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ABSTRACT

Sea surface temperature (SST) is an essential climate variable that can be measured routinely from Earth
Observation (EO) with high temporal and spatial coverage. To evaluate its suitability for an application, it
is critical to know the accuracy and precision (performance) of the EO SST data. This requires compar-
isons with co-located and concomitant in situ data. Owing to a relatively large network of in situ plat-
forms there is a good understanding of the performance of EO SST data in the open ocean. However, at
the coastline this performance is not well known, impeded by a lack of in situ data. Here, we used in situ
SST measurements collected by a group of surfers over a three year period in the coastal waters of the UK
and Ireland, to improve our understanding of the performance of EO SST data at the coastline. At two
beaches near the city of Plymouth, UK, the in situ SST measurements collected by the surfers were
compared with in situ SST collected from two autonomous buoys located ~7 km and ~33 km from the
coastline, and showed good agreement, with discrepancies consistent with the spatial separation of the
sites. The in situ SST measurements collected by the surfers around the coastline, and those collected
offshore by the two autonomous buoys, were used to evaluate the performance of operational Advanced
Very High Resolution Radiometer (AVHRR) EO SST data. Results indicate: (i) a significant reduction in the
performance of AVHRR at retrieving SST at the coastline, with root mean square errors in the range of 1.0
to 2.0 °C depending on the temporal difference between match-ups, significantly higher than those at the
two offshore stations (0.4 to 0.6 °C); (ii) a systematic negative bias in the AVHRR retrievals of approxi-
mately 1 °C at the coastline, not observed at the two offshore stations; and (iii) an increase in the root
mean square error at the coastline when the temporal difference between match-ups exceeded three
hours. Harnessing new solutions to improve in situ sampling coverage at the coastline, such as tagging
surfers with sensors, can improve our understanding of the performance of EO SST data in coastal re-
gions, helping inform users interested in EO SST products for coastal applications. Yet, validating EO SST
products using in situ SST data at the coastline is challenged by difficulties reconciling the two mea-

surements, which are provided at different spatial scales in a dynamic and complex environment.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

2011; Bojinski et al., 2014). It is a vital property of the aquatic
system, controlling its physical (Moore et al., 1999; Nonaka and Xie,

Sea surface temperature (SST) is considered by the Global 2003), biological (Eppley, 1972; Pepin, 1991; Keller et al., 1999;
Climate Observing System as an essential climate variable (GCOS, Lazareth et al., 2003; Doney, 2006; Tittensor et al., 2010; Couce
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et al., 2012) and chemical (Lee et al.,, 2006; Kitidis et al., 2017)
environment. SST impacts the transfer of compounds between the
ocean and atmosphere (Land et al., 2013; Takahashi et al., 2002), the
distributions and foraging of many marine vertebrates (Frederiksen
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et al,, 2007; Scales et al., 2014; Miller et al., 2015) and the regional
and global climate (Sutton and Allen, 1997; Saji et al., 1999; Lea
et al., 2000; Bader and Latif, 2003; Yu and Weller, 2007; Raitsos
et al., 2011). It is also a variable that can be retrieved routinely,
and operationally, with high spatial coverage and good temporal
resolution using Earth Observation (EO), through measurements of
radiation in the infrared (Llewellyn-Jones et al., 1984) and micro-
wave (Wentz et al., 2000) portion of the electromagnetic spectrum
from radiometers mounted on satellite platforms.

To evaluate the use of EO SST products for various operational
applications, it is imperative to know the accuracy and precision of
the data. This typically requires direct comparison of EO data with
co-located and concomitant in situ data. In the open-ocean, our
understanding of this accuracy and precision is generally high, due
to a large network of in situ instruments on a variety of platforms,
resulting in a considerable number of co-incident in situ and EO SST
measurements distributed over a wide geographical area (e.g. see
Table 3 of Merchant et al., 2014). However, despite demonstrative
evidence on the value of SST observations for monitoring of coastal
seas (e.g. Goreau and Hayes, 1994; Mustard et al., 1999; Paerl and
Huisman, 2008; Tang et al., 2003), the economic and ecological
importance of coastal waters (Costanza et al., 1997, 2014; Tittensor
et al, 2010) and their high sensitivity to human pressures and
climate change (Jickells, 1998), the accuracy and precision of EO SST
data at the coastline are not well known, impeded by a lack of in situ
data resulting in few validation studies (Smit et al., 2013). The issue
is complicated further by the increased complexities inherent in
the retrieval of EO SST data at the coastline, for instance, from land
contamination, from the complex coastal aerosol composition
impacting the signal received by the satellite sensor (Thomas et al.,
2002), from the heterogeneity of SST at the coastline in space and
time, and from potential differences in the relationship between
the skin temperature (the top 10—20 um) measured by the satellite
and the temperature at the depth typically measured in situ
(hereafter we define SST as the temperature at 1 m depth (z), or
SST(z) where z = 1 m, as defined by the Group for High Resolution
Sea Surface Temperature, see GHRSST, 2017).

Acquiring in situ SST measurements in coastal regions, using
conventional platforms such as research vessels, buoys and
autonomous vehicles, is notoriously difficult and expensive,
hampered by challenges such as: biofouling; vandalisation; wave
damage; complex and shallow bathymetry; and strong tidal and
coastal currents. This lack of in situ SST data at the coastline pro-
hibits EO validation. New solutions are required to improve in situ
sampling coverage of SST measurements at the coastline, and
consequently our understanding of the accuracy and precision of
EO SST products.

Building on the work of Brewin et al. (2015b), we present results
from a three-year study in which a small group of recreational
surfers, based primarily in the south west United Kingdom (UK),
were tagged with temperature sensors that they used when surfing
to measure SST in situ at the coastline. The SST data collected by the
surfers, together with SST data collected from two oceanographic
stations (L4 and E1, ~7 km and ~33 km from the coastline of Ply-
mouth, UK, respectively) were compared with co-incident and co-
located operational 1 km EO SST data from the Advanced Very High
Resolution Radiometers (AVHRR), to improve our understanding of
the accuracy and precision of EO SST products at the coastline and
consequently their use for coastal applications.

2. Methods
2.1. Statistical tests

To compare the estimates of SST from two sources the following

univariate statistical tests that are commonly used in comparisons
between satellite and in situ data were used (e.g. Doney et al., 2009;
Brewin et al., 2015c): the coefficient of determination (r2); the
absolute Root Mean Square Error (¥); the absolute bias between
the estimated and measured variable (4); the absolute centre-
pattern (or unbiased) Root Mean Square Error (A); and the Slope
(S) and Intercept (I) of a linear regression between the estimated
and measured variables. The equations used to compute each sta-
tistic are provided in Appendix A.

2.2. Study site: United Kingdom and Ireland

The chosen study sites were beaches around the coastline of the
United Kingdom (UK) and Ireland (Fig. 1a). Like many coastal re-
gions, the seas surrounding the UK and Ireland are sensitive to
increasing human pressure and climate change (Nicholls et al.,
2007; Wang et al., 2008), with implications for changes in marine
biodiversity and productivity (Frost et al., 2016; Holt et al., 2016),
and the monitoring of key environmental indicators such as SST
(LHévéder et al., 2016). Whereas a few measurements were
collected on the west coast of Ireland and south-east coast of the UK
(Fig. 1a), the majority of SST data collected by the surfers were from
the south-west coastline of the UK (Fig. 1a and b), in particular the
coastline surrounding the city of Plymouth (Fig. 1c¢), which also
hosts two oceanographic stations (Station L4 and E1) that form part
of the Western Channel Observatory  (http://www.
westernchannelobservatory.org.uk/) run by Plymouth Marine
Laboratory and the UK Marine Biological Association.

2.3. In situ datasets

2.3.1. SST collected by surfers at the coastline

Between the 5th January 2014 and the 8th February 2017, five
recreational surfers were equipped with a UTBI-001 Tidbit v2
Temperature Data Logger and a Garmin etrex 10 GPS, following
methods described in Brewin et al. (2015b, see their Fig. 1). The
Garmin GPS device was used to extract information on the location
(latitude and longitude) of the surf session. It contains an EGNOS-
enabled GPS receiver, has HotFix® satellite prediction and can
track both GPS and GLONASS satellites simultaneously. The GPS
device was stored in a water-resistant Aquapac inside a waist-bag
worn by the surfer (typically under the wetsuit) and set to record
GPS data at 1 Hz. The first and last five minutes of the GPS track
were removed (approximately the time between switching on (off)
the GPS and entering (exiting) the water), and the median latitude
and longitude of the remaining data were extracted to derive in-
formation on the central location of data collection during the
surfing session. In cases where the GPS device failed (e.g. battery
depletion) or was not used, the central location (latitude and
longitude) of the surf session was extracted immediately pro-
ceeding the surf session, using GIS software (https://itouchmap.
com/latlong.html).

The Tidbit v2 temperature loggers were attached, using cable-
ties, to the mid-point of each surfers leash (tether connecting the
surfer to their surfboard) to ensure continuous contact with
seawater when surfing, and measured temperature in the top
metre of the water column (see Fig. 1 of Brewin et al., 2015b).
Manufacturers state that the Tidbit v2 sensors have an accuracy of
0.2 °C over a range of 0 to 50 °C, a resolution of ~0.02 °C at 25 °C, a
stability of ~0.1 °C per year, a response time of 5 min in water, and a
battery life of ~5 years at a >1 min logging interval. To ensure good
quality data collection, we monitored the performance of each
sensor approximately every 6 months over the study period, by
comparing the Tidbit v2 temperature loggers with a VWR1620-200
traceable digital thermometer (NIST/ISO calibrated, with an
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Fig. 1. Study site and locations of sampling. (a) Shows the locations of the 297 surfing sessions where SST data were collected during the study in the UK and Ireland, overlain onto a
NEODAAS AVHRR SST average composite image of September, averaged between the duration of the study (2014 to 2017). (b) Locations where the majority of samples were
collected by the surfers around the south-west UK coastline, overlain onto the same September SST composite. (c) Sample locations near the city of Plymouth, UK, showing the
position of two nearby oceanographic stations (Station L4 and E1) that form part of the Western Channel Observatory, all overlain onto the same September SST composite. (d) GPS
track from a surf on the 20th September 2014, overlain onto the same September SST composite, to illustrate the coverage of a typical GPS track within a mapped NEODAAS AVHRR

pixel.

accuracy of 0.05 °C at the range of 0 to 100 °C and a resolution of
0.001 °C) at 1 °C intervals in the laboratory, from 6 to 25 °C using a
PolyScience temperature bath.

Fig. 2a—d illustrates four laboratory comparisons between a
Tidbit v2 sensor (10308732) and the VWR1620-200 traceable dig-
ital thermometer, and Fig. 2e—j shows variations in statistical tests
(Eq. A1 to A.5) for each laboratory comparison, for the five Tidbit v2
sensors used in the study. Over the study period, all sensors per-
formed within the manufacturers technical specifications, with
high 2, slopes (S) staying close to one, and intercepts close to zero
for all laboratory comparisons (Fig. 2e, i and j). Root Mean Square
Errors (W) were <0.15 °C for all sensors (Fig. 2f). When decom-
posing W into its precision (A) and accuracy (6) components, ¥ was
dominated by a small systematic bias () for all sensors (Fig. 2h). We
used piecewise regression to model ¢ as a function of time (Fig. 2h)
for each sensor, which was then used to correct any temperature
data collected by each sensor. In cases where data were collected
before the first laboratory comparison, or after the last, the
correction () was set at the closest laboratory comparison (rather
than extrapolating the piecewise regression model outside of the
time period it was developed for, see Fig. 2h). Having removed the
systematic bias, the errors in each sensor were within the accuracy
of VWR1620-200 traceable digital thermometer (<0.05 °C see
Fig. 2g). The piecewise regression model also improved the con-
sistency between sensors, by correcting each sensor to the same
common reference (see Appendix B and Fig. A1 for an example of
deployment at the same location for two different sensors). Table 1
provides the number of times each sensor was used during a
surfing session over the study period, and the duration of use for
each sensor.

HOBOware software and a HOBO USB Optic Base Station (BASE-

U-4) were used by each surfer to launch the Tidbit v2 temperature
logger prior to each session, and then to upload data post session.
Temperature data were collected at 10 Hz during each surf. Tem-
perature data were processed following a method building on that
developed in Brewin et al. (2015a, b). Briefly, the assumption is
made that the midpoint of the temperature data for each surf
session occurred while the sensor was in the water. This assump-
tion was checked manually for each surf session and found to hold
when visually checked with available GPS data. The data were then
divided into two equal halves around the mid-point. For the first
half of the data, every data point was removed sequentially in time
and the standard deviation was calculated incrementally, with the
last data point representing the standard deviation of the midpoint
(zero). For the second half of the data, this procedure was repeated
but in reverse. The standard deviations for the two halves of the
data were then recombined. The point at which the surfer began
measuring SST (entered the water) was taken as the point when the
standard deviation first fell below the bottom third percentile, and
the point at which the surfer stopped measuring SST (exited the
water) was taken as the last point of the session when the standard
deviation was below the bottom third percentile. The bottom third
percentile was chosen based on a visual comparison with the
timing of the first and last waves caught by the surfer, as estimated
from GPS data (see Brewin et al., 2015b). Appendix B illustrates an
example of the processing method applied to a surf session at
Tolcarne Beach in Newquay, UK (see Fig. A2).

The only difference with this method, to that described in
Brewin et al. (2015b), is that a percentile was used rather than
determining the start and end points according to when the stan-
dard deviation was less than 10% of the largest standard deviation.
We found that using a percentile was slightly more robust in cases
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Fig. 2. Laboratory comparisons between the Tidbit v2 sensors and a VWR1620-200 traceable digital thermometer, using a PolyScience temperature bath over the range from 6 to
25 °C. (a—d) Illustrate four laboratory comparisons between Tidbit v2 sensor 10308732 and the VWR1620-200 traceable digital thermometer, and (e—j) show variations in statistical
tests for each laboratory comparison, for the five Tidbit v2 sensors used in the study. Lines in (h) show the piecewise regression model used to correct the bias (¢) of each sensor over
the time period of use. r2 is the coefficient of determination, ¥ the root mean square error, 0 the bias, A the centre-pattern (or unbiased) root mean square error, S the slope and I the

intercept of a linear regression, and N the number of samples.

Table 1
Details for each Tidbit v2 sensor of the number (N) of surfing sessions the sensor was
used for during the study period and its duration of use.

Tidbit v2 sensor N Duration of use

10308732 141 5th Jan 2014—28th Nov 20157
10551172 27 13th Sep 2014—6th Nov 2016"
10551173 35 12th Aug 2014—4th Jan 2017°
10551174 4 8th Jul 2015—7th Aug 2016"
10782552 90 28th Nov 2015—8th Feb 2017°

@ Sensor ran out of battery after this date.
b Sensor still operational at the end of the study.

where the temperature in the water was very stable, and the pre-
vious technique selected data before and after the surfer entered
the water. All temperature measurements collected before and af-
ter the determined start and end points were excluded, and the
median of the remaining data was considered as the SST for each
session (see Appendix B, Fig. A2). Note that the median is resistant
to outliers and thus fairly resilient to variations in the derived start
and finish points. For example, the difference between the pro-
cessing methods used here and that used by Brewin et al. (2015b) to
determine SST was very small (r2 =1.00, ¥ =0.07, A =0.07,
0=-0.02,S=1.00 and I = —-0.01).

Appendix B, Fig. A3, shows a superposition of all temperature
data acquired by the surfer during the study period, normalised
such that the start and end of the surf is at the same point on the x-
axis for each session. The plot demonstrates the temperature of the

sensor in the sea is relatively stable compared with that before and
after each surf. As discussed in Brewin et al. (2015b), the method
assumes that the mid-point of the collected data occurred in the sea
and that duration of data collection in the sea is longer than
duration out of the water. We caution against the use of the method
in cases where these assumptions are breached. The method is also
designed specifically to determine the median SST of the session.
The time of data collection (GMT) was taken as the mid-point
(median) of all 10 Hz samples selected to compute SST.

In total, 297 surfing sessions took place during the study period,
around the coastline of the United Kingdom (UK) and Ireland
(Fig. 1a), most of which were in the south-west UK (Fig. 1b and c).
The majority of surf sessions (233) took place at Wembury Beach
(latitude = 50.316 °N, longitude = —4.085 °E) and Bovisand Beach
(latitude = 50.332 °N, longitude = —4.122 °E) located close to each
other and near to the city of Plymouth, UK. The majority of mea-
surements were collected during conditions preferable for surfing.
This typically involved breaking waves at the coastline in the range
of 0.3 to 3.0 m, though some measurements were collected in calm
sea conditions during surfer paddle training. The SST data collected
by the surfers are publicly available through the British Oceano-
graphic Data Centre (Brewin et al., 2017).

2.3.2. SST from Station L4 and E1

SST data were also acquired from two oceanographic stations in
the Western Channel Observatory (WCO): Station 14
(latitude = 50.250 °N, longitude = —4.217 °E) located ~7 km from
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the coastline and Station E1 (latitude = 50.033 °N,
longitude = —4.367 °E) located ~33 km from the coastline (Fig. 1c).
At both stations an autonomous buoy is operated, equipped with a
WET Labs Water Quality Monitor (WQM), which incorporates WET
Labs' fluorometer-turbidity and Sea-Bird's CTD sensors, providing
temperature, salinity, depth, dissolved oxygen, chlorophyll fluo-
rescence, turbidity and backscattering data. The WQM are mounted
on a marine-grade stainless steel cage and situated in a moon pool
(an opening in the floatation) at a fixed depth of 1 m. The WQM
records SST at hourly intervals, with an accuracy of 0.002 °C at a
range of —5 to 35 °C, and a resolution of 0.001 °C. Further details on
the operation of the autonomous buoy systems can be found in
Smyth et al. (2010). Quality controlled datasets on SST were
downloaded from the Western Channel Observatory website
(http://[www.westernchannelobservatory.org.uk/data/buoy/) be-
tween January 2014 and December 2016, with some gaps in the
datasets from buoy maintenance and downtime.

2.4. AVHRR satellite observations

Operational AVHRR SST data were acquired through the UK
Natural Environmental Research Council (NERC) Earth Observation
Data Acquisition and Analysis Service (NEODAAS, http://www.
neodaas.ac.uk/). This service is regularly used by the UK and Eu-
ropean scientific communities, and has supported a wide variety of
international research (see http://www.neodaas.ac.uk/
publications.php). The AVHRR is a scanning sensor on-board the
National Oceanic and Atmospheric Administration (NOAA) family
of Polar Orbiting Environmental Satellites (POES). These platforms
are sun synchronous, viewing the same location roughly twice a
day (depending on latitude) due to a relatively wide swath
(~2400 km). The AVHRR measures the radiance of the Earth at a
suite of bands, including bands centred around 11 and 12 pm,
measuring emitted thermal radiation. It is these bands that are
principally used to derive SST.

The NEODAAS operational processing system is illustrated in
Fig. 3. During the 15 min period when each satellite is in range, a
receiving station located in Dundee acquires High Resolution

LEVEL 3

Picture Transmission (HRPT) passes over NW Europe and the Arctic,
~14 per day and ~4.6 of which cover the UK (see http://www.sat.
dundee.ac.uk/coverage.html). The passes are immediately trans-
mitted, via a fast internet link, from the receiving station to Ply-
mouth Marine Laboratory for processing. The HRPT images are then
processed to Level 3, which involves: georeferencing, using an
orbital model together with ephemeris data from NOAA (Sandford
and Stephenson, 1992) and an automated navigation adjustment
that matches image features with a database of ground control
points (Bordes et al., 1992); generation of a land mask using the
University of Hawaii's Generic Mapping Tools (http://gmt.soest.
hawaii.edu/) which is then overlaid on the georectified AVHRR
image; application of a hybrid cloud mask, adapted from Saunders
and Kriebel (1988), Thiermann and Ruprecht (1992), and
Roozekrans and Prangsma (1988); application of a cloud proximity
test to minimise cloud-edge effects and sub-pixel cloud contami-
nation (Miller et al., 1997); implementation of the NEODAAS
operational SST algorithm adapted from the standard NOAA
method (Non-linear SST (NLSST) split-window equation using
infrared channels 4 and 5, with modifications to correct for atmo-
spheric water-vapour absorption; Miller et al., 1997); application of
a quality control step by comparison with climatological weekly
average Optimum Interpolation SST (OISST) provided by the US
National Meteorological Centre (Reynolds and Smith, 1994;
Reynolds et al., 2007), flagging any pixels that differ +2 °C
and —4 °C from the climatology; and finally image transformation
to Mercator projection (~1 km resolution), using the MODIS Swath-
to-Grid Toolbox (MS2GT). Additional details of the NEODAAS
operational processing system can be found in Miller et al. (1997).
SST images are available within 90 min of the start of acquisition.

NEODAAS provides data extractions for various regions. Here we
used products provided between —15°E and 13°E and 47°N and
63°N, covering the study area (Fig. 3). Level 3 mapped scenes were
acquired from NEODAAS between 5th January 2014 and the 8th
February 2017, providing SST, latitude and longitude data for each
pixel in the scene, and the time (GMT) of the overpass. In addition
to using the individual satellite passes directly for comparison with
in situ data, we also used daily mean composite products, produced
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Fig. 3. Schematic diagram of the NEODAAS system for producing the operational AVHRR SST products used in the study.
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using all the Level 3 passes available during a single day, for a given
pixel.

2.5. Comparison of datasets

2.5.1. Comparison of in situ datasets

We first analysed differences in the in situ SST over the duration
of the study period at three locations near the city of Plymouth in
the UK; at Station E1; at Station L4; and at the coastline, using
temperature measurements collected from two nearby beaches in
Plymouth (Wembury Beach and Bovisand Beach). This was con-
ducted qualitatively, by overlaying the SST time-series of the three
datasets onto the same graph which was then inspected visually,
and quantitatively, by matching (with a time difference of <1hr) co-
incident SST measurements and through the application of statis-
tical tests.

2.5.2. Comparison of daily AVHRR products

Next we compared daily AVHRR SST products, at the same three
locations (Station E1, Station L4, and at the coastline (Wembury
Beach and Bovisand Beach)), with the in situ data (daily median)
over the duration of the study period. At L4 and E1 we extracted
AVHRR SST data from a group of nine pixels centred on the location
of the oceanographic buoys (see Fig. 6a) for each day in the time-
series. At the coastline, we extracted data from six pixels that run
along the coastline between the two beaches (see Fig. 6a) for each
day in the time-series. For each group of pixels per day, we
computed the median SST, the standard deviation and percentage
of the group of pixels with SST data. To ensure reasonable homo-
geneity in the match-up site, required when comparing observa-
tions (in situ and satellite) representative of vastly different
volumes of water, AVHRR data were discarded when the standard
deviation of the group of pixels was greater than 1 °C and where the
percentage of pixels with SST data was less than 50%.

As with the comparison of the three in situ datasets, we
compared the daily AVHRR SST with the in situ data at each location
qualitatively, by overlaying the satellite and in situ SST time-series
at each location onto the same graph which was then inspected
visually, and quantitatively, by comparing daily match-ups using
statistical tests outlined in section 2.1.
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2.5.3. Validation of AVHRR satellite passes

We matched all in situ data (at Station L4, Station E1 and SST
measurements collected around the coastline of UK and Ireland by
the surfers) to all available Level 3 AVHRR SST satellite passes,
within a time difference of +12 h. As with the daily AVHHR data for
E1 and L4, we extracted a group of nine pixels centred at each
location. However, we only used the centre (closest) pixel in the
comparison of satellite passes (rather than the median of the nine
pixels), to ensure the closest spatial agreement between data. For
the in situ data at the coastline (collected by the surfers), we used
the closest pixel to the in situ measurement within a 1 km radius, to
account for cases where the closest pixel was dominated princi-
pally by land (i.e. the in situ measurement was at the edge of a land
pixel, see Fig. 4c for an example). As with the daily AVHRR data, the
group of nine pixels were used to ensure reasonable homogeneity
of the match-up region. Match-ups were discarded when the
standard deviation of the group of pixels was greater than 1 °C, and
where percentage of the group of pixels with SST data was less than
33% (3 pixels needed to compute the standard deviation), which
was lower than the daily AVHRR data (<50%), as typically, roughly
half of the pixels were located on land when extracting the 9 pixels
at the coastline (see Fig. 4c for an example). The absolute time
difference (T) between the overpass of the satellite data and the in
situ was recorded, to investigate the influence of T on statistical
tests between datasets. Fig. 4 illustrates an example of the match-
up process for AVHRR satellite passes, for a relatively cloud free
AVHRR SST image taken on the 20th April 2015 at 03:39 GMT
(Fig. 4a), compared with SST data collected at Station E1 at 04:04
GMT (Fig. 4b) and by a surfer at Bovisand beach at 05:58 GMT
(Fig. 4c).

3. Results
3.1. In situ comparison

Seasonal variations in the three in situ time-series are in good
agreement visually (Fig. 5b, d and f). The warmest temperatures are
observed during late summer and coolest in early March. Inter-
annual differences are also generally consistent. For instance, an
unusual decrease in SST in August 2014 was seen at both Station L4

SST [°C] SST[°C]
T e
<10.0 10.2 >10.4 <9.0 10.0 >11.0
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50.33 :|
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Fig. 4. Example of the match-up process used in the study for Level 3 satellite passes. (a) Shows a relatively cloud free Level 3 AVHRR SST pass taken on the 20th April 2015 at 03:39
GMT, and processed by NEODAAS. (b) Shows the group of nine pixels in the AVHRR image centred on Station E1 (black and pink border) used to check homogeneity of the match-up
region, with the centre pixel located closest to the E1 buoy (pink border) used for comparison with the E1 in situ data (circle and colour-coded to the same scale as the image)
collected at 04:04 GMT on the 20th April 2015. (c) Shows the group of nine pixels (black and pink border) in the AVHRR image centred on Bovisand Beach, the location of a surfing
session that took place on the 20th April 2015 at 05:58 GMT, that were used to check homogeneity of the match-up region, with the pixel with data located closest (<1 km) to the
surf session (pink border) used for comparison with the in situ data (circle and colour-coded to the same scale as the image). Note that in this case, the closest pixel was actually
dominated by land (i.e. the in situ measurement was at the edge of a land pixel) such that the next closest pixel with SST data within a 1 km radius was selected. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Comparison of in situ sea surface temperature (SST) datasets near Plymouth, UK. (a) Locations of SST data collected at the two beaches (Wembury and Bovisand), Station L4
and E1. (b) Time-series of SST acquired by the surfer at the two beaches overlain onto the SST data from Station L4. (c) Scatter plots of hourly match-ups between SST acquired by the
surfer at the beaches and SST data from Station L4. (d) Time-series of SST acquired by the surfer at the beaches overlain onto the SST data from Station E1. (e) Scatter plots of hourly
match-ups between SST acquired by the surfer at the beaches and SST data from Station E1. (f) Time-series of SST acquired at Station L4 overlain onto the SST data from Station E1.
(g) Scatter plots of hourly match-ups between SST at L4 and E1. r2 is the coefficient of determination, ¥ the root mean square error, ¢ the bias, A the centre-pattern (or unbiased)
root mean square error, S the slope and I the intercept of a linear regression, and N the number of samples.

and at the beaches, and sharp but brief increases in SST in June and
July 2016 are consistent in all three datasets (Fig. 5). Although the
L4 and E1 buoys collect data far more regularly (per hour) than the
surfers, there are significant periods of time during the study
period when one of the buoys were not operating, which was not
the case for the surfer data.

Quantitative comparisons among the three time-series (with a
time difference of <1hr) show that the data collected by the surfer
explains >91% of the variance in the Station L4 and E1 data, with a
root mean square difference (¥) of 0.74 to 0.84 °C (Fig. 5c and e).
These statistical results are similar to those found when comparing
the two oceanographic buoys (Fig. 5g). Yet, despite these similar-
ities, there are systematic differences seen in the three datasets
consistent with their spatial separation (Fig. 5a). Whereas the
average bias (6) between surfer and E1 data is quite low (—0.15 °C,
Fig. 5e), the autumn and early winter periods show systematically
lower SST in the surfer data when compared with E1 (e.g. winter
2014/2015 and autumn 2016, see Fig. 5d). This is likely linked to the
influence of the terrestrial environment on nearshore SST during
this period. The land cools more rapidly in the autumn and early
winter, owing to a lower heat capacity when compared with the
ocean, potentially impacting nearshore SST. It may also be influ-
enced by enhanced fresh water input during this period, and by the
atmospheric cooling, with increased exchanges of heat between the
atmosphere and ocean at the coastline caused by wave breaking.
Furthermore, it is possible that enhanced vertical mixing at the
coastline due to wave breaking could promote upwelling of colder
water during autumn and winter storm conditions.

Both the surfer and the E1 SST data show systematically higher
temperatures than that observed at L4 (with an average bias of
between 0.33 and 0.40 °C, Fig. 5¢ and g), particularly during the
summer of 2015 (Fig. 5b and f). It is likely that Station L4 is less
strongly stratified during the summer period when compared with
E1, perhaps due to stronger tidal mixing (shallow bathyemetry) and
estuarine outflow from Plymouth Sound. Higher SST in the summer

of 2015 at the beaches, when compared with L4, may be related to
more rapid warming of shallower water at the beaches during the
day. Considering good agreement among the three SST datasets,
with discrepancies generally consistent with expectations given
their spatial separation and contrasting proximity to land, one can
be confident using the surfer SST data for coastal applications.

3.2. AVHRR comparison of daily products

Fig. 6 shows a comparison of the daily AVHRR SST data with the
daily median in situ data at L4, E1 and the two beaches (Wembury
and Bovisand). With the exception of a few outliers, likely caused
from miss-classification of cloud-contaminated pixels (owing to a
much lower SST characteristic of cloud-contamination), there is
very good agreement between the AVHRR SST data and the in situ
measurements at L4 and E1, with the satellite observations tracking
tightly variations in the in situ data (Fig. 6d and f). At both L4 and E1,
the AVHRR data explains 97% of the variance in the in situ data, with
a very low bias (6 = —0.04 °C), low errors (¥ and A, <0.44 °C),
slopes (S) close to one and intercepts (I) close to zero (Fig. 6e and g).

At the coastline, however, the agreement between the AVHRR
SST data and in situ data is not as good (Fig. 6b and c). The satellite
observations do not track the in situ data as tightly over the course
of the seasons (Fig. 6b) as they do at L4 and E1, and statistical tests
between daily match-ups (Fig. 6¢) are not so good when compared
with the two offshore stations, with the AVHRR data explaining
only 87% of the variance in the in situ data, with a systematic
negative bias (6 = —1.20°C), lower precision (A = 1.08°C), slopes
less than one (S = 0.89) and an intercept (I) of 0.31. The results
indicate a degradation in the performance of the AVHRR data at the
coastline, when compared with Station L4 and E1.

3.3. AVHRR comparison of satellite passes

Scatter plots of AVHRR satellite passes and in situ SST data at
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Fig. 6. Comparison of daily Level 3 AVHRR and in situ sea surface temperature (SST) datasets near Plymouth, UK. (a) Locations of SST data collected at the two beaches (Wembury
and Bovisand), at Station L4 and E1, and the group of pixels selected from the AVHRR data to be representative of the three locations (dark grey pixels). (b) Time-series of AVHRR
Level 3 daily SST at the six pixels covering the two beaches overlain onto that acquired by the surfers in situ at the two beaches. (c) Scatter plots of daily match-ups between SST
acquired in situ by the surfers and by AVHRR at the beaches. (d) Time-series of AVHRR SST overlain onto in situ SST at L4. (e) Scatter plots of daily match-ups between SST acquired in
situ and by AVHRR at L4. (f) Time-series of AVHRR SST overlain onto in situ SST at E1. (g) Scatter plots of daily match-ups between SST acquired in situ and by AVHRR at E1. 12 is the
coefficient of determination, ¥ the root mean square error,  the bias, A the centre-pattern (or unbiased) root mean square error, S the slope and I the intercept of a linear regression,

and N the number of samples.

Station L4, E1 and measurements collected around the coastline of
UK and Ireland by the surfers, are shown in Fig. 7, for an absolute
time difference (T) of <1 h, <3 h and <5 h. In general, the statistical
performance of the AVHRR data at L4 (Fig. 7d, e, and f) and E1
(Fig. 7g, h, and i) are consistent with that in the comparison of daily
AVHRR values (Fig. 6), with high coefficient of determination
(>0.95), no biases (6 ~ 0), slopes (S) close to one and intercepts (I)
close to zero. The root mean square errors (¥), composed princi-
pally by the precision component (A) considering the biases were
zero (Fig. 7), are slightly higher (¥ = 0.52 to 0.54) than the daily
AVHRR comparison at L4 (¥ = 0.44, Fig. 6e), and higher at L4 (¥ =
0.52 to 0.54) than at E1 (W = 0.45 to 0.47).

Consistent with the daily AVHRR comparison, statistical tests of
AVHRR and in situ data indicate a significantly better performance
in AVHRR SST at the two offshore stations (L4 and E1) when
compared with performance at the coastline (Fig. 7), with ¥ two to
three times higher at the coastline than offshore (L4 and E1), a
systematic negative bias in AVHRR at the coastline (6 = —0.39
to —1.07 °C), slopes less than one and generally high intercepts
(Fig. 7a—c). At L4 and E1, there is an increase in ¥ from <1 h to <5 h.
The same is shown at the coastline between <3 h and <5 h (Fig. 7b
and c). Fig. 8 shows W plotted as a function of T at the coastline
(beaches) and at L4 and E1. In all cases, there is a significant in-
crease in ¥ with T. At E1 and L4, this increase is linear. At the
beaches, there is a sharp increase after 3 h, with W significantly
higher at 6 h (confidence intervals do not overlap).

4. Discussion

The coastal zone is arguably one of the most precious marine
environments on the planet, containing the highest level of marine
biodiversity (Tittensor et al., 2010), a large proportion of the world's
fish catch (Stewart et al.,, 2010), and supporting a wide range of
human activities, from energy extraction (Gill, 2005) to waste

disposal. It is also vulnerable to increasing human pressure and
climate change (Jickells, 1998; Lotze et al., 2006; McGranahan et al.,
2007). Adequate management of the coastal environment requires
the monitoring of key environmental indicators like SST (Bojinski
et al., 2014). Yet, the coastal environment is drastically under-
sampled and the observational networks are not adequate to
meet management needs. Due to the paucity of data in coastal
systems, there is increasing reliance placed on using models. Yet,
these models are often based on false assumptions and are usually
not verified with field data (Livingston, 2014). New solutions are
needed to increase the spatial and temporal sampling of environ-
mental data in the coastal zone.

4.1. Monitoring SST at the coastline in situ using recreational
citizens

Here, we utilised a small group of surfers who regularly
immerse themselves in the coastal zone, to measure SST over a
three year period. The SST data collected by the surfers were found
to be in good agreement with measurements collected at two
nearby oceanographic stations giving confidence in the method
(Fig. 5), with discrepancies consistent with the spatial separation of
sampling locations. It has been estimated that in the region of 40
million measurements of SST per year could be acquired in the UK
coastal zone by tagging surfers with temperature sensors (Brewin
et al., 2015b). In the US there are an estimated ~3.3 million
surfers who surf ~108 times per year (Thomas, 2012), suggesting a
potential of an additional ~350 million measurements of SST per
year in the US. Surfers often visit remote and uninhabited regions,
countries with limited coastal monitoring infrastructure and ca-
pabilities, where few coastal observations have been collected, re-
gions that are highly vulnerable to climate change (e.g. Latin
America and the East Asia Pacific).

There are also many other recreational watersports beyond
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surfing, which involve direct interaction with the aquatic envi-
ronment in regions that are difficult to measure using conventional
platforms. It has been demonstrated that recreational divers (Boss
and Zaneveld, 2003; Wright et al., 2016), kayakers (Bresnahan
et al.,, 2016), stand-up paddle-boarders (Bresnahan et al., 2016)
and recreational sailors (Lauro et al.,, 2014), could contribute
significantly to data collection in the coastal zone. Considering
many of these other recreational watersports occur in maritime
conditions different to that of surfing (e.g. calm seas), integrating
such observations with data from surfers could increase the range
of environmental conditions sampled by citizens. With rapid im-
provements in technology, including: miniaturisation of sensors,
wireless data transfer, cloud data storage and wireless communi-
cation, the feasibility of harnessing citizens for coastal monitoring
is becoming a real option (Busch et al., 2016; Farnham et al., 2017).
Integrating these observations with other developing in situ tech-
niques, such as coastal gliders (Rudnick et al., 2004), autonomous
beach buoy systems (Shively et al., 2016) and the tagging of marine
vertebrates with sensors (Fedalk, 2004), as well as traditional in situ
methods from ships and buoys, would significantly enhance the
spatial and temporal sampling of in situ data in the coastal zone.

4.2. Satellite remote sensing of SST

The combined spatial and temporal coverage of satellite remote
sensing, and its synoptic capabilities, means it provides more ob-
servations of SST than any other technique over wide spatial scales,

and has significantly impacted operational ocean forecasting
(Donlon et al., 2007). Yet, satellite remote sensing of SST has certain
limitations. Thermal radiation emitted from the ocean is impacted
by clouds and is only representative of the first few millimeters (the
skin) of the ocean, relying on algorithmic conversions and as-
sumptions to derive SST (at 1 m depth in the ocean), which can then
be compared with the in situ datasets collected at ~1 m depth. To
maximise the use of satellite SST data, the accuracy and precision of
the data must be determined, which requires direct comparison
with co-located and concomitant in situ data. The lack of in situ SST
observations at the coastline means to date, our knowledge of the
accuracy and precision of satellite SST at the coastline is severely
limited. In light of the next generation of satellite thermal sensors
(e.g. ESA's Sentinel 3 programme with dual-view measurement
capabilities and proposed high resolution thermal sensors) it is
vital these in situ networks are improved, to maximise the use of
satellite SST observations for long-term monitoring and operational
coastal applications.

When compared with other AVHRR SST processing systems, the
operational NEODAAS system works well in offshore waters (Sta-
tion L4 and E1) with no systematic difference (6 ~ 0.0, see Fig. 7).
The centre-pattern root mean square error (A) in AVHRR data for E1
and L4 data varies between 0.45 and 0.51 °C respectively, within an
hour absolute time difference (Fig. 7). When using the robust
standard deviation between match-ups rather than A, calculated by
scaling the median absolute deviation from the median (making it
less sensitive to outliers), these values drop to 0.18 and 0.21 °C,
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which fall below the range (0.26 and 0.58 °C) presented in a global
validation by Merchant et al. (2014, see their Table 3) for various
AVHRR sensors, giving confidence in the operational AVHRR SST
data provided by NEODAAS.

At the coastline we observe a significant degradation in the
performance of AVHRR at retrieving SST (Figs. 6—8), with signifi-
cantly higher root mean square errors (¥) that at L4 and E1, in the
range of 1.0 to 2.0 °C (Fig. 8). This clearly limits the use of AVHRR
SST data at the coastline for applications that require errors to be
less than that in this range. This finding is consistent with that of
Smit et al. (2013), who caution against the use of 4 km SST MODIS
Terra and Pathfinder v5.2 products around the coastline of South
Africa, and observed significant biases between the satellite and in
situ datasets. Yet, for applications that don't require high accuracy
and precision, AVHRR SST data at the coastline may still have some
use. For instance, in August 2014 there was a significant reduction
in SST in Plymouth coastal and offshore waters, of the order of 3 to
4 °Cseen in the in situ and satellite observations (Fig. 6). The AVHRR
SST data at the coastline captured this decrease (Fig. 6), which was
larger than the errors reported in the validation.

Yet, for the majority of applications where error requirements in
SST are lower than 1.0 °C, there needs to be a significant

improvement in the satellite AVHRR SST processing systems at the
coastline. Retrievals of SST at the coastline are inherently complex
when compared with offshore waters, owing to factors such as land
contamination (e.g. from tidal changes), land adjacency issues,
complexities in atmospheric-correction (e.g. from coastal aerosols),
potential changes in the conversions from skin temperature to SST
(e.g. from more bubbles at the land-sea interface; Jessup et al,,
1997; Eifler and Donlon, 2001), and errors in satellite georefer-
encing. With better coastal in situ networks, we can drastically
increase the number of co-incident and concurrent satellite and in
situ match-ups, which in addition to validation, may help improve
algorithm development.

Even with more in situ data, validation of satellite retrievals of
SST at the coastline are more challenging than in offshore waters.
SST at the coastline can be notoriously heterogeneous, due to a
variety of factors such as: freshwater runoff at the coastline (e.g.
impact of land run-off as well as nearby rivers and estuaries); tidal
stirring; coastal upwelling; exchanges of heat between the land and
ocean; and wave breaking (Farmer and Gemmrich, 1996), resulting
in gradients in SST within a 1 km pixel that may not be captured by
the surfer. Fig. 1d illustrates the coverage of a typical GPS track by a
surfer within a mapped NEODAAS AVHRR SST pixel, highlighting
large differences in the spatial sampling in SST by the surfer and by
the satellite. In some cases, it may be that the portion of the pixel
the surfer is sampling (the shallow landward boundary) has a
systematically different temperature than the average of the pixel.
This difference could be higher (consistent with the negative bias
we see in Figs. 6¢ and 7a-c) where the shallow landward boundary
might heat up quicker than the average, or even lower, in cases
where a colder landmass (or fresh water run-off) is significantly
influencing the shallower landward boundary of the pixel (e.g. in
autumn). This spatial heterogeneity could be quantified by inte-
grating high spatial resolution thermal observations (e.g. Landsat or
from aircraft platforms) with the courser resolution AVHRR data,
but would be limited by infrequent concurrent overpasses. This
coastal heterogeneity also has a temporal component that is likely
to be greater than in offshore waters. Fig. 8 highlights a sharp jump
in the root mean square error (¥) when increasing the absolute
time difference (T) between the in situ and satellite data beyond
three hours, emphasising a requirement to minimise T when vali-
dating SST retrievals at the coastline. This sharp increase may be
related to the semi-diurnal tidal cycle in the region.

5. Conclusions

To evaluate the suitability of EO SST data for coastal applications,
it is essential to know the accuracy and precision of the data. This
involves matching co-located and concomitant in situ and EO SST
data. Due to a limited number of in situ measurements, little is
know about the accuracy and precision of the EO SST data at the
coastline. Using in situ SST measurements collected by a group of
surfers over a three year period in the coastal waters of the UK and
Ireland, we evaluated the accuracy and precision of operational
AVHRR SST data at the coastline. When compared with match-ups
at two autonomous buoys ~7 km and ~33 km offshore, we observed
a significant reduction in the performance of AVHRR at retrieving
SST at the coastline. Root mean square errors at the coastline were
in the range of 1.0 to 2.0 °C, depending on the temporal difference
between match-ups, significantly higher than those at the two
offshore stations (0.4 to 0.6 °C). For match-ups at the coastline we
also observed a systematic negative bias in the AVHRR retrievals of
roughly 1 °C, and an increase in root mean square error when the
temporal difference between match-ups exceeded three hours.

Tagging recreational water-users, like surfers, with sensors has
the potential to improve the spatial and temporal coverage of in situ
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measurements at the coastline. This can aid our understanding of
the accuracy and precision of the EO data, improve algorithm
development, and inform users interested in using EO SST products
for coastal applications. However, when compared with offshore
waters, comparing EO SST products with in situ SST at the coastline
is challenging. The dynamic and inherently complex coastal envi-
ronment is difficult to sample remotely and in situ, and it is more
complicated to reconcile geophysical and spatial differences be-
tween the two types of SST observations. Yet, in the face of
increasing human pressures and climate change, our coastal seas
require careful monitoring. This can only be achieved through
integrating observations from different sources, including new in
situ sampling and EO.
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Appendix A

To compare the estimates of SST from two sources the following
univariate statistical tests were used.

Appendix A.1. Coefficient of determination (r2)

The coefficient of determination (r?) was taken to be the square
of the Pearson correlation coefficient (or squared Pearson's product
moment correlation) and was calculated according to

according to

1/2
W [% IXN; (xf x,lv’)z] .

The Root Mean Square Error (W) can be partitioned into the bias
(0), which represent the systematic difference between variables
(accuracy), and the centre-pattern (or unbiased) Root Mean Square
Error (A), which represents the random difference between two
variables (precision), such that ¥ = \/(Az +62). Computation of
6 and A are described next.

Appendix A.3. The bias (6)

The absolute bias between the estimated and measured variable
was expressed according to

5%§(xf-x{”).

Appendix A.4. The centre-pattern root mean square error (A)

The absolute centre-pattern (or unbiased) Root Mean Square
Error (A) was calculated according to

(A ()] b Gl )

It describes the error of the estimated values with respect to the
measured ones, regardless of the average bias between the two
distributions.

Appendix A.5. Slope (S) and Intercept (I) of a linear regression

The performance of a model with respect to in situ data can be
tested using linear regression between the estimated variable (from
the model) and the measured variable (in situ data), such that

i=1

N i{ X - (k)
.
{

where, X is the variable (e.g. SST) and N is the number of samples.
The superscript E denotes the estimated variable (e.g. from the
satellite sensor) and the superscript M denotes the measured var-
iable (e.g. measured in situ). Note that the Pearson correlation co-
efficient assumes a linear relationship between variables. The
squared correlation coefficient may take any value between 0 and
1.0, with 1.0 indicating the estimated variable explains 100% of the
variability in the measured variable.

Appendix A.2. Root mean square error (W)

The absolute Root Mean Square Error (W) was calculated

2
XP - (%Z%:]erq) }

et [ - (@z%xﬂ)f}l/zl l{z

N 25172
X - ()|}

XE = XMs 4.

A slope (S) close to one and an intercept (I) close to zero is an
indication that the model compares well with the in situ data.

Appendix B

In Appendix B we provide supporting information on the pro-
cessing of the SST data collected by surfers in the study. We
demonstrate an improved consistency between the Tidbit v2 sen-
sors when correcting each sensor to the same common reference.
Figure A1 shows data collection by two surfers at the same location
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using two different sensors at an overlapping time period in the
water (purple shading). The systematic difference (0) between
sensor readings were reduced when correcting each sensor to the
same common reference using the piecewise, bias-correction
model (Fig. 2h).

We also provide supporting information illustrating the method
used to process the data collected by surfers and derive SST (see
Fig. A2). A superposition of all temperature data acquired by the
surfer during the study period, normalised such that the start and
end of the surf is at the same point on the x-axis for each session, is
provided in Fig. A3. The plot highlights the stability of the tem-
perature of the sensor in the sea compared with that before and
after each surf.
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Fig. A1. Comparison of temperature data collected by two surfers using two different
Tidbit v2 sensors (10551173 and 10782552) at the same location (Bovisand Beach,
Plymouth, UK) at an overlapping time period on the 14th April 2016. (a) shows the raw
comparison and (b) shows the comparison after application of the bias-correction
model (piecewise regression model) such that each sensor was corrected to the
same common reference. The systematic differences (6) between the two sensors
readings were reduced when correcting each sensor to the same common reference.
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Fig. A2. Illustration of the method used to process the data collected by a surfer and
derive SST at Tolcarne Beach, Newquay, UK on the 18th February 2014. (a) Shows the
raw temperature data collected by the surfer as a function of time, showing when the
sensor was switched on (high temp), when the surfer was in the ocean (temperature
stabilized around 9 °C) and the rise in temperature as the surfer exited the water and
uploaded the data. The midpoint of the surf is also shown. (b) Shows how the data
were divided into two equal halves around the mid-point. For the first half of the data,
every data point was removed sequentially in time and the standard deviation was
calculated incrementally (light blue line), with the last data point representing the
standard deviation of the midpoint (zero). For the second half of the data, this pro-
cedure was repeated but in reverse (light green line). The standard deviations for the
two halves of the data were then recombined, and the bottom third percentile of the
standard deviations were derived (purple dashed line). (c) The point at which the
surfer began measuring SST (entered the water) was taken as the point when the
standard deviation first fell below the bottom third percentile, and the point at which
the surfer stopped measuring SST (exited the water) was taken as the last point of the
session when the standard deviation was below the bottom third percentile. This data
is shown in blue and is used to compute SST by taking the median of this data. Note
that the median is resistant to outliers and thus fairly resilient to variations in the
derived start and finish points.
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Fig. A3. A superposition of all temperature data acquired by the surfer during the study period, normalised such that the start (0) and end (1) of the surfs are at the same point on
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