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It is shown that there is an overlooked mechanism whereby some kinds of dissipation can enhance
the Benjamin-Feir instability of water waves. This observation is new, and although it is
counterintuitive, it is due to the fact that the Benjamin-Feir instability involves the collision of
modes with opposite energy sign �relative to the carrier wave�, and it is the negative energy
perturbations that are enhanced. © 2007 American Institute of Physics. �DOI: 10.1063/1.2780793�

The discovery of the Benjamin-Feir �BF� instability of
traveling waves was a milestone in the history of water
waves. Before 1960, the idea that a Stokes wave could be
unstable does not appear to be given much thought. The
possibility that the Stokes wave could be unstable was
pointed out in the early 1960s,1–4 but it was the seminal work
of Benjamin and Feir5,6 that combined experimental evi-
dence with a weakly nonlinear theory that convinced the
scientific community.

Indeed, Benjamin and Feir started their experiments in
1963 assuming that the Stokes wave was stable. After several
frustrating years watching their waves disintegrate—in spite
of equipment and laboratory changes and improvements—
they finally came to the conclusion that they were witnessing
a new kind of instability. The appearance of “sidebands” in
the experiments suggested the form that the perturbations
should take. A history of these experiments and the outcome
are reported in Ref. 7.

The theory of the BF instability is based on inviscid fluid
mechanics, and the assumption that the system is conserva-
tive. Therefore, it is natural to study the implication of per-
turbations on the system. The implications of a range of per-
turbations on the BF instability have been studied in the
literature: for example, the effect of wind8,9 and the effect of
viscosity.8,10–13 Some perturbations have been shown to sta-
bilize and others to destabilize the BF instability.

However, there is a fundamental overlooked mechanism
in all this work. Mathematically, the BF instability can be
characterized as a collision of two pairs of purely imaginary
eigenvalues of opposite energy sign, as shown in Fig. 1. In
Ref. 14, this observation is implicit, but the demonstration
and implications have not been given heretofore. This char-
acterization of the BF instability also appears in the nonlin-
ear Schrödinger �NLS� model for modulation of dispersive
traveling waves.15,16 The eigenvalue with a smaller positive
imaginary part in the figure—just before collision—has
negative energy, whereas the eigenvalue with larger imagi-
nary part has positive energy. This energy is relative to the
energy of the carrier wave EStokes: E−�EStokes�E+, where
E± are the energies of the modes associated with the respec-

tive purely imaginary eigenvalues in Fig. 1. Hence, “negative
energy” means that E−−EStokes�0.

Once these facts are established, we can appeal to the
result that dissipation can destabilize negative energy
modes.17–19 There are many examples in fluid mechanics
where negative energy modes—which are stable in the invis-
cid limit—are destabilized by the addition of dissipation:20

Kelvin-Helmholtz instability,17,18,21 interaction of a fluid with
a flexible boundary,22,23 stability of a fluid-loaded elastic
plate,24 and Euler modes perturbed by the Navier-Stokes
equations.25

The book of Fabrikant and Stepanyants21 reports on ex-
perimental results for interfacial waves near the Kelvin-
Helmholtz instability illustrating the enhancement of the
instability of negative energy waves due to dissipation
�see Fig. 3.5 on p. 83, and the discussion on pp. 82–83 in
Ref. 21�.

In this brief communication, we sketch the basic result
for water waves and then use a nonlinear Schrödinger model
perturbed by dissipation for illustration. The NLS equation
has shortcomings �e.g., symmetry that enables the phase to
be factored out, lack of validity for all time26�, but it provides
a simple example of the phenomenon.

Davey10 gives a general argument for the form of a
dissipation-perturbed NLS model, and Blennerhassett8 starts
with the full Navier-Stokes equations for a free-surface flow
with viscous free-surface boundary conditions and derives a
similar perturbed NLS equation. For the dissipatively per-
turbed Stokes wave in deep water, these NLS models take
the form

iAt + �� − ia�Axx + ibA + �� + ic��A�2A = 0, �1�

where A is the envelope of the wave carrier, and the modu-
lations are restricted to one space dimension x. When a=b
=c=0, Eq. �1� reduces to the NLS equation for the modula-
tions of Stokes waves in deep water; hence, � and � are
positive real numbers. This NLS model has a BF instability,
and one can show explicitly that it involves a collision of
eigenvalues of the form shown in Fig. 1. We show below that
when a�0, there is always dissipation induced instability
�before the BF instability�, no matter how small a is. The
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parameter a is the perturbation of the rate of change of the
group velocity dcg /dk due to dissipation.

First, consider the linear stability problem for gravity
waves in deep water. As the wave amplitude increases, we
show that there is a threshold value at which two eigenvalues
of the linear stability problem collide, and these two modes
have negative and positive energy, respectively.

With �=x−ct, the speed c and amplitude � of the basic
gravity wave of wavelength 2� /k, to leading order, are
c=c0�1+k2�2+ ¯ �, c0

2=gk−1,

���� = ��1��� + �2�2��� + O��3� ,

where � is a measure of the amplitude,

�1��� = �2 cos�k� − �0�, �2��� = k cos�2k� − 2�0� ,

with �0 an arbitrary phase shift. Using standard results on
integral properties of Stokes waves, the total energy relative
to the moving frame is

EStokes = T + V − cI = V − T, using 2T = cI ,

where T and V are the kinetic and potential energies, respec-
tively, and I is the momentum.27 Substitution of the Stokes
expansion shows that EStokes=0+�3E3+O��4�. Although the
actual value of E3 is not important for the argument below, it
is noteworthy that it is negative, and, using Table 2 of Ref.
27, one can confirm that EStokes is negative at finite amplitude
as well.

To formulate the linear stability for gravity waves take

���,x,t� � �̂��,�� + ���,x,t� ,

where �̂�� ,�� is the basic carrier wave. Take a similar ex-
pression for the velocity potential 	�� ,x ,y , t�, where y de-
notes the vertical space dimension. Next one substitutes this
form into the water wave equations, linearizes about the car-
rier wave, and takes ��� ,x , t� of the form

���,x,t� = Re�
��,��ei�x+�t� ,

where � is real �the modulation wavenumber�, and 
�� ,�� is
periodic of the same period as the Stokes wave. The result is
an eigenvalue problem for the eigenfunction 
 and eigen-
value �.

The BF instability corresponds to a solution of this ei-
genvalue problem with 0��1 and Re����0. When � is
fixed—but nonzero and small—and the amplitude of the
Stokes wave is increased, there is a threshold amplitude
where the BF instability occurs, and it corresponds to a
collision of two eigenvalues as shown in Fig. 1. To leading
order, the eigenvalues collide at �= ±icg�, where
cg= 1

2
�g /k is the group velocity.

To show that the colliding modes have opposite energy
sign, we need a definition of the energy of the perturbation.
This definition requires some consideration because the per-
turbation is quasiperiodic in space: 2� /k-periodic in �, and
2� /�-periodic in x. The total energy relative to the moving
frame is

Etotal =
�

2�
�

0

2�/� k

2�
�

0

2�/k

Ê d� dx ,

where Ê= T̂− V̂−cÎ, V̂=1/2g�2,

T̂ = �
−�

� 1

2
�	�

2 + 2	�	x + 	x
2 + 	y

2�dy, and

Î = �
−�

�

�	� + 	x�dy .

Evaluating the perturbation energy for the two modes that
collide leads to Etotal=EStokes+�2E2

±+¯, with

E2
± = 2�k ± ���1 −�1 �

�

k
	�C±�2.

Here, C± are scale factors associated with the eigenfunctions.
Clearly, sign�E2

+E2
−��0 for 0��1.

Having shown that the colliding modes have opposite
energy signs, we consider a simple example that illustrates
the mechanism for destabilization of negative energy modes
by damping. A prototype for a conservative system, where
the linearization has a collision of eigenvalues of opposite
energy sign, which is perturbed by Rayleigh damping, is

qtt + 2bJqt + �� − �2�q + 2�qt = 0, q � R2,

�2�

J = �0 − 1

1 0
	 ,

where ��0 is the “gyroscopic coefficient,” � a real param-
eter with ����2, and ��0.

The energy of the system �2� is strictly decreasing when
��0 and 
qt
�0. Let q�t�= q̂e�t; then substitution into �2�
leads to the roots

FIG. 1. Schematic of the eigenvalue movement associated with the BF
instability, as a function of the amplitude of the basic carrier wave �Amp�
and the sideband wavenumber �. For a fixed � �vertical dashed line�, there
is a threshold amplitude. Below the threshold, the eigenvalues are purely
imaginary. At the threshold a collision occurs and above the threshold, the
eigenvalues are complex.
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� = i� − � ± i�� + 2i�� − �2 and

�3�
� = − i� − � ± i�� − 2i�� − �2.

When �=0, there are four roots: �= ±i��±���. The eigen-
value movement shown in Fig. 1 is realized as � decreases
from a positive value to a negative value, the collision oc-
curring at �=0. Suppose that � is small and positive �just
before the collision� and look at the effect of dissipation on
the two modes �0=i�±i��. Substitution of the eigenfunc-
tions for these two eigenvalues into the energy shows that the
mode associated with i�−i�� has negative energy, while the
mode associated with i�+i�� has positive energy.

With � small, expand the first pair of roots in �3� in a
Taylor series

���� = i� ± i�� �
�

��
�� ± ��� + O��2� .

With 0��1, the eigenvalues are perturbed, as shown to
the right in Fig. 2. The negative energy mode, i.e., �0=i��
−���, has a positive real part when dissipatively perturbed,
and the positive energy mode, i.e., �0=i��+���, has a nega-
tive real part under perturbation. Consequently, when small
dissipation is added to the otherwise stable system �that is,
0���2�, the mode with negative energy will destabilize.
After the collision �when ��0�, the growth rate of the insta-
bility is enhanced.

It should be noted that other mathematically consistent
forms of damping can be used. For example, the uniform
damping

qt =
�H

�p
− �q, pt = −

�H

�q
− �p , �4�

makes mathematical sense. However, it leads to uniform
contraction of the phase space, and does not destabilize nega-
tive energy modes.

In order to study the effect of dissipation on water
waves, one could start with the Navier-Stokes equations and
perturb about the Stokes wave solution �see Ref. 8, for in-
stance, for the case of wind forcing�. Another approach is to
add viscous perturbations to the potential flow in various
forms.28 From the modified equations one can derive a dis-
sipative NLS equation. There are two issues to highlight:
negative energy modes can be destabilized, so the BF insta-
bility can be enhanced by dissipation, and secondly, the form
of the damping is important. It is known that negative energy
modes of the Euler equations can be destabilized by the form
of damping found in the Navier-Stokes equations.25

Following Refs. 8 and 10, a general perturbed NLS
equation for various types of physical situations can be writ-
ten in the form �1�. The parameters a, b, and c are taken to be
non-negative. When they are positive, they represent dissipa-
tive perturbations, since the norm of the solution is strictly
decreasing in time when a2+b2+c2�0.

When a=b=c=0, the resulting NLS equation is a
Hamiltonian partial differential equation; with A=u1+iu2

and u= �u1 ,u2�,

Jut = �H�u� + aJuxx − bJu − c
u
2Ju , �5�

where J was defined in �2�, and

H�u� = �
R
�1

2
�
ux
2 −

1

4
�
u
4�dx . �6�

Let ��x , t�=kx−�t+�0, and consider the basic traveling
wave solution to �5� when dissipation is neglected,

û�x,t� = R��x,t�u0, R� = �cos � − sin �

sin � cos �
	 . �7�

Then, u0 , � , k satisfy −�+�k2=�
u0
2.
It is assumed that the Stokes traveling wave exists for a

sufficiently long time before any dissipation can affect it:
dissipation is taken to be a second-order effect.

Next we check the energetics of the BF stability problem
in NLS. Linearize the partial differential equation �5� with
a=b=c=0 about the basic traveling wave �7�. Letting
u�x , t�=R��x,t��u0+v�x , t��, substituting into the conservative
version of �5�, linearizing about u0, and simplifying, leads to

Jvt + 2�kJvx + �vxx + 2�u0,v�u0 = 0 , �8�

where ·,·� is the standard scalar product on R2.
The class of solutions of interest are solutions that are

periodic in x with wavenumber �. The parameter � repre-
sents the sideband. The BF instability will be associated with
the limit ���1. Therefore, let

v�x,t� =
1

2
v0�t� + �

n=1

�

�vn�t�cos n�x + wn�t�sin n�x� .

Neglecting the �-independent modes �superharmonic in-
stability�, the �-dependent modes decouple into four-
dimensional subspaces for each n, and satisfy

FIG. 2. Schematic of the effect of dissipation on the eigenvalues associated
with �2�.
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Jv̇n + 2�kn�Jwn − ��n��2vn + 2�u0u0
Tvn = 0 ,

�9�
Jẇn − 2�kn�Jvn − ��n��2wn + 2�u0u0

Twn = 0 .

When the amplitude 
u0
=0, it is easy to show that all ei-
genvalues of the above system �i.e., taking solutions of the
form e�t and computing �� are purely imaginary. Considering
all other parameters fixed, and increasing 
u0
, we find that
there is a critical amplitude where the n=1 mode becomes
unstable first through a collision of eigenvalues of opposite
signature.

To analyze this instability, take n=1 and study the re-
duced four-dimensional system

Jv̇1 + 2�k�Jw1 − ��2v1 + 2�u0u0
Tv1 = 0 ,

�10�
Jẇ1 − 2�k�Jv1 − ��2w1 + 2�u0u0

Tw1 = 0 .

To determine the spectrum, let �v1 ,w1�= �q ,p�e�t. Then,
�� ,�� are determined by roots of

���,�� = �4 + 2�p2 + 4k2�2�2��2 + �p2 − 4k2�2�2�2,

where p2=�2�4−2��
u0
2�2. Suppose p2�0; then all four
roots are purely imaginary �see Fig. 1� and are given by

� = i2�k� ± ip and � = − i2�k� ± ip .

These modes are purely imaginary as long as p2�0; equiva-
lently 2��
u0
2��2�2. Since ���0, the instability thresh-
old is achieved when the amplitude reaches


u0
 =
����
�2��

. �11�

At this threshold, a collision of eigenvalues occurs at the
points �= ±2ik��; see Fig. 1 for a schematic of this colli-
sion.

It will be assumed henceforth that k�0. Instability is,
then, through a collision of eigenvalues of opposite energy
signs, which reproduces the instability mechanism for the
full water-wave problem.

Purely imaginary eigenvalues of a Hamiltonian system
have a signature associated with them, and this signature is
related to the sign of the energy.17,29,30 Collision of eigenval-
ues of opposite signatures is a necessary condition for the
collision resulting in instability.

It is straightforward to compute the signature of the
modes in the NLS model. Suppose that the amplitude 
u0
 of
the basic state is smaller than the critical value �11� for in-
stability. There are, then, two pairs of purely imaginary ei-
genvalues, and they each have a signature. Let us concentrate
on the eigenvalues on the positive imaginary axis:

� = i�± with �± = cg� ± p, cg = 2�k . �12�

Then,

sign��±� = iq̄,Jq� + ip̄,Jp� ,

where the inner product is real in order to make the conju-
gation explicit. One can also show that this signature has the
same sign as the energy perturbation restricted to this mode.
A straightforward calculation shows that sign��±�= ±4,

when 
u0 
 =0. Since p2 decreases as the amplitude increases,
the two modes will have opposite signatures for all 
u0
 be-
tween 
u0
=0 and the point of collision.

Now consider the effect of the damping terms. Consider
the reduced system �10� for the BF instability with the
abc-damping terms included:

Jv̇1 + 2�k�Jw1 − ��2v1 + 2�u0u0
Tv1 + D1 = 0 ,

�13�
Jẇ1 − 2�k�Jv1 − ��2w1 + 2�u0u0

Tw1 + D2 = 0 ,

with

D1 = 2ka�w1 + a�2Jv1 + bJv1 + 2cu0,v1�Ju0

�14�
D2 = − 2ka�v1 + a�2Jw1 + bJw1 + 2cu0,w1�Ju0.

Now, let �v1�t� ,w1�t��= �ṽ1 , w̃1�e�t. The eigenvalue problem
for the stability exponent then reduces to studying the roots
of a determinant showing �with the help of MAPLE� that the
two roots in the upper half-plane are given by

�± = 2ik�� − �b + a�2 + c
u0
2� ± i�S , �15�

with

S = 4ia�3k� − c2
u0
4 − 4k2�2a2 − 4ia�k�
u0
2

− 2���2
u0
2 + �2�4.

When a=b=c=0, these stability exponents reduce to

�± = 2ik�� ± i��2�4 − 2���2
u0
2.

Now suppose these two eigenvalues are purely imaginary:
the amplitude 
u0
 is below the critical value �11�. To deter-
mine the leading order effect of dissipation, expand �15� in a
Taylor series with respect to a, b, and c and take the real part

Re��±� = − �a�2 + b + c
u0
2� �
2ak����2 − �
u0
2�
��2�4 − 2���2
u0
2

+ ¯ . �16�

For any a�0, there is an open region of parameter space
where these two real parts have opposite signs since their
product to leading order is

Re��−�Re��+� = �a�2 + b + c
u0
2�2

−
4a2k2�2���2 − �
u0
2�2

�2�4 − 2���2
u0
2 + ¯ .

For any a ,b ,c with a�0, there is an open set of values of

u0
, where this expression is strictly negative, showing that
Re��−� and Re��+� perturb in opposite directions. In this pa-
rameter regime the dissipation perturbs the negative energy
mode, as shown schematically in Fig. 2.

It is clear that when only the b-term is present, all eigen-
values shift to the left. Therefore, the b-term does not pro-
duce any enhancement of the instability, in agreement with
Ref. 12. This damping is analogous to the uniform damping
in �4�. It is the a-term that leads to enhancement. However,
the NLS is a simplified model for water waves.

In summary, the fundamental observation is that BF in-
stability is associated with a collision of eigenvalues of posi-
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tive and negative energy, and there are physically realizable
forms of damping which enhance this instability. It remains
to be seen how this effect can be revealed in laboratory ex-
periments, in numerical experiments based on the full water-
wave equations, and in the open ocean.

This work was enhanced by a grant of a CNRS Fellow-
ship to the first author, and by support from the CMLA at
Ecole Normale Supérieure de Cachan. Helpful discussions
with Gianne Derks are gratefully acknowledged.

1O. M. Phillips, “On the dynamics of unsteady gravity waves of finite
amplitude. I. The elementary interactions,” J. Fluid Mech. 9, 193 �1960�.

2K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spec-
trum. Part 1. General theory,” J. Fluid Mech. 12, 481 �1962�.

3M. J. Lighthill, “Contributions to the theory of waves in nonlinear disper-
sive systems,” J. Inst. Math. Appl. 1, 269 �1965�.

4G. B. Whitham, “A general approach to linear and nonlinear dispersive
waves using a Lagrangian,” J. Fluid Mech. 22, 273 �1965�.

5T. B. Benjamin and J. E. Feir, “The disintegration of wavetrains in deep
water. Part 1,” J. Fluid Mech. 27, 417 �1967�.

6T. B. Benjamin, “Instability of periodic wavetrains in nonlinear dispersive
systems,” Proc. R. Soc. London, Ser. A 299, 59 �1967�.

7J. C. R. Hunt, “Thomas Brooke Benjamin 15 April 1929–16 August
1995,” Biogr. Mem. Fellows R. Soc. 49, 39 �2003�.

8P. J. Blennerhassett, “On the generation of waves by wind,” Philos. Trans.
R. Soc. London, Ser. A 298, 451 �1980�.

9L. F. Bliven, N. E. Huang, and S. R. Long, “Experimental study of the
influence of wind on Benjamin-Feir sideband instability,” J. Fluid Mech.
162, 237 �1986�.

10A. Davey, “The propagation of a weak nonlinear wave,” J. Fluid Mech.
53, 769 �1972�.

11A. L. Fabrikant, “Nonlinear dynamics of wave packets in a dissipative
medium,” Sov. Phys. JETP 59, 274 �1984�.

12H. Segur, D. Henderson, J. Carter, J. Hammack, C.-M. Li, D. Pheiff, and
K. Socha, “Stabilizing the Benjamin-Feir instability,” J. Fluid Mech. 539,
229 �2005�.

13G. Wu, Y. Liu, and D. K. P. Yue, “A note on stabilizing the Benjamin-Feir
instability,” J. Fluid Mech. 556, 45 �2006�.

14T. J. Bridges and A. Mielke, “A proof of the Benjamin-Feir instability,”
Arch. Ration. Mech. Anal. 133, 145 �1995�.

15L. A. Ostrovski�, “Propagation of wave packets and space-time self-
focusing in a nonlinear medium,” Sov. Phys. JETP 24, 797 �1967�.

16V. E. Zakharov, “Stability of periodic waves of finite amplitude on the
surface of a deep fluid,” J. Appl. Mech. Tech. Phys. 9, 190 �1968�.

17R. A. Cairns, “The role of negative energy waves in some instabilities of
parallel flows,” J. Fluid Mech. 92, 1 �1979�.

18A. D. D. Craik, Wave Interactions and Fluid Flows �Cambridge University
Press, Cambridge, 1988�.

19R. S. MacKay, “Movement of eigenvalues of Hamiltonian equilibria under
non-Hamiltonian perturbation,” Phys. Lett. A 155, 266 �1991�.

20L. A. Ostrovski�, S. A. Rybak, and L. Sh. Tsimring, “Negative energy
waves in hydrodynamics,” Sov. Phys. Usp. 29, 1040 �1986�.

21A. L. Fabrikant and Yu. A. Stepanyants, Propagation of Waves in Shear
Flows �World Scientific, Singapore, 1998�.

22T. B. Benjamin, “Classification of unstable disturbances in flexible sur-
faces bounding inviscid flows,” J. Fluid Mech. 16, 436 �1963�.

23M. T. Landahl, “On the stability of a laminar incompressible boundary
layer over a flexible surface,” J. Fluid Mech. 13, 609 �1962�.

24N. Peake, “Nonlinear stability of fluid-loaded elastic plate with mean
flow,” J. Fluid Mech. 434, 101 �2001�.

25G. Derks and T. Ratiu, “Attracting curves on families of stationary solu-
tions in two-dimensional Navier-Stokes and reduced magnetohydrody-
namics,” Proc. R. Soc. London, Ser. A 454, 1407 �2002�; “Unstable mani-
folds of relative equilibria in Hamiltonian systems with dissipation,”
Nonlinearity 15, 531 �1998�.

26W. Craig, C. Sulem, and P. L. Sulem, “Nonlinear modulation of gravity
waves: a rigorous approach,” Nonlinearity 5, 497 �1992�.

27M. C. Longuet-Higgins, “Integral properties of periodic gravity waves of
finite amplitude,” Proc. R. Soc. London, Ser. A 342, 157 �1975�.

28D. Dutykh and F. Dias, “Viscous potential free-surface flows in a fluid
layer of finite depth,” C. R. Acad. Sci., Ser. I: Math. 345, 113 �2007�.

29R. S. MacKay and P. G. Saffman, “Stability of water waves,” Proc. R. Soc.
London, Ser. A 406, 115 �1986�.

30T. J. Bridges, “A geometric formulation of the conservation of wave action
and its implications for signature and the classification of instabilities,”
Proc. R. Soc. London, Ser. A 453, 1365 �1997�.

104104-5 Enhancement of the Benjamin-Feir instability Phys. Fluids 19, 104104 �2007�

Downloaded 27 Mar 2008 to 128.95.176.16. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


