(Ẑ),

taking into account that R and Q are linear functions of Ẑ.
From equation (B3) in Appendix B of Part 1, it is immediate that span{g1, g2, g3} ⊆

Kernel (L( p)) and we will take it as a hypotheses that the Kernel is not larger, i.e.

span{g1, g2, g3} = Kernel(L( p)).

The operator L( p) is a differential operator in θ3, and the coefficients (for example

D2S(Ẑ(θ3))) depend periodically on θ3. Therefore in analysing the linear stability
problem, we take a class of periodic perturbations of Floquet type in the x-direction.
Let

Û (θ3, x, t) = U1(θ3, t) cosαx + U2(θ3, t) sinαx, (3.3)

for some α ∈ �, and where Uj (θ3, t) are 2π-periodic functions of θ3.
The representation (3.3) is much weaker than a proper ‘Floquet decomposition’.

The Floquet decomposition states that every solution is of the form of an exponential
multiplied by a function of the same period as the basic state. Here, the aim is to
show that there exists at least one solution of the form (3.3), and since the periodic
direction is spatial, the solution should be bounded: the Floquet exponent should be
purely imaginary and hence α ∈ �, leading to the sin–cos representation.
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Now, look for temporally exponential solutions, (U1(θ3, t), U2(θ3, t)) = (W1(θ3),
W2(θ3))e

λt ; then we have the following spectral problem[
L( p) −αJ
αJ L( p)

](
W1

W2

)
= λ

[
M 0
0 M

](
W1

W2

)
, W =

(
W1

W2

)
∈ �� × ��, (3.4)

where �� is the complex version of �. The analysis of the spectral problem (3.4) is
simplified by noting that the block system is easily diagonalized. Let

T =
1√
2

(
−iI iI
I I

)
; then T∗

[
0 −I
I 0

]
T = diag(−iI, iI),

and so, by introducing the new variable W = Tζ with ζ = (ζ −, ζ+), and multiplying
(3.4) by T∗, it is block diagonalized to[

L( p) − λM − iαJ 0
0 L( p) − λM + iαJ

](
ζ −
ζ+

)
=

(
0
0

)
. (3.5)

Hence the spectral problem decouples into two lower-order spectral problems which
can be solved independently. Therefore, the basic spectral problem is

L( p)ζ − = λMζ − + iαJζ −. (3.6)

The linear stability problem, for a basic wave in the family of steady waves interacting
with a uniform flow of Part 1, reduces to studying the spectral problem (3.6). If there is
a solution ζ − satisfying the eigenvalue problem (3.6), for some α ∈ �, with Re(λ) > 0
then we say the basic state is linearly unstable or spectrally unstable.

The spectral problem (3.6) has a very nice structure. The operator L( p) is symmetric
and it is the second variation of the constrained variational principle for the basic
state, M and J are skew symmetric and so iJ is Hermitian.

A complete analysis of this spectral problem is beyond the scope of this paper, but
by restricting to long-wave instabilities – that is, α small – fairly complete results can
be obtained.

To determine the long-wave instabilities, the strategy will be to expand ζ − in a
Taylor series in λ and α, and then use the solvability condition for (3.6) to determine
the leading-order terms in the relationship between λ and α. The leading-order Taylor
expansion of ζ − is

ζ − = c1(g1 + λV11 + iαV12 + · · · ) + c2(g2 + λV21 + iαV22 + · · · )

+ c3(g3 + λV31 + iαV32 + · · · ), (3.7)

where the higher-order terms are higher order in |λ| and |α|. Substitution of this
expression into (3.6), and using the fact that gj , j = 1, 2, 3 are in the kernel of L( p)
shows that the first-order (in λ and α) terms satisfy

L( p)Vj1 = Mgj , L( p)Vj2 = Jgj , j = 1, 2, 3. (3.8)

It follows from equations (B3) and (B4) in Appendix B of Part 1 that there are explicit
expressions for Vj2,

V12 =
∂Ẑ

∂h0

+ Ker(L( p)), V22 =
∂Ẑ

∂u0

+ Ker(L( p)), V32 =
∂Ẑ

∂k
+ Ker(L( p)).
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The term +Ker(L( p)) is an indication that an arbitrary element in the kernel of L( p)
can be added to the solution. However, these elements will drop out in the later
calculation and so are not made explicit.

It remains to solve for Vj1 with j = 1, 2, 3. When j = 1 the equation trivializes
since g1 is in the kernel of M. Hence we need to solve for V21 and V31 only. The
equations L( p)Vj1 = Mgj for j =2, 3 are certainly solvable. They satisfy the solvability
conditions, ∮

〈gi , Mgj 〉 dθ3 = 0, i, j = 2, 3,

since Mg2 = ∇P and Mg3 = ∇A and the functionals P and A are invariant.
How to solve for V21 and V31 without using brute force? It is precisely this impasse

which suggests that we need to deform the basic state into the unsteady problem. One
interpretation of this deformation is that the stability problem requires information
about how sensitive the basic state is to temporal modulation.

4. Towards criticality for unsteady waves
The key step in going from criticality of uniform flows to criticality of Stokes

waves in Part 1 was the characterization of the basic state as a relative equilibrium.
Criticality was then associated with a degenerate relative equilibrium.

Relative equilibria can be extended to include time dependence, by embedding the
relative equilibrium in a multi-symplectic relative equilibrium (cf. Bridges 1997). To
keep technicalities to a minimum, the analysis is carried out for the multi-symplectic
form of the Boussinesq equation.

The starting point is (3.1). The three-parameter family of waves of § 5 of Part 1 is
generalized to

Z(x, t) = G(θ (x, t))Ẑ := Ẑ(θ3) + θ1(x, t)g1 + θ2(x, t)g2, (4.1)

with θ1, θ2 and θ3 affine functions of both x and t ,

θ1(x, t) = h0x + bt + θ0
1 , θ2(x, t) = u0x + at + θ0

2 , θ3(x, t) = kx + ωt + θ0
3 .

The parameters θ0
1 , θ0

2 and θ0
3 are arbitrary phase constants, and (a, b, ω) are the

generalized speed along the group associated with the time direction.
For the Boussinesq model and water waves, it is found a posteriori that b = 0.

The parameter b is zero because the conservation law for total head has only one
component (a flux only). Therefore set b = 0 from the outset.

The space-time properties are now coupled. To determine (Ẑ, p, ω, a), substitute
(4.1) in (3.1) to find

∇S(Ẑ) = h0∇R(Ẑ) + u0∇Q(Ẑ) + k∇B(Ẑ) + aMg2 + ωM
∂Ẑ

∂θ3

. (4.2)

But,

Mg2 = ∇P (Ẑ) with P (Ẑ) =

∮
〈Mg2, Ẑ〉 dθ3,

M
∂Ẑ

∂θ3

= ∇A(Ẑ) with A(Ẑ) =

∮
1
2

〈
M

∂Ẑ

∂θ3

, Ẑ

〉
dθ3.

Hence the program is the same as before, we merely have additional Lagrange

multipliers. The function Ẑ(θ3) is obtained as a critical point of S restricted to level
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sets of the 5 functionals

R(Ẑ) = R, Q(Ẑ) = Q, B(Ẑ) = B, A(Ẑ) = A , P (Ẑ) = P,

with R, Q, B, A and P specified. This constrained variational principle is non-
degenerate when ∣∣∣∣∂(R, Q, B, A, P )

∂(h, u, k, ω, a)

∣∣∣∣ �= 0, (4.3)

suppressing again the 0-subscript in the derivatives. For both the Boussinesq model
and the full water-wave problem, the matrix in (4.3) can be simplified. For example,

in the Boussinesq model, the functional P (Ẑ) takes the form

P (Ẑ) =

∮
〈Mg2, Ẑ〉 dθ3 =

∮
ĥ(θ3) dθ3.

But ĥ(θ3) is periodic, and the mean value of ĥ(θ3) is h0. Hence P (Ẑ) =h0. (A
similar result holds for water waves.) Therefore the non-degeneracy condition in (4.3)
simplifies to

0 �= det

⎡⎢⎢⎢⎣
Rh Ru Rk Rω 1
Qh Qu Qk Qω 0
Bh Bu Bk Bω 0
Ah Au Ak Aω 0
1 0 0 0 0

⎤⎥⎥⎥⎦ = −
∣∣∣∣∂(Q, B, A)

∂(u0, k, ω)

∣∣∣∣ , (4.4)

using standard results for the determinant of a bordered matrix (e.g. Magnus &
Neudecker 1988, p. 43), where subscripts are used to denote partial derivatives.

The class of solutions (4.1) is quasi-periodic in time when viewed from a fixed
frame of reference, since there are two independent frequencies: ω and ku0, and the
drift along the potentials is linear in time. In the limit as a → 0 and ω → 0, this state
reduces precisely to the spatially periodic steady wave on a uniform flow. According
to the above derivation, the time-dependent state is degenerate – and hence critical –
when the determinant condition (4.4) fails to be satisfied.

To find whether the degeneracy in this case is significant, we can evaluate the
non-degeneracy condition (4.4) in the limit as |A1| → 0.

Extending the weakly nonlinear analysis of § 5 of Part 1 to include the two new
functionals P (Z) and A(Z), leads to a weakly nonlinear equation with D( p) of § 5 of
Part 1 replaced by D( p, ω, a), using the same symbol, D, for the extended dispersion
relation. Noting that to leading order A= −Dω|A1|2 + · · · , the determinant in (4.4)
reduces to ∣∣∣∣∂(Q, B, A)

∂(u0, k, ω)

∣∣∣∣ = h0

�
|A1|2det

⎡⎣Dωω Dωk Dω

Dkω Dkk Dk

Dω Dk 0

⎤⎦+ O(|A1|4). (4.5)

Hence, for non-degeneracy we require h0 �= 0, � �= 0 (which is already required for
the weakly nonlinear existence of steady waves), and a third condition based on the
derivatives of D. The determinant in the third term can be related to the curvature
of the dispersion curve, ω′′(k).

Differentiating D(ω, k) = 0 (suppressing the other parameters in the dispersion
relation for this discussion, as only ω and k enter), and assuming Dω �= 0, then
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Dωω′(k) + Dk = 0 and

Dωω′′(k) + Dωωω′(k)2 + 2Dωkω
′(k) + Dkk = 0.

Hence, substituting for ω′(k),

ω′′(k) =
1

D3
ω

δ̂, δ̂ := det

⎡⎣Dωω Dωk Dω

Dkω Dkk Dk

Dω Dk 0

⎤⎦. (4.6)

The non-degeneracy of the determinant in (4.5) is therefore equivalent to ω′′(k) �= 0
(when Dω �= 0). Therefore if we consider the frequency of the form ω(k) = ω0(k) +
ω2(k)|A1|2 + · · · , then sign(ω2) = −sign(�), and so

sign

(∣∣∣∣∂(Q, B, A)

∂(u0, k, ω)

∣∣∣∣) = −sign(ω2ω
′′
0(k)) (4.7)

for |A1| sufficiently small. Now ω2ω
′′
0(k) < 0 is the Whitham (1974) condition for

instability of weakly nonlinear dispersive waves. Hence, it might appear that when
the determinant in (4.5) is positive, it signals an instability, and when the determinant
changes sign, it signals a change of stability, suggesting that criticality of the unsteady
wave implies stability change. However, although the determinant (4.5) does enter
the linear stability problem, the stability analysis is more subtle and requires more
detailed study. Briefly, the condition (4.7) fails to take account the effect of mean flow
on stability.

5. Deforming the basic steady flow into an unsteady flow
In this section, it is shown how the deformation introduced in § 4 can be used to

determine the unknown functions Vj1 in the linear stability problem.
There is now enough information to determine the functions V21 and V31, (3.8).

Differentiate (4.2) with respect to ω and a, and use the fact that R(Ẑ), Q(Ẑ) and

P (Ẑ) are all linear functions of Ẑ,

[D2S(Ẑ) − kD2B(Ẑ) − ωD2A(Ẑ)]Ẑω = MẐθ3

[D2S(Ẑ) − kD2B(Ẑ) − ωD2A(Ẑ)]Ẑa = Mg2.

Now, upon setting a = ω = 0 we find that

L( p)Ẑω|
a=ω=0 = Mg3, L( p)Ẑa|

a=ω=0 = Mg2.

It is immediate that

V21 = Ẑa|
a=ω=0 + Ker(L( p)), V31 = Ẑω|

a=ω=0 + Ker(L( p)),

hence, the deformation provides explicit expressions for V21 and V31.

6. Secondary criticality and the Benjamin–Feir instability
We now have enough information to study the leading-order terms in the linear

stability problem

L( p)ζ − = λMζ − + iαJζ −.

This equation is solvable if and only if the right-hand side is in Ker(L( p))⊥. This
condition provides the dispersion relation between the stability exponent λ and the
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modulation wavenumber α⎛⎝[[g1, λMζ − + iαJζ −]]
[[g2, λMζ − + iαJζ −]]
[[g3, λMζ − + iαJζ −]]

⎞⎠ = 0 with [[·, ·]] :=

∮
〈·, ·〉 dθ3. (6.1)

The function ζ − is an unknown in this equation, but we now have the leading-order
terms in the Taylor expansion,

ζ − = c1(g1 + iαẐh0
) + c2(g2 + λẐa + iαẐu0

) + c3(g3 + λẐω + iαẐk) + O(|λ|2 + |α|2).

Substituting this expansion for ζ − into (6.1) leads to

0 = [[g1, (λM + iαJ)[c1(iαẐh0
) + c2(λẐa + iαẐu0

) + c3(λẐω + iαẐk)]]] + · · · ,

0 = [[g2, (λM + iαJ)[c1(iαẐh0
) + c2(λẐa + iαẐu0

) + c3(λẐω + iαẐk)]]] + · · · ,

0 = [[g3, (λM + iαJ)[c1(iαẐh0
) + c2(λẐa + iαẐu0

) + c3(λẐω + iαẐk)]]] + · · · ,

noting that 〈U, MV 〉 = 〈U, JV 〉 =0 whenever U and V are real-valued and U =V . In
matrix form, this equation becomes⎡⎣N11 N12 N13

N21 N22 N23

N31 N32 N33

⎤⎦⎛⎝c1

c2

c3

⎞⎠ =

⎛⎝0
0
0

⎞⎠+ O((|λ| + |α|)3). (6.2)

Since c =(c1, c2, c2) is arbitrary, the solvability condition reduces to an algebraic
function of λ and α

∆(λ, α) = det

⎡⎣⎛⎝N11 N12 N13

N21 N22 N23

N31 N32 N33

⎞⎠+ O((|λ| + |α|)3)

⎤⎦ = 0. (6.3)

In principle, the Taylor series of ∆(λ, α) can be expanded to any order. Convergence
of this series is assured in the case of the Boussinesq model, and for weakly nonlinear
waves, and it is reasonable to conjecture that the infinite Taylor expansion of ∆(λ, α)
converges for almost all values of parameters in the water-wave problem.

The leading-order terms in the Taylor expansion of ζ − provide explicit expressions
for the coefficients Nij . The first row of the matrix with entries Nij is

N11 = [[g1, (λM + iαJ)(iαẐh0
)]],

N12 = [[g1, (λM + iαJ)(λẐa + iαẐu0
)]],

N13 = [[g1, (λM + iαJ)(λẐω + iαẐk)]],

with similar expressions for the other two rows in the matrix. All these inner products
can be simplified. We will give details for the first row,

N11 = [[g1, (λM + iαJ)(iαẐh0
)]]

= λ(iα)[[g1, MẐh0
]] + (iα)2[[g1, JẐh0

]]

= −λ(iα)[[Mg1, Ẑh0
]] − (iα)2[[Jg1, Ẑh0

]]

= −(iα)2[[∇R(Ẑ), Ẑh0
]]

= −(iα)2∂R/∂h0,
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using the fact that Mg1 = 0. Similarly,

N12 = −iαλRa − (iα)2Ru0
, N13 = −iαλRω − (iα)2Rk.

Substituting these expressions into (6.2), the leading-order stability equation (6.2)
becomes⎡⎣λ2

⎛⎝0 0 0
0 0 0
0 0 Aω

⎞⎠+iαλ

⎛⎝ 0 1 Ah0

1 0 Au0

Ah0
Au0

2Ak

⎞⎠+ (iα)2

⎛⎝Rh0
Ru0

Rk

Qh0
Qu0

Qk

Bh0
Bu0

Bk

⎞⎠⎤⎦⎛⎝c1

c2

c3

⎞⎠=

⎛⎝0
0
0

⎞⎠+· · · .

For |λ| and |α| small, this equation has a non-trivial solution only if the determinant
of the coefficient matrix on the left-hand side vanishes. Setting this determinant to
zero results in a function of the stability exponent λ. Let λ= iαΩ . Then the above
matrix equation can be written

(iα)2N(Ω)c = 0 + O((|λ| + |α|)3),

where N(Ω) is as defined in § 1. For long-wave instability or Benjamin–Feir instability
where α �=0 but |α|  1, the stability analysis therefore reduces to the analysis of
det(N(Ω)) = 0. The analysis of det(N(Ω)) = 0 includes all instabilities for |α| + |λ|
small, but there is no restriction on the amplitude of the basic state.

The determinant of N(Ω) can be expanded into the following quartic polynomial

det[N(Ω)] = f0 + 2f1Ω + f2Ω
2 + 2f3Ω

3 + f4Ω
4, (6.4)

with

f0 = det[C( p)],

f1 =
(
RhQu − R2

u

)
Ak + RkQk − RhAuQk − RuBk + AhRuQk + RuRkAu − AhQuRk,

f2 =
(
RhQu − R2

u

)
Aω − RhA

2
u − Bk − A2

hQu + 2RkAu + 2AhQk − 4RuAk + 2AhRuAu,

f3 = AhAu − Ak − RuAω,

f4 = −Aω.

For brevity u represents u0 and h represents h0. The prominent role played by the
criticality matrix in this stability quartic is evident.

Given the functionals R, Q, B and A and their derivatives evaluated on the basic
state, the stability analysis for long-wave (α  1) instabilities reduces to the analysis
of a quartic polynomial. One can deduce general conditions on the coefficients for
the existence of at least one root with non-zero imaginary part using the classical
theory of quartic equations, but we will not consider this here. In general, for large-
amplitude waves, these basic functionals and their derivatives would have to be
computed numerically. In § 8, the properties of N(Ω) applied to water waves in the
limit as the amplitude tends to zero are considered.

6.1. Linearizing the deformed criticality matrix N(Ω)

The ‘nonlinear in the parameter’ eigenvalue problem associated with N(Ω) can be
linearized. Such matrices are sometimes called λ-matrices (Lancaster 1966) and they
can be linearized as follows. Using Lancaster’s linearization when Aω �= 0,

det(N(Ω)) = − 1

Aω

det

⎡⎢⎣
⎛⎜⎝−Aω 0 0 0

0 Rh Ru Rk

0 Qh Qu Qk

0 Bh Bu Bk

⎞⎟⎠+ Ω

⎛⎜⎝ 0 0 0 Aω

0 0 1 Ah

0 1 0 Au

Aω Ah Au 2Ak

⎞⎟⎠
⎤⎥⎦ .
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The matrix proportional to Ω on the right-hand side of this expression is invertible.
Therefore, when Aω �= 0, solving det(N(Ω)) = 0 is equivalent to finding the eigenvalues
of the following 4 × 4 non-symmetric matrix⎛⎜⎜⎜⎝

2

Aω

(Ak − Ah0
Au0

) �T C( p)

Au0
Qh0

Qu0
Qk

Ah0
Rh0

Ru0
Rk

−1 0 0 0

⎞⎟⎟⎟⎠ where � =

⎛⎝−Au0
/Aω

−Ah0
/Aω

−1/Aω

⎞⎠.

However, there does not seem to be any advantage to studying the eigenvalues of
this matrix rather than analysing N(Ω) directly.

7. Comparison with the Whitham modulation theory
The Whitham modulation (WM) theory comes closest to capturing the connection

between hydraulic properties of the basic state and the BF instability (Whitham 1967,
1974; Hayes 1973). There are, however, two drawbacks to this approach. First, the
conservation of total head is not represented, and this forces the WM theory to
treat total head as a ‘pseudo-frequency’, i.e. a temporal parameter. Secondly, the WM
theory is developed in a Lagrangian setting, and hence there is insufficient structure
to relate bulk quantities to dynamical properties of the equations in a precise way.
This problem is circumvented in the WM theory by deriving modulation equations,
and then deducing conclusions from the analysis of these modulation equations; but
this approach carries with it the need to verify that the modulation equations are
indeed valid.

The first problem can be eliminated by introducing a potential for the wave height,
but the second problem is intrinsic to the Lagrangian approach. The second problem
is partially solved by Hayes (1973) by using a partial Legendre transform from the
Lagrangian to the Hamiltonian setting. The multi-symplectic formulation is analogous
to a total Legendre transform, which puts space and time on an equal footing.

The WM theory starts with the Lagrangian for water waves and the potential is
taken in the form

φ(x, y, t) = rt + u0x + φ̂(θ3), (7.1)

where θ3 = kx + ωt , and the wave height is taken in the form η(x, t) = η̂(θ3) (compare
with Whitham 1974, p. 553, noting that Whitham uses the symbol −γ instead of
r and β instead of u0). These expressions are then substituted into the Lagrangian
averaged over θ3, leading to L (ω, k, r, u0).

The four key parameters in the WM theory are ω, r which are temporal parameters,
and u0, k which are spatial parameters. The parameter r effectively represents the
Bernoulli constant (or total head) in the WM theory. Associated with these four
parameters are the functionals Lω (wave action), Lk (wave action flux), Lr (mass
density) and Lu0

(mass flux). These functionals are used to derive conservation laws
for wave action and mass flux which are then linearized and used to deduce an
instability condition. This theory leads to the correct result for instability of water
waves even with a mean flow, but the connection with uniform flow hydraulics is
missing.

The WM theory can be modified to incorporate conservation of total head. This
can be accomplished by introducing a potential for the free surface, and adding an
additional pseudofrequency and pseudowavenumber, specifically, let η(x, y, t) = γx ,
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with

γ (x, t) = h0x + bt + γ̂ (θ3),

and replace (7.1) with

φ(x, t) = u0x + at + γ̂ (θ3).

Then the averaged Lagrangian will be of the form L (ω, k, a, u0, b, h0). The total
head is then Lh0

, and a modulation equation for total head arises naturally when
variations of the averaged Lagrangian with respect to γ are taken.

With this modified form of the averaged Lagrangian, the WM theory could be
rederived, leading to modified modulation equations, which when analysed (linearized
about a representation of the basic steady state) should recover the stability theory
predicted by the deformed criticality matrix N(Ω).

However, there is still the difficulty within the WM theory to relate the conservation
laws to the equations directly. This connection is established here by working in
the multi-symplectic framework which uses a set of symplectic operators to relate
conservation laws directly to symmetry generators and the equations. Indeed, the
multi-symplectic framework can be used to derive the stability condition predicted by
the WM equations directly from the governing equations (cf. Bridges 1996).

8. Instability of weakly nonlinear shallow water waves
In this section, the theory for instability of waves based on N(Ω) in (1.1) is applied

to weakly nonlinear Stokes waves in finite depth.
Using the expressions for the weakly nonlinear waves in § 5 of Part 1, and the fact

that to leading order the wave action is A(Ẑ) = −Dω|A1|2 + · · · , the entries of the
matrix N(Ω) in the limit as the amplitude |A1| → 0 reduce to

Ah0
=

DωDh0

�
, Au0

=
DωDu0

�
, Ak =

DωDk

�
, Aω =

DωDω

�
,

Rh0
= g +

Dh0
Dh0

�
, Ru0

= u0 +
Dh0

Du0

�
, Rk =

Dh0
Dk

�
, (8.1)

Qu0
= h0 +

Du0
Du0

�
, Qk =

Du0
Dk

�
, Bk =

DkDk

�
,

with the rest of the entries obtained by symmetry. Substituting these expressions into
N(Ω), we obtain the following form in the limit |A1| → 0,⎛⎜⎜⎜⎜⎜⎜⎜⎝

g +
DhDh

�
u0 +

DhDu

�

DhDk

�

u0 +
DuDh

�
h0 +

DuDu

�

DuDk

�

DkDh

�

DkDu

�

DkDk

�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
DωDh

�

1 0
DωDu

�

DωDh

�

DωDu

�
2
DωDk

�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Ω +

D2
ω

�
e3eT

3 Ω2,

again suppressing subscripts in subscripts, with determinant

det(N(Ω)) = −D2
ω

�

(
Ω +

Dk

Dω

)2

(Ω + u0 +
√

gh0)(Ω + u0 −
√

gh0).
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 kh0 < (kh0)0  kh0 = (kh0)0  kh0 > (kh0)0

Figure 1. Schematic of the position of the temporal eigenvalues in the complex λ-plane as
kh0 is varied. Here, λ= iΩ and Ω is a root of det(N(±Ω)) = 0 with |A1| = 0. The critical value
(kh0)0 is approximately 2.

Hence −Dk/Dω is a root of multiplicity two, and there are two simple roots. The
root −Dk/Dω plays a role similar to a group velocity, but it does not equal the group
velocity for water waves in shallow water because ω is a modulation parameter here,
specifically −Dk/Dω = cg − u0.

Going back to (3.4) and (3.5), we see that in addition to det(N(Ω)) = 0 we have to
add the four roots of det(N(−Ω)) = 0. This gives eight roots and they are plotted in
figure 1.

The only curiosity in this figure is that there is a critical value of kh0 ≈ 2 at which
there is a triple eigenvalue. However, this triple eigenvalue is harmless and does not
lead to instability, as the eigenvector of the simple eigenvalue which collides with the
double eigenvalue is linearly independent through the collision. This can be seen by
noting that the roots of det(N(Ω)) = 0 are

− Dk

Dω

< 0, −u0 −
√

gh0 < 0, −u0 +
√

gh0 > 0
(
assuming u2

0 < gh0

)
,

and the roots of det(N(−Ω)) = 0 are the negative of these. Therefore, the triple collision
involves a double root from one determinant and a simple root from the other, and
appeal to (3.5) shows that there will be two independent eigenvectors at the triple
collision.

The algebraic properties of N(Ω) in the limit |A1| → 0 are as follows. Let
Ω0 = −Dk/Dω and let N0 = N(Ω0); then

N0 =

⎛⎝ Υ
0
0

0 0 0

⎞⎠ with Υ =

⎛⎜⎜⎝ g +
Dh0

Dh0

�
u0 − Dk

Dω

+
Dh0

Du0

�

u0 − Dk

Dω

+
Dh0

Du0

�
h0 +

Du0
Du0

�

⎞⎟⎟⎠ , (8.2)

with

det(Υ ) =
(
gh0 − c2

g

) �̂
�

where �̂ = � +

〈(
Dh0

Du0

)
,

(
g cg

cg h0

)−1(
Dh0

Du0

)〉
. (8.3)

The symbol cg here should be interpreted as representing cg = u0 − Dk/Dω.
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When |A1| is perturbed away from zero, the only way that instability can arise,
starting with the eigenvalue configuration in figure 1, is for the double eigenvalues at
±iDk/Dω to split and develop a non-zero real part. With an elementary perturbation
argument, it can be shown that when 0 < |A1|  1 there is a root of det(N(Ω)) = 0 of
the form

Ω = Ω0 ± 1

D2
ω

√
−�̂δ̂|A1| + O(|A1|2), (8.4)

where δ̂ is the determinant introduced in equation (4.6), and �̂ is defined in (8.3). It
follows that there is a root of det(N(Ω)) = 0 with non-zero imaginary part (hence

instability) when δ̂�̂ > 0.
The form of the root Ω in (8.4) is confirmed by using an elementary perturbation

analysis, with perturbation parameter |A1|, of the nonlinear (in the parameter)
eigenvalue problem

N(Ω)ζ = 0, ζ ∈ �3,

by taking Ω = Ω0 + Ω1|A1| + Ω2|A1|2 + · · · , and

ζ = ζ0 + |A1|ζ1 + |A1|2ζ2 + · · · , N(Ω) = N0 + |A1|N1 + |A1|2N2 + · · · ,

with N0 as defined in (8.2). A straightforward calculation then leads to D4
ω Ω2

1 = − �̂ δ̂.
In Hasimoto & Ono (1972), it is shown that a model for the modulation of Stokes

waves in finite depth is the NLS equation

iAτ + µAξξ + ν̃|A|2A = 0. (8.5)

The coefficients and properties of this equation are discussed in § 10. From the results

of Hasimoto & Ono (1972) it is easy to check that µ/δ̂ is a positive constant, and

ν̃/�̂ is a positive constant. Hence the instability condition δ̂�̂ > 0 agrees with the
instability condition µν̃ > 0 predicted by the NLS model (Hasimoto & Ono 1972),
which in turn agrees with the result first found by Benjamin (1967), and confirmed
using the Whitham modulation theory (Whitham 1967), and rigorously demonstrated
in Bridges & Mielke (1995).

Indeed, the instability of weakly nonlinear Stokes waves based on the deformed
criticality matrix could be rigorously justified using a modification of the centre-
manifold theory in Bridges & Mielke (1995). Technically, the theory would go through,
with the only requirement being that the conservation of total head has to be
incorporated which would increase the dimension of the centre-manifold from four
to six.

The critical coefficient �̂ is the one that changes sign when kh0 = (kh0)
crit ≈ 1.36.

For kh0 < (kh0)
crit, the parameter �̂ is positive. Since � is negative for all kh0, it is the

second term in �̂ in (8.3), 〈(
Dh0

Du0

)
,

(
g cg

cg h0

)−1(
Dh0

Du0

)〉
,

which is due to the contribution from the criticality matrix with u0 replaced by cg ,
that stabilizes the Benjamin–Feir instability. In other words, it is the uniform flow –
i.e. mean flow – which stabilizes the perturbation. A schematic of the position of the
unstable eigenvalues for kh0 > (kh0)

crit is shown in figure 2.
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|A1| = 0 0 < |A1| << 1

Figure 2. Schematic of the position of the temporal eigenvalues in the complex λ-plane
when |A1| is perturbed away from zero, when kh0 is between (kh0)

crit ≈ 1.36 and (kh0)0 ≈ 2.

Re (λ)

α

Figure 3. The band of unstable stability exponents Re(λ) as a function of the modulation
wavenumber α.

9. The bandwidth of unstable wavenumbers
A root of the determinant of N(Ω) with non-zero imaginary part indicates the

existence of a band of unstable eigenvalues as a function of α as shown in figure 3.
Therefore, this condition is a sufficient, but not necessary condition for instability. If
all roots of the determinant of N(Ω) are real, then there does not exist an unstable
eigenvalue for α near zero, but there could exist unstable eigenvalues at larger values
of α. When kh0 < (kh0)

crit, instabilities at larger values of α are known to exist
from numerical calculations (see figure 2d of McLean 1982 and figures 1 and 2 in
Francius & Kharif 2003).

To determine the bandwidth of the unstable wavenumbers, or to determine whether
there are instabilities with larger |α|, one can in principle expand the Taylor series of
∆(λ, α) to any order. This expansion is straightforward in the weakly nonlinear case,
and leads to the well-known cutoff wavenumber first discovered by Benjamin (1967).
The Whitham modulation theory can also be carried to the next order to determine
the cutoff value. The extension of the WM theory to the next order is discussed in
(Hayes 1973, p. 218) (called ‘diffraction effect’ there). In the weakly nonlinear case,
the details of this expansion were carried out in Yuen & Lake (1975) (see Fornberg
& Whitham 1978, § 8), leading to a variational derivation of the NLS equation.
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However, at finite amplitude, the value of the cutoff wavenumber is known only in
some cases. Numerical results of McLean (1982) and Francius & Kharif (2003) show
values of the cutoff wavenumber for some special parameter values, but a systematic
study of the effect of mean flow on bandwidth is largely an open question.

In this paper, we have considered longitudinal instabilities; that is, instabilities that
propagate in the same direction as the basic state. However, shallow-water waves
are also susceptible to oblique instabilities (cf. Hayes 1973; Bryant 1978; McLean
1982).

10. Unsteady dark solitary waves
When the critical coefficient ν̃ in the NLS equation (8.5) changes sign in going from

kh0 >khcrit
0 ≈ 1.363 to kh0 < khcrit

0 the type changes from focusing NLS to de-focusing
NLS. It is well-known that the de-focusing NLS has DSW solutions, and so in the
context of water waves, there are weakly nonlinear unsteady DSWs for kh0 <khcrit

0 .
The purpose of the present discussion is to contrast these solitary waves with the
steady DSWs discovered in Part 1.

Consider the coupled NLS model for modulation of Stokes waves in finite depth
derived by Hasimoto & Ono (1972)

∂2ϕ

∂T 2
− gh0

∂2ϕ

∂X
=

g

k0σ

[
2ω0k0 + (1 − σ 2)k2

0cg

]
(|A|2)ξ , (10.1a)

i
∂A

∂τ
+ µ

∂2A

∂ξ 2
+ ν|A|2A =

(
k0

∂ϕ

∂X
− (1 − σ 2)

k2
0

2ω0

∂ϕ

∂T

)
A, (10.1b)

where σ =tanh(k0h0), cg is the group velocity, µ = 1
2
ω′′(k0), T = εt , X = εx, τ = ε2t and

ξ = X − cgT , and

ν = 1
2

ω0k
2
0

σ 2

[
(1 − σ 2)2 − 1

2σ 2
(9 − 10σ 2 + 9σ 4)

]
.

The function A(ξ, τ ) represents modulation of the Stokes wave, and ϕ represents
modulation of the meanflow. (The symbol A here is not to be confused with wave
action. Since wave action is not discussed in this section there is no cause for
confusion.) Hasimoto & Ono eliminate ϕ by assuming it to be a function of ξ only,
then (

gh0 − c2
g

)
ϕξ = C0 + C1|A|2, (10.2)

where C0 is a constant of integration, and C1 can be determined from (10.1). The
value of C0 is related to the choice of mass flux (it can in principle also be a function
of time), but it is customary to set C0 = 0 without explanation (see equation (4.4) of
Hasimoto & Ono 1972). Sedletsky (2005) has reappraised the theory of Hasimoto &
Ono without this assumption and without the assumption that ϕ is a function of ξ ,
and makes several interesting observations. However, the role of C0 is not important
for the present argument and so is set to zero. (See Bridges (2005) for a discussion of
the implications of non-zero C0.)

Substituting (10.2) into (10.1b) results in

iAτ + µAξξ + ν̃|A|2A = 0. (10.3)
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There are no steady DSW solutions of this equation, but when ν̃ > 0 there is a family
of unsteady DSWs, with explicit expression

A(ξ, τ ) = ei(k̃ξ−ω̃τ )

(
2µ2

|µν̃|

)1/2

(k̃ + iχtanh(χξ )), χ2 =
1

2µ2
(µω̃ − 3µ2k̃2). (10.4)

with the requirement µω̃ > 3µ2k̃2.
Although these DSWs are mathematically similar to the steady DSWs in Part 1,

they are intrinsically unsteady. The leading-order expression for the waveheight for
steady DSWs is

η(x, t) = εRe(A(ξ, τ )exp(i(k0x − ω0t))).

There are two frame speeds: the phase speed of the Stokes wave, and the frame speed
of the DSW which is the group velocity, and further unsteadiness due to the e−iω̃τ

term. In fact, the modulation equation of Hasimoto & Ono, and related modulation
equations for Stokes waves in finite depth are intrinsically unsteady, and therefore do
not capture the steady DSWs that are synchronized with the Stokes wave (cf. Bridges
2005).

These unsteady DSWs arise because of the change in BF instability of the Stokes
wave. According to a weakly nonlinear NLS analysis, they exist for kh0 less than
about 1.36. However, it has never been confirmed analytically or numerically that
these unsteady DSWs are solutions of the full water-wave problem, and there are no
known experimental or field observations of unsteady DSWs.

The steady DSWs of Part 1 are steady relative to an absolute frame of reference,
and can be found by direct analysis of the water-wave problem, or with model
equations such as the Boussinesq equation. In the weakly nonlinear limit, they exist
for kh0 less than about 0.85. The steady DSWs have a simple physical interpretation.
They are Stokes waves with a region of localized modulation. In an experiment or
field observation, they would most probably look like Stokes waves predominantly,
but would have a small region of modulation, as shown in figure 1 of Part 1.

11. Summary and conclusions
Criticality is a central organizing concept in open-channel hydraulics. The purpose

of the present work was two-fold: to generalize criticality to open-channel flows which
are spatially varying in the streamwise direction, and to identify the implications of
criticality for the physical system.

Heretofore the only generalizations of criticality for spatially varying flows have
resulted in approximate methods. The generalization proposed here is exact for
spatially periodic variation, with the principal example being wave formation on
uniform flows. The central outcome in the theory is the criticality matrix introduced
in Part 1.

The justification of the criticality matrix brings together ideas from hydraulics,
dynamical systems, conservation laws, group theory, linear algebra, constrained
optimization and Hamiltonian dynamics. However, the resulting theory of steady
criticality is very close to the physical aspects of the flow and is easy to apply, being
based on four physically important functionals: total head, flow force, mass flux
and wave action flux, and their dependence on three parameters: mean depth, mean
velocity, and wavelength.

One of the principal motivations for generalizing criticality was to determine
its consequences. For the steady problem, we found that criticality predicts the



Secondary criticality of water waves. Part 2 437

movement of eigenvalues in the linearization about a basic spatially varying flow.
Using dynamical systems theory, we were able to deduce behaviour in the nonlinear
problem near the basic state as well, namely, the bifurcation of homoclinic orbits,
which represent solitary waves with oscillatory tails – a form of steady dark solitary
wave (DSW) – in the flow field.

Applying this theory to water waves showed that indeed secondary criticality is very
relevant to finite-depth water waves, particularly at intermediate depths. We found
that secondary criticality occurs along branches of shallow-water Stokes waves on a
uniform flow – at low amplitude and for a wide range of parameters. The theory
shows that steady DSWs play a much greater role in shallow-water wave theory
than previously thought. The theory is consistent with previous numerical work of
Vandenbroeck (1983) and Zufiria (1987), and is consistent with the appearance of
DSWs in the NLS equation for intermediate depths, although the DSWs in the NLS
equation are unsteady. Our theory ties together previous work and provides a unifying
explanation for both the appearance of spatial Floquet multipliers passing through
+1, and the appearance of steady DSWs. Both phenomena are a consequence of
secondary criticality.

As far as we are aware, the concept of criticality for unsteady flows has never been
considered heretofore. The framework for criticality proposed in Part 1, based on the
theory of relative equilibria, has a straightforward generalization to unsteady flows,
and an example of this theory was presented here in Part 2. The consequence of the
theory for unsteady criticality is a new perspective on the BF instability in shallow
water. Although it is known that mean flow acts as a stabilizing influence on the BF
instability, the precise connection between the hydraulic theory of uniform flows and
the BF instability presented in Part 2 is new.

Other outcomes of the theory in the work which may have independent interest
are (a) the characterization of the Bernoulli equation as a conservation law; (b) the
identification of a symmetry which can be associated with the Bernoulli equation;
(c) extension of the SQR-theory of Benjamin–Lighthill to the SQR + B theory;
(d) the general connection between uniform flows, and other basic states in open-
channel flow, with symmetry and relative equilibria; (e) the precise parameter structure
of water waves in shallow water, identifying exactly three characterizing pairs of
parameters in the steady case; (f) a framework where the effect of mean flow on
instability can be systematically studied; (g) simple formulae for the qualitative
properties of bifurcating classical solitary waves and steady dark solitary waves.

There are a number of further directions that are suggested by the theory in this
paper; one is to apply the theory to stratified fluids, where issues of criticality are
paramount, and a classical view of criticality as a one-parameter problem fails. A
good starting point in this direction is two-layer flows with a free surface, where the
methodology is very similar to this paper. For example, uniform flows will have five
functionals: total head and mass flux in each layer, and flow force. Uniform two-layer
flows coupled with periodic waves will additionally have a wave-action flux, and
so six functionals, with five Lagrange multipliers (mean depth in each layer, mean
velocity in each layer and wavenumber). We can see from looking at uniform flows,
that the potential bifurcations and creation of solitary waves will be much richer.
For example, for uniform flows, the (S, Q) curve in figure 4 of Part 1 generalizes to
a surface in (S, Q1, Q2)-space, with cusp lines rather than cusp points. Therefore, for
fixed total head in each layer, there are curves of criticality rather than points of
criticality. The potentialities and consequences of secondary criticality, bifurcation of
classical solitary waves and steady dark solitary wave, and instability of interfacial
waves, are manifold.
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Appendix. Expressing wave action in terms of mass flux for water waves
In the stability matrix N(Ω), the only functional which does not appear in the

strictly steady problem is the wave action density A. However, for water waves, this
functional can be expressed in terms of Q, and thereby stating all aspects of the
stability in terms of hydraulic quantities known from the steady problem.

For a periodic wave of the form introduced in § 5 of Part 1,

Q(Ẑ) =

∮ ∫ η̂

0

û dz dθ3, A(Ẑ) = −
∮

Φ̂
∂η̂

∂θ3

dθ3 =

∮ ∫ η̂

0

∂φ̂

∂θ3

dz dθ3,

noting that φ̂ is a periodic function of θ3. However, û = u0 + kφ̂θ3
, and so

Q(Ẑ) =

∮ ∫ η̂

0

(
u0 + k

∂φ̂

∂θ3

)
dz dθ3

= u0

∮
η̂ dθ3 + k

∮ ∫ η̂

0

∂φ̂

∂θ3

dz dθ3

= u0h0 + kA(Ẑ),

providing an explicit relation for expressing derivatives of A in terms of derivatives
of Q:

Ah0
=

1

k
(Qh0

− u0), Au0
=

1

k
(Qu0

− h0), Ak =
1

k
(Qk − A), Aω =

1

k
Qω.
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