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L. M. Brekhovskikh, V. V. Goncharov, UDC 621,371.222.4
K. A. Naugol'nykh, and S. A. Rybak

INTRODUCTION

In the ocean there is a great variety of waves of a mechanical nature — acoustic, surface, internal and
inertial waves, Rossby waves, andso-called stability waves. The latter exist in the case when there is a
stationary flow with a vertical velocity "shear® [1]. The periods of the various waves vary from 1078 sec (high
ultrasound) to months (Rossby waves).

Surfaces waves in the deep ocean and long waves in shallow water have the longest history of theoretical
investigations. The classical works by Stokes, Nekrasov, Levi—Civita, Savarenskii, Korteweg—de Vries, et
al., have allowed a mathematical device to be created along with a specific physics intuition, which have helped
the development of other fields of science such a plasma theory.

The theory of internal waves and Rossby waves has been developing actively in recent times. This pro-
cess goes on in parallel with the accumulation of experimental material.

Nonlinear interactions between various kinds of waves in the ocean are extremely essential. Thus, the
interaction of surface and internal waves effectively influences the spectra of both types of waves [2. 3]. Sur-
face waves, in interacting with one another, generate infrasonic waves in the ocean and in the atmosphere
[4, 5]. An acoustic wave interacting with the surrounding noise acquires additional attenuation [6], etc.

The specifics of the theory of nonlinear waves in the ocean lies in the fact that it must essentially take
into account the broad frequency and broad spatial spectral composition of waves which exist in nature. It is
precisely this factor that determines the subject matter of the second and third lectures of the given course.
In the first lecture, the simplest model and the language familiar to physicists are used to present a brief ex-
position of the linear theory of waves in the ocean (with the exception of stability waves). The contents of this
lecture are required for understanding the two subsequent lectures and are likewise useful for establishing
general concepts and terminology.

LECTURE 1, LINEAR THEORY OF WAVES IN THE OCEAN

In this lecture we shall consider waves of a hydrodynamic nature in the ocean — namely, acoustic, sur-
face, internal and inertial waves, and also Rossby waves.

1. Original Equations

The original equations are: the Euler equation (the momentum-conservation equation)

p,(—’i=—ﬂp[£!tt]~vp~-gﬁvz, @)
dt

where u is the velocity of the particles; @ is the angular velocity of the earth; p is the pressure; p is the den-

sity; g is the acceleration of gravity; Vz is the unit vector along the vertical coordinate axis; the matter—con-

servation egunation

g: + div (o 1) = O; (2)

the equation of state (we neglect heat exchange and adiabatic processes)
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s =o(p), §= const. (3)

In general, it is necessary to solve Eqs. 1) and (2) on a sphere; however, if the wavelength is much
shorter than the radius of the earth (which we shall assume), then they may be treated in the plane that is
tangent to the spherical earth at the given point. The z axis of the rectangular coordinate system is directed
vertically upward; the x axis is directed along the parallel from west to east; y is directed along the meridian
from south to north. Let us linearize the equations for the relative quiescent state in which the density p,(z)
and pressure p,(z) are functions solely of z. For this purpose, we replace p by py(z) + p(x.y. z, t) and p by
po2) +p&, y, z, t) in (1)-(3) and shall assume that the quantities p, p and u are quantities of first-order small-
ness. Then we obtain the following results from (1) and (2):

M _2fen] ~Lyp—egivs @)
ot by %a
a4 + g dive +nvp, =0, 5)
ot
Eq. (3) being written as
d 1 d
d—t(.ca-l-.c)=;; ;E(Po“l"l’) (6)

under these conditions, where c? = c?(z) = (9p /8p)g=const is the adiabatic sound velocity. However, taking
account of the well-known relationship

d_a
_—— 7
7o + (#%), @
we obtain the following result by placing u = {u, v, w} and taking account of the fact that dp,/dz = gp:
ap  _Opy 1 {0p )
—_ W = w |,
ot oz c? (ar Er®, ®)
The boundary conditions on the bottom will be:
z2=—H, w=2qQ 9)

On the surface of the water, the pressure is constant —i.e., the right side of (8) is equal to zero, and, conse-
quently,

dp
2 =0, ——gnw =0
at g 190)
In Egs. 4). (5), and (8) we perform still another simplification: namely, we shall assume that p,(z) is
constant everywhere where it is not differentiated (the Boussinesq approximation) and is equal, say, topy =
po(0). Estimates show that for the problem considered by us below this assumption is substantiated.

The splutiou of Egs. (4), (5), and (8) shall be sought on the assumption that the time dependence has
the form e~lwt and that the variables x, y, and z are separated:

w=LP@UE et 7= ZPEVEE,
"0 “00 i)
w=io W) I(x, g)e—, p = P(2)(x, y)e—i,

Substituting (11) into (8), we fi ~

P(Z) ,"od 2 } ~jat
p=|5——N (W) | T (x, y)e™™, 2
L- @ g a2)
where
2 _[8 95, & V
vi= [?oo dz 02(2)] as)
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PLEpypw—NyW—soPd =0, (14)
dz = ¢ oo ‘
Lo W LV L L
¢ a2 P "p d: wl\ox "oy I’
where the notation
p : 29, 0
q =-2-.z=2_9- sin 2, § =z —e =%’1 Cos 3 (15)
[} w ® (U]

has been introduced for the geographic latitude of the site, The boundary conditions (9) and (10) are written
as follows with allowance for the notation (11):

Wee 11 = (P £ g 2o W)s=0 = 0. 16)

Equations (14) are separable in the variables x, y, and z on the basis of one of the two following assumptions,
each of which is fairly substantiated for its case; we shall limit ourselves to them in our subsequent analysis:

1) q and s are assumed constant. This approximation is valid for acoustic, surface, internal, and
inertial waves over whose length q and s vary little.

2) We neglect terms containing s (i.e., Qy). This allows us to analyze Rossby waves.

Turning to the first assumption, we place (U, V, ) = (U, V,, Hp)exp [ikxx + kyy)l, where Uy, V,, I1; are
constant (without restricting generality, one may place 1y = 1). Then from (14) we find

1 , s W
= k = - ;
U, o (1—¢) (kx + iqky 4 5070y 3 ) n
1 / . s W\
= —te——— — k —_— ™ Oan = 1.
Vo {D(l—-qz) (\ky lq » lSq(!) fyilil P ) (18)
And, moreover, we obtain the equations for P and W (the prime denotes differentiation with respect to z):
k. + igk, /02 — 402
p'+(§,_s_i_i'_ﬂg)p+poo (‘_"__._"’____Nz)wx . 19)
ol 1 — ¢ ] — q2
g k, — iqky) 1 [ g 1 }
w - 45— |+ -] ————=1P =0 20)
+( ¢ 1—gq* fo L9 (1 —¢8) ¢
Here
P =k 1A @1)

2. Acoustic Waves

By comparison with the frequency w of the acoustic waves, £ and N are negligibly small. The force of
gravity for acoustic waves in the ocean is likewise negligible. Therefore, in Eqs. (19) and (20) one may place
s=q=N=g =0, Excluding W from (19) and (20). we obtain

P74 (¥R (2) — 2P =0
which is the basic equation in ocean acousties.

The variation of the sound velocity c(z) in the thickness of the ocean is not large (o more than by 5%),
but it is extremely essential. Specifically, the presence of a minimum of ¢ (z) at a certain depth leads to the
formation of an acoustic waveguide (an underwater acoustic channel) over which the sound at low frequencies
(for which the absorption in the water is low) may propagate over exceedingly great distances. There are data
from experiments on an investigation of acoustic fields at distances of 22,000 km from explosion sound sources
and at a distance of 2800 km from tonal sources.

3. Surface, Internal, and Inertial Waves

Neglecting compressibility (¢ = «) and excluding P from (19) and (20), we obtain the equation for
W
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W — -1; [4(27)? 4 (0* — N)E] W = 0,
o 22)

= zi‘ig
Vi T

a) Surface Waves. In this case, neither stratification of the water nor the rotation of the earth play a
role (s =q =N =0). From (22) we obtain the equation

2w

—2W =0. 23
dz* @3)
Having expressed P in terms of W in the boundary conditions (16), we obtain
/ 2
Wom b = (gw—"j—z W/’) =0 (24)
5 =0

for this case. Writing the solution of (23) in the form
W = C, ek + C,e—*

and substituting it into the boundary conditions, we obtain the well-known dispersion equation for surface waves
in an ocean of finite depth:

o =igth:tH (25)
with the well-known limiting cases
tHN 1, ot=tg; tH K, wfi=c=Y)gH= const.

b) Internal Waves. For the time being, we shall assume that w > ¢ and shall neglect the earth's rota-
tion. Equation (22) can be written in the form

-2
a4 *2(1—~’-V—)W=o.' " 26)
a2

Let us consider two cases here. In the first of them assume that the medium is unbounded and that N = const.
Then Eq. (26) is satisfied by solutions of the form W = W exp (+ik,z) for which

: MV

=,

B=ggR 27)

(0]

Using 4 to denote the angle which is made by the vector k with the vertical, we write the dispersion equation
(27) in the form

sin ¥ = po/N (p=x D). (28)
Hence it follows that:
1) waves may exist only for « < N;

2) for a stipulated # a frequency is uniquely determined by Eq. (28). The wavelength (and this means the
phase velocity) may be arbitrary under these conditions.

Having begun by taking u = 1 in order to be specific {the wave propagates in the direction of positive z),
we obtain the following result for the group velocity by differentiating the relationship w = N(¢ /k):

d(ﬂ a(!) mkz lkz N -
-vgr(gg, d—k;) = (?g — Vz). (29)

It is not difficult to verify the fact that (vgrk) = 0 (.e., Vgr is directed normal to k; see Fig. 1, where we have
taken ky = 0). For the pressure we obtain '

2
. fU] .
p = — ik, oy pry W, e (kr—wb), (30)

We have Vp = —ikp which means the pressure gradient is directed along k.

Turning to Eqs. (11) and using (17) and (18), we obtain

= (_ ’i‘ - VZ) w,  w=inW,el o, (31)

’
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Fig. 1

for the velocity of the particles. It is not difficult to verify the fact that (uk) = 0 (i.e.. the particles move in
the plane containing the vector k and the z axis along lines perpendicular to k).

The energy flux averaged with respect to time is determined hy the expression
[= SOU + ced = 1ol Viog (32)

The energy flux is directed along the group-velocity vector. As is evident from Fig. 1, for a wave traveling
upward the energy flux will be directed downward, and vice versa.

For reflection from the boundary, say, of the ocean bottom, the wave has interesting features if the
bottom is inclined (Fig. 2). Since the frequency of the wave is conserved during reflection, the wave vector
kref of the reflected wave must make the same angle ¢ with the vertical as the angle in the incident wave, and
it is determined by Eq. (28). Thus, the angle of incidence here is equal to the angle of reflection, but relative
to the vertical rather than to the normal to the surface.

Further, the reflected wave must always compensate the component of the particle velocity in the in-
cident wave which is normal to the boundary. For this purpose it is necessary for the velocities of the traces
of the incident and reflected waves along the boundary to be identical. This means that the projections of the
wave vectors of the incident and reflected waves onto the boundary must be identical. For the case when both
the normal to the boundary and the wave vector kijpe of the incident wave lie in the plane of the diagram, we
have

Binesin (¥ — %) = kpegsin (¥ + 4), (33)

in such a way that the wavelength (the wave number) changes during reflection; this does not contradict any-
thing, since at the given frequency the wavelength may be arbitrary.

Let us now consider the case of a waveguide for internal waves. For the time being we shall not reject
the assumption N = const, while the waveguide will be considered caused by the presence of the surface and
bottom of the ocean (the horizontal bottom). The general solution of Eq. (26) will be

W= Cleikzz + Cge-—ikzz,
/'Wr— (34)
‘ = 1.

Substituting it into the boundary conditions [which will again be written in the form (24)], we obtain the disper-
sion equation

k, =

o

gk tg b, H = N* — o?, (35)
from which we find the allowable values for kz.

One of the solutions of Eq. (35) corresponds to small kzH and will be equal to (we assume tankzH =~ k;H,

w < N)
J R
k., = . (36)
- ]/ e

This is a surface wave in shallow water having a propagation velocity ¢ = vVgH. Stratification of the medium
in no way has any effect on it. In order to find the other roots of (35), we note that for N = const we have
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p @) =poe2Y%, N2 = 2pg, and since vH « 1, it follows that g /H(N? — w?) ~ 1 /vH > 1. Therefore, the roots
will be very close to

k. H=n= (n=+1, £2..). (37)

For the horizontal wave number we obtain the following result using (34):

: _MF (& — 1)_”2.

The dispersion curves are shown schematically in Fig. 3.

In the general case N = N(z) the problem can again be reduced to solution of Eq. (26) for the boundary
conditions (24). In each case, one of the waves turns out to be of the surface type (maximum of |W| at z = 0),
and there is a set of waves having extremal points in the interval 0 < z < H.

c) Inertial (gyroscopic) Waves. This type of wave may be obtained from Eq. (22) on the assumption that
N = 0 {the liquid is homogeneous):

4 .
LA [;); (QE) — =2] W =0, (38)
For solutions in the form
W = W,exp (= ik, 2) (39)
we obtain
B=2p— 2
2w ’
from (38); i.e.,
s2a(ed), o)
k
or
w=2uQ cos 3 =<1, 1)

where & is the angle between k and @. The value of p is chosen from the condition pcos 4 > 0. Thus, the angle
& is fixed for the given frequency. The wavelength may be arbitrary. We see that the properties of an inertial
wave are very similar to the properties of the internal wave considered above. Specifically, for reflection
from the boundary kref must make the same angle with @ as kipe does. Just as in the case of an internal wave,
we find

de 2Q k o

0gr= B—k-—:l—k—'——é' ;, vgrk=0. (42)

for the group velocity. The group velocity is normal'to the direction of propagation of the wave k.

Finding the two horizontal components of the particle velocity and p, we discover that the particles move
in planes normal to k along circles having the radius W, /sin ¢. The energy flux is equal to

.2
I = —I—u)"'poo Wo

v_. :
2 sin?d & 43)

It may be shown that in an inertial wave motions take place in such a way that the component of the
Coriolis force lying in the plane of rotation of the particles is balanced by the centrifugal force. The com-
ponent in the direction k creates a pressure gradient in the wave,

In experiments it is inertial waves corresponding to £ = 0 (w = 2Qz) that are observed most frequently;
these are frequently called inertial oscillations. It is possible that their prominence is caused by the fact that
the waves of other forms are impeded by the presence of the stratification of the medium.

d) Gravitational-Gyroscopic Waves. Equation (22) allows simultaneous consideration of both the stratifi-
cation of the ocean (N = 0) and the rotation effects (@ = 0). In the case N = const, we obtain

—ﬂ+$umw+ywpﬂ, 44)
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or
o? = N?sin®# + 4 9% cos® (RQ). 45)

for a wave stipulated in the form (39); here ¢ is the angle between k and the z axis. In this case, we have
waves which may be called gravitational-gyroscopic. In (44) the term kyQy may be neglected in the expression
kQ = kyQy + kyQ5 if ky «k, (.e., if the scale of variation of the field in the z direction is considerably smaller
than the wavelength in the y direction). Then, taking account of the fact that ky = kcos &, Qz = Q@ sing, we shall
have

®? = N2sin®® 4 422 cos® § sin® ¢ (46)
instead of (45). For the same reason, the quantity Qy is usually neglected in considering the ocean as a wave-

guide for gravitational-gyroscopic waves. In this case, we obtain the following equation for W(z) for an arbi-
trary N = N(z) from (22):

ou wg WE— NP
having the boundary conditions
) 2
W;;___H=[gW-%(l —qY W] =0. (48)
z2=0

For N = 0, we have a solution in the form of the combination exp (zik;z), kzz = ¢2/@ —q?) for purely inertial
waves. Substitution into the boundary conditions yields the characteristic equation for k;: (g /ky)tank,H =
(w?/ %)@ —q%. From this we obtain

£2
S

o = gH w? — 4Q2 = gHE o

—g?
1—¢ 49)
o =1t2gH 49},

for a zerowave (kz;H « 1), Thus, longwaveshavea dispersion of the propagation velocity when the earth's
rotation is taken into account.

For « < 2Qz we have t? < 0 which cotresponds to nonpropagating waves which may be manifested locally
and may propagate along the boundaries of depth differentials, along coastlines, ete.

4. Rossby Waves

The essential factor causing the presence of Rosshy waves is the variation of a vertical component of
the Coriolis force as a function of the latitude ¢. For the simple description of these waves, one may again
resort to the equations written in rectangular coordinates in the osculatory plane without assuming, as in the
previous sections, that the Coriolis force 20 sin ¢ is constant but taking the next (linear) term of its expansion
in powers of y (x =y = 0 is the point of osculation between the sphere and the plane):

22 sin ¢ = 2Q(sin 9, + cos goAp) = 22 sin o+ By; (50)
B = 29c;:s %o, 61)

Here ¢, = gx=9y=0; @ is the radius of the earth. Henceforth the "0" subscript of ¢ will be dropped. Consider-
ation of the term gy in (50) is frequently called consideration of the S-effect. and in this case the osculatory
plane is called the B-plane, while the analysis of Rossby waves on the g-plane is called g-plane approximation.
We shall likewise limit ourselves to this approximation.

The fact that in Egs. (14) for kz > ky the terms containing s (i.e., the horizontal component Qy of the angular-
velocity vector Q) may be neglected is a fact that greatly simpl{ifies things. Then in the last equation in (14)
the left side may depend only on z, while the right side may depend only on x. Setting each of them equal to
the constant £ (the separation parameter), we obtain the following system of equations from (14) (it is likewise
natural that ¢ = «):

| ol
U—qu=—-—:~%-—, ]
o (52)
VigU=—+2,
w dy
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dx+0y reoth

P’ o+ pgo(w? — NH)W = 0, (53)
W4 =P =0

%0
From (52) we obtain the following equation for V by eliminating U and II and assuming that dq /dy = 8/ w:
o ot i3 o

[—— +

< — 4 01 — = 0.
ox*  oy* e 6x+ o qz)]V &4

It may be shown that for operation in the g-plane we must assume w <« 2, q® » 1. Therefore, unity may be
neglected in comparison with g%, Let us seek a solution for (54) in the form of plane waves
V= Vyexp li(k,x + ky9))- 5)

Then from (54) we obtain the dispersion equation

B+ B+ 3 k, +4:2sin’ 3 = (, (56)
A .
or
’ ;9 2
(k.+i)’ B (_j — 4:2sin’ 5, (57)
* 20’, ¥ 20)(

Here ¢ is an eigenvalue of the system of equations (53) having the boundary conditions (16). Eliminating P
from (53) and from the boundary conditions, we obtain the equation

W'+ B2W == 0, & =:(N?—of) © (58)
with the boundary conditions

1 yr
T ) o

/=0
The latter coincides with Eq. (26) and with the boundary conditions (24) if we place ¢ = §2/ w?,
As a result, we have

2y = 1_-gH (60)

for the zero mode and

n2re
"= =) ©n
for the n-th mode. Let us now turn again for Eq. (57) from which many interesting corollaries derive.

In order for Eq. (55) to represent conventional propagating waves (kx and ky are real), the right side in
(57) must be greater than zero: i.e.,

3 —
=>2V:2sin3 (62)
20
or, taking account of the value of 5 from (51),
1
g <—— (63)
2a0 Ve

Thus, for a stipulated frequency « waves may exist only in a band containing the equator for a site latitude
satisfying condition (63). The higher «. the narrower the band. For a stipulated latitude ¢, the frequency
w must be lower than the critical frequency wep, where

i
W= —— (64
T og Vetge )
For a zero ("barotropic") wave e =1 /gH,
VegH
vg=— (o< v (65)
2atge
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For waves of higher orders ("baroclinic® waves), ¢ is substantially greater, and consequently weqp is lower
and causes the band in which waves exist to be substantially narrower.

Note further that Eq. (57) may be satisfied only for ky < 0 (i.e., waves may propagate only from east to
west), From (57) it is likewise clear that for a stipulated w the tip of the vector k lies on a circle with its
center at the point ky = 0. kx = —B/2w. The radius of the circle is equal to (8/2w)* —4eQ?sin® ¢. Assuming
that w and ¢ are far from the critical values, let us neglect the second term in this expression and consider
a barotropic wave. It is not difficult to show that the velocity of the particles in the xy plane is normal to ¢.
The dispersion equation (56) is written as

k.3
Bk

O = =

For the group velocity we have

do do \, 3
Vor| —, — | =-"(cos2y, —sin27), 66
g’(okx ok, ] @ (cos 27 ) (66)
where vgr is directed from the tip of the ¢ vector to the center of the circle. For y=0. vgy is directed oppo-
site to &.

LECTURE 2. MULTIWAVE INTERACTIONS IN THE OCEAN

Nonlinear interactions between waves play an important role in the formation of wave fields in the ocean.
Thus, for example, one of the possible mechanisms for the generation of internal waves is their resonance
interaction with surface waves, The existence of a resonance triad consisting of two surface waves and one
internal wave may be proved by the following simple reasoning. In Lecture 1 it was demonstrated that the
maximum possible frequency of the propagating internal waves is the maximum V#is&1& frequency in the ocean:
NZ, = gmax{(@ /o) dp,/dz)}. This frequency is fairly low (L0~ Hz or lower), while the frequencies of surface
waves are substantially higher @o~! Hz or higher). It is obvious that the synchronism conditions may be ful-
filled for the difference frequency w;(k)) — wy(k;) betweentwo surface waves that differ little in their lengths
(k; =~ ky) but propagate in arbitrary directions: k; =k, — kz, wylks) = wy(ky) — wz(kz). In [2] a synchronism curve
was obtained (see Fig. 1) on which the tip of the vector k; satisfying the synchronism conditions for the first
mode of the internal wave must lie. The synchronism curves for the higher modes are situated inside the de-
picted curve and approach a circle having the radius k; with increasing mode number.

For the resonance triplet of waves ki, k;, k; one may calculate the interaction coefficient and write a
three-wave system of abridged equations. However, in oceanology, unlike optics, acoustics, andradio physics,
monochromatic waves are encountered extremely rarely. The spectrum of the wave is usually continuous in k.
Therefore, along with the original resonance triad, many other wave triplets will participate in the interaction
(for example, any pair k,, k; lying on the synchronism curve will interact in a resonance manner with the wave
k;). Specular reflection of some resonance triads relative to one of the wave vectors will likewise lead to a new
resonance triad of waves. Moreover, there exists a so-called "almost resonance" triads —i.e., triads of waves
for which the synchronism conditions are fulfilled approximately: A = w; — wy — w3 = 0. The effect of these
interactions is likewise substantial for small detunings. Actually, for the corresponding three-wave system of
equations with the detuning A it is not difficult to show by analyzing the integrals of the system that the maxi-
mum possible energy loss of the energy-carrying decay wave is

A?
E,(3) = H(l — m) @)

where H is the total system energy; ¢, and oy are the interaction coefficients in the equations for nondecay
waves. The "almost resonance” criterion for the system of waves: A/vVoy03H < 1 /2 derives from ().

1. Spectral Form of the Equations

Thus, at least for oceanology problems, it is of interest to investigate mulitiwave interactions on the
basis of the spectral method of solving nonlinear wave problems expounded in [3, 7, 8]. The principal idea
of this method consists in the following. Let there be a certain nonlinear system of partial differential equa-
tions and in the linear approximation without allowance for dissipative processes let the solution, for example,
of the initial problem be representable in the form of a superposition (spectrum) of harmonic waves propagating
without any change in shape: ‘

606



z
Fig. 1 Fig. 2
w(r, 2, t) = 5'2 a2} (2) exp (ikr — i wyt)dk. @)
y=--1, +2,..

Here we have written out the representation of a certain desired quantity (for example, the vertical velocity
component of the particles of the liquid) in order to be specific; r = {x,y} and z are the space coordinates and
are assumed to be Cartesian, although depending on the symmetry of the problem they may also be expanded
in spherical, cyllndrvlcal and other harmonlcs ki is the horizontal wave vector; akdk is the complex amplitude
of the wave (ak —(ak)*), wk(wk = _“‘k) and ¥k = (pk are sets of natural frequencies and eigenfunctions of the
corresponding boundary-wave problem for any fixed k.

In the nonlinear case, assuming the set of eigenfunctions to be complete, the solution of the initial prob-
lem may likewise be sought in the form (2) but with amplitudes which depend on time t. The system of equations
for the amplitudes which is equivalent to the original system of partial differential equations is written in the
form

a, =« (dky, 3 Dprmiayazexp (— i30T oy s,
Vi vg (3)
a, (0) = 2,
where ¢ is the nonlinearity parameter, Akﬂi;—lz “’k1 '*"k - (uk is the detuning; Dk kz—k are the interaction
coefficients; the initial amplitudes Qk are determined naturally from the initial conditions for the original sys-
tem of equations. The principal difficulty in writing such a system resides in calculating the interaction coef-

ficient D;‘;z l‘; In [9, 10] these coefficients were identified with the coefficients of expansion of the Hamiltonian

of the original system of equations in powers of “k However, for specific calculations it is difficult to obtain
the Hamiltonian, and additional difficulties develop during consideration of the attenuation of the waves. There-
fore, it is preferable to derive the equations in spectral form directly from the original system of partial dif-
ferential equations. In [3], this procedure was carried out for a system of hydrodynamics equations for an
incompressible fluid in an oceanic waveguide with allowance for only three-wave interactions (.e., in the
guadratic approximation).

The system of equations (3) is substantially simplified in the case when for t = 0 the spectrum of ak is
discrete. Then and at subsequent times the spectrum remains discrete (only waves of the type k; = Zmjk;
develop, where mj are arbitrary integers), and (3) goes over into a system of ordinary differential equations:

"‘. = 0} 2 D=7 b b exp (— (AR )!ksékj—k!' 4

I "t va
In [3] the simplicity of applying asymptotic methods of solving partial differential equations (abridged
equations) to the system (4) was noted. Let us demonstrate, for example, the method of obtaining the nonlinear
correction to the frequency for a harmonic wave in a medium having strong dispersion. Assume that for t = 0

there is only one wave b1 and for simplicity assume there is no cubic nonlinearity. Then for large values of
detuning A"1 "?'V all combination harmonies of the wave by will be of the order of ¢, and the system {4) will be

written as follows with allowance for just the principal terms:
bi = eoy X Dby b exp (— A, 1), A, = of — 24},

M

by = ez Dy (b)Y exp (iA,, £), Dy = DyTiTi, Dy = DiTi.
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After integration of the second equatlon by parts, substltutlon into the first equation, and averaging, we obtain
the following result accurate to ¢’

b = — i} | 5i|76] D) _\213'* 3,

uy '’

whose solution corresponds to a harmonic wave having the frequency

%2 py DE‘).
% A,

The numerical solution of the system of equations (4) by the reduction method, in which the abridged
system involving an ever greater number N of equations are solved successively until the solution is repro-
duced with a sufficient degree of accuracy, allows the process involving the interaction of waves over fairly
large time intervals to be described. It is desirable to premise the section of an optimal set of N waves on a
preliminary analysis such as that expounded, for example, in [3]. At present, there is a program which
allows isolation of all possible interacting triplets kyy = +k; = kj, calculation of the interaction coefficients
between the waves of each triplet, and the solution of the stated Cauchy problem for any stipulated system
of surface and internal waves ky, ks, . . . , ky of an oceanic waveguide, We shall now go over to an exposition
of the results of computation according to this program,

m1= w;(l—l— 2‘b11

2. Instability of Three-Wave Interactions

As a result of the calculations, it was revealed that multiwave interaction may have a substantial influence
on the redistribution of energy among waves of the resonance triad. We called this effect instability of three-
wave resondnce interactions.

The instability may be self-developing when it appéars as a result of the excitation of combination waves.
Its analysis was carried out on the following model. Assume that for t = 0 the amplitudes of only two surface
waves 1, 2 which are in resonance with the dxfferent mtemal wave 3 are nonzero. During the interaction pro-

cess, combination waves develop having k = Z mik; among which there may be resonance triplets, "almost

resonance" triplets and nonresonance triplets. If only nonresonance wave triplets develop, then their effect
weakly influences the period of the process involving pumpover of energy between the waves of the resonance
triad. The maximum amplitudes of the original wave triplet remain practically unchanged. Note that this pro-
cess may be described in the first approximation by introducing a nonlinear correction to the frequencies of the
original wave triplets. In [8] it is noted that in certain exceptional cases (for example, when the phase trajec-
tory for the original wave triplet is close to a separatrix) the effect of nonresonance interactions is intensified
and may result in a fundamental change in the character of the solution.

Additional resonance interactions lead to a substantial change both of the characteristic period of the
three-wave process and of the limiting amplitudes of the waves. Under these conditions, the amplitudes of
the displacements of the combination waves likewise become large.

Along with self-developing instability, a "priming" instability of a resonance system of waves relative
to small perturbations in the initial spectrum is also possible. This instability is stronger and is more fre-
quently encountered than the self-developing instability, since one can always find waves among the priming
waves which are in resonance with the original ones.

As an example, let us consider the system of waves which is displayed in Fig. 2 and is obtained from the
original resonance triad 1, 2, 3 by multiple specular reflections relative to the wave vectors 1 and 2. As has
already been noted above, all of the triads obtained in this manner will be resonance triads. In Fig. 2 the
waves 1, 2, 4, 8, 7, 10 are surface waves, while the remaining ones are internal waves. At the initial time,
the unit amplitudes of the surface waves 1, 2 were stipulated, while the remaining surface waves had an ampli-
tude of 0.001 (priming), and the amplitudes of all of the internal waves were equal to zero.

The time variation of the amplitudes of the waves is shown in Fig. 3 where the dashed curve depicts
the same variation for interaction of only the waves of the principal triplet. From the dependences presented
it follows that the three-wave interaction of surface and internal waves in the ocean is unstable, and the three-
wave approximation remains valid only on a time interval of the order of the characteristic time T of the origi-
nal process. This result may be clarified by considering the process of three-wave interaction of the principal
triplet, since for this triplet it follows from the conservation integrals that at time t = T (see likewise Fig. 3)
ail of the energy of the wave system is mainly contained in the surface wave 2. At this time, the triplets
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Fig. 3

1, 2, 3)and (2, 8, 8) are practically of equal justification, and therefore henceforth the wave 6 is also inten-
sively excited along with the wave 1. A more detailed exposition of this is given in [3]. Note that the complete
transfer of the system energy to waves 2 is caused by the low ratio between the frequencies of the internal
and surfaces waves (w3/w; < 1). Inthe case of interaction of waves having close frequencies (for example,
plasma waves), this type of instability is conserved but will develop more slowly, since in this case the prin-
cipal wave triplet remains isolated after one cycle T. But some portion of the energy will be transferred to
other waves during each cycle.

Note likewise that multiwave interactions may lead to enrichment of the angular spectrum of the surface
waves when they interact with internal waves, and also to more effective generation of internal waves (see
Fig. 3).

3. Model One-Dimensional Equation for Nonlinear Wave Theory

Certain multiwave processes in the ocean may be investigated using the example of the simplest one-
dimensional equation which we chose to be

Yoy = — su%q, Ux, 0) = F(x), )
X ) .

1714

where L is a certain linear operator describing the possible dispersion and attenuation of the waves; ¢ is the
nonlinearity parameter. The spectral form of Eq. (5) is obtained trivially (see [8]) and has the following form
in the case of a discrete wave spectrum: ’

a'” = — ".’n[l" — 5 k,, 2 am al exp (“*l.—&ml“r; t)l baep _14,1 » (6)

2 m=0 m

where vy, is the attenuation coefficient. The simulation of any particular types of waves is accomplished by
changing the dispersion law. Thus, for acoustic waves wy = cgkp, the Korteweg—de Vries (KDV) equations are
wn = —B(ky)®. Below we shall likewise use the dispersion laws shown in Fig. 4 (curve 1 corresponds approxi-
mately to the dispersion of an internal wave; curve 2 corresponds to the solitary resonance of the triplet of
waves ko, ko, Zko). )

Using the example of the KDV equation, the efficiency of solving the spectral equations by the reduction
method was checked in [8]. For this purpose, the distortion of a sinusoidal wave in time was traced, and the
results of the calculation were compared with those obtained in [11] by direct numerical integration of the KDV
equation. The solution of the spectral equations for 20 equations from (6) led to complete agreement with the
calculations carried out in [11].

Note that the same type of result was obtained for surface and internal waves in shallow water on the
basis of solving the system of equations (4) in the case of a unidirectional and one-mode spectrum of waves.
The results of the calculation are fairly close to those obtained in [11]; however, for an increase in ocean depth
(kH > 1/20) the difference became perceptible. Moreover, for a fairly pronounced nonlinearity (ke > 1/50)
the picture was distorted due to the effect of nonresonance interactions with higher modes of internal waves.

Thus, the applicability limits of the KDV equation for surface and internal waves in shallow water (this
equation has been used widely in a number of papers; see, for example, [12]) require further refinement.

4. Interaction of Wave Packets

Let us go over to an analysis of the interaction of initially quasimonochromatic wave packets. Assume
that for t = 0 there is a system of waves having an energy concentrated near k,. If the wave k; is at resonance
with the wave 2k;, while the higher harmonics are nonresonance harmonics, then it is usually assumed that

609



2
i F |u"&| n
E " N
o g ! \ i
“;Km" """""""" T 0,5 X 1. ,' :
1 i l 1] C A P e 1
! I 10 n
ORI ) —
) o l"’nl
S t L. 0;5-
27 A5A%. 30bk 404k, " - ‘
1 K ku . 21(3 SKQ k v . Q0 L ?n“/T,\A|
' o
Fig. 4 Fig. 5

the interaction of quasimonochromatic packets is analogous to resonance interaction of monochromatic waves
ko, ky, 2k, We considered this process using the following model. In the original equidistant spectrum of
waves having a subdivision interval Ak = ky /15, only the amplitudes of the waves having the numbers 12 < n <
18 are nonzero at the initial time. Then the system of equations (6) was solved by the reduction method.

The results of the calculation showed the interaction process is complex and irregular in character: all
the waves of the dispersion-free segment (resonance interactions) and from a certain interval having a low
dispersion ("almost resonancer” interactions) are excited to an equal extent. The time variation of the wave
spectrum in the case of a dispersion law corresponding to curve 2 in Fig. 4 is illustrated by the spectrograms
(Fig. 5), where the spectrum is depicted as continuous for the sake of clarity (the dashed~dot curve is fort =0,
the dashed curve is for t = 25, and the solid line is for t = 100), The time is measured in periods T of the wave
ky. The bottom spectrograms shows the spectrum averaged over the entire calculated time interval (0 to 500).
A comparison with the case of interaction of monochromatic waves demonstrated that the results coincide only
on the initial time interval which is of the order of the characteristic interaction time of the resonance triad
[A/15) e inour case]. Naturally, this interval widens when the width of the initial spectrum of the wave is re-
duced, the dispersion is intensified, and the nonlinearity is reduced. In the case of a dispersion law corre-
sponding to curve 1 (Fig. 4), the average spectrum is practically uniform over the entire dispersion-free
interval.

Note likewise that the spectral method allows the process by which equilibrium spectra of a large group
of waves reach a steady state to be traced for excitation of large-scale motions by external sources in the
presence of strong absorption in the shortwave range. The specific scheme for solving a problem of this type
is given in [8] where the example of a one-dimensional equation (5) is used to investigate the establishment of
the limiting wave spectrum.

Thus, in investigating nonlinear wave processes by asymptotic methods one should not forget the possible
substantial effect of multiwave resonance and "almost resonance™ interactions on the behavior of the process.
This effect may lead to instability of the traditional three-wave interaction in a continuous wave spectrum. the
transformation and expansion of spectrally narrow wave packets, etc.; this substantially limits the time inter-
val suitable for the applicability of asymptotic methods. In this connection, the spectral method for the numer-
ical solution of the equations of nonlinear wave theory would appear to be effective; this method allows the non-
linear interaction processes to be traced over fairly long time intervals,

LECTURE 3. INTERACTION OF WAVES WITH NOISE

1. Introduction

Waves of various types propagate in the ocean: surface and internal gravitational waves, surface capil-
lary waves, acoustic waves, Rossby waves, and inertial waves, The nonlinear effects of the interaction of
waves lead to an exchange of energy between the waves., As a result, energy fluxes from oscillations of one
type to others develop in the ocean, and a certain energy distribution over the degrees of freedom is estab-
lished whose knowledge is important for an understanding of the behavior of the ocean as a whole treated as
some physical system.

An important aspect of this overall problem is the problem of the propagation of a weakly nonlinear wave
in a region perturbed by noise that is treated as a random ensemble of waves. The present lecture is devoted
precisely to an analysis of this problem. Based on the results obtained, one may in principle also consider
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a different problem: namély, the clarification of the character of the behavior of the noise spectrum in an
inertial frequency interval.

Nonlinear wave-interaction effects which lead to an exchange in energy between waves may cause attenua-
tion of a wave of finite amplitude propagating through a region with intense noise.

2. General Expressions for the Attenuation Coefficient

Let us consider the case in which a regular plane wave of finite amplitude ay ¢)exp (ikx — iwyt) propagates
in a region of the medium which is perturbed by intense noise. For simplicity, we shall assume that it is a
discreie system of traveling plane waves of the form

iqr—iv 1

c, e (g, =0, £ 1,..., & o),

which propagates in all possible directions. The amplitudes are assumed to be real, so that

Cq=Cap 94 ="% @)

and random, so that Cq=0, cq (t)cq(t') = Ré(t —t'), where Rq is a correlation function of such a form that for
a sufficiently smooth function f£{t) the relationship

(f(r) R (tydt = N, \ ‘T, N,=R(0), @)
0
is satlsfled where 1g is the correlation time. It is assumed that there is one wave per solid angle @, = k@/k0
(i.e., ke is an area on the surface of a sphere having the radius k,, whose size characterizes the scale of the
angular correction). Inorder to be specific, we assume that the amplitude of the wave is a quantity of the same
order of magnitude as are the spectral amplitudes of the noise.

In the second approximation, the nonlinear interactions of the waves may be described by an equation of
the form [13]

Ys= 2 Virwlp Y exp [i(0, + 0, — o)) 4], (3)
)/’-k.—k‘
where Vigrgn is the interaction potential; yi () are slowly varying amplitudes which are assumed to be normal-
ized in such a way that the relationship

YUy = N, = Eplo, )

is satisfied; here &, is the energy density of the k-wave, and it is also convenient to introduce the Mach num-
ber:

& Kk =8, /32 = pc* M2

We shall assume that the noise field is stipulated while neglecting the variation of its average char-
acteristics as a result of interaction with the isolated wave amplitude ag (i.e., we shall treat it as a large
reservoir whose energy is large in comparison with the energy of the considered wave). This approximation,
which. as it were, corresponds to the parametric approximation, allows linearization of the nonlinear equa-
tion (4), since one of the multipliers of the quadratic terms turns out to be a well-known parameter — the
stipulated amplitude of the noise-field wave. As a result, the problem stated can be reduced to the linear
problem of propagation of a plane wave in a statistically inhomogeneous medium created by noise perturbations.
In order to solve this problem, it is convenient to apply the Lifshits —Rozentsveig method [14] according to
which the amplitude of the considered wave must be represented in the form of the sum of its average magni-
tude and a fluctuational correction:

a4y = E:t + by,
where Bk =0.
Thus, the amplitude of a wave propagating in the direction q is, in generai, made up of three parts:
Yg = Ekaqn‘*' Cgt by &)

where cq is the stipulated amplitude of the noise wave. Substituting this expression into Eq. 3), we obtain
the equation
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= 3 Ve (@hp g +0,) @30 + e+ by) exp li(o, + op — 0} 1], (6
G’—¢~

After averaging this expression with allowance for the fact that cir = 0. Bav = 0. we obtain the following
result forq=k, q'=k', q"=k"=k -k’

3,= B Vi pbptue™', (7
&
.’I

where Awp = wpr + wign — . Note that the two terms which are on the average nonzero (namely, the terms

proportional to cqregn and bqthgn) are not written out in the right side of this equation.

The first of them corresponds to interaction of the noise —noise type and therefore does not apply to the
considered effect of interaction of a wave with noise; the second is a quantity which is of a higher order small-
ness in the wave amplitude.

Note that along with Eq. (7), which describes the variation of the regular part of the amplitude ;‘k of
the considered wave due to its interaction with noise within the framework of the given approximation, one may
write still another equation for the average amplitude; this equation is obtained after averaging of Eq. (6) in the
same approximation as that used for Eq. (7) but for q = 2k, q' = q" = k and describes the effect of the develop-
ment and growth of the second harmonic of the considered k-wave as a result of this self-action:

a.!-.b,.“‘a exp [i{(2e, — 0, (]. (8)
Now subtracting Eqs. (7) and (8) from Eq. (6) written for q" =k, q' =q —k, we obtain the equation for the fluc-
tuation part of the wave amplitude which develops as a result of its interaction with noise:

b, =V

o q_,,,,‘cq_,,a,,e""‘”'lt , (9)
where Awg = wi + wqg ~ wq- Terms with factors of the type akbq-k and cibg . are quantities of higher order
of the wave amplitude and are therefore dropped. The term which is proportwnal to the product CkCq- kand which
describes the interaction of noise waves is mutually canceled with the term 0q in the left side of the equation
within the framework of the considered approximation (the reaction of the wave on the noise field is neglected).
Substituting the expression for bi: into Eq. (7), we rewrite it in the form

oWy DDayi S ¢ wV l')\ iSwgr ! 0
Q=22 Vew. € \"k' Y o, . 85—g Qi (! /e . 10)

Here Awg = wipr + win ~ Wk, AWpn = L 1 + Wk~ Cgn.
By virtue of condition (1), w_k = —wk, and therefore we obtain

de, . = — Aw,. (1)

Taking Eq. (2) which de_s_cribes the correlation characteristics of the noise into account along with Eq. (11), we
obtain the equation for ag from (10) with allowance for the fact that ¢_gi = cl’;,:

ae= 2 Vi s s View, —a,x J dt'elw’“ ”R’2 a,(t). 12)
k .

—0

Note that Eq. (12) is essentially the integral equation for the averaged wave amplitude; in principle, it
allows the self-consistent solution to be derived for the amplitude of a wave propagating in the noise field but
not at all the correction to its unperturbed value.

As is evident, “k is determined by the correlation properties of the noise field and the form of the inter-
action potentlal charactemzmg the coupling between the wave and the noise. We seek the solution for ay in the
form g = akelﬁt where “k is the unperturbed value of the wave amplitude.

Then from Eq. (9) we obtain the following result while likewise taking into account the form of the cor-
relation function stipulated by Eq. (2):

i

= 3 V2 [ drdertN, e, a3
[} f“'.‘"lz'
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Here V? = Vigeekt. Vil for resonance interactions, V2= | Vigergn P In view of the smallness of B which
is proportional to the square of the interaction potential, one may assume that elBk®-t") = 1 which allows inte-
gration to be performed:

jk'ei seigy = expiiv,w) — 1 , 14)

ido,

Isolating the real and imaginary parts of Bir, we obtain the following general expressions for the dis-
persion correction to the frequency ,81'{ and for the absorption coefficient Bl'; which are caused by the interaction
of the wave with the noise field:

) 1 — cos Awg e
3z — DVENy oo— ——
: v Aog 15)

The transition to a continuous spectrum presénts no difficulty, since, for example, the expressions for
the absorption coefficient may be written in the form

in Awg spr )
[ - 37 a‘)v , sin ktk
8 _S‘ dR¥ VEN, ———' Amkw' as6)

Equation (16) is the general expression for the absorption coefficient of a wave propagating in an intense

noise field.

3. Attenuation of Low-Frequency and High-Frequency Waves

Let us emphasize the following two facts which are related to this expression. First, taking into account
the fact that Ny = 8k/wkh where & is the spectral density of the noise energy, we arrive at the important
conclusion to the effect that the absorption coefficient of the wave is determined by the noise intensity and is
independent of the amplitude of the considered wave. The time 7).y which enters into this equation characterizes
the duration of an elementary interaction of three waves, unlike the time 74 during which attenuation of the
waves takes place as a result of multiple collisions. It is natural to adopt the growth time of the combination
tone as a result of three-wave interaction as the time 7y

= Ly, @ar)
mG
In the case of acoustic waves, Eq. (16) leads to the following expression for the coefficients of absorption of a
low-frequency wave having the frequency w in nonequilibrium noise [15]:
—l : 2
PETLETY 4 ~ e, _/!1_ ’ (18)

3pc? 2

B” _

Here e = (y + 1) /2 is the nonlinearity index of the medium; & is the energy density of the noise. This formula
coincides with the results obtained by Landau and Rumer [16] for the coefficient of sound absorption in metals;
a similar expression, derived by a different method, was used by Krasilmikov, Rudenko, and Chirkin [6] in
discussing the nonlinear mechanism of the attenuation of low-frequency sound in the ocean.

In the case of a high-frequency (compared with the characteristic noise frequency wg) wave, the following
result was obtained instead of Eq. (18):

2mePw? |

z
pcimg

.@I/ —
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THREE-MODE INTERACTION IN AN INCOMPRESSIBLE FLUID

A. M. Obukhov UDC 532.782

1, INTRODUCTION

Hydrodynamics is, incontrovertibly, a classical example of an essentially nonlinear field theory. Aca-
demician Gaponov-Grekhov [1], president of the Organizing Committee has already spoken of this in his in-
troductory remarks at the second school. The exact solution of the one-dimensional problem of gasdynamics —
the famous "simple wave" that was already discovered by Riemann more than one hundred years ago —is cur-
rently still the touchstone (the standard problem) for the development of many problems in the nonlinear theory
of wave processes. Nonlinear acoustics, which makes full utilization of the arsenal of modern methods (spe-
cifically, the well developed theory of three-mode interactions), is developing successfully.

In problems in the hydrodynamics of an incompressible medium, the evolution of the system is likewise
determined by three-mode interactions, since the equations of motion are quadratically nonlinear. Under
these conditions, however, a series of specific difficulties associated with the isolation of "vortex modes"
in specific problems develops, as well as difficulties caused by the very complicated nature of the "linkage"
of the modes in practical systems having a large number of degrees of freedom {for example, in a turbulized
fluid).

Nevertheless, the notion of three-mode interactions may also turn out to be useful in the dynamics of an
incompressible fluid; this will be demonstrated using the example of the simplest hydrodynamic systems which
allow realization under laboratory conditions.

2. APPROXIMATION OF THE HYDRODYNAMICS EQUATIONS ACCORDING TO
THE GALERKIN METHOD. THE NOTION OF SYSTEMS OF
THE HYDRODYNAMIC TYPE

Let us consider the motion of an incompressible fluid inside a closed vessel V which is bounded by a
solid surface S. The state of the system at any time t is determined by the velocity field —a divergence-free
vector field v(x, t) divv = 0) satisfying the boundary condition vp = 0 on S. If at first we avoid the effect of
viscosity, then the evolution of the system is described by the classical Euler equations:

oo
= oIV — ¢ P; 1
it ( v) (1

here the density is taken to be unity; p is the scalar pressure field. The pressure in an incompressible fluid
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