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Wavetrains in inhomogeneous moving media

By F. P. BRETHERTON AND C. J. R. GARRETT

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge

(Communicated by M. J. Lighthill, Sec.R.S.—Received 27 June 1967)

When a slowly varying wavetrain of small amplitude propagates in a general medium,
changes of frequency and wavenumber are determined along definite paths known as rays.
It is shown that, for a wide class of conservative systems in fluid dynamics changes in ampli-
tude along the rays may be computed from conservation of wave action, which is defined as
the wave energy divided by the intrinsic frequency. The intrinsic frequency is the frequency
which would be measured by an observer moving with the local mean velocity of the medium.
This result is the analogue for continuous systems of the adiabatic invariant for a classical
simple harmonic oscillator.

If the medium is time dependent or moving with a nonuniform mean velocity the intrinsic
frequency is not normally constant, and wave energy is not conserved. Special cases include
surface waves on a vertically uniform current in water of finite depth, internal gravity waves
in a shear flow at large Richardson number, Alfvén waves, sound waves, and inertial waves
in & homogeneous rotating liquid in geostrophic mean motion.

1. INTRODUCTION

A wavetrain is a system of almost sinusoidal propagating waves with a recognizable
dominant local frequency w, vector wavenumber k and amplitude . These may
vary with position x and time ¢, but only slowly, in the sense that appreciable
changes are apparent only over many periods and wavelengths. They are defined
with a precision which increases the more slowly they vary. The dominant frequency
and wavenumber may be derived from a phase function 0(x,t) by

w=—0, ky=0, (j=1,...,m) (1-1)

and the wave crests are surfaces of constant 0. At each point w, k are connected by
a dispersion relation 0 = Q(k, M), (1-2)

where the local properties of the medium are for convenience summarized in the
parameter A(x,t) (which may have several components), and are also assumed to
be slowly varying. We will confine our attention to linearized waves of small ampli-
tude for which w, k are real (i.e. the medium is stable and non-dissipative).

The group velocity c is defined by

oQ .
cj=% (‘7= 1,...,m) (1.3)

J
and differentiation moving with the group velocity by
d o 0

&~ T
An observer always moving with the local value of ¢ describes a path in space-time
known as a ray.

(1-4)
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In a uniform time-independent medium (A = constant)

d_(i):() %Z:-_
dt Todt

i.e. the frequency and wavenumber are constant along a ray. Then from equations
(1-2), (1-3) c is also constant, and the ray is straight.
In a nonuniform medium

do_eQad dt,__i0 o
dt —ex o’ At~ oA oy’
so that, if A(x,¢) is known, the frequency, wavenumber and group velocity vary in

a predictable manner along a ray. The path of a ray through any given point is
determined by integration of equations (1-6), together with

((1%’ =¢ = 2—2 (1-7)
and is in general curved. Equations (1-6), (1-7) are kinematic results, depending only
on the existence of a phase function 0(x, t) and a local dispersion relation (1-2). They
are related to the theory of the Hamilton—Jacobi equation. Their derivation in a
fluid dynamical context has been ably explained by Whitham (1960). A general
survey of the concept of group velocity has been given by Lighthill (1965).

This paper is concerned with a general procedure for finding changes in the
amplitude a(X, t) in a slowly varying moving or time dependent medium. Unlike the
situation in a uniform medium, the maximum displacement of a material particle
(for example) will in general vary in a different manner from the maximum velocity
of the same particle, because the frequency will change. Either of these would be
a suitable measure of wave amplitude, so general formulae directly in terms of @ do
not exist. However a convenient concept is that of wawve energy density E. This is
discussed in detail in § 3, but in any given problem it is normally straightforward to
express it in terms of the local wavenumber, frequency and any convenient measure

0, (1-5)

(1-6)

a of amplitude, E = a®F(0,k, A). (1-8)
The central result of this paper is that for a wide class of physical systems
d (E E
&(J)‘F(VC) (J) =0, (1-9)

where o’ is the frequency relative to a frame of reference in which the mean state of
the medium is locally in equilibrium at rest. This result was suggested but not
proved by Garrett (1967). The frequency w, which enters equations (1-2), (1-6) to
determine the ray paths, is relative to a fixed observer. It is equal to the intrinsic
frequency ', which enters equation (1-9), plus an allowance for the Doppler shift.
If the medium at the point under consideration is moving with velocity U relative
to the observer, o =w—-U.Kk. (1-10)

Equation (1-9) describes changes in wave energy density along a ray, in terms of
" and the spatial divergence V .c of the rays. Changes in amplitude o then follow
from equation (1-8). Ray divergence occurs even in a uniform time-independent
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medium, for which &’ = constant, because the group velocities at neighbouring
points in a wavetrain are not in general exactly the same, owing to slight differences
in k. Because F is an energy density, it is not constant down a ray, even if wave
energy is conserved. However, in a time dependent and/or nonuniformly moving
medium, v’ varies along a ray. If £/w’ is the wave action density, total wave action is
conserved, whereas total wave energy is not.

The meaning of this is perhaps made clearer by reference to the concept of a
wave packet. This is a wavetrain of which the amplitude is negligibly small, except
within a certain moving region of space V. The dimensions of 7 are small compared
to the scale of variation of the properties of the medium, but large compared to
a wavelength. The dominant wavenumber is effectively uniform over the packet, so
that it moves as a whole with a well-defined group velocity. Owing to the divergence
of the rays, the volume occupied by V may change. However, viewed from the scale
of the medium, a wave packet appears as a point associated with a definite position
X(t) and a definite wavenumber k(¢) which moves along a path predetermined by
the variation of A with x and ¢, and by the values of X, k at one time ¢,. In a uniform
medium the path of every packet is a straight line, and the total wave energy
associated with it is constant. In a slowly varying medium the path is in general
curved, and the total wave energy is proportional to the instantaneous intrinsic
frequency. This result is the analogue for a continuous system of the classical
adiabatic invariant for a single discrete oscillator which is subject to a slow change
in its defining characteristics (e.g. a pendulum consisting of a bob on a string of
varying length). In the latter case the total energy divided by the frequency is
constant (Einstein 1911).

The theory here is an approximate one analogous to the W.K.B. approximation
and the relation of geometrical optics to electrodynamics. Such theories never
describe partial reflexions at abrupt changes in the medium. Their mathematical
basis is an asymptotic expansion in powers of a small parameter ¢, which is the ratio
of a typical wavelength to the length scale of the changes. Formally, the fractional
changes in w, k, @ over a period and over a wavelength are all proportional to ¢. The
above equations are for the lowest order terms. Although in practice some partial
reflexion always occurs, it is exponentially small (e.g. exp{—e~1}) and does not
emerge even from higher order corrections.

To establish our result we draw freely on ideas due to Whitham (1965). In a
fundamental paper he suggested that, if the equations governing a dynamical
system can be derived from a variational principle of a certain type, changes of
amplitude in a slowly varying wavetrain (linear or nonlinear) are governed by a
conservation equation. The conserved quantity, called by Whitham the adiabatic
invariant, is obtained from a local average over a period of the integrand of the
governing variational principal. We are concerned here mainly with its physical
interpretation for waves which are small perturbations about a mean state, particu-
larly when the latter is in motion. In a section on linear systems, Whitham came
close to a statement of equation (1-9) with v’ replaced by w. However, for linearized,
as opposed to linear, systems great care is necessary over the definition of £, other-
wise fallacious results may be obtained. This is discussed in § 3.
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Two further difficulties must also be overcome before equation (1-9) may be
established for general systems. Whitham gave no general method whereby a
governing variational principle of the required type may be written down. In the
example he discussed, long waves on water of finite depth, the principle was in terms
of an Eulerian description of the instantaneous motion, and although it is correct,
its genesis is not obvious. For our present purposes, Hamilton’s principle may often
be used, to obtain the required starting point. How this may be done for a wide class
of fluid dynamical problems is discussed in §4.

A second difficulty is that Whitham (1965) gave no justification for his averaged
variational principle, other than by showing that it gave the correct averaged
equations in one special case. This gap has been partly filled by Luke (1966). A com-
plete treatment for linear systems will be given in the following paper (Bretherton
1968). In many problems the fields describing the wave motion are approximately
sinusoidal only in some (longitudinal) directions. In others (the lateral directions)
they may have a complex normal mode structure. It is necessary that the averaged
quantities in the variational principle be integrated over the lateral coordinates,
including possibly contributions from the lateral boundary conditions. For example,
in waves on water of a finite depth, height is a lateral coordinate, the wave energy is
the total average energy per unit horizontal area, including the integrated kinetic
energy (which is distributed over depth) and the net potential energy (which is
intimately connected with the free surface).

Before discussing these general arguments we shall first illustrate the concepts
and methodsinvolved by a simple, rather trivial, example, and then in the remainder
of the paper show how these may be applied to a wider class of problems.

2. THE STRETCHED STRING
2-1. Hamilton’s principle
We consider an infinitely long string of mass p(x) per unit length, under tension

T(t). If y(x,t) is the transverse displacement of each point of the string from its
equilibrium position, the linearized equation of motion is

pnlt—Tﬂwx =0. (2-1)
It is important that the mean state 4 = 0 is a possible solution of the dynamical
equations of motion, even when p(z), 7'(¢) are not constant. This is so if the modulus
of elasticity of the string (which controls the speed of propagation of longitudinal
vibrations) is taken to be infinite.
Equation (2-1) may be derived from the variational principle

5 f (ot 3Ty} dedi = 0 (2:2)

subject to all suitably differentiable infinitesimal variations ¢ which vanish for
sufficiently large |z|, |¢|. Equation (2-2) is clearly Hamilton’s principle for a system
defined by a continuum #(x) of generalized coordinates. f tpnide and f 1Ty%dx are
respectively the kinetic and potential energy for small perturbations.



Wavetrains in inhomogeneous moving media 533

2:2. Local solutions

If T, p are constant, equation (2-1) has solutions periodic in a phase function
O, t)

N =asing (2-3)
if 0 =+ J(T|p)k, (2+4)
where w=-0, k=20, (2-5)

If T(¢), p(z) are slowly varying equations (2-3) to (2-5) are still valid locally, the
problem is to connect values of a, w, k at widely different points (x, £).

2-3. The averaged Lagrangian

We define an averaged Lagrangian density % by substituting the elementary
solution (2-3) into the Lagrangian density in equation (2-2), remembering that

0 d 0 d

and integrating with respect to ¢ over a period

2m
NS f (3pwns— $Tk*y;) A6
27 0
= Hpw?—Tk?) a2 (2:6)

This is a function of parameters @, w, k and also (via p, T') of , . Whitham (1965)
suggested that for a slowly varying wavetrain, the dominant local amplitude,
frequency, and wavenumber are governed by the variational principle

) f Lla, —0,6,)dzdt = 0 (2:7)

subject to infinitesimal variations da(x, t), 86(x,t) which vanish at infinity. Variation

with respect to a yields
oZoa = ta(pw?—Tk?) = 0. (2-8)

This is equivalent to the dispersion relation (2-4). Variation with respect to 0 yields

0 (0L 0 (0%
éﬁaﬂ*a(ﬁ)=“ (29)

This is a conservation equation for the quantity 0.% /0w, subject to the flux — 6.2 /ok.
For linear waves & is proportional to a2, so that the dispersion relation (2-8) is

equivalent to P 0 (2-10)
The group velocity is then ¢c=—LZL (2-11)
so that equation (2-9) becomes

d ac

(ﬁ(éﬂw) 59_03“' = 0. (2-12)

34 Vol. 302. A.
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Whitham justified his simplified variational principle only by showing for one
particular case that it was equivalent to simplified differential equations which
could be obtained by averaging in a certain way (also heuristic) the exact differential
equations obtained from the exact variational principle. His main interest was in
nonlinear waves of finite amplitude. However, Luke (1966) has shown how wave-
train solutions of the second order nonlinear Klein—Gordon equation

ﬂtl—nmx'*'F("?) =0

may be obtained as an asymptotic expansion in powers of a small parameter ¢, the
lowest order term being governed by the appropriate forms of equations (2-8), (2-9).
He also partially justified this procedure for a general nonlinear second order partial
differential equation derived from a variational principle, including equation (2-1)
as a special case. It will be shown in the following paper (Bretherton 1968) how
Luke’s results may be generalized for a much wider class of systems of equations,
and for linear systems a complete asymptotic expansion may be constructed.

2-4. Wave energy

We arrive at the concept of wave energy by considering the response of a string,
which is initially in equilibrium, to arbitrary small external forces f(x,t) per unit
length applied transversely to it. The governing equation is

p"’tt—Tﬂxz‘ =f (213)

To obtain the rate at which work is done by these forces, we multiply by the velocity
7, of the particles to which they are applied, and integrate. After a little manipu-

lation

i o O [y o 1o o [m1oT ,

W=\ fode=_| {3ppi+iTp3}de+ [Ty~ 5 -v5de. (2:14)
@ ot) z 2 O

If 7' is constant, this is a conservation equation, changes in
- 2 2
f {3omi+ 13} da
X1

being associated only with work done by external forces or with a flux — 7,7,
across the points x = x,,2,. Thus we unhesitatingly identify }py?+ $79% with a
perturbation energy per unit length, for any perturbation #(z,t) however produced.
If 9 is sinusoidal, according to equation (2-3), the average of the perturbation energy
over a period is the wave energy density

E = La*(pw? + Tk?) (2-15)
and the wave energy flux is tTaPwk. (2-16)

It is easy to see that the latter is equal to the group velocity ¢(= + 4/(T'/p)) times
the wave energy density.

If 7'(t) is not constant, however, the third term on the right-hand side of equation
(2-14) is nonzero, and no amount of manipulation will turn the equation into a con-
servative form. %(07'/ot) 52 thus describes the interaction between the waves and
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the mean state. If 7'(¢) is slowly varying, it is still meaningful to use the local perturba-
tion energy given by equation (2-15). It is still approximately conserved for times
of a few wave periods, but over longer times the interaction terms cannot be ignored.

2-5. The interpretation of £,

Equation (2:12) does describe conservation of something, but it is not wave
energy. To see this, we set up equation (2-14) again, but in terms of the Lagrangian
density L.

The string may be regarded as a classical dynamical system; the position of every
material particle in it being specified by the instantaneous values of a set of general-
ized coordinates {g;}. In this case the value of 7 at each point is a coordinate ¢;, and
the set {g;} = 7(x) forms a continuum. The set of possible configurations is limited
by the requirement that 5(x) be differentiable. The present problem is typical of
many in continuum mechanics in that the kinetic and potential energies of the
complete string may be written as integrals of explicit expressions in # and its first
derivatives only. Their difference is the Lagrangian

L4, 40 t) = fL(% o a3 A, 1)) Az (2:17)
= f{%p(x) i — 31 (6) 73} de. (2-18)

Ifexternal forces {Q;} = f(z) (not included in the potential energy above) are applied
to the system, their effect may be computed in the manner customary in the deriva-
tion of Lagrange’s equations by considering an arbitrary infinitesimal virtual dis-
placement {dg;} = () in which 7,(x) is not varied and ¢ vanishes for || sufficiently
large. The virtual work 6 W done by the external forces is then

oW =X @;0g;
d (oL)\ oL,
= (a7 gl
0 (oL 0 (oL oL
- {5 )+ ) gy e (219

In this identification 0L,/dq; is, of course, the partial derivative in which all the
remaining ¢’s and all the ¢’s and ¢ are held constant. For each 4, (0L,/dg;) dq; is
equivalent to the change in L  due to a change 87, which is confined to a small unit
neighbourhood of z; i.e. to (0L/on,)dn; (7,7, A being held constant). Summation
over 4 is replaced by integration with respect to z. The partial derivative 9/of in
(0/et) (oL/on,) implies that all the arguments 7, 9, 9,, A of dL/oy, are regarded as
functions of x and ¢, only « is held constant. 2 8871;“’3%, on the other hand, is the

i 0y

34-2
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change in L, due to dy(x) holding %, and A constant. This is

oL, = f{aLa +ﬁfia }

ol o (oL
-| {577‘5%(%;)}6”“

where we have used the vanishing of §7(z) at infinity.
It follows from equation (2-19) that the rate of working by any external forces on
the string when it is moving transversely in any manner is

; 0 (0L\ o (oL\ oL
W = G ) () ) (220
By simple manipulations, this becomes
o ( oL o ( oL\ oL
-l e )+ 7 =2

This corresponds term by term to equation (2-14). In particular, in the absence of
external forces and when (0L/0A)A, = 0 it reduces to a conservation equation.
Hence 5,(6L/on,) — L is the perturbation energy per unit length of the string.

The purpose of this discussion is to emphasize the stages in the line of argument
leading to the identification of 5,(0L/én,) — L. The basic postulate is equation (2-19),

i.e. that, if OSL oL o @)_2(%
d oy at\oy) ox\op,

is the functional derivative of L with respect to #, the virtual work done by the

external forces on the system under any admissible variation 0y is given by

oL
oW =— %877 de. (2-22)

This is the property of Hamilton’s principle which distinguishes it from other varia-
tional principles governing other nonphysical systems. It enables a specific interpre-
tation to be given to functions derived from L. This interpretation does not depend
on L being obtained as the difference between the kinetic energy density and the
potential energy density. In systems including, for example, electromagnetic fields,
the distinction between kinetic and potential energy is obscure. Equation (2-22) is
basic to the derivation of an expression for the total energy density of the system.
This cannot be defined (as in Whitham (1965)) simply as the quantity which is con-
served when no external forces are acting and the Lagrangian does not depend
explicitly on time, although such conservation is fundamental to the significance of
the energy. With such a definition the Lagrangian could be multiplied everywhere
by an arbitrary constant scalar without affecting the analysis at all, but the
numerical values of the derived quantities would be altered. Furthermore, even
when the right-hand side of equation (2-22) cannot be equated to the virtual work
(as in systems linearized about a moving mean state, see § 3) a ‘pseudo energy’ may
still formally be defined by #,L#n,— L and under certain circumstances it is conserved,
but its interpretation must be examined very carefully.
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When the perturbation has the sinusoidal form of equation (3-3), the Lagrangian
density may be regarded as a function of the variable , with parameters o, k, a, A;

L = L(n, —wyy, kny; A), where 7 = asinb. (2-23)

The frequency w enters only via —w#, in lieu of the variable 7, so the average
perturbation energy over a period is

1 [2n oL
=5l {(“‘”"’)a<—w%)‘L:d0
1 (o oL “
=wZ,—Z. (2-25)

But since for waves of small amplitude ¥ = 0, (equation (2-10)), we have finally
£ = Elo. (2-26)

Because the string is basically at rest, the observed frequency w and the intrinsic
frequency w’ are in this case equal.

3. PERTURBATION ENERGY AND WAVE ENERGY
3-1. General dynamical systems

The dynamical system of § 2 was described by a single field #(z, ¢), the transverse
displacement of a material particle in the string. For more general systems more
fields are required, and they will be functions of three space variables X = (x, ¥, 2)
and time ¢. Let them be the set

{0, +¢,} (¢=1,...,N),

where @ _(x,t) describes the basic state, and ¢,(X, t) is a perturbation. The following
discussion was conceived in the context of a class of problems in classical inviscid
fluid dynamics, illustrated by the examples of § 6, for which the required fields are
the components of the displacement E+§ of fluid particles, together with the
pressure p +7 which enters as a Lagrange multiplier associated with incompres-
sibility. The treatment envisages a Lagrangian rather than an Eulerian specification
of the system, i.e. the position of every material particle is known when the values
of the fields are given. It may be extended to include the effects of a ‘frozen in’
magnetic field as in nondissipative magnetohydrodynamics. It will be assumed that
Hamilton’s principle can be written down exactly, in terms of the total fields and
their first derivatives, and that from this an approximate version may be obtained.
In the latter the basic state ®,(z,¢) is regarded as known and for convenience is
formally subsumed into the composite parameter A, but by considering variations
0, (x,t) linearized equations for ¢,(x,t) may be derived. Before variation the
approximate Lagrangian density L(@,, g, $.; A) is homogeneous and quadratic in
the ¢,’s. Techniques for obtaining such an approximation to Hamilton’s principle
are described in §4. The ideas of §3 may be applicable in a wider context (e.g.
relativistic situations) but some statements will require modification.
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The objective of the remainder of §3 is to define closely the concept of wave
energy. For such a definition to be satisfactory, it must be widely applicable, and
yield demonstrably unique results when applied to different formulations of the
same problem. For example, an arbitrary divergence can be added to the Lagrangian
density L in §2. This must not affect the numerical value of E. Or in general fluid
dynamical systems the linearized equations may be derived from an Eulerian,
rather than a Lagrangian specification of the motion. The wave energy must be calcu-
lable and the same in either case. Finally, it must not involve consideration of second
order corrections to linearized theory. These requirements are stringent, but in
certain circumstances the authors believe they can be met, in a way which in fact
corresponds to normal practice.

3-2. In a medium in equilibrium at rest

If the state of a system can meaningfully be described as a perturbation about
some basic state, it is possible to define the perturbation energy as the difference
between the total energy of the system and that of the basic state. This definition
is only useful, however, if the basic state is prescribed with adequate precision. As
the perturbation energy is a quadratic function of the amplitude a, an adequate
description of the relation between the perturbed state and the basic state normally
requires consideration of equations correct to second order in a.

There is one set of circumstances in which this is not necessary, and an adequate
computation may be made from first order (linearized) theory alone. This is when
the basic state is in approximate equilibrium at rest; i.e. the rates of change @,
(including particle velocities), and also the external generalized forces necessary to
maintain them, are at most of order a2. If now external forces f of order a are applied
to particles in the system, the particles will move with velocity £ also of order a.
The work done in setting up a given perturbation is correctly given (to order a?) as
the integral of f .E over space and time.

We shall restrict our attention to perturbations which can be excited from equi-
librium by mechanical body or surface forces only (i.e. by generalized forces corre-
sponding to displacements 8€). The generalized forces associated with other fields
are assumed to vanish. For fluid dynamical problems this is not an unreasonable
limitation (for an incompressible liquid the generalized force corresponding to the
pressure perturbation dr is the dilatation) and the set of permissible perturbations
is very wide, if not completely general. For a frozen-in magnetic field, however, the
flux linked with any material circuit is restricted to be equal to the equilibrium value.

Then, just as in §2-5, the rate of working is

W=J‘f.‘é:dx

oL
= - _aaqsaldx? (3.1)

. o(, oL 9 oL .
then W = ff{a <¢at37¢—a‘ — L) + a'?v'; (¢at 5&0—%) — L/\ Al; dx dt. (3‘2)
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In a uniform medium in equilibrium at rest
LA, = 0. (3+3)
The quantity b (0Ljo¢p,)— L, (3-4)

where summation over « is understood, may be interpreted as a perturbation energy
per unit volume. For a strictly sinusoidal wavetrain in a normal mode

o = R{ad, e, (3:5)
where @, (k; A) are constants which depend on the mode under consideration. Then
the Lagrangian density L may be expressed as a function of the single variable § and

of the parameters w, k, A. Derivatives 9/dt are replaced by —wd/e0 and d/éx; by
k; 0/00. We define the wave energy density as the average of (2-4) over a period,

1 [z oL
E=_— - —— —L;df 36
ML ®9
=wZ,—Z. (3-7)
This clearly has the form
E = a?F(w,k;A). (3-8)

For a slowly varying wavetrain, the parameters a, kK, w all vary slightly (by order €)
over a period, but if ¢ is sufficiently small the averaging procedure (3:6) may be
applied with arbitrary accuracy (Bretherton 1968), and equation (3:-8) applied
locally at each point in the wavetrain.,

Several points about this argument should be noted. The perturbation energy
density (3-4) is not a well defined quantity, because the distribution between terms
in equation (3-2) is not unique. If 9(}#?)/ox is added to the Lagrangian density L the
equations derived from Hamilton’s principle are unaffected, but 77, must be
subtracted from the perturbation energy density, and %7, added to the energy flux.

However, the wave energy obtained by averaging over a period is unique, pro-
vided that L, A, = 0. For then perturbation energy is conserved, and if

E = a?F(0,k;A); E = a’F'(0,k;A) (3-9)

are two different expressions for the perturbation energy density of the same
system, but obtained by different methods (e.g. with a different Lagrangian L or
with an Eulerian representation), we may consider the work W which must be
done by external forces to set up from rest a wave packet of slowly varying ampli-
tude a(x,t), but with effectively constant w, k, A over the volume for which a = 0.
This work is the same for either method of computation, for it depends only on
products of first order quantities, and cannot involve second order corrections.
Then
W = F(w, Xk, A)fcﬁdx

= F'(w,k, /\)J'UL2 dx,

where the integration is over the complete volume ¥ occupied by the packet. Hence

F=F. (3-10)
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Conservation of perturbation energy is essential to this argument. If interaction
terms are admitted in equation (3-2), then, for example, o(192)/0¢ may be added to L,
implying subtraction of 1#2 from the perturbation energy, and the addition of #,
to the terms L, A,. The average value of 192 does not vanish, so the value of £ would
be affected. However, if the basic state is in equilibrium at rest, it is possible to group
terms in equation (3-2) in such a way that the interaction terms are identically zero.
If the computation for W is reworked in terms of different fields, presumably a
similar conservation equation may also be found, and an expression given for the
perturbation energy. Having found it, the wave energy for an approximately
sinusoidal wavetrain may be computed in the form (3-9) by averaging, and equation
(3-10) shows that the result will be independent of the actual linearized fields used.
This remark is very important in applications of equation (1-9), because the wave
energy is frequently most easily computed from an Eulerian specification of the
motion (cf. §4-2), whereas equation (3-7), which is vital for the proof of equation
(1-9), can only be derived by the methods used here in terms of a Lagrangian
specification.

The passage from equation (3-6) to (3-7), which is a generalization of equation
(2-24), appears to rely on the structure constants ¢, in equation (3-5) being
independent of w, so that the only dependence of L on win equation (3-6) is multiplied
by ¢, in precisely those places where 7, occurs in (3-4). In each normal mode, the
dispersion relation w = Q(k; 1) may always be used formally to eliminate anysuch
dependence ¢, () and, for given k, equation (3-5) can be treated as a definition of
b,(0; K, w,a; A) for values of w & Q. This device enables # to be defined even in the
physically uninteresting situations when the wavenumber and frequencies are
assigned values incompatible with the existence of a solution to the governing
equations. Such definition is necessary before meaning can be attached to the
partial derivatives .Z,, ;. although of course these are only used when v = Q.
This device is simple but arbitrary. Whitham (1965) allowed the wave period to be
flexible in order to achieve the same object. The difference in approach is immaterial,
because in fact the values of %, and &), when w = Q(K) are quite insensitive to the
definition of ¢,(0, k, w) off the surface w = Q, provided only that it is differentiable
and correct on the surface (Bretherton 1968; Lighthill 1965). The averaged varia-
tional principle may be justified in either case.

If, as in §§4-1, 4-2, the fields {¢,(x,y,2,t)} are sinusoidal only in (x, y,t) but
depend also on a lateral coordinate z, the averaged Lagrangian % is obtained by
integrating over z as well as over a wavelength, using the appropriate lateral
structure for a normal mode, and including contributions from the lateral boundary
conditions. The wave energy density £ is then the average perturbation energy per
unit horizontal area, integrated with respect to depth, but the formula (3-7) still
applies.

The wave energy flux may similarly be defined as the average of ¢, ¢L/0¢,, and
is given by the expressions G, = a2H(w,k, A)

= -0, (3-11)

The uniqueness of G;(w,k;A) follows from consideration of a wavetrain which
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occupies a volume ¥ which is small compared to the scale of variation of w, k, A but
large compared to a wavelength. For this wavetrain, unlike a wave packet, the
amplitude a does not vanish on the boundary S of V. The rate of working by external
forces, and the rate of change of wave energy within V are uniquely defined, so from
equations (3-2), (3-3),
fsaz(x,t) (H;—Hj)dS; =0 (3-12)

H;— H}; may be taken outside the integral sign, and da?/dx; is arbitrary, so
Hyj(w,k;A)— Hij(w,k;A) = 0. (3-13)

For this uniqueness it is essential that the energy flux be in the form (3-11). For

Rossby waves, Longuet-Higgins (1964) found that the average 7€ of the perturba-
tion energy flux for a strictly sinusoidal wavetrain is not equal to the group velocity
times the wave energy density. Indeed it is in a different direction. However, for a
slowly varying wavetrain an additional term of comparable magnitude appears in

the expression for E proportional to the gradient of a2. The difference between this
revised expression and cE is a non-divergent vector, so there are two genuinely
alternative forms for the energy flux. However, only the latter does not involve
derivatives of a.

Finally, it should be remarked that computations of ‘wave energy’ as the average
value of the term proportional to a?in an expansion of the total energy of the system
in powers of a, naively ignoring second order corrections to linearized theory, can
yield different answers if applied in slightly different ways. For example, given a
certain field with basic value ©,

LD +¢)? = 1024+ DG+ 142

If the perturbation ¢ is taken to be sinusoidal, the contribution to the ‘wave energy’
would be

E = 142 (3-14)
But suppose O+¢=(V+y)?
so that ¢ = 2%y

to first order in a, then
LW+ )t = §92 4293 + 32+ O(a?).
If now y is assumed to be sinusoidal, the ‘wave energy’ is
E' = 3¥2y? = 3E. (3-15)

In practice, there would often be no reason other than prejudice for preferring to
develop the linearized theory in terms of ¢ rather than . The quantities ¢ and
(2¥7)2 which are obtained from products of first order quantities are, of course,
strictly comparable, at least to O(a?). The paradox depends on the O(a?) difference
between the assumed mean states in the two cases.

The definition (3:-6) of wave energy is restricted to a basic state in approximate
equilibrium at rest. We are interested in basic states which are moving.
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3-3. Difficulties in a general moving basic state

In §4, we will show how to obtain an approximate form of Hamilton’s principle
which describes linearized perturbations about any changing basic state (uniform
or nonuniform) which is an exact solution of the equations of motion (i.e. ¢, = 0is
a dynamically consistent state). However it is not necessary that this standard
solution be exact; an error of order a? in it would not affect the total Lagrangian in
equation (4-16) to order a2, because such an error may be regarded as a variation
about an exact solution. The mean state of a system with waves on it is not normally
known more accurately than this. Thus correctly linearized equations of motion
may be derived from equation (4-16), even though the basic mean state is not pre-
cisely specified. Difficulties arise, however, with the energy.

These difficulties may be illustrated by the example of §2. If the mean state of
the stretched string could only be maintained by application of an external trans-
verse force F per unit length, or if in the mean state the particles have a transverse
velocity V, the total rate of working by the external forces is not given by equation
(2-14) but is o
[C@epmena

X1
compared with f ” FVdx

for the basic state. The additional energy supplied can be evaluated correctly to
order a? from a theory which is linear in f and #, only if # and V are themselves of
order a? or smaller. Otherwise a second order theory has to be considered.

Thus although the term of order ¢?in an expansion of Hamilton’s principle for the
total fields yields a variational principle which gives the correct linearized equa-
tions for the perturbations, if the basic state is one of motion the right-hand side of
equation (3-1) canno longer be equated to the increment of the rate of working by the
external forces. Although the external force F necessary to maintain the basic state
®,(x,t) is negligible (because to order a? the basic state is a solution of the equa-
tions of motion), the particle velocities U(x, ¢) are not.

A further complication arises because the perturbation velocity & is not the partial
derivative 0§(x,t)/é, but is rather the derivative ([9/¢t]+ U.[9/ox])E following a
fluid particle with the velocity of the basic state. It is still formally possible to define
quantities like expression (3-4) and the right-hand side of equation (3-7), but the
ideal generalization of equation (2-20) has been lost, and their significance is obscure.

3-4. Definitions in a slowly varying mean state

However, if the mean state is to a sufficient approximation in uniform constant
motion U relative to a fixed observer and otherwise independent of time, it is still
possible to make meaningful calculations of perturbation energy and wave energy,
but only relative to a frame of reference which is itself moving with velocity U. In
this frame, the rate of working by any external forces is f. € per unit, volume, and we
may proceed exactly as in § 3-2. However, any attempt to relate the wave energy so



Wavetrains in inhomogeneous moving media 543

computed to a difference between the perturbed and mean states in a stationary
frame founders because the momentum of the mean state is not known from first
order theory with adequate precision.

If the mean velocity is not uniform, no frame of reference can be found in which
the mean state of all parts of the system is one of rest. However, if the mean velocity
U(x,t) varies only slightly over a large number of wavelengths and periods of a wave
packet centred at the point x,, t,, this may be achieved locally in space and time over
aregion sufficiently large to envisage the wave packet being set up from relative rest
within the region by suitable external forces f of magnitude of order a. The relevant
properties of the basic state must also be approximately constant over the time it
takes to do this, which will be a large number of wave periods. Over the region L,A
is small, and perturbation energy in a frame moving with velocity U(x,,?,) is
approximately conserved. Thus we are led to the wave energy E being the average over
a period or wavelength of the perturbation energy in a locally co-moving frame of
reference. Uniqueness follows as in §3-2. No valid interpretation can be made of
global integrals of wave energy, but locally it is well defined, asymptotically as the
parameter ¢ which measures both the ratio of a wavelength to the scale of variation
of the basic state, and of a wave period to the basic time scale tends to zero.

To view this analytically we note that

[[egaxar= [[ 5t Ugugpaxar

L O A O A

#0351 (9 )+ (¢“wfa;fx)+§f Aof | axt. 316)

In a medium of which the properties are independent of space and time, i.e.
A=A, =0,and in which there are no lateral coordinates, the perturbation equa-
tions have sinusoidal solutions like equa’mon (3-5). The averages over a period of

oL
a————L, (x—-—a oaxin L 9 a,‘—*a
¢ ! a¢at ¢ ! a¢uxj ¢ K a¢al ¢ “ a¢axi
are respectively wf,—F, —oZ ko~ ki &y ki L

Integrating equation (3:16) by parts to include time and space derivatives of U; and
replacing the integrand everywhere by its averaged value, we have for a slowly
varying wavetrain

W=Hf.g’dxdt
ff[at w—k,U) &2, c.?}——«{w k;UNZ .}
U oU.

to an approximation which is arbitrarily good as ¢ = 0. The approximation involved
in replacing the integral with respect to space and time of an approximately
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sinusoidal function by the integral of its average over a period is discussed in
Bretherton (1968).

As ¢-> 0 the last group of three terms in equation (3-17) becomes small compared
to the first two. Thus, as in §3-2, we identify the wave energy density

E=0¥%,-2, (3-18)
and the wave energy flux in direction ; as

G =—w',, (3-19)
where o' is the intrinsic frequency

o = w—-Uk;. (3-20)

Alternatively, these results can be obtained by considering a local application of the
definition of §3-2 and equations (3-7), (3-11) in a frame of reference moving with
velocity Ul(xg,t,) and showing that &, &, %, are unaltered under Galilean
transformations.

According to the averaged variational principle, for linear waves the dispersion
relation is Z=0

so that we have finally that the adiabatic invariant may be equated with the wave

action density Z, — Bl (3-21)
Using the dispersion relation, ¢ =—Z,|Z,

so that the wave energy flux —w'.% x; 1s indeed equal to the group velocity times the
wave energy density. From Whitham’s conservation equation

(’)g 0

pr m—a‘x;_o?kj =0

we derive equation (1-9).
3:5. Summary of §3

This definition of wave energy by reference to the apparent work done by virtual
localized external forces moving with the perturbation velocity of fluid particles is
a natural one in many fluid dynamical problems, and the authors believe that it
corresponds to normal practice. It isimportant, however, to recognize the conditions
which are necessary for it to be unambiguous. The first is that the external forces be
mechanical ones associated with specific fluid particles of which the perturbation
velocity is well defined, and no constraints on the system are violated.

Secondly, there must exist an equation expressing conservation of perturbation
energy, at least over a local region (cf. discussion in § 3-2). However, equation (3-17)
shows that a conservation equation without interaction terms does exist in a suit-
ably moving frame to an arbitrarily good approximation over a local region,
provided that the governing equations for the perturbation may be derived from an
approximate form of Hamilton’s principle, and provided that the variations in the
mean state are sufficiently small over the region. Granted its existence, the wave
energy may then be calculated from any convenient form of the linearized
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equations, in particular from an Eulerian formulation (cf. §4-2). The Lagrangian
specification assumed here is, however, necessary to establish equation (3-18),
because the perturbation velocity must be identified with ¢, +U;d,,, for the
relevant values of a.

Two more conditions concern the assumption that the basic state is slowly
varying. If the wavetrain is slowly varying only in horizontal directions (z, y) and
in time but depends on a lateral coordinate z, it is essential that U(z, y, t) be uniform
in 2z, with error no larger than O(¢). Otherwise, the passage from equation (3-16) to
(3-17) fails, because U cannot be taken outside the integral sign when ¢ ,,(0L/0¢,,) — L
etc. are integrated with respect to z as part of the averaging procedure. Thus we
cannot discuss surface waves on a current which varies with depth within the range
where there are significant velocity perturbations. In such a case there would be no
unambiguous value of the intrinsic frequency o’'.

Finally, the statement that the basic state is slowly varying does not mean that
variations of every @, are small; only those fields and those derivatives are restricted
which enter into the specification of the parameter A which sums up the basic state
from the point of view of the perturbation. In particular, normally only the particle
velocities U are relevant, not their absolute displacements. However, when ¢ is
small, these velocities must become the same to within an error which tends to zero
with ¢ for all particles in a region which contains a number which tends to infinity
of wavelengths and wave periods. This condition may be very restrictive, as for
example for Rossby waves, of which the period is a decreasing function of wave-
length. The only type of basic flow on a #-plane for which the length scale is very
much larger than a wavelength and the time scale very much longer than a period
appears to be one which is everywhere round circles of latitude. For internal gravity
waves in a uniformly stratified medium the period is independent of wavelength,
but depends only on the direction of the wavenumber. The condition then appears
to imply that the ratio of the horizontal to the vertical scale of variation of the basic
flow is much larger than the ratio of a horizontal to a vertical wavelength. Otherwise
the basic flow itself must be changing over a time comparable with a wave period.
For sound waves, on the other hand, the relevant condition seems to be simply that
the wavelength is small compared to the spatial scale of the medium, the temporal
condition is then implied. These restrictions are necessary if A, 0U;/¢t and oU;/ox; in
equation (3-17) are to be negligibly small (say O(¢)). It is possible to envisage a
wave packet containing e* wavelengths being set up by nearly sinusoidal external
forces in a time of e* periods. Over the volume occupied by the packet the error
involved in neglecting the interaction terms in equation (3-17) is then O(e?) smaller
than the rate of change of wave energy and the energy flux separately.

4. HAMILTON’S PRINCIPLE
4-1. Surface waves on water

Before the arguments of the previous section can be seen to apply to any particular
problem, an appropriate approximation to Hamilton’s principle must be found,
from which the complete linearized equations for the system may be derived without
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any approximation about the basic state being slowly varying. As in equation (2-2)
the integrand must be a quadratic function of the fields {¢,} and their first deriva-
tives, and must be integrated with respect to space coordinates and time. Some of
the fields {¢,} must be the displacements g of material particles. For the stretched
string, such a principle was easily written down. A similar version is also known for
small displacements in an elastic solid (Morse & Feshbach 1953, p. 322). For electro-
magnetic radiation in free space (Morse & Feshbach 1953, p. 327) the corresponding
principle does not involve particle displacements. However, when the equations for
the waves involve linearization about a non-uniform state of mean motion more
sophisticated treatment is required. In this subsection we will illustrate with the
problem of surface waves of small amplitude on water of depth A(x, y,¢) which is
moving with mean velocity U(x,y,2) = (U, V, W). Here (x,y,2) are rectangular
coordinates with z vertically upwards. This is a good prototype for problems in
classical fluid dynamics, because it involves lateral boundary conditions, at the free
surface and at the bottom, and also the condition that the water be incompressible.
This last is a non-holonomic constraint on possible displacements.

The basic idea of this section is due to Eckart (1963). He showed how the equations
of motion for small oscillations about a moving mean state for an unbounded,
inviscid, adiabatic, compressible fluid in a gravitational field may be obtained from
Hamilton’s principle. However, here we have an incompressible liquid with a rigid
boundary below and a free surface above, and the limit of incompressible motion is
not trivial. Also Eckart’s treatment is for our purpose unnecessarily complicated
by his simultaneously transforming into curvilinear coordinates. We start by
writing down Hamilton’s principle for fully nonlinear incompressible motions in a
Lagrangian specification, the boundary conditions being included. To see how this
may be done for a compressible fluid see Herivel (1955). The pressure then no longer
enters as an independent field. For the inclusion of electromagnetic fields see
Lundgren (1963).

In the usual Lagrangian specification of the motion of a fluid, the instantaneous
position vector of each material particle X = (X, Y, Z) is expressed as a function
of its initial position X, and time ¢

X = X(X,, ). (4-1)

The kinetic energy is 4|X|2 per unit mass, the gravitational potential energy is gZ.
If the fluid is incompressible, there is an additional constraint that

é‘g—% ~1 (4-2)
If it is bounded below by a rigid boundary b(z, y), then

Z(Xy,t) =b(X,Y) if Z,=05b(X,T). (4-3)
Otherwise there are no constraints on the motion, in particular the upper surface

Zy = (X, ¥y) (4-4)
is free.
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The exact form of Hamilton’s principle is then
§ : 0X,Y,Z7)
1o|X|2— kRl it
8de0dYodt[fb=2p| | ng+A1(a(xo’Yo,Z0) 1)}dz0
+2A{Z - b(X, V)7 nx,, 170)] =0 (45)

for all variations §X(X,, ), 1, 01, which vanish for sufficiently large | X,|, ||, |¢|.
In this equation the integration over the initial coordinates X, ¥, Z, corresponds
to a summation over material particles to form the Lagrangian. The further integra-
tion over ¢ forms the action. A;, A, are Lagrange multipliers, their variation implying
the incompressibility condition (4-2) and the bottom condition (4-3) respectively.
However, as usual with constraints in Lagrange’s equations, A; and A, may be
interpreted as the associated generalized forces. Thus A, is the generalized force
corresponding to a change in volume of a fluid element, i.e. the pressure P. A, is
associated with the vertical component of the stress on the bottom; in fact

X, ¥) }
(X, Yo)l zp=vixy, 79

a condition which also follows from the variational principle by varying Z. The
Jacobian in equation (4-6) is evaluated on Z, = b(X,, ¥;) and is thus given by

(4-6)

/\2={P

0X 0X 0X 0X g?{
X, Y)! 3 0X, 0%, +ﬁ 0Z, 0¥, +91—)- 0X, 0Z, (&)
(X0 Yo)lzpmp oY oY aXogg aYoé_Iig‘ '
0X, 0Y, 0Z, oY, 0X, 0Z,

Besides equation (4-6), variation of Z gives the Z equation of motion and the free
surface condition P(X,y, Yy, (X, To) = 0. (4-8)

The other equations of motion follow simply from variation of X, Y. However, since
each particle has to be identified by its initial position, the equations derived from
the variational principle are not in a very convenient form.

We now envisage one standard solution of these equations

X =x(Xp,t), P =pX,y?) (4-9)
and express the independent variables in terms of it
X, = X,(X, t). (410)

This is merely a convenient way of relabelling each material particle in terms, not
of its original position, but of the position x it would have had, had it moved for
time ¢ — ¢, according to the particle paths of the standard solution. We denote the
standard particle velocity (éxJet)y, = U (4-11)

and regard all fields as functions of x, 1.

From equation (4-2) 8,7, 2)
AL/ 412
0 Vo, ) )
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and equation (4-5) becomes

é‘fdxdydt[fs{%p|X|2—ng+P(aK Y. 2) )}dz
b 0 y$z)

{3XY)

(Z—b(X, Y))} y y)]:o, (4-13)

where X = ( +U3+V +W ) (4-14)

Equation (4-13) holds for any solution X(x, t), P(x,t) of the equations of motion.
In particular we may put X—x+E P=ptm (4-15)

where g, 77 are small, and consider infinitesimal variations 0§, d7. If equation (4-13)
is expanded in powers of &, 77 and then varied, the lowest order term in the expansion
does not involve §, 7 at all and hence has no variation. The linear term involves
x, p and 8, o only, and it vanishes precisely because X, p is a solution of the equa-
tions of motion. The quadratic term yields a variational principle governing &, 7.
This gives homogeneous Euler equations for perturbations of small magnitude about
the standard flow. Picking out these quadratic terms, (4-9) becomes

8fdxdydt[f:{%p|é|2+ﬂ(§x+7yy+§z)+Pq(g)}dz

+ {77 +p(gac + 771/ + b;r gz"_ by"?z)} {(g_ bacg_ by’?) _pr(g)}:sb] = 07 (4'16)
Where Q(g) = nygz_ §y77z+§zgw_§z§x+gx”y_77w gw (4'17)
and 7(8) = $(byg £+ 204, £+ by 7?). (4-18)

The integration is strictly over the region occupied by the standard flow, and the
representation is quasi-Lagrangian in that the displacements § are of fluid particles
from the instantaneous value of a moving reference position. U, p, s, b are regarded
as known.

Judicious integration by parts and careful consideration of the boundary terms
enables one to cast equation (4-16) into the form

3fdwdy d¢ U (30 B2 47" (Lt 1y +8) — H(Prn B2+ 1y 12+, 2
+ 2pyz77§+ 2.’pzac §€ + zpwy 577 }dz -+ {%.’pz(g_ gsx - ”Sy)z}z=s
+{%pz<§—gbz—nby>2+w'<§—5bx—nby>}z=b] o, (£:19)

where ' =m—Ep,— P, — P, (4-20)

The basic flow is thus relevant to the perturbation only through the convection
terms U.9/ox in the time derivative, and through the pressure gradients. The
position z = s(x, ,t) of the free surface is also determined by the fact that the basic
flow is a solution of the equations of motion. The volume integral in equation (4-19)
is made up of the perturbation kinetic energy 1p ]’é|2 minus two forms of potential
energy. The first, 7'(§,+7,+¢,) is purely virtual; variation of the perturbation
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pressure 7’ at any point implies incompressibility, so for real perturbations there is
no contribution from this term. The second form is the potential energy of a dis-
placed particle in the basic pressure field, gradients of pressure at the equilibrium
position being balanced against basic mass accelerations. For the present problem
this term is negligibly small if the basic flow is slowly varying. The surface integral
over the free surface describes the only non-zero perturbation potential energy in
a slowly varying flow. Then, the basic vertical accelerations are negligible and p,
may bereplaced by — pg. Variation of 7’ also implies the bottom boundary condition,
and contributions to the energy from the bottom integral are purely virtual.

Equation (4-16), subject to infinitely differentiable variations 6§, §7 which vanish
as ||, |y|, |t| = co but which are otherwise unrestricted, is the required approximate
form of Hamilton’s principle, to which the averaging procedure and the arguments
of §3 may be applied. Alternatively equation (4-19) could be used; the two are
entirely equivalent. The explicit appearance in equation (4:19) of a perturbation
potential energy is not an essential part of the argument, merely a comforting check
on the calculations.

4-2. Wawve energy for surface waves

To use equation (1-9), rather than to prove it, this procedure is unnecessary.
If U, & are uniform (W = 0), the governing equations are separable and we may
find sinusoidal solutions in which the vertical displacement of a fluid particle is

given by = a%cos (kx+ly — wt+ ) (4-21)
provided the dispersion relation

w = U.k +{g|k| tanh |k| A}} (4-22)
is satisfied. Here the bottom is at z = b, so the mean position of the free upper
surface is s=b+h.

The wavenumber k has two components (k, ) and there are for each k two normal
modes corresponding to the choice of sign in equation (4-22). The state of motion of
the system is completely determined when we specify the mode, the wavenumber k,
the amplitude a, and the arbitrary constant £ in the phase. If the total velocity at
the point (z,y, 2,t) is (U +u, V + v, w) and p is the density of the water (assumed con-
stant), the wave energy density is the average over a wavelength of

s
[ 1ot s e ogr, (4:23)

which is easily shown to be E = 1pga®. (4-24)
The intrinsic frequency is o' = w—Uk
= +{g|k| tanh |k| A}, (4-25)
and the wave action density is pga?/w’.
If U, & are not precisely uniform, but vary substantially in a known manner in
a horizontal direction over a scale of many wavelengths (but with W < U, V, and
with U, V varying only slightly with z), then we may still determine the motion
locally in the same way. However, the values of k, a, f at different places will be

35 Vol. 302. A.
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different but interconnected. The frequency and wavenumber are connected along
rays according to equations (1-6) and (1-7) and the dispersion relation (4-22), and the
amplitude is determined by conservation of wave action, according to equations
(1-9), (4-24) and (4-25). The phase £ requires analysis to a higher order of approxi-
mation than considered in this paper.

4-3. Hamilton’s principle for a frozen-in magnetic field

A statement of Hamilton’s principle for general magnetohydrodynamic flows
has been given by Lundgren (1963). He extends the classical non-magnetic treat-
ment due to Herivel (1955) to include Galilean invariant electric and magnetic fields
in a system consisting of perfectly conducting fluid, vacuum and perfectly con-
ducting solid parts. This is accomplished by subtracting the magnetic energy from
the integrand in the statement of Hamilton’s principle for non-magnetic systems,
and Lundgren shows that this leads to the correct equations of motion for the fluid,
and boundary conditions at the fluid-vacuum interface.

The approach of § 4-1 may then be used to derive a variational principle describing
small perturbations about any state which is an exact solution of the governing
equations. It should be noted that perturbations in the electromagnetic field in any
nonconducting regions can only be induced by particle displacements in conductors.
The methods of §3 can only be used to define the wave energy density by reference
to the velocities of these conductors. This situation will only arise when adjacent
conducting and nonconducting regions are acting as a waveguide implying integra-
tion over lateral coordinates.

5. FURTHER REMARKS

The class of problems for which equation (1-9) may be considered established is
circumscribed in three ways. First it is necessary that the appropriate approximate
form of Hamilton’s principle may be obtained. The methods of §4 appear to be
generally applicable to nondissipative problems in nonrelativistic fluid dynamics
and magnetohydrodynamics with conservative boundary conditions, and yield a
formulation explicitly in terms of particle displacements together with other fields
such as the pressure and the magnetic field as appropriate. For compressible fluids
the internal energy per unit mass should be expressed as an explicit function of the
dilatation, and the pressure no longer appears as an independent field. External
gravity fields and nonuniformities in initial density are all easily included.

Secondly, it is necessary that the averaged variational principle may be applied
to the approximate form of Hamilton’s principle to describe slowly varying wave-
trains. The mathematical requirements for this are discussed fully in Bretherton
(1968). Here it suffices to remark that the locally valid normal modes, in which an
almost sinusoidal oscillation must be found, are required to be well-behaved func-
tions of position and wavenumber, discrete and nondegenerate. This ensures that
a wavetrain can indeed propagate between two widely separated points with a
continuously varying but well defined internal structure imposed by the appro-
priate mode at each point along its path. It excludes the possibility of energy being
transferred en route to another mode. The normal modes at each point are not
required to form a complete set, although a weaker condition of this general type
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is needed. With a few minor qualifications, the averaging procedure can then be
made precise as the zero order approximation in an asymptotic sense as ¢ 0, and
for linearized equations an infinite sequence of higher order approximations in
powers of e can be constructed.

Thirdly, even if the adiabatic invariant .#, can be obtained, it cannot always be
identified with the wave action density H/w’. The discussion of §3 indicates the
conditions under which this appears to be possible. Noteworthy are the restrictions
implied by the basic state being slowly varying. The train of argument is full of
pitfalls for the unwary. The present authors fell at some stage into all of them, some
of them several times.

6. APPLICATION TO PARTICULAR PROBLEMS
6-1. Surface gravity waves

An important application of the result of this paper is to the propagation of
surface gravity waves on a slowly varying nonuniform current, which is approxi-
mately independent of the vertical coordinate. This is the prototype problem of § 4.

Longuet-Higgins & Stewart (1961, 1964) have investigated special cases of this
problem, and show that the results of their detailed perturbation analyses in these
cases may be interpreted in terms of the interaction between the rate of strain of the
basic current and theradiation stress of the waves. They thus infer from these special
cases a general equation governing the energy propagation of surface waves on a

nuniform current
nonunito %+V.cﬂ+%8ﬁ(%+%) _o, (6:1)
where B = {pga?, a is the amplitude of the surface elevation, and 8;;is the radiation
stress tensor. Whitham (1962) derived equation (6-1) for special cases by a different
method.

It is shown in the appendix that (6-1) may be cast into the form of equation (1-9)
using equations (1-6) and the continuity equation of the basic flow. The same
equivalence may be demonstrated if the effects of capillarity are included, though
the wave energy density is then given by B = lpga®(1+Tk?/pg), where 7' is the
surface tension.

We have also shown the equivalence of equation (6-1) and (1-9) for many other
types of wave motion in fluid dynamics; some of these are discussed further in the
ensuing paragraphs. This equivalence suggests certain general properties of radia-
tion stress which are still under consideration.

6-2. Sound waves

Blokhintsev (1946) considers the problem of sound propagation in a slowly
varying steady nonuniform moving medium. Using a W.K.B. approximation he
derives an energy equation (his (2-30)) which may be written with our notation

gt(wE’) +(V.c) (aj,ﬂ) =0. (6-2)

o

This agrees with our result (1-9) when the medium is not changing with time,

as we then have dw/d¢ = 0. Extension of Blokhintsev’s analysis gives (1-9) as the
35-2
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correct energy equation even when the basic state is not steady. The same result
may also be reached from consideration of the radiation stress for sound waves.

6-3. Internal gravity waves

Both types of wave motion discussed so far in this section have their group
velocity and phase velocity parallel. Internal gravity waves provide an example for
which this is not so. Bretherton (1966) has considered the problem of internal wave
propagation in a shear flow (U(z), V(z), 0) with Brunt—Viisild frequency N(z) and
large Richardson number N2/(U2+ V2). He derives equation (1-9) both by using
a W.K.B. approximation, and also by considering the work done by the relevant
Reynolds stresses. Hines & Reddy (1966) also arrive at (1-9) for this problem,
though by a different method.

6-4. Alfvén waves

From the extension of Hamilton’s principle to include magnetic fields, mentioned
in §4-3, we see that equation (1-9) applies also to the propagation of Alfvén and
magneto-acoustic waves in a compressible or incompressible fluid with a frozen-in
magnetic field, provided that the slowly varying approximation is satisfied. For
Alfvén waves this result has also been verified by consideration of the effect of
radiation stress.

6-5. Inertial waves

We have also considered the action of radiation stress for wave motions which do
not have equipartition between kinetic and potential energy. Inertial waves afford
the prime example of this, the wave energy in this case being entirely kinetic. For
inertial waves in an incompressible homogeneous liquid rotating about Oz with
a constant angular velocity, and with a superimposed geostrophic shear flow
(U(x,y), V(x,9),0), equation (6-1) may again be shown to be equivalent to equation
(1-9). For waves of this type, the frequency is independent of the magnitude of the
wavenumber (though not its direction). The conditions for slow variation, both
spatial and temporal must be satisfied separately. It is not sufficient merely to take
the limit of small wavelength.

6-6. Standing surface waves

Taylor (1962) has investigated the effect of slowly changing currents of uniform
divergence on standing surface waves. In each of the three cases he considers, his
results are consistent with the statement that the energy of an area of standing waves
expanding or contracting with the current varies in proportion to the frequency of
the waves. If we consider a standing wave train to be made up of two progressive
wave trains travelling in opposite directions with the same amplitude and frequency,
then this result is only to be expected in view of the reversibility of equations (1-6)
and (1-9).

6-7. Wave action density

Tt is noteworthy that the quantity ¥/w’, designated here the ‘ wave action density’,

is also of fundamental importance in nonlinear wave interactions. If the resonance
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conditions are satisfied, a unit of wave action density from one wave train may react
with a unit of wave action density from another wave train to produce one unit of
wave action density in each of one or more further wave trains, very much in the
manner of chemical reaction between different molecules. This is discussed further
by Hasselmann (1963) who calls E/w’ the ‘wave number density’, and by
Bretherton (1964).

6-8. Further generalizations

The present analysis is essentially confined to nonrelativistic classical dynamical
systems. However, a result similar to equation (1-9) is known for gravitational waves
in general relativity (Isaacson 1967) and electromagnetic waves in a relativistic
gravitational field (Kristian & Sachs 1966).

One of the authors (C.J. R. Garrett) is indebted to the Science Research Council
for a maintenance grant. We are also grateful to Professor M. J. Lighthill, Sec. R.S.,
for constructive criticisms of this manuscript.

APPENDIX

We wish to show that the two energy propagation equations (1-9) and (6-1) are
equivalent for surface gravity waves on water of depth 2. We thus require

s, (ab +8U) E do

o T dt
do’ do d

and equations (1-6) hold equally well for a moving medium as for a stationary
medium, as they are merely a consequence of the definitions w = —0,, k; = 0, in
(1-1). Here we have w = U.k + Q'(k, A).

dw oU 0Q' oh

Thus _(EZkEt—-*-WE’
dk; oU; 3Q' oh
dt ’896 oh 8x

dU; oU; oU; ol
di 7t+U‘3x te ’830

,  0Q'
where c; = o,
do’ 0Q' (oh ,0U;
Hence F il ( +U. Vk) k;c; —7
_ 8Q o U—kc ,aU

oh ’18
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using the continuity equation for the basic flow

%}{+U.Vh+hV.U = 0.

If U is arbitrary, we thus require, using the dispersion relation (4-25),

i W ) W’

2

which is the general form of the radiation stress tensor derived by Longuet-Higgins
& Stewart.
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