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Secondary criticality of water waves. Part 1.
Definition, bifurcation and solitary waves
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(Received 5 November 2003 and in revised form 15 March 2006)

A generalization of criticality – called secondary criticality – is introduced and applied
to finite-amplitude Stokes waves. The theory shows that secondary criticality signals
a bifurcation to a class of steady dark solitary waves which are biasymptotic to
a Stokes wave with a phase jump in between, and synchronized with the Stokes
wave. We find the that the bifurcation to these new solitary waves – from Stokes
gravity waves in shallow water – is pervasive, even at low amplitude. The theory
proceeds by generalizing concepts from hydraulics: three additional functionals are
introduced which represent non-uniformity and extend the familiar mass flux, total
head and flow force, the most important of which is the wave action flux. The theory
works because the hydraulic quantities can be related to the governing equations in
a precise way using the multi-symplectic Hamiltonian formulation of water waves.
In this setting, uniform flows and Stokes waves coupled to a uniform flow are
relative equilibria which have an attendant geometric theory using symmetry and
conservation laws. A flow is then ‘critical’ if the relative equilibrium representation is
degenerate. By characterizing successively non-uniform flows and unsteady flows as
relative equilibria, a generalization of criticality is immediate. Recent results on the
local nonlinear behaviour near a degenerate relative equilibrium are used to predict
all the qualitative properties of the bifurcating dark solitary waves, including the
phase shift. The theory of secondary criticality provides new insight into unsteady
waves in shallow water as well. A new interpretation of the Benjamin–Feir instability
from the viewpoint of hydraulics, and the connection with the creation of unsteady
dark solitary waves, is given in Part 2.

1. Introduction
Criticality, uniform flows and bulk quantities such as mass flux, total head and the

flow force are at the heart of the subject of open-channel hydraulics in one space
dimension (Henderson 1966; Abbott 1979). The ideal theory can be deduced from
the shallow-water equations for a constant-density fluid

ht + (uh)x = 0, ut +
(
gh + 1

2
u2
)

x
= 0, (1.1)

where h(x, t) is the depth, u(x, t) is the depth-averaged horizontal velocity and g

is the gravitational constant. Accompanying these two equations is conservation of
momentum,

(uh)t +
(
hu2 + 1

2
gh2
)

x
= 0. (1.2)
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Clearly steady flows – uniform flows – which satisfy all three of these equations realize
constant values of the mass flux (Q), the total head (R) and the flow force (S) where

R = gh + 1
2
u2, Q = uh, S = hu2 + 1

2
gh2. (1.3)

Many of the fundamental properties of open channel flows can be deduced from
these three equations.

For the shallow-water equations, there are many ways to define criticality, all of
which lead to the ‘Froude number unity’ condition, where the Froude number is
defined by F 2 = u2/gh. However, not all these equivalent definitions generalize to
non-trivial flows. For example, a widely used concept of criticality is that based on
whether or not a flow is faster or slower than the maximum linear wave speed, but
this definition is based on a single parameter (the flow speed) and therefore does not
generalize to non-trivial flows.

The most useful definition of criticality for uniform flows is the determinant
condition ∣∣∣∣∂(R, Q)

∂(h, u)

∣∣∣∣ = 0. (1.4)

Using (1.3), it is clear that this condition is equivalent to F 2 = 1. This definition
combines the two most well-known definitions of critical uniform flow: the flow
which maximizes Q for fixed R, equivalently minimizes R for fixed Q. The most
important feature of (1.4) is that it is the form of the criticality definition which
extends easily to more general flows, including x-dependent steady states.

Motivated by open questions in the theory of water waves, there are three issues
which emerge from (1.3) and (1.4) which we would like to generalize: move from
uniform flows to general x-dependent steady states, generalize the concept of criticality
of uniform flows to non-trivial x-dependent steady states, and develop a theory for
the implications of criticality for both the steady and unsteady problem.

The only attempts to generalize criticality to x-dependent states in the literature
restrict attention to either a quasi-static approximation, or treat the flow as slowly
varying in the x-direction (cf. Gill 1977; Killworth 1992; Johnson & Clarke 2001; and
references therein.) One of our central observations is that an exact theory of criticality
for finite-amplitude states is possible, when the flow is periodic in the x-direction,
even when the basic state has non-trivial z-dependence (where z represents the vertical
direction). We call this generalization secondary criticality and the secondary criticality
of Stokes waves is our primary example.

The algebraic definition of uniform flows (inverting (1.3) for fixed values of R and
Q) is unsatisfactory for generalization. However, another way to characterize uniform
flows is to seek values of (h, u) that make the flow force stationary while Q and R

are held fixed. This principle is apparently well known in the hydraulics literature,
and Benjamin (1971) gives an argument to show that this is a general principle for
parallel (x-independent) flows (cf. Benjamin 1971, § 3.5 and Appendix 2), and it is
this observation which is the starting point for our generalization of criticality to
non-parallel (x-dependent) flows.

In the case of the uniform flows satisfying (1.3), the principle of stationary
flow force is trivial and does not provide any new information: it amounts to
solving

∇L = 0 where L(h, u, a, b) = S(h, u) − aR(h, u) − bQ(h, u), (1.5)
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where (a, b) are Lagrange multipliers, and this functional is subject to the side
conditions gh + 1

2
u2 =R and uh =Q with R > 0 and Q given real numbers. (Script

symbols represent the value of the function or functional.) This variational principle,
when non-degenerate, provides uniform flows (h(R,Q), u(R,Q)). Degeneracy occurs
when the determinant (1.4) vanishes (in this example, the Lagrange multipliers (a, b)
turn out to be (h, u)): degeneracy implies criticality.

One of the main results of this paper is to show that this characterization of parallel
flows has a natural generalization to steady flows with non-trivial x-dependence. This
result is applied to steady periodic water waves coupled to a uniform flow, but the
basic idea should extend to a range of fluid flows. For the water-wave problem, we
find that there exists – in addition to S, Q and R – a fourth functional B such that
the x-dependent coupled states satisfy the variational principle

∇L = 0 where L(Z, h0, u0, k) = S(Z) − h0 R(Z) − u0 Q(Z) − k B(Z), (1.6)

where (h0, u0, k) are Lagrange multipliers. These Lagrange multipliers are the
mean depth (h0), the mean velocity (u0) and the wavenumber associated with the
periodic x-variation (k). This variational principle is subject to the side conditions
R(Z) =R, Q(Z) =Q and B(Z) =B, with Q,R,B given, where Z is a set of
coordinates representing water-wave variables. The functionals S, R, Q and B

represent the physical quantities of flow force, total head, mass flux and a fourth
functional B which can be interpreted as the wave action flux. This constrained
variational principle is non-degenerate precisely when

det(C( p)) �= 0 where C( p) =
∂(R, Q, B)

∂(h0, u0, k)
, p = (h0, u0, k). (1.7)

Hereinafter, the matrix C( p) is called the criticality matrix. Criticality of the basic
state is defined by the vanishing of the determinant

det[C( p)] = 0. (1.8)

As far as we are aware, this is the first attempt to give an exact definition of criticality
(and its implications) for fully x-dependent steady states.

Why is this generalization of criticality interesting? One of the fundamental
implications of criticality of uniform flows is the bifurcation of solitary waves. In
the context of shallow-water flows, this solitary wave is the Russell solitary wave. (A
‘Russell solitary wave’ is the classical solitary wave which decays monotonically to
the zero state at infinity; also called the KdV solitary wave or Boussinesq solitary
wave. It is to be distinguished from envelope solitary waves (familiar as solutions of
NLS in deep water) which decay to zero at infinity but also oscillate, and the dark
solitary wave which is localized and oscillatory but is asymptotic to a non-trivial
periodic state at infinity.) At a point of secondary criticality, where the determinant
(1.8) vanishes, a pair of Floquet multipliers in the linearization about the basic state
coalesce at +1, and generate in the nonlinear problem a ‘homoclinic torus bifurcation’.
The connection between (1.8) and movement of Floquet multipliers is summarized in
Appendices A and B. The homoclinic bifurcation is in space and so represents the
bifurcation of a family of dark solitary waves (DSWs). The implication of secondary
criticality for water waves is a new class of steady solitary water waves which are
biasymptotic as x → ±∞ to Stokes waves, and synchronized with the Stokes wave.
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Figure 1. Schematic of the free-surface elevation associated with a dark solitary wave.

These waves look like Stokes waves for large |x|, but are deformed from periodicity
for small |x|. An example is shown in figure 1.

In order to show that the functionals SQR and B do indeed have relevance for
criticality there is a second crucial step to the theory: it is necessary to relate the
hydraulic quantities SQR and B to the governing equations in a precise way.

This issue is resolved by using a Hamiltonian formulation for water waves.
However, usual formulations for water waves such as the Lagrangian formulation of
Luke (1967), the Zakharov Hamiltonian formulation for the time-dependent problem
(Zakharov 1968), and the spatial dynamics formulations (e.g. Benjamin 1984; Mielke
1991; Baesens & MacKay 1992; Bridges 1992; Groves & Toland 1997) all have
shortcomings. The multi-symplectic Hamiltonian formulation of water waves (e.g.
Bridges 1996, 1997, 2001, 2006a) is a framework where all the hydraulic quantities
are on the same footing and can be related to the governing equations in a precise way.
In addition, a new choice of coordinates for the multi-symplectic formulation of water
waves is introduced which provides an interpretation of the Bernoulli equation as a
conservation law for total head. It is surprising that the importance of Bernoulli’s
equation as a conservation law in the Hamiltonian setting has not been noticed
before. For example, Bernoulli’s equation is not identified as a conservation law in
Benjamin & Olver (1982). More importantly, Bernoulli’s equation is related to a
symmetry here, and it is this latter observation that makes the characterization of
Bernoulli’s equation as a conservation law useful. It arises in a central way in the
theory of secondary criticality.

In the Hamiltonian setting, uniform flows and Stokes waves turn out to have
a natural representation as relative equilibria, and it is the geometry of relative
equilibria which leads to a new characterization of criticality for uniform flows and
it extends easily to non-uniform flows and unsteady flows. Relative equilibria are
solutions which travel along a symmetry group at a constant rate (cf. Marsden
1992).

An outline of Part 1 of this study is as follows. Throughout this paper, a Boussinesq
model for water waves is used for illustration, and its Hamiltonian formulation and the
associated structure for the SQR+B theory is given in § 2. A theory for characterizing
uniform flows as relative equilibria is given in § 3, and the connection between
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degenerate relative equilibria, classical criticality and solitary wave bifurcation – the
bifurcation of Russell-type solitary waves – is presented. In § 4, the Hamiltonian
structure and SQR + B structure for water waves are introduced.

In § 5, the theory of criticality for non-trivial x-dependent steady states is presented.
The implications of this concept of criticality, principally the homoclinic torus
bifurcation manifested as DSWs, are applied to a Boussinesq model in § 6 and
to the full water-wave problem in § 7. Some of the mathematical tools required
for development of the theory are summarized in the Appendices, namely Jordan
chain theory for generalized eigenvectors, in a Hamiltonian context, and the relation
between criticality and eigenvalues.

2. A Boussinesq model for analysing secondary criticality
The simplest class of shallow-water equations with dispersion, that generalize the

system (1.1) and model the water-wave problem, is the Boussinesq class (cf. Dingemans
1997; Craig & Groves 1994). An exemplar of that class which is sufficient for the
present purposes is the model proposed by Zufiria (1987),

ht + uhx + hux + 1
3
uxxx + 2

15
uxxxxx = 0,

ut + uux + hx = 0.

}
(2.1)

Steady solutions of (2.1) satisfy

uh + 1
3
uxx + 2

15
uxxxx = q, qx = 0,

1
2
u2 + h = r, rx = 0.

}
(2.2)

If the fourth derivative term (the fifth-order dispersion term in (2.1)) is dropped,
giving the usual form for a Boussinesq equation, the steady equation reduces to
a planar system which cannot have secondary bifurcations. Therefore to capture
the bifurcation of DSWs from the steady periodic state it is essential to retain the
fourth-order derivative term.

By introducing new coordinates Z = (γ, φ, w1, u, r, q, v, w2) defined by

φx = u, γx = r − 1
2
u2, v = ux, w1 = − 2

15
vx, w2 = − 1

3
v − 2

15
vxx,

and a Hamiltonian function

S(Z) = 1
2
r2 + qu + 15

4
w2

1 + w2v + 1
6
v2 − 1

2
ru2 + 1

8
u4, (2.3)

the steady Boussinesq model (2.1) has the Hamiltonian formulation,

−rx = ∂S/∂γ = 0,

−qx = ∂S/∂φ = 0,

−vx = ∂S/∂w1 = 15
2
w1,

−w2x = ∂S/∂u = q − ru + 1
2
u3,

γx = ∂S/∂r = r − 1
2
u2,

φx = ∂S/∂q = u,

w1x = ∂S/∂v = w2 + 1
3
v,

ux = ∂S/∂w2 = v.

⎫⎪⎪⎬⎪⎪⎭ (2.4)

This system can be written in standard form for a Hamiltonian ODE

JZx = ∇S(Z), Z ∈ �8, (2.5)
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where

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and S(Z) is given by (2.3).
Note that a potential function has been introduced for both the velocity field and

the surface elevation:

u = φx, h = γx. (2.6)

The idea of using a potential for the velocity is a familiar one. Surprisingly, the use
of a potential for the surface elevation also has a long history. According to Dooge
(1987), Boussinesq first proposed the idea in pages 271–274 of his 680 page paper
(Boussinesq 1877) for the shallow-water equations (1.1). It was later followed up by
Deymie (1935). See the historical essay of Dooge (1987, p. 221) for discussion. Our
use of the potential was inspired by the paper of Nutku (1983) where it was also used
for the shallow-water equations (1.1).

One way to motivate the use of a potential for the free surface is to note that it
generates a symmetry. An arbitrary constant can be added to γ without affecting
h(x). The conservation law generated by this symmetry is the ‘conservation of total
head’, which represents a conservation form of Bernoulli’s equation. In other words,
the introduction of the potential γ gives a way to introduce the Bernoulli function
(labelled r) explicitly into the equations. This property is reminiscent of how the
introduction of a velocity potential leads to a symmetry (addition of an arbitrary
constant to φ(x)), which is then linked with the mass conservation law.

The symmetry associated with the potentials (2.6) provides an important link
between solutions and conservation laws. To define the potential symmetries in a
precise way for the system in the form (2.5), let g1 = e1 and g2 = e2 where ej is the
standard j th unit vector in �8. Then, the fact that S(Z) is independent of γ and φ

can be represented by the statement

S(Z + θ1g1 + θ2g2) = S(Z), ∀ (θ1, θ2) ∈ �2.

More generally, these symmetries can be characterized as a two-parameter group of
affine translations of the phase space �8. The action of this group on an element
Z ∈ �8 is

G(θ )Z = Z + θ1g1 + θ2g2, ∀ θ = (θ1, θ2) ∈ �2. (2.7)

In terms of this group, the symmetry of (2.5) is represented by the requirement

S(G(θ )Z) = S(Z), ∀ θ ∈ �2. (2.8)

A consequence of this property is that G(θ )Z(x) is a solution for any θ ∈ �2 whenever
Z(x) is a solution.

In the Hamiltonian setting, symmetry is related to conservation laws. The above
two-parameter group of symmetries can be related to the conservation of mass and
Bernoulli’s equation as follows. Let 〈·, ·〉 be a standard inner product on �8, and
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define

R(Z) = 〈Jg1, Z〉 = 〈e5, Z〉 = r, Q(Z) = 〈Jg2, Z〉 = 〈e6, Z〉 = q. (2.9)

Then

∂

∂x
R(Z) = 〈Jg1, Zx〉 = −〈g1, JZx〉 = −〈g1, ∇S(Z)〉 = − ∂

∂θ1

S(G(θ )Z)|
θ=0 = 0;

resulting in Bernoulli’s equation in conservation form. A geometric formulation of
conservation of mass can be derived similarly leading to Qx = 0. Conservation of
impulse can be derived using a similar geometric approach, but will not be explicitly
required.

There is a fourth conservation law which arises in the later analysis of x-dependent
states. Let Z(x, s) be a closed curve (an ensemble) of solutions of (2.5), parameterized
by s; that is, Z(x, s + 2π) = Z(x, s) and Z(x, s) satisfies (2.5) for each s. Define

B(Z) = 1
2

∮
〈JZs, Z〉 ds,

∮
· ds :=

1

2π

∫ 2π

0

· ds.

Then it is straightforward to verify that Bx =0. This conservation law is in fact the
geometric formulation of the conservation of wave action (Bridges 1997b), restricted
to one space dimension: B(Z) is the wave action flux. Note that in this conservation
law, Z(x, s) is not necessarily periodic in x. It is periodic only in the ensemble
parameter s.

3. Critical uniform flows, degenerate relative equilibria and solitary waves
In this section it is shown how the association between critical uniform flows and

degenerate relative equilibria leads to a nonlinear theory for the bifurcation of solitary
waves. This theory is a special case of the secondary criticality theory and shows how
the theory works in a simpler setting. It also shows that the mechanism for the
bifurcation of dark solitary waves and the mechanism for bifurcation of the Russell
solitary wave are the same.

To illustrate, it is sufficient to use the steady Boussinesq model (2.2) simplified
further by dropping the fourth-order term,

uh + 1
3
uxx = q, qx = 0,

1
2
u2 + h = r, rx = 0.

By letting h = γx , u =φx and ux = −3v, a Hamiltonian formulation of this model is

−rx = 0,

−qx = 0,

−vx = q − ru + 1
2
u3,

γx = r − 1
2
u2,

φx = u,

ux = −3v.

⎫⎬⎭ (3.1)

This system is of the form

JZx = ∇S(Z) with Z = (γ, φ, u, r, q, v), (3.2)

and standard J. The system (3.1) can be completely solved explicitly. The uniform
flows correspond to u = u0 and r − u2

0/2 = h0. Perturbing about this solution and
reducing the system leads to the planar ODE

−vx = q − u0r + 3
2
u0u

2 + · · ·,
ux = −3v,

}
(3.3)
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which can be explicitly solved to find the bifurcating solitary wave solutions that
bifurcate near criticality: h0 − u2

0 ≈ 0.
This result is recovered by the theory of relative equilibria as follows. The uniform

flows correspond to relative equilibria associated with the two-dimensional affine
translation group introduced in (2.7). This relative equilibrium is degenerate precisely
when the uniform flow is critical. There is a universal nonlinear normal form near
degenerate relative equilibria (Bridges & Donaldson 2005; Bridges 2006b) and this
normal form predicts the bifurcation of solitary waves.

Relative equilibria of (3.2) take the form

Z(x) = G(θ (x))Ẑ = Ẑ + θ1(x)g1 + θ2(x)g2 with θ̈1 = θ̈ 2 = 0, (3.4)

where gj = ej , j = 1, 2, and Ẑ ∈ �6 is an x-independent vector. With the above
requirements

θ1(x) = h0x + θ0
1 , θ2(x) = u0x + θ0

2 , (3.5)

where θ0
1 and θ0

2 are arbitrary (phase) constants, and h0 and u0 are constants which
represent rate of change along the group orbit.

To determine (h0, u0, Ẑ), substitute (3.4) into (3.2) and use the equivariance
properties (2.8) of the system to obtain

∇S(Ẑ) = h0∇R(Ẑ) + u0∇Q(Ẑ) with R(Ẑ) = R, Q(Ẑ) = Q. (3.6)

The vector Ẑ can be characterized as a critical point of S subject to the constraints of
constant R and Q, with h0 and u0 then appearing as Lagrange multipliers. It follows
from standard Lagrange multiplier theory that

h0 =
∂S

∂R
, u0 =

∂S

∂Q
. (3.7)

Carrying through the calculation associated with the first equation of (3.6) results
in

Ẑ(h0, u0) =
(
0, 0, u0, h0 + 1

2
u2

0, h0u0, 0
)
.

The Lagrange multipliers are then determined by solving the two constraint equations
in (3.6) which are solvable when

0 �=
∣∣∣∣ ∂(R, Q)

∂(h0, u0)

∣∣∣∣ = det

[
1 u0

u0 h0

]
= h0 − u2

0 = h0(1 − F 2).

The relative equilibrium (uniform flow) is degenerate when the determinant vanishes.
An important conseqence of degeneracy is that the linearization about the degenerate
relative equilibrium has an eigenvalue zero of algebraic multiplicity 6 but geometric
multiplicity two. The connection between degeneracy and eigenvalue movement is
demonstrated in Appendices A and B.

To study the nonlinear problem in the neighbourhood of a degenerate relative
equilibrium let

Z(x) = G(θ (x))[Ẑ + W (x)] := Ẑ + W (x) + θ1(x)g1 + θ2(x)g2, (3.8)

then the nonlinear problem for W (x) is

JWx = L(h0, u0)W + 1
2
D3S(Ẑ)(W, W ) + · · · (3.9)
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Q

R

n

h0

u0

(R, Q)

Figure 2. Geometry of the mapping from (h0, u0)-space to (R,Q)-space of the criticality
curve h0 − u2

0 = 0.

where the dots indicate terms of degree three and higher in ‖W‖, and D3S(Ẑ)(W, W )

is the third derivative of S(Z) at the point Ẑ and

L(h0, u0) = D2S(Ẑ) − h0D
2R(Ẑ) − u0D

2Q(Ẑ).

There exists a set of six constant vectors {ξ 1, . . . , ξ 6}, which are constructed using the
generalized eigenvectors (see Appendices A and B), such that the transformation

W (x) = φ̃1(x)ξ 1 + φ̃2(x)ξ 2 + ũ(x)ξ 3 − s1Ĩ 1(x)ξ 6 + s2Ĩ 2(x)ξ 4 + s1ṽ(x)ξ 5 + · · · (3.10)

results in the reduced system of nonlinear ODEs

− ˙̃
I 1 = 0,

− ˙̃
I 2 = 0,

− ˙̃v = Ĩ 1 + δũ − 1
2
κũ2 + · · · ,

˙̃
φ1 = ũ + · · · ,
˙̃
φ2 = s2Ĩ 2 + · · · ,
˙̃u= s1ṽ + · · · .

⎫⎪⎬⎪⎭ (3.11)

This system is universal in the sense that it arises near points of degeneracy for
any two-parameter family of relative equilibria (Bridges & Donaldson 2005; Bridges
2006b).

The sign s1 is a property of the Jordan normal form structure and s1 = −1 in this
case. The sign s2 is the sign of the non-zero eigenvalue of C( p) at criticality (clearly
s2 = +1 in this case). The parameter δ is an unfolding parameter, proportional to
the value of det(C( p)) = h0 − u2

0, and is not qualitatively significant. The important

parameters are κ and Ĩ 1. The formula for κ is

κ = a3
0 nT Hess(P)n,

where a0 is an explicitly computable constant (a0 =
√

3, in the above example), and
P = n1R + n2Q, with n defined below. It is remarkable that the coefficient κ of the
nonlinear term in the normal form (3.11) is completely determined by properties of
the criticality matrix C( p).

The normal vector n is defined by

C( p)n = 0 ⇒ n = span

{(
−u0

1

)}
since C( p) =

[
1 u0

u0 h0

]
.

For definiteness, take n = (−u0, 1) (there is no need to normalize the length to unity).
The role of n as a normal vector can be seen as follows. Criticality is defined by

the determinant condition (1.4). Setting this determinant to zero defines a curve in the
(h0, u0)-plane. For the case of uniform flows, the curve is a parabola (figure 2). The
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image of the curve of criticality in the (R, Q)-plane is the curve with cusp as shown in
figure 2. (The cusp in figure 2 is yet another view of the cusp in Benjamin & Lighthill
(1954); but note that the Benjamin–Lighthill cusp is viewed in the (R, S)-plane with
Q fixed.) Let (ḣ0, u̇0) be a tangent vector to the criticality curve in the (h0, u0)-plane.
A tangent vector in the (R, Q)-plane then satisfies(

Ṙ

Q̇

)
=

[
Rh0

Ru0

Qh0
Qu0

](
ḣ0

u̇0

)
.

If n is in the kernel of the criticality matrix then clearly

n ·
(

Ṙ

Q̇

)
= 0,

and hence is a normal vector as shown in figure 2. The normal vector n shows which
direction in parameter space is normal to the curve of criticality. The bifurcating
solitary wave exists on one side of the curve of criticality only and the nonlinear
theory is used to predict which side of the criticality curve the solitary wave exists.
For the case of figure 2, the homoclinic bifurcation exists inside the curve of criticality
in the (R, Q)-plane; that is, given a point (R0,Q0) on the curve of criticality with
Q0 > 0, then the homoclinic orbit exists in the region

−u0(R − R0) + (Q − Q0) < 0.

The bifurcation is in the direction of −n on the upper branch shown in figure 2.
Using the above definition of n,

Hess(P) = n1

[
0 0
0 1

]
+ n2

[
0 1
1 0

]
=

[
0 1
1 −u0

]
,

and so

κ = −9
√

3u0.

Another interesting feature of the normal form is that the coordinate Ĩ 1 is a local
normal coordinate in parameter space near the surface of criticality. To leading order,

Ĩ 1 = a0(n1(R − R0) + n2(Q − Q0)) = a0(−u0(R − R0) + (Q − Q0)),

where (R0,Q0) is any point on the curve of criticality in figure 2 away from the cusp
point. The Russell solitary wave is then determined to leading order from the solution
of

ũxx = Ĩ 1 − 1
2
κũ2,

with both Ĩ 1 and κ predicted by properties of the criticality matrix. Note that there
is a geometric phase shift given by

�φ̃1 =

∫ +∞

−∞
(ũ − u∞) dx, u2

∞ =
2Ĩ 1

κ
.

Mathematically, this phase shift is identical to the phase jump of dark solitary waves
(see equation (8.8) in § 8). Here the phase shift is in the potentials γ (x) and φ(x).

The bifurcating solitary wave predicted by the normal form (3.11) agrees with that
found by the explicit calculation using (3.3). However, we now have a theory that will
work in more general settings: degenerate relative equilibrium implies solitary wave
bifurcation.
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4. Multi-symplecticity and the SQR + B theory of water waves
Consider the classical two-dimensional water-wave problem (inviscid, irrotational

fluid with constant density) in finite depth with a gravitational force field (with
gravitational constant g), in the following form

ux + φzz = 0 for 0 < z < η(x, t), x ∈ �, (4.1)

where φ(x, z, t) is the velocity potential and u(x, z, t) =φx(x, z, t). The bottom
boundary condition is

φz = 0 at z = 0, x ∈ �, (4.2)

and the conditions at the free surface are

ηt + uηx − φz = 0, rx = 0 at z = η(x, t), x ∈ �. (4.3)

Define Φ(x, t) =φ(x, z, t)|z = η(x,t); then

r(t) := Φt + uΦx + gη − 1
2

(
u2 + φ2

z

)
, with u and φz evaluated at z = η. (4.4)

4.1. Bernoulli equation and conservation of total head

The main non-standard feature of this formulation is the appearance of the dependent
variable r , and the subtle distinction between the definition of r (4.4) and the
boundary condition rx = 0. The variable r(t) can be – and usually is – incorporated
into the potential; but, retaining the Bernoulli function r(t) explicitly turns out to
have interesting consequences. In the Hamiltonian setting, r is the conjugate variable
associated with γ .

To see that rx = 0 is the right boundary condition, use r in standard coordinates,

r := Φt + uΦx + gη − 1
2

(
u2 + φ2

z

)
=
[
φt + 1

2

(
φ2

x + φ2
z

)
+ gη

]
z=η

,

and so

rx = (φxt + φtzηx + φxφxx + φxφxzηx + φzφzx + φzφzzηx + gηx)|z=η

= (ut + uux + wuz)|z=η + ηx(wt + uwx + wwz + g)|z=η

= −[px + ηxpz]|z=η

= −
√

1 + η2
x∇p · t|z=η,

where t = (1 + η2
x)

−1/2(1, ηx) is the unit vector tangent to the free surface. Therefore,
the condition rx = 0 is equivalent to the condition of constant pressure along the free
surface.

Taking a hint from the Hamiltonian formulation of the Boussinesq model (2.5), we
introduce a potential function for the free surface

η(x, t) =
∂

∂x
γ (x, t).
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In terms of the above coordinates, the four main functionals for steady water waves
are

S(Z) = 1
2

∫ η

0

(
u2 − φ2

z

)
dz − 1

2
gη2 + rη,

R(Z) = r,

Q(Z) =

∫ η

0

u dz,

B(Z) =

∫ η

0

uφx dz + rγx,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

where

Z =

⎛⎜⎜⎜⎜⎜⎝
Φ(x, t)
η(x, t)
γ (x, t)

φ(x, z, t)
u(x, z, t)

r(t)

⎞⎟⎟⎟⎟⎟⎠ with

⎧⎨⎩ Φ(x, t) = φ(x, z, t)|
z=η(x,t),

u(x, z, t)= ∂xφ(x, z, t),
η(x, t) = γx(x, t),

and r(t) is defined in (4.4).
The approach in this paper to finite-amplitude periodic waves on a uniform flow is

to be contrasted with the SQR theory for water waves initiated by Benjamin &
Lighthill (1954) and developed further by Keady & Norbury (1975), Doole & Norbury
(1995), Doole (1997) and references therein. In that theory, both uniform flows and
the periodic states are studied in the SQR space. Our theory shows that the non-trivial
x-dependent steady states should be studied in the SQR + B parameter space. The
introduction of the function B has two consequences: without B there is no obvious
generalization of criticality and its implications, and secondly, there is no obvious way
to relate the SQR properties to the stability problem without additional functionals
(the latter issue is considered in Part 2, Bridges & Donaldson 2006).

4.2. SQR + B gradient structure and symmetry

It is in terms of the set of variables Z that the gradient of each of the functionals has
the right structure. An appropriate inner product is required in order to define the
gradient.

Let � represent the set of functions of the type Z: six-component vector-valued
functions where only the fourth and fifth components depend on the cross-section.
Then a natural inner product on � is

〈W, Z〉η = W1Z1 + W2Z2 + W3Z3 +

∫ η

0

(W4Z4 + W5Z5) dz + W6Z6, Z, W ∈ �.

(4.6)

Using the above inner product, and including integration over x and t , the governing
equations for water waves can be written in multi-symplectic form

M(Z)Zt + J(Z)Zx = ∇S(Z), Z ∈ �. (4.7)

This multi-symplectic formulation is a generalization of the formulation in Bridges
(1996, 2001). The new feature here is the introduction of γ and r as dependent
variables. The specifics of the system (4.7) are not required in the sequel, as the
functionals S, R, Q and B will form the basis for the analysis.
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However, the symmetry of the equations is important. The analogue of the affine
translation group (2.7) for water waves is

G(θ )Z = Z + θ1g1 + θ2g2, ∀ θ ∈ �2, Z ∈ �, (4.8)

with

g1 = (0, 0, 1, 0, 0, 0), g2 = (1, 0, 0, 1, 0, 0),

(using the same notation as in § 3, which should not cause confusion). These
symmetries are related to the invariants R and Q by ∇R(Z) = J(Z)g1 and ∇Q(Z) =
J(Z)g2.

4.3. Uniform flows for the full water-wave problem

We are now in a position to show that uniform flows of the water-wave problem
correspond to relative equilibria associated with the group G(θ ) in (4.8). First, note
that the only true equilibria – i.e. critical points of the flow force S(Z) – are the trivial
solutions φ = constant and γ = constant. Consider steady solutions of the water-wave
problem in the form of relative equilibria (3.4),

Z(x, z) = G(θ (x))Ẑ(z) = Ẑ(z) + θ1(x)g1 + θ2(x)g2,

with

θ1(x) = h0x + θ0
1 , θ2(x) = u0x + θ0

2 ,

where we have anticipated that the parameters h0 and u0 represent uniform flows.
Substition into the governing equations leads to the familiar equation

∇S(Ẑ) = h0∇R(Ẑ) + u0∇Q(Ẑ),

which is easily solved explicitly,

Ẑ =
(
0, h0, 0, 0, u0, gh0 + 1

2
u2

0

)
.

Now, substituting this result into R and Q,

R(Ẑ) = r = gh0 + 1
2
u2

0, Q(Ẑ) =

∫ η

0

u dz = u0h0.

Hence the relative equilibria (uniform flows) are non-degenerate precisely when

0 �=
∣∣∣∣ ∂(R, Q)

∂(h0, u0)

∣∣∣∣ = det

[
g u0

u0 h0

]
= gh0(1 − F 2),

as anticipated.
The homoclinic bifurcation associated with criticality of uniform flows for the full

water-wave problem results in the well-known Russell solitary wave.

5. Secondary criticality
In this section, the concept of criticality is extended to steady periodic waves coupled

to a uniform flow. The theory is based on the representation of these states as relative
equilibria associated with a three-parameter group. With this representation, waves
of wavelength 2π/k coupled to a uniform flow can be characterized as solutions of a
constrained variational problem with

∇S(Ẑ) = h0∇R(Ẑ) + u0∇Q(Ẑ) + k∇B(Ẑ), (5.1)
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and non-degeneracy condition

det [C( p)] �= 0 where C( p) =
∂(R, Q, B)

∂(h0, u0, k)
, (5.2)

and the point at which this non-degeneracy condition fails corresponds to criticality.
To simplify the discussion, the details of the theory for the Boussinesq model (2.1)

are presented, and then results of the theory for the full water-wave problem are
given.

Take the Hamiltonian ODE (2.5) as a starting point. A periodic wave coupled to a

uniform flow can be characterized by letting Ẑ in (3.4) depend periodically on x,

Z(x) = G(θ (x))Ẑ := Ẑ(θ3) + θ1(x)g1 + θ2(x)g2, (5.3)

where Ẑ(θ3 + 2π) = Ẑ(θ3),

θ1(x) = h0x + θ0
1 , θ2(x) = u0x + θ0

2 , θ3(x) = kx + θ0
3 , (5.4)

and, as before, θ0
j are arbitrary phase constants. Substitution of this form into (2.5)

results in

kJ
∂Ẑ

∂θ3

+ h0Jg1 + u0Jg2 = ∇S(Ẑ),

which is equivalent to (5.1) by taking

R(Ẑ) =

∮
〈Jg1, Ẑ〉 dθ3, Q(Ẑ) =

∮
〈Jg2, Ẑ〉 dθ3, B(Ẑ) =

∮
1
2

〈
J
∂Ẑ

∂θ3

, Ẑ

〉
dθ3,

(5.5)

with ∮
f (θ3) dθ3 =

1

2π

∫ 2π

0

f (θ3) dθ3.

The equation for Ẑ in (5.1) is now an ordinary differential equation, on a space of
periodic functions, rather than an algebraic equation as in (3.6), and the inner product
includes averaging over θ3.

The constraints associated with (5.1) are R(Ẑ) =R, Q(Ẑ) =Q and B(Ẑ) =B, and
the non-degeneracy condition is (5.2). The generalization of the pair of derivative
conditions (3.7) is

h0 =
∂S

∂R
, Q, B fixed,

u0 =
∂S

∂Q
, R, B fixed,

k =
∂S

∂B
, R, Q fixed.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.6)

A given state of the form (5.3) is defined to be critical when the non-degeneracy
condition (5.2) fails. This definition is justified in Appendix B by showing that the
consequences of criticality for these states is the same as the consequence for uniform
flows: the coalescence of a pair of eigenvalues and a (secondary) bifurcation of solitary
waves.
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Before showing that this concept of criticality is indeed a generalization of uniform
flow criticality to non-trivial steady states, the weakly nonlinear case is developed and
applied to the Boussinesq model and to water waves.

5.1. Secondary criticality of weakly nonlinear periodic waves

There is a universal form for the criticality matrix when the periodic function Ẑ(θ3)
is expanded in a weakly nonlinear Fourier series. Let

Ẑ(θ3) = A1ξ 1e
iθ3 + A2ξ 2e

2iθ3 + c.c. + · · · , (5.7)

where ξ 1 is an eigenvector of the linear problem and the · · · represent terms of higher
order in |A1|. Substituting this Fourier expansion into the functional

F (Ẑ, p) =

∮
[S(Ẑ) − h0R(Ẑ) − u0Q(Ẑ) − kB(Ẑ)] dθ3, (5.8)

and eliminating the Fourier coefficients A2, A3, . . . successively, leads to the reduced
functional

F̂ (|A1|2, p) = F0( p) + D( p)|A1|2 + 1
2

( p)|A1|4 + · · · (5.9)

where D( p) is the dispersion relation and 
( p) is the coefficient of the leading-order
nonlinear term. The relation between A1 and the parameters is determined from the

derivative of F̂ with respect to A1,

D( p) + 
( p)|A1|2 + · · · = 0. (5.10)

To determine the entries of the criticality matrix, the leading-order expressions for
the functionals R, Q and B are required. Comparing (5.8) with (5.9) shows that

∂F

∂h0

:= −R =
∂F̂0

∂h0

+
∂D

∂h0

|A1|2 + · · · :=
∂F̂

∂h0

.

Anticipating the case of water waves, take

F̂0 = − 1
2
gh2

0 − h0u
2
0, (5.11)

and compute the derivatives of F̂ with respect to u0 and k,

R = gh0 + 1
2
u2

0 − ∂D

∂h0

|A1|2 + · · · ,

Q =h0u0 − ∂D

∂u0

|A1|2 + · · · ,

B = −∂D

∂k
|A1|2 + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.12)

with |A1|2 determined as a function of p from (5.10). The principal observation
here is that secondary criticality in the weakly nonlinear limit is determined from
the dispersion relation D( p) and the weakly nonlinear correction to the dispersion
relation 
( p).

The determinant of the Jacobian, with F̂0 of the form (5.11), is

det[C( p)] =

∣∣∣∣∂(R, Q, B)

∂(h0, u0, k)

∣∣∣∣ = D2
k




(
gh0 − u2

0

)
+ C1( p)|A1|2 + · · · , (5.13)
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Amp

1 F

Point of secondary criticality

Curve of criticality

SW Stokes branch

Figure 3. Typical weakly nonlinear curve of waves and curve of criticality in the Froude
number versus amplitude plane.

where the subscripts on u0 and h0 in the Jacobian are suppressed for brevity, and

C1( p) = −Trace(E( p)adjHess p(D)), (5.14)

where

E( p) =

⎛⎜⎜⎜⎜⎜⎜⎝
g +

D2
h



u0 +

DhDu




DhDk




u0 +
DuDh



h0 +

D2
u




DuDk



DkDh




DkDu




D2
k




⎞⎟⎟⎟⎟⎟⎟⎠, Hess p(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂2D

∂h∂h

∂2D

∂h∂u

∂2D

∂h∂k

∂2D

∂u∂h

∂2D

∂u∂u

∂2D

∂u∂k

∂2D

∂k∂h

∂2D

∂k∂u

∂2D

∂k∂k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For symmetric matrices, the adjugate, Eadj is the cofactor matrix, and when E is
invertible, Eadj = det(E)E−1. In the limit as |A1| → 0, there are two factors in the
criticality determinant (5.13). It clearly vanishes when u2

0 = gh0, but also when Dk =0.
The significance of the latter term is discussed in Appendix C.

A schematic of secondary criticality curves is shown in figure 3. The axes are the
Froude number based on mean velocity and mean elevation, F 2 = u2

0/gh0, and the ver-
tical axis is the normalized amplitude of the wave height, denoted by Amp. The curve
emanating from F = 1 (and labelled ‘curve of criticality’ above the intersection point)
is the new curve of secondary criticality, and the other curve is the curve along which
the basic wave exists. When the two curves in figure 3 intersect, the criticality theory
predicts that the linearization about the wave has a pair of Floquet multipliers that
coalesce at +1, and is the starting point for the nonlinear bifurcation of dark solitary
waves. Computed cases of these curves for the Boussinesq model and the water wave
problem are shown in § § 6 and 7.1, respectively.

6. Computing secondary criticality using a Boussinesq model
The dispersion relation for the linearized Boussinesq model is a truncated Taylor

expansion of the exact dispersion relation. With h0 normalized to unity, it is

F 2 = 1 − 1
3
k2 + 2

15
k4.

This dispersion relation is plotted in figure 4. Boussinesq models are valid for
small wavenumber, but how small the wavenumber depends on the particular
Boussinesq model. Clearly the dispersion relation in figure 4 becomes non-physical for
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k

Zufiria region

5/4

F2

1.0

Figure 4. The dispersion relation for Zufiria’s Boussinesq model linearized with h0 = 1
and F 2 = u2

0.

wavenumbers greater than
√

5/4. The region marked ‘Zufiria region’ will be discussed
later when comparing to the secondary bifurcation theory of Zufiria.

The change in slope of the dispersion relation can be corrected by replacing higher
space derivatives by time derivatives (e.g. § 5.4 of Dingemans 1997; Gobbi, Kirby &
Wei 2000; Madsen, Bingham & Liu 2002). In addition to improved regularity, the
dispersion relation of the linear problem becomes closer to the exact dispersion
relation of water waves. However, these models are not Galilean invariant. Without
Galilean invariance, the duality between steady solutions relative to a fixed frame,
and steady solutions in a moving frame is lost. These models will not give the correct
physics of travelling waves coupled to a mean flow. See Christov (2001) for numerical
experiments showing how the lack of Galilean symmetry in Boussinesq models can
also affect the dynamics of solitary waves.

To apply the theory of secondary criticality for weakly nonlinear waves of the steady
Boussinesq model, expand Ẑ(θ3) in a Fourier series. (Note that the steady Boussinesq
model (2.2) has an exact periodic solution in terms of cnoidal functions (Bridges &
Fan 2004), but this exact solution does not give any more useful information than the

weakly nonlinear theory.) By expanding γ (θ3) and φ(θ3) the other elements in Ẑ(θ3)
can be obtained and

γ̂ (θ3) = A1e
iθ3 + A2e

2iθ3 + c.c. + · · · ,

φ̂(θ3) = B1e
iθ3 + B2e

2iθ3 + c.c. + · · · .

Substituting into (5.8) results in the reduced functional

F̂ = − 1
2
h2

0 − 1
2
h0u

2
0 + D( p)|A1|2 + 1

2

( p)|A1|4 + · · · ,

with

D( p) =
k2(15u2

0 − 15h0 + 5k2 − 2k4)

15h0 + 2k4 − 5k2
,

where it is assumed that the denominator is non-vanishing, and


( p) =
45

2

k2(16k4 − 20k2 + 45h0)

(2k2 − 1)(15h0 + 2k4 − 5k2)2
, (6.1)

assuming 2k2 − 1 �= 0. (The singularity k2 = 1/2 is an anomaly of the dispersion
relation. When h0 = 1 and u2

0 = 13/15 both 2k and k are roots of the dispersion relation
(see figure 4). This resonance is similar to a Wilton resonance, but is anomalous here
as the model (2.1) is derived for pure gravity waves.) Hence, the relation between |A1|
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Figure 5. Plots of the curve of secondary criticality and the curve of periodic waves of the
Boussinesq model when h0 = 1 and with (a) k = 0.2; (b) k = 0.3; (c) k = 0.4.

and the parameters is

D( p) + 
( p)|A1|2 + · · · = 0. (6.2)

Using the theory for secondary criticality of weakly nonlinear waves in § 5.1,

R = h0 + 1
2
u2

0 +

(
15k2

15h0 + 2k4 − 5k2
− 15k2

(
2k4 − 5k2 + 15h0 − 15u2

0

)
(15h0 + 2k4 − 5k2)2

)
|A1|2 + · · · ,

Q = h0u0 − 30k2u0

15h0 + 2k4 − 5k2
|A1|2 + · · · ,

B =

(
2k

(
2k4 − 5k2 + 15h0 − 15u2

0

)
15h0 + 2k4 − 5k2

+ k2 8k3 − 10k

15h0 + 2k4 − 5k2

− k2

(
2k4 − 5k2 + 15h0 − 15u2

0

)
(8k3 − 10k)

(15h0 + 2k4 − 5k2)2

)
|A1|2 + · · · .

The determinant of the criticality matrix is then

det[C( p)] = D2
k

(
h0 − u2

0

)



+ C1( p) |A1|2 + · · · ,

with

C1( p) =
2k4

15

C̃1

(16k4 − 20k2 + 45h0)(15h0 + 2k4 − 5k2)2
,

and

C̃1 = 5376k12 − 31360k10 + 90480h0k
8 + 54800k8 − 297300h0k

6 − 26000k6

+ 156000h0k
4 + 2500k4 + 448200h2

0k
4 − 5625h0k

2 − 317250h2
0k

2 + 16875h2
0.

A point of secondary criticality occurs when det[C( p)] = 0 along a branch of waves.
The solutions of (6.2) and the curves of det[C( p)] = 0 are shown plotted in figure 5
for k =0.2, k = 0.3 and k = 0.4 with h0 = 1. With this normalization, the abscissa
in the figures can be interpreted as the nonlinear Froude number. The ordinate is
the amplitude. For all k sufficiently small (less than about 0.35) there is a point of
secondary criticality in the weakly nonlinear approximation.
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It is shown in Appendix B that secondary criticality is associated with a pair of
spatial Floquet multipliers passing through +1. In Zufiria (1987) a branch of periodic
waves is followed numerically and it is found that a pair of Floquet multipliers
coalesces at +1 (see figure 3 on p. 380 of Zufiria 1987). Since Floquet multipliers can
coalesce at +1 if and only if there is a point of secondary criticality (generically), there
should be a point of secondary criticality associated with this secondary bifurcation.
Indeed, taking h0 = 1 and k = 2π/3.8, it is confirmed that the curve (6.2) and the curve
det[C( p)] = 0 have an intersection point.

Note, however, that k =2π/3.8 ≈ 1.6 is quite large and outside the reasonable range
of validity of the model. Hence, the secondary bifurcations in Zufiria, in the region
noted in figure 4, are of no physical significance.

However, the results of the theory of secondary criticality applied in the region of
validity of the Boussinesq model show that secondary bifurcation is to be expected
for shallow-water waves. In the next section it will be confirmed that these secondary
bifurcations are also found by applying the theory directly to the full water-wave
problem.

7. Periodic water waves coupled to a uniform flow
The above formulation goes through for the full water-wave problem, leading to

the following coupled problem for the periodic wave coupled to a mean flow

∇S(Ẑ) = h0 ∇R(Ẑ) + u0 ∇Q(Ẑ) + k ∇B(Ẑ),

R(Ẑ) =R,

Q(Ẑ) =Q,

B(Ẑ) =B.

⎫⎪⎪⎬⎪⎪⎭ (7.1)

These four equations are solved for (Ẑ, h0, u0, k) as functions of R, Q and B.

It is not essential to solve (7.1) in the Ẑ coordinates. Once the structure is established,
the equations can be put in any coordinates that are convenient, say for numerical
computation. For example, suppose we want to solve (7.1) in the standard coordinates
of velocity potential and wave height.

To ease notation let θ3 := θ for the remainder of this subsection, and define

η̂(θ) = h0 + Γ̂ (θ). Then the system (7.1) takes the form

k2φ̂θθ + φ̂zz = 0 for 0 < z < h0 + Γ̂ (θ),

subject to the boundary conditions,

φ̂z = 0 at z = 0, φ̂z = ku0Γ̂ θ + k2φ̂θ Γ̂ θ at z = h0 + Γ̂ (θ),

and

ku0(φ̂θ − φ̂θ ) + 1
2
k2φ̂2

θ + 1
2
φ̂2

z + gΓ̂ = 1
2
φ̂2

z + 1
2
k2φ̂2

θ at z = h0 + Γ̂ (θ).

The surface elevation η̂(θ) is split into a mean value h0 and a fluctuating part Γ̂ (θ).

The unknowns in these equations are therefore (φ̂(θ, z), Γ̂ (θ), h0, u0, k) where φ̂ and

Γ̂ are 2π-periodic functions of θ and have mean value zero. The overbar denotes
an average over θ: ( · ) = (1/2π)

∮
( · ) dθ . The system is completed by adding the
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constraints in the coordinates φ̂ and Γ̂ ,

R = gh0 + 1
2
u2

0 + ku0φ̂θ + 1
2
φ̂2

z + 1
2
k2φ̂2

θ at z = h0 + Γ̂ (θ),

Q = h0u0 + k
∫ η̂

0
φ̂θ dz where η̂(θ) = h0 + Γ̂ (θ),

B = u0

∫ η̂

0
φ̂θ dz + k

∫ η̂

0
φ̂2

θ dz.

This problem is set up for fixed (R,Q,B), but alternative choices of parameters
are possible. The three functionals are paired with co-parameters (the Lagrange
multipliers)

(h0,R), (u0,Q), (k,B),

and in each of these three sets, any one of each pair can be fixed. For example,
(h0, u0, k) could be fixed, and then (R,Q,B) computed. This latter ordering is
certainly the simplest approach (the constraints would decouple) and would also be
naturally conducive to computing the derivatives in C( p) numerically.

As far as we are aware, shallow-water periodic waves have never been considered in
this generality in the literature. Invariably most of the parameters are fixed, and a slice
through the parameter space is studied. Representative examples are the calculations
in Doole & Norbury (1995) where h0, Q and k are fixed with R, u0 and (in principle)
B varying, and the calculations in § 3 of McLean (1982) where R, Q and k are
fixed, with h0, u0 and (in principle) B varying. The only work to consider the use
of wave action flux in parameterizing shallow-water waves is Stiassne & Peregrine
(1980). Indeed, they parameterize the waves in terms of wave action flux, mass flux
and Bernoulli constant as here, considered as functions of mean velocity, mean depth
and wavenumber, but ultimately set the mass flux to zero.

In general, the decision about which parameters to fix depends on the physical
problem of interest. For example, in computation, it is customary to fix the mean
velocity and elevation and solve for the mass flux and total head. However, this would
be near impossible in an experiment, where it is natural to input the mass flux and
total head and let them determine the mean velocity and mean elevation.

7.1. Criticality of weakly nonlinear periodic water waves

In this section, the above characterization of periodic waves is illustrated by computing
the criticality matrix for weakly nonlinear water waves.

According to (5.1), we need to construct

Ẑ(θ3) = (Φ̂(θ3), η̂(θ3), γ̂ (θ3), φ̂(θ3, z), û(θ3, z), r̂(θ3)),

with each element a 2π-periodic function of θ3. Let

γ̂ (θ3) = A1 eiθ3 − A1 e−iθ3 + A2 e2iθ3 − A2 e−2iθ3 + · · · ,

φ̂(θ3, z) = (B1e
iθ3 + B1e

−iθ3 )
coshkz

coshkh0

+ (B2e
2iθ3 + B2e

−2iθ3 )
cosh2kz

cosh2kh0

+ · · · ,

⎫⎪⎬⎪⎭ (7.2)

where A1, A2, B1 and B2 are complex amplitudes. From these expressions, the other

elements in Ẑ are determined from

η̂(θ3) = h0 + k
∂γ̂

∂θ3

, û(θ3, z) = u0 + k
∂φ̂

∂θ3

,
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and the equations. Substitute these expressions into the functional (5.8), and eliminate
the higher-order Fourier coefficients to obtain the reduced functional

F̂ (|A1|2, p) = − 1
2
gh2

0 − 1
2
h0u

2
0 + D( p)|A1|2 + 1

2

( p)|A1|4 + · · · ,

where

D( p) =
k3u2

0

tanh(kh0)
− gk2, (7.3)

and


( p) = − 1
2
gk6

(
9 − 10 tanh2(kh0) + 9 tanh4(kh0)

tanh4(kh0)

)
. (7.4)

The relationship between |A1| and the parameters is then found from the derivative

of F̂ with respect to A1,

D( p) + 
( p)|A1|2 + · · · = 0.

This expression recovers a familiar result for weakly nonlinear water waves in finite
depth

u2
0 =

g

k
tanh(kh0) + 1

2
gk3

(
9 − 10 tanh2(kh0) + 9 tanh4(kh0)

tanh3(kh0)

)
|A1|2 + · · · . (7.5)

Now evaluate the criticality matrix on this solution. Substituting the weakly
nonlinear expressions into (R, Q, B) we find

R = gh0 + 1
2
u2

0 − ∂D

∂h0

|A1|2 + · · · ,

Q= h0u0 − ∂D

∂u0

|A1|2 + · · · ,

B = −∂D

∂k
|A1|2 + · · · ,

S = h0u
2
0 + 1

2
gh2

0 −
(

h0

∂D

∂h0

+ u0

∂D

∂u0

+ k
∂D

∂k

)
|A1|2 + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.6)

Explicit expressions for the derivatives of D are easily obtained using (7.3). The
expressions for R, Q and B give the most general perturbation of the hydraulic
quantities due to a periodic wave on the uniform flow. Parts of these expressions agree
with special cases in the literature. The result for R in (7.6) agrees with Whitham’s
calculation (in equation (16.81) of Whitham 1974), and the expression for Q in
(7.6) agrees with Whitham’s result (in equation (16.84) of Whitham 1974). However,
the weakly nonlinear R above differs from the weakly nonlinear R in Doole &
Norbury (1995) because Q is held fixed there.

The terms proportional to |A1|2 provide the correction to the total head, mass
flux and action flux due to the periodic wave. The most important quantity is the
determinant of the criticality matrix. A straightforward but lengthy computation leads
to

det[C( p)] =

∣∣∣∣∂(R, Q, B)

∂(h0, u0, k)

∣∣∣∣ = D2
k




(
gh0 − u2

0

)
+ C1( p)|A1|2 + · · · , (7.7)
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C1 (p)

kh0

Figure 6. A plot of the wave-generated criticality function C1( p) plotted against kh0. The
change of sign occurs at kh0 = (kh0)

point 1 ≈ 0.588.

where the subscripts to u0 and h0 in the Jacobian are suppressed for brevity. Using
the formula for C1( p) in (5.14),

C1( p) = − 1




(
C2( p) +

(
gh0 − u2

0

)

Dkk

)
, (7.8)

with

C2( p) = g
(
Du0

Du0
Dkk − 2Du0

DkDu0k + D2
kDu0u0

)
+ h0Dk(DkDh0h0

− 2Dh0
Dh0k)

+ h0D
2
hDkk + 2u0

(
Dh0

DkDu0k − Dh0
Du0

Dkk − D2
kDh0u0

+ Du0
DkDh0k

)
.

Now expand each of these terms and use D( p) for gravity waves,

C1( p) = −g3k5


σ 6

(
18σ 3 − 34σ 5 + 26σ 7 + kh0(−45σ 2 + 87σ 4 − 81σ 6 + 23σ 8)

+ k2h2
0(36σ − 72σ 3 + 74σ 5 − 36σ 7 − 2σ 9) + k3h3

0(−9 + 19σ 2 − 19σ 4 + 9σ 6)
)

where σ = tanh(kh0). This expression provides the leading-order term of the ‘wave-
generated criticality’, and does not appear to have been noticed before in the literature.
When |A1| =0 the determinant (7.7) is negative when gh0−u2

0 > 0 since 
 < 0 (assuming
Dk �= 0). So, for |A1|2 sufficiently small, the determinant of the criticality matrix is
strictly negative. However, it can vanish at finite amplitude. Setting det[C( p)] = 0
leads to

F 2 = 1 +

h0C1( p)

gk2D2
k

|Amp|2 + · · · (7.9)

where

Amp =
k|A1|
h0

, F 2 =
u2

0

gh0

.

The curve (7.9) is fundamental to shallow-water Stokes waves, but does not appear
anywhere in the literature heretofore. It is the curve of secondary criticality.

For gravity waves, Dk �= 0 and 
 < 0. Therefore the sign of the weakly nonlinear
(wave-generated) term in (7.9) depends on the sign of C1, and a plot of C1 is shown
in figure 6. A significant feature is the change of sign occuring at (kh0)

point1.
Now, compare this with the existence branch (7.5) expressed in terms of the mean

Froude number,

F 2 =
u2

0

gh0

=
tanh(kh0)

kh0

+
kh0

2

(
9 − 10 tanh2(kh0) + 9 tanh4(kh0)

tanh3(kh0)

)
|Amp|2 + · · · .

(7.10)
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Figure 7. Effect of criticality curve on shallow-water Stokes waves for different values of
kh0: (a) kh0 = 0.5 < (kh0)

point 1; (b) (kh0)
point 1 <kh0 = 0.7 < (kh0)

point 2; and (c) kh0 = 1.0 >
(kh0)

point 2.

For any fixed kh0, secondary criticality occurs along a weakly nonlinear branch if
these two curves (7.10) and (7.9), considered in the (F, Amp)-plane, intersect. Setting
these two expressions for F 2 equal to each other leads to the following condition for
secondary criticality to occur in the weakly nonlinear case

−
h0C1( p)

gk2D2
k

+
kh0

2

(
9 − 10 tanh2(kh0) + 9 tanh4(kh0)

tanh3(kh0)

)
> 0.

Evaluating this expression numerically, shows that it is satisfied for all kh0 <

(kh0)
point 2 ≈ 0.85. Therefore, there are three regions of interest and plots of the

Froude number amplitude plane for each are shown in figure 7. These figures
agree qualitatively with the weakly nonlinear secondary criticality occurring in the
Boussinesq model in figure 5. Note however that the values of kh0 at which secondary
criticality occurs are shifted to lower wavenumbers in the Boussinesq model. This is
probably because the nonlinear dispersion relation for the Boussinesq model has an
anomolous singularity at k2 = 1/2 (see equation (6.2) and the definition of 
 in (6.1)).
Hence the shallow-water behaviour shown in figure 7 appears to be compressed into
lower wavenumbers in figure 5.

Although periodic Stokes waves exist in shallow water for all kh0 > 0 (see Cokelet
1977; Stiassne & Peregrine 1980; Amick & Toland 1981 for details), the two-term
approximation to the periodic Stokes wave will not be accurate for low values of kh0

(high Ursell number (the Ursell number in the notation of this paper is Amp (kh0)
−2),

and so quantitative estimation of points of secondary criticality at low values of kh0

will require significantly more terms in the expansion for the wave height, or other
numerical calculation. The elementary analytical calculations are, however, sufficient
to capture the qualitative properties of secondary criticality.

The main conclusion from this analysis is that weakly nonlinear gravity waves in
shallow water have a point of secondary criticality at low amplitude for all kh0 less
than about 0.85. It is highly likely that for kh0 > (kh0)

point2 there is still a point of
secondary criticality, but at higher amplitude.

If we argue in reverse: when a pair of spatial Floquet multipliers passes through
+1 in the linearization about Stokes waves, it corresponds to a point of secondary
criticality, there is evidence for secondary criticality occurring at finite amplitude for
Stokes waves in finite depth in the numerical work of Vandenbroeck (1983) (and
Zufiria (1987) as discussed in § 6). Vandenbroeck computes secondary bifurcations,
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1–
3

kh0

F < 1

F > 1

Bo

Figure 8. Curve of Froude number unity in the Bond number versus kh0-plane.

and a necessary condition for the secondary bifurcations there is the appearance of
Floquet multipliers on the unit circle.

The theory of this paper does not apply to water waves in infinite depth, but there is
a form of criticality arising there, in the sense that spatial Floquet multipliers passing
through +1 have been observed. For Stokes waves in infinite depth, this bifurcation
of Floquet multipliers was first discovered by Baesens & MacKay (1992). They used
the flow force for water waves to show that a fold point occurs precisely when a pair
of Floquet multipliers passes through +1. Remarkably, Buffoni, Dancer & Toland
(2000) have proved that there is an infinite number of such fold points along a branch
of Stokes waves in deep water. However, in deep water, these points occur at very
large amplitude.

7.2. Implications of surface tension for criticality of water waves

When surface tension is included, the secondary criticality of periodic capillary–
gravity waves on shallow water is even more pervasive than for gravity waves. For
capillary–gravity waves the existence curve (7.10) is modified to

F 2 = (1 + Bo(kh0)
2)

tanh(kh0)

kh0

+ 
̃(Bo)|Amp|2 + · · · , (7.11)

where 
̃ reduces to the expression in (7.10) when the Bond number Bo is zero. The
expression for the criticality curve (7.9) will have the same general form when surface
tension is present, and when Dk �= 0, the leading-order part depends only on the sign
of 
C1( p) (modified by surface tension). The possibilities for sign changes are much
richer here (and there is the additional singularity at Dk = 0 discussed in Appendix
C). But, explicit expressions are not required for any of these coefficients, as rather
general qualitative behaviour can be deduced from the form alone.

When Amp =0 and Dk �= 0 the criticality curve always starts at F 2 = 1, with or
without surface tension. When surface tension vanishes (Bo =0), the existence curve
(7.10) always starts with F 2 < 1; i.e. to the left of the criticality curve. However, when
Bo > 0 the existence curve can start at F 2 < 1 or F 2 > 1, depending on the value of
kh0.

For each Bo ∈ (0, 1/3) there is a value of kh0 at which F 2 = 1:

Bo = − 1

kh2
0

+
1

kh0tanhkh0

with lim
kh0→0

Bo = 1
3
.

In figure 8, this curve of Froude number unity is shown. For any fixed Bo ∈ (0, 1/3),
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as kh0 is increased and the F 2 = 1 curve is crossed, then generically (as long as the
coefficient of |A1|2 remains finite) the existence and criticality curves cross at low
amplitude. Therefore, for each Bo ∈ (0, 1/3), there always (generically) exist values of
kh0 where secondary criticality occurs in the weakly nonlinear limit. These points
of secondary criticality will then be bifurcation points for branches of steady dark
(capillary–gravity) solitary waves.

8. Nonlinearity, secondary criticality and steady dark solitary waves
At points of secondary criticality, that is points on the surface defined by

det[C( p)] = 0, the theory of Bridges (2006b) can be applied to determine the properties
of the bifurcating homoclinic orbits. In the present context, the homoclinic orbit is
biasymptotic to the periodic Stokes waves coupled to a mean flow. This homoclinic
orbit in the spatial setting is a steady DSW. There is a three-parameter family of
bifurcating DSWs. They can be parameterized by the Bernoulli constant, mass flux
and wave action flux, and hence they occupy a large region of physical parameter
space. A sketch of how this theory applies to the Boussinesq model is given, and then
results for water waves will be summarized.

Consider the steady Boussinesq equation (2.5) perturbed about a family of relative
equilibria near a point where det[C( p)] = 0. Taking a solution of the form

Z(x) = G(θ (x))[Ẑ + W (x)] := Ẑ(θ3) + W (θ3, x) + θ1(x)g1 + θ2(x)g2, (8.1)

the nonlinear problem for W (θ3, x) is

JWx = L( p)W + 1
2
D3S(Ẑ)(W, W ) + · · · (8.2)

where the dots indicate terms of degree three and higher in ‖W‖, and D3S(Ẑ)(W, W )

is the third derivative of S(Z) at the point Ẑ, and

L( p) = D2S(Ẑ) − h0 D2R(Ẑ) − u0 D2Q(Ẑ) − k D2B(Ẑ).

There exists a set of eight vectors {ξ 1(θ3), . . . , ξ 8(θ3)}, which are constructed using the
generalized eigenvectors (see Appendix B), such that the transformation

W (x, θ3) = φ̃1(x)ξ 1(θ3) + φ̃2(x)ξ 2(θ3) + φ̃3(x)ξ 3(θ3) + ũ(x)ξ 4(θ3)

−s1Ĩ 1(x)ξ 8(θ3) + s2Ĩ 2(x)ξ 5(θ3) + s3Ĩ 3(x)ξ 6(θ3) + s1ṽ(x)ξ 7(θ3) + · · ·

}
(8.3)

(note the ordering of the generalized eigenvectors in this expression) results in the
reduced system of nonlinear ODEs

− ˙̃
I 1 = 0,

− ˙̃
I 2 = 0,

− ˙̃
I 3 = 0,

− ˙̃v = Ĩ 1 + δũ − 1
2
κũ2 + · · · ,

˙̃
φ1 = ũ + · · · ,
˙̃
φ2 = s2Ĩ 2 + · · · ,
˙̃
φ3 = s3Ĩ 3 + · · · ,
˙̃u= s1ṽ + · · · .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.4)

The parameter δ is an unfolding parameter; it is proportional the value of det(C( p))
and is not qualitatively significant. The signs s2 = ±1 and s3 = ±1 are the signs of the
non-zero eigenvalues of the criticality matrix C( p). They determine information about
direction of drift along the phases. The sign s1 = ±1 is related to the Jordan structure
and has no qualitative impact on the bifurcating solitary waves. The important

parameters are κ and Ĩ 1.
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Figure 9. Illustration of the local coordinates (Ĩ 1, Ĩ 2, Ĩ 3) on the surface of criticality.

The coordinates Ĩ j are a translation and rotation of the coordinates (R, Q, B) to
a point on the criticality surface (see figure 9). (The surface in (R, Q, B)-space with
a cusp along an edge in figure 9 is a generalization of the curve with a cusp in
the (R, Q)-plane that is central to the Benjamin–Lighthill (1954) theory. It is also a
generalization of the cusp for uniform flows shown in figure 2 in this paper.) The

coordinates are oriented so that Ĩ 2 and Ĩ 3 give local coordinates tangent to the surface

and Ĩ 1 is a local normal coordinate given to leading order in terms of (R, Q, B) by

Ĩ 1 = a0 (P( p) − P( pcrit)) + · · · with P := n1R + n2Q + n3B, (8.5)

where a0 is a positive constant.
The normal vector n = (n1, n2, n3) is defined by C( p)n = 0, and n can be taken to

be a column of the adjugate matrix, for example,

n =

⎛⎝RuQk − RkQu

RkQh − RhQk

RhQu − RuQh

⎞⎠ ⇒ C( p)n = det[C( p)]

⎛⎝0
0
1

⎞⎠ . (8.6)

Hence, n is an eigenvector of C( p) corresponding to the zero eigenvalue when p = pcrit.
The most important parameter is κ , the coefficient of the nonlinear term in the

normal form, and the explicit formula for it is

κ = a3
0 nT Hess p(P)n, (8.7)

where a0 is a positive constant (the same constant as in (8.5)) and

Hess p(P) = n1Hess p(R) + n2Hess p(Q) + n3Hess p(B) evaluated at p = pcrit.

Hess p is the matrix of second derivatives with respect to the parameters p =(h0, u0, k).
The formula (8.7) is remarkable. It shows that the critical coefficient in the nonlinear

normal form is determined by curvature information in the parameter space (R, Q, B).
A special case of this result was first announced in Bridges & Donaldson (2005a). In
the present context, it enables complete qualitative information about the bifurcating
DSWs to be determined from the criticality matrix.

The solitary wave solutions are determined from the reduced equation

− ˙̃v = Ĩ 1 + δũ − 1
2
κũ2 + · · · ,

˙̃u = s1ṽ + · · · .
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Note that the degree of difficulty of solving for the DSWs using this equation is
the same as the degree of difficulty of solving for the Russell solitary wave in § 3.
The simplification is due to the universality of the nonlinear normal form (8.4). The
oscillation of the solitary wave is encoded in the vectors ξ j (θ3), j = 1, . . . , 8.

The side of the surface where the DSWs lie is determined by the values of Ĩ 1 and
κ such that the reduced system has non-zero fixed points,

Ĩ 1 + δũ − 1
2
κũ2 + · · · = 0.

For δ small, and ũ small, it is clear that fixed points exist for κĨ 1 > 0. Hence, if κ > 0,
then the direction of bifurcation of DSWs is aligned with the chosen normal direction
and vice versa.

When κĨ 1 > 0, solitary waves exist and are given locally by

ũ(x) = ν − 3

(
ν − δ

κ

)
sech2(µx), µ2 = 1

4
(s1κν − s1δ),

where ν is the root of the quadratic

κν2 − 2δν − 2Ĩ 1 = 0,

chosen so that s1κν > 0. Note that such a choice is always possible when δ is sufficiently
small.

An important property of a dark solitary wave is the geometric phase. The total

phase is obtained by solving the equations for φ̃1, . . . , φ̃3,

φ̃1(x) = νx − 3

µ

(
ν − δ

κ

)
tanh (µx) + φ̃0

1,

φ̃2(x) = s2Ĩ 2x + φ̃0
2,

φ̃3(x) = s3Ĩ 3x + φ̃0
2,

where φ̃0
j , j = 1, 2, 3 is an arbitrary phase shift. The interesting part of the phase shift

is the geometric phase

�φ̃1 := − 3

µ

(
ν − δ

κ

)
tanh (µx)

∣∣∣∣x=+∞

x=−∞
= − 6

µ

(
ν − δ

κ

)
. (8.8)

The geometric phase gives the phase jump in going from the Stokes wave at x = −∞
to the Stokes wave at x = +∞.

Substituting the solutions of (8.4) into W (x, θ3) in (8.3) brings in the θ3 dependence
and the full form of the steady dark solitary wave, including the oscillatory part.

9. Steady dark solitary waves of the water-wave problem
The theory of § 8 is applied to the water-wave problem to determine the properties

of the bifurcating dark solitary waves. The mechanism for the bifurcation of these
waves is different from other oscillatory solitary waves that have been found in the
water wave problem. Therefore it is useful to first review the literature on known
oscillatory solitary waves and dark solitary waves found in water wave models.

This bifurcation of steady DSWs is mathematically similar to – but physically
different from – the DSWs that appear in the defocusing nonlinear Schrödinger
(NLS) equation for water waves (e.g. Peregrine 1983, 1985). The DSWs in this paper
are steady in an absolute frame of reference, whereas the DSW solutions of the NLS
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equation for gravity water waves in finite depth are unsteady in any reference frame.
Consider the NLS model for modulation of Stokes waves in finite depth

iAτ + µAξξ + ν̃|A|2A = 0. (9.1)

For gravity waves µ < 0 and for kh0 less than the critical value of approximately
1.36, the coefficient ν̃ is positive. Unsteady DSWs exist when µν̃ < 0 with explicit
expression

A(ξ, τ ) = ei(k̃ξ−ω̃τ )

(
2µ2

|µν̃|

)1/2

(k̃ + iχ tanh(χξ )), χ2 =
1

2µ2
(µω̃ − 3µ2k̃2), (9.2)

and the requirement µω̃ > 3a2k̃2. The full unsteadiness of these waves becomes
apparent when viewed as solutions of the water-wave problem: the leading-order
expression for the waveheight is

η(x, t) = εRe
(
A(ξ, τ )ei(k0x−ω0t)

)
, ξ = ε(x − cgt), τ = ε2t.

There are two frame speeds: the phase speed of the Stokes wave, and the frame speed
of the DSW which is the group velocity, and further unsteadiness due to the e−iω̃τ

term. In fact, the NLS type modulation equations for Stokes waves in finite depth
are intrinsically unsteady (cf. Bridges 2005), and therefore cannot capture steady
DSWs that are synchronized with the Stokes wave. Unsteady DSWs are generated by
a different mechanism: the transition from Benjamin–Feir unstable waves to stable
waves. These unsteady DSWs will come back into the story when unsteady aspects
of criticality are considered in Bridges & Donaldson (2006).

In the full two-dimensional water-wave problem, steady solitary waves with
oscillatory tails have been found previously, but only when surface tension is present.
There are surface-tension dominated solitary waves which are biasymptotic to the
trivial state (or to an exponentially small state) associated with the minimum of the
dispersion relation; see Dias & Iooss (2003) for a recent review of these waves with
extensive references. Dias & Iooss (1994) also find steady DSWs at the interface
between two fluids when surface tension is present. The bifurcation of DSWs is
similar mathematically to the nonlinear behaviour near a transition to superharmonic
instability, but in that context the homoclinic orbit is in time, and not related to a
solitary wave (cf. Bridges 2004).

In three-dimensions, steady gravity-driven DSWs have been found in water-wave
problems when the variation is in the transverse direction. Examples are given in
Peregrine (1983, 1985 § 8). Roberts & Peregrine (1983) compute transverse DSWs up
to sixth order for the full water-wave problem.

For constant density fluids, solitary waves with oscillatory tails which represent
finite-amplitude DSWs, have been found previously in models for water waves
when surface tension is non-zero. When the Bond number is approximately 1/3
and the Froude number is greater than one, the existence of these surface-tension
dominated waves was first proved by Amick & Toland (1992) for a model ODE
(see also Grimshaw & Joshi 1995). The analytical results show that these waves
are biasymptotic to periodic states with exponentially small amplitude. However,
numerical continuation of these waves by Champneys & Lord (1997) show that they
have finite-amplitude periodic solutions at infinity when continued to finite amplitude.

9.1. Gravity-driven steady dark solitary waves

It was shown in § 7.1 that there exists a critical surface satisfying det[C( p)] = 0 for
gravity waves in shallow water. The local nonlinear normal form for bifurcating
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Figure 10. The curvature coefficient κ as a function of kh0.

solitary waves is given by (8.4). By computing κ , all the local nonlinear behaviour can
be predicted. The formula for the coefficient κ is given in (8.7) with the formula for
n given in (8.6). Given the entries of the criticality matrix computed in § 7 for weakly
nonlinear water waves, κ can be explicitly computed and it is plotted in figure 10 as
a function of kh0. Since the calculation in figure 10 is based on the two-term Stokes
expansion, the values for very small kh0 should be interpreted with caution.

In § 7.1, it was shown that secondary criticality occurs at low amplitude (weakly
nonlinear theory) for all kh0 < (kh0)

point2 ≈ 0.85. According to figure 10, κ < 0 for all
kh0 in this range (the zero-crossing of the curve in figure 10 is greater than 0.95).

Hence the bifurcating solitary waves exist for Ĩ 1 < 0; that is, the solitary waves exist
on the side of the criticality surface in the direction opposite to the chosen normal
vector. To express this region in terms of the Bernoulli constant, mass flux and wave
action flux, let pcrit be any point satisfying det[C( p)] = 0, and let

(R0,Q0,B0) := (R( pcrit),Q( pcrit),B( pcrit)).

Then dark solitary waves arise locally in parameter space with

n1(R − R0) + n2(Q − Q0) + n3(B − B0) < 0 with |Ĩ 1|  1. (9.3)

This is a very large region of parameter space, suggesting that steady dark solitary
waves are just as plentiful as Stokes periodic waves. However, whether these waves are
stable or not is an open question. If they are stable then they should be experimentally
verifiable.

The inequality (9.3) is independent of the sign of n – even though the sign of n
can be chosen arbitrarily. To see this, suppose n is replaced by −n. It would appear
that the inequality in (9.3) is reversed; but the sign change also affects the sign of

P( p) since it depends cubically on n. In other words, the sign of the product κĨ 1

is independent of the choice of normal vector. The inequality (9.3) is unambiguous
in the following sense: it signals whether the direction of bifurcation is aligned with
or opposite to the direction of the chosen normal vector. In the present case, with n
chosen using the formula (8.6) the solitary waves exist in the −n direction.

We have computed the signs of the non-zero eigenvalues of C( p) for kh0 = 0.5 and
kh0 = 0.7 which correspond to the first two graphs in figure 7, and in both cases
the eigenvalues have opposite sign. Choosing an appropriate ordering we can take
s2 = −1 and s3 =+1. However, the only impact of these signs is to give direction

information about the drift along the phase directions φ̃2 and φ̃3. The important
phase information is the geometric phase, and the explicit formula is given in (8.8).
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For water waves the geometric phase is given to leading order by

�φ̃1 = ± 12

|κ | (2κĨ 1)
1/4, Ĩ 1 < 0.

The theory of § 8 assumes a finite-dimensional phase space, whereas the water-wave
problem has an infinite-dimensional phase space. However, we can reduce the infinite
dimensional phase space to a finite dimensional phase space using spatial centre-
manifold theory (cf. Mielke 1991; Bridges & Mielke 1995). Then the theory applies as
before to the finite-dimensional system. The important point is that the existence of
steady dark solitary waves can be precisely justified for the full water-wave problem.
In contrast there is no known theory for justifying the existence of unsteady DSWs
in the full water-wave problem.

10. Concluding remarks
This paper showed that there is a generalization of criticality to finite-amplitude

Stokes waves in finite depth, and the principal consequence of this ‘secondary
criticality’ is the bifurcation of steady DSWs. The theory required three principal
steps. The determinant condition for primary criticality (1.4) was generalized to a
determinant condition for secondary criticality (1.8). The second step was to show
the implication of this condition for the linearization about Stokes waves coupled to
a mean flow: a pair of spatial Floquet multipliers coalesces at +1. Although spatial
Floquet multipliers associated with the linearization about waves have been computed
and reported in the literature, the connection with criticality is established here for
the first time. The third step, which involved recent developments in dynamical
systems, is to show that the nonlinear problem near secondary criticality always has
a bifurcation of solitary waves and the physical properties of the bifurcating steady
DSWs are dictated by the properties of the criticality matrix. By analysing Boussinesq
models for shallow-water waves and the full water-wave problem, it was shown that
secondary criticality and the bifurcation of steady DSWs is pervasive in shallow water.
In Part 2, it is shown that the concepts discovered for the steady problem can be
generalized to unsteady waves to give new insight into the Benjamin–Feir instability
in finite depth.

Relative equilibria can be extended to the time-dependent problem, and the concept
of the degenerate relative equilibrium is well-defined. This leads to a naive definition
of criticality for a class of unsteady flows (time periodic in a moving frame); but what
is the implication of this definition of unsteady criticality? The main result of Part 2
of this study is to show how the hydraulic properties of the uniform flow coupled to
a spatially periodic wave and the criticality matrix C( p) enter into the linear stability
of the periodic wave. A sketch of the result is as follows. A periodic wave in shallow
water, with specified total head, mass flux and wave action flux is linearly unstable if
the determinant of the deformed criticality matrix, N(Ω), has a root Ω with non-zero
imaginary part, where

N(Ω) =
∂(R, Q, B)

∂(h0, u0, k)
+ Ω

⎡⎣0 1 �
1 0 �

� � �

⎤⎦+ Ω2

⎡⎣ 0 0 0
0 0 0
0 0 �

⎤⎦ , (10.1)

where � represents entries which are determined by the theory for unsteady criticality.
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The instability condition based on (10.1) is new, and connects bulk quantities
familiar from hydraulics to the Benjamin–Feir instability: the criticality matrix is the
central feature in (10.1).

The authors are grateful to Howell Peregrine whose probing questions and
suggestions led to several new dimensions in this paper.

Appendix A. Algebraic multiplicity, Jordan chain theory and criticality
In this Appendix and Appendix B, it is shown how Jordan chain theory for

generalized eigenvectors enters the analysis of criticality. Let K be a non-selfadjoint
linear operator acting on a finite-dimensional vector space. (Comments on differential
operators are at the end of this Appendix.)

Suppose zero is an eigenvalue of K of geometric multiplicity one; that is, there exist
an eigenvector ξ1 and adjoint eigenvector ζ1 such that

Kξ1 = 0, KT ζ1 = 0.

The geometric multiplicity is the number of linearly independent vectors in the kernel
of K. Now suppose zero is an eigenvalue of algebraic multiplicity of at least two. In
finite dimensions, the algebraic multiplicity of an eigenvalue equals the multiplicity
of it as a root of the characteristic polynomial. For differential operators, where the
concept of a characteristic polynomial does not apply, the algebraic multiplicity is
defined using Jordan chain theory (cf. Lancaster & Tismenetsky 1985, chap. 6). If
zero is an eigenvalue of K of algebraic multiplicity greater than or equal to two, then
there exists a vector ξ2 satisfying

Kξ2 = ξ1,

and the algebraic multiplicity is greater than two if and only if there exists a vector
ξ3 with

Kξ3 = ξ2.

But this equation is solvable if and only if the right-hand side is in the range of K,

〈ζ1, ξ2〉 = 0.

In summary, if 〈ζ1, ξ2〉 �= 0 then the algebraic multiplicity of the zero eigenvalue is
exactly two, and if 〈ζ1, ξ2〉 = 0 the algebraic multplicity is greater than or equal to
three.

The generalization of this result, suitable for the theory of criticality, is as follows.
Suppose zero is an eigenvalue of geometric multiplicity m: there exist m linearly
independent eigenvectors ξ1, . . . , ξm and m linearly independent adjoint eigenvectors
ζ1, . . . , ζm satisfying

Kξj = 0, KT ζj = 0 for j = 1, . . . , m.

Suppose that each of the eigenvectors is associated with a Jordan chain of length two

Kξm+j = ξj , j = 1, . . . , m.

It follows from Jordan chain theory that the algebraic multiplicity of the eigenvalue
zero is greater than or equal to 2m.

For the algebraic multiplicity to be strictly greater than 2m, at least one of the
Jordan chains must exceed two in length: there exists a non-zero n =(n1, . . . , nm) ∈ �m
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such that the following equation is solvable

Kξ2m+1 = n1ξn+1 + n2ξm+2 + · · · + nnξ2m.

This equation is solvable if and only if the right-hand side is in the range of K,⎡⎢⎣〈ζ1, ξm+1〉 · · · 〈ζ1, ξ2m〉
...

. . .
...

〈ζm, ξm+1〉 · · · 〈ζm, ξ2m〉

⎤⎥⎦
⎛⎜⎝n1

...
nm

⎞⎟⎠ =

⎛⎜⎝0
...
0

⎞⎟⎠ ,

which in turn has a non-trivial solution if and only if

det

⎡⎢⎣〈ζ1, ξm+1〉 · · · 〈ζ1, ξ2m〉
...

. . .
...

〈ζm, ξm+1〉 · · · 〈ζm, ξ2m〉

⎤⎥⎦ = 0. (A 1)

This theory simplifies considerably when K is a Hamiltonian operator. A
Hamiltonian operator is the product of a skew-symmetric operator and a symmetric
operator,

K = J−1L, with JT = −J, LT = L.

When the linear operator K is decomposed in this form the adjoint eigenvectors are
related to the eigenvectors by J: suppose ξ0 is an eigenvector associated with a zero
eigenvalue: Kξ0 = 0. In the Hamiltonian context, this is equivalent to Lξ0 = 0. The
adjoint eigenvector is ζ0 = a0Jξ0 for some constant a0, since

KT ζ0 = a0(J
−1L)T Jξ0 = −a0LJ−1Jξ0 = −a0Lξ0 = 0.

The solvability condition (A 1) can now be expressed purely in terms of the vectors
ξ1, . . . , ξ2m,

det

⎡⎢⎣〈Jξ1, ξm+1〉 · · · 〈Jξ1, ξ2m〉
...

. . .
...

〈Jξm, ξm+1〉 · · · 〈Jξm, ξ2m〉

⎤⎥⎦ = 0. (A 2)

In the context of criticality, there is additional structure which relates this solvability
condition to hydraulic properties. Mathematically, this structure arises because there

exists a vector Ẑ(θ, a) with θ =(θ1, . . . , θm) and a =(a1, . . . , am) and

ξj =
∂Ẑ

∂θj

|
θ=0 = J−1∇Pj (Ẑ), ξn+j =

∂Ẑ

∂aj

, j = 1, . . . , m,

since ∇Pj (Ẑ) = Jξj . Then the solvability condition can be expressed in terms of the
Jacobian

0 = det

⎡⎢⎣〈∇P1, ξm+1〉 · · · 〈∇P1, ξ2m〉
...

. . .
...

〈∇Pm, ξm+1〉 · · · 〈∇Pm, ξ2m〉

⎤⎥⎦ =

∣∣∣∣∂(P1, . . . , Pm)

∂(a1, . . . , am)

∣∣∣∣ .
To summarize: when the linear operator K is associated with the linearization about
an m-parameter family of symplectic relative equilibria and the eigenvalue zero has
geometric multiplicity m, then the algebraic multiplicity is greater than 2m if and
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only if ∣∣∣∣∂(P1, . . . , Pm)

∂(a1, . . . , am)

∣∣∣∣ = 0.

The extension to linear differential operators follows the same lines when the
operators are Fredholm with index zero (dimension of the kernel of K equals the
dimension of the kernel of the adjoint of K). Similarly, for differential operators with
periodic coefficients there is a variant of Jordan chain theory which is combined with
Floquet theory (cf. Iooss & Adelmeyer 1992, chap. 3). The Hamiltonian version of
this theory then follows the same lines as above.

Appendix B. Criticality and eigenvalues
The theory of Appendix A is combined with the theory for secondary criticality,

based on degeneracy of the criticality matrix C( p), to show that there is an additional
pair of zero Floquet exponents at degeneracy. The details of the argument are
presented for the Boussinesq model in the form (2.5).

Consider the steady equation (2.5) near the family of solutions (5.3), of the form
(8.1). Substitution into (2.5) and use of the symmetry properties of the equation leads
to the linearized system

JWx = L( p)W with L( p) = D2S(Ẑ) − kD2B(Ẑ). (B 1)

In contrast to the linearization about uniform flows, this equation is a PDE – even for
the Boussinesq model, but with coefficients that are periodic functions of θ3. Taking
a Floquet form of solutions, the spectral problem is obtained by taking

W (θ3, x) = eµxV (θ3), V (θ3 + 2π) = V (θ3), leading to the ODE L( p)V = µJV.

(B 2)

This spectral problem has a zero eigenvalue of (at least) geometric multiplicity
three and (at least) algebraic multiplicity six. If the geometric multiplicity is exactly
three, the algebraic multiplicity of the zero eigenvalue is greater than six if and only
if the basic state (the uniform flow coupled to a periodic wave) is critical.

These statements are confirmed as follows. The kernel of J−1L( p) is spanned by the
generators of the group of symmetries

L( p)g1 = L( p)g2 = L( p)g3 = 0 with g3 =
∂Ẑ

∂θ3

. (B 3)

Linear independence of {g1, g2, g3} then ensures that the geometric multiplicity is at
least three. Assume that the geometric multiplicity is exactly three.

The structure of the relative equilibria generates three generalized eigenvectors,

L( p)

(
∂Ẑ

∂h0

)
= ∇R(Ẑ) = Jg1,

L( p)

(
∂Ẑ

∂u0

)
= ∇Q(Ẑ) = Jg2,

L( p)

(
∂Ẑ

∂k

)
= ∇B(Ẑ) = Jg3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 4)
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Figure 11. Transition of Floquet multipliers due to secondary criticality.

The three pairs (g1, ∂Ẑ/∂h0), (g2, ∂Ẑ/∂u0) and (g3, ∂Ẑ/∂k) each form a Jordan chain
of length two. Applying Jordan chain theory for linear ODEs with periodic coefficients
(see Appendix A), zero is an eigenvalue of algebraic multiplicity at least six, and it is
greater than six if and only if there exists a non-zero n = (n1, n2, n3) ∈ �3 such that
the equation

L( p) = J

(
n1

∂Ẑ

∂h0

+ n2

∂Ẑ

∂u0

+ n3

∂Ẑ

∂k

)
is solvable. However, this equation is solvable if and only if the right-hand side is in
the range of L, that is, if〈

Jgj ,

(
n1

∂Ẑ

∂h0

+ n2

∂Ẑ

∂u0

+ n3

∂Ẑ

∂k

)〉
= 0,

for j = 1, 2, 3, which is equivalent to det(C( p)) = 0.
To summarize, if the geometric multiplicity of zero is exactly three, then the

algebraic multiplicity is greater than six if and only if the basic state – a spatially
periodic wave coupled to two-component mean flow – is critical. Passing through
criticality is therefore a saddle-centre bifurcation of Floquet exponents, and in Floquet
multiplier space a pair of Floquet multipliers coalesces at +1 as shown in figure 11.
In addition to the moving pair of Floquet multipliers there are six multipliers at +1
in this scenario.

At criticality, the number of generalized eigenvectors increases, but the number of
eigenvectors remains the same. Therefore criticality is a sufficient – but not necessary –
condition for the multiplicity of the zero eigenvalue to increase. The multiplicity could
also increase owing to an increase in geometric multiplicity (i.e. the appearance of
an additional independent eigenvector in the kernel of K). This latter case does not
arise for parameter regions associated with water waves studied in this paper and is
therefore not considered.

Appendix C. Criticality of uniform flows and ‘group velocity’
Classical uniform flows are critical if and only if the Froude number is unity.

However, a curiosity appears in § 7.1 in the leading-order term in the expression for
the determinant of the criticality matrix. In the limit as |A1| → 0 in (7.7), the condition
for secondary criticality reduces to

lim
|A1|→0

det[C( p)] =
gh0



D2

k (1 − F 2).

Therefore if Dk �= 0, the Froude number unity condition for criticality is recovered.
But what happens when Dk = 0? Does it also signify a form of criticality?
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The classical group velocity for a Stokes gravity wave is

cg = 1
2
u0

(
1 +

kh0

σ
(1 − σ 2)

)
.

It is important to note that the association with group velocity here is by analogy.
There is no concept of group velocity for a steady wave without the introduction of
time. On the other hand, Dk = gk(1 − (kh0/σ )(1 − σ 2)) and so

Dk =
2gk

u0

(u0 − cg).

The singularity Dk =0 corresponds to a point where u0 is equal to the ‘group velocity’.
This singularity does occur in the water-wave problem, but only when surface tension
is present. It corresponds to the minimum of the dispersion relation when the phase
speed is plotted as a function of kh0. The point where cg = u0 is a well-known
point of bifurcation for solitary waves with oscillatory tails, but the tails decay to
zero at infinity. See Dias & Iooss (2003) for a review of results of solitary waves
near this point. Points where cg = u0 are also called stopping velocities (cf. Bridges,
Christodoulides & Dias 1995).

In summary, the theory shows that the point Dk = 0 can also be interpreted as a
point of criticality. However, it is found by taking the limit as the amplitude of the
Stokes wave goes to zero in the secondary criticality condition.
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