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INTRODUCTION 

In the ocean there  is a g rea t  var ie ty  of waves  of a mechanica l  nature  - acous t ic ,  su r face ,  in ternal  and 
iner t ia[  waves ,  Rossby  waves,  and so -ca l l ed  s tabi l i ty  waves .  The la t ter  ex is t  in the case  when there  is a 
s ta t ionary  flow with a ve r t i ca l  velocity " shea r"  [1]. The per iods  of the var ious  waves  vary  f rom 10 -6 sec (high 
ultrasound) to months (Rossby waves) .  

Surfaces  waves  in the deep ocean and long waves  in shallow wa te r  have the longest h is tory  of theore t ica l  
invest igat ions.  The Class ica l  works  by Stokes,  Nekrasov ,  L e v i - C i v i t a ,  Savarenski i ,  K o r t e w e g - d e  Vr ies ,  et  
aL ,  have allowed a ma thema t i ca l  device to be c rea ted  along with a specif ic  phys ics  intuition, which have helped 
the development  of o ther  f ields of science such a p l a sma  theory.  

The theory of in ternal  waves  and Rossby  waves  has  been developing ac t ive ly  in recent  t imes .  This  p r o -  
c e s s  goes  on in pa ra l l e l  with the accumulat ion of expe r imen ta l  ma te r i a l .  

Nonl inear  in teract ions  between var ious  kinds of waves  in the ocean a r e  e x t r e m e l y  essent ia l .  Thus,  the 
in teract ion of sur face  and internal  waves  effect ively influences the spec t r a  of both types of waves  [2. 3]. S u r -  
face waves ,  in in teract ing with one another ,  genera te  infrasonic  waves  in the ocean and in the a tmosphe re  
[4, 5]. An acoust ic  wave in teract ing with the surrounding noise acqu i res  additional at tenuation [6], etc.  

The speci f ics  of the theory of nonl inear  waves  in the ocean ties in the fact  that it mus t  essent ia l ly  take 
into account  the broad frequency and broad spa t ia l  spec t r a l  composi t ion  of waves  which ex is t  in nature.  It is 
p r ec i s e ly  this fac tor  that  de t e rmines  the subject  m a t t e r  of the second and third lec tures  of the given course .  
In the f i r s t  lec ture ,  the s imp le s t  model  and the language f ami l i a r  to phys ic i s t s  a r e  used to p re sen t  a b r i e f  e x -  
posi t ion of the l inear  theory of waves  in the ocean (with the exception of s tabi l i ty  waves) .  The contents of this 
lec ture  a re  requi red  for  understanding the two subsequent  lec tures  and a r e  l ikewise useful  for  es tabl ishing 
general concepts and terminology. 

LECTURE I. LINEAR THEORY OF WAVES IN THE OCEAN 

In this lecture  we shal l  cons ider  waves  of a hydrodynamic nature  in the ocean - namely ,  acoust ic ,  s u r -  
face ,  in ternal  and iner t ia[  waves ,  and a l so  Rossby  waves .  

1 .  O r i g i n a l  E q u a t i o n s  

The or iginal  equations a r e :  the Eu le r  equation (the momen tum-conse rva t ion  equation) 

dr1 
,~ ~7 .  = -  o~ , [Q l~] - v p  ~ - . ~ ? v z ,  (1-) 

where  u is the veloci ty  of the pa r t i c l e s ;  [1 is the angular  veloci ty  of the ear th ;  p is the p r e s s u r e ;  p is the den-  
sity; g is the acce le ra t ion  of gravi ty ;  ~7z is the unit vec to r  along the ve r t i c a l  coordinate  axis;  the m a t t e r - c o n -  
se rva t ion  equation 

- '  ~ div (~.) = 0; (2) 
at 

the equation of s ta te  (we neglect  heat  exchange and adiabatic  p rocesses}  
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.~* = 9(P), S = COlaSt. (3) 

In genera l ,  it is n e c e s s a r y  to solve Eqs.  (1) and (2) on a sphere ;  however ,  if the wavelength is much 
s h o r t e r  than the radius  of the ea r th  (which we shal l  a s sume) ,  then they may be t rea ted  in the plane that is 
tangent to the sphe r i ca l  ea r th  at the given point. The z axis of the r ec t angu la r  coordinate  s y s t e m  is d i rec ted  
ve r t i ca l ly  upward; the x axis is d i rec ted  along the pa ra l l e l  f r o m  wes t  to eas t ;  y is d i rec ted  along the mer id i an  
f rom south to north.  Let  us l inear ize  the equations for  the re la t ive  quieseent  s ta te  in which the densi ty p0(z) 
and p r e s s u r e  p0(z) a r e  functions solely of z. F o r  this purpose ,  we repl-aee p by p0(z) + p(x. y ,  z, t) and p by 
p0(z) + p(x, y ,  z,  t) in (1)-(3) and shal l  a s s um e  that the quant i t ies  p, p and u a r e  quanti t ies  of f i r s t - o r d e r  s m a l l -  
ness .  Then we obtain the following r e su l t s  f rom (1) and (2): 

On = _  2.[o . ]  _ l V p  -- g'---VZ; (4) 

O.~ + ?o div u + It X'P~ = 0, (5 )  
at 

Eq. (3) being wr i t ten  as 

d (% + ,o) 1 d 
d-/ ~ ~; (p~ + p) (6) 

under these conditions, where c 2 = c2(z) -- (ap/ap)s=const is the adiabatic sound velocity. However, taking 
account of the well-known relationship 

_a = A + (u v), (7) 
d t  8t 

we obtain the following resu l t  by placing u = {u, v, w} and taking account of the fact  that dP0/dz  = gP0: 

~-/-+ 8z = c  7" ~ ' - - g ~ '  " (8) 

The boundary conditions on the bot tom will  be: 

z = - / - t ,  w = O .  (9) 

On the su r face  of the wate r ,  the p r e s s u r e  is constant  - i .e . ,  the r ight  side of (8) is equal  to ze ro .  and, c o n s e -  
quently,  

z = 0 ,  0 ~ _  i)t . g f, o ~, = O. 0.0) 

In Eqs.  (4). (5), and (8) we p e r f o r m  st i l l  another  s implif icat ion:  namely ,  we shall  a s sume  that p0(z) is 
cons tant  eve rywhe re  where  it is not different ia ted (the Bouss inesq approximat ion)  and is equal,  say,  to P00 -- 
P0(0). E s t i m a t e s  show that for  the p rob lem cons idered  by us below this assumpt ion  is substantiated.  

The solution of Eqs.  (4), (5), and (8) shal l  be sought on the assumpt ion  that the t ime dependence has  
the fo rm e -iwt and that the va r i ab les  x, y,  and z a r e  separa ted :  

1 u --- - - P ( z )  U(x ,  v ) e  -t:~ v ~-= 1 P ( z ) V ( x ,  y) e -"~t, 
~oo ,%o (11) 

'w = i,o W(z) I I (x ,  y ) e  -~*t, p = P(z) II(x, v ) e  - ~ ' .  

Substituting (11) into (8), we fi - 

where  

~-= [P(z )  ~~176 W(z)|lI(x,y)e-i~t,q (12) 
Lc'-  e J 

az c~)  (13) 

is the so-called V~/isffl~" frequency or the frequency of free vertical oscillations of the particles of the liquid. 

The substitution of (11) into Eqs. (4) and (5) yields the following results when (12) is taken into account: 

WII = f b l I  
U - - i q V - - s 9 0 o t o ~ -  t~ 0x 
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where  the notation 

i Oft 
V +  iqU . . . .  , 

Oy 

p + , v , ) w  - = o, 
dz c'-' II 

dW i (oU .a.. OV ~ 1 1 , gp~ Wpool = 

(:4) 

q 2 f l z  2-q  s l n r ,  s 2 ~ : ,  2r 
. _ _ 4  = - -  " : :  ' , = - -  - C05  

( I )  t O  i t )  t , 3  

has  been introduced for  the geographic  latitude of the site.  The boundary conditions (9) and 
as  follows with allowance for  the notation (11): 

Wz=-u = ( P  _ g PooW)z=o = 0. (16) 

Equations (14) a r e  sepa rab le  in the va r i ab l e s  x, y ,  and z on the bas i s  of one of the two following assumpt ions ,  
each of which is fa i r ly  substant ia ted for  its case ;  we shall  l imit  ourse lves  to them in our subsequent  analys is :  

1) q and s a re  assumed  constant.  This  approximat ion  is valid for  acoust ic ,  su r face ,  internal ,  and 
iner t ia l  waves  over  whose length q and s vary  little. 

2) We neglect  t e r m s  containing s (i,e., fly). This  al lows us to analyze Rossby  waves .  

Turning  to the f i r s t  assumpt ion ,  we place (U, V, If) = (U0, V0, II0)ex p [i(kxx + kyy)], where  U0, V 0, 130 a re  
constant  (without r e s t r i c t ing  genera l i ty ,  one may place fl 0 = 1). Then f r o m  (14) we find 

Uo 1 k x + iqk>, + sto',oo-ff ; (17) 
(1 __q2) 

. , W \  
Vo =- " 1 .. ' ky--  iqk x -  tsq*"'?oo--~. (18) 

=(1--q") , 

0-5) 

(10) a re  wri t ten  

And, m o r e o v e r ,  we obtain the equations for  P and W (the p r ime  denotes  different ia t ion with r e spec t  to z): 

) (o; ,o , )  k x + i q k y  P+Poo __q2 N" I t 7 = 0 ;  (19) P ' +  g - - s  1 - - q  = 

( r k,;--iqkY)l___~ 1 [ ~' l i p = 0 "  (20) w + -  
�9 , ~oo #(l-q") c s 

H e r e  

~s _- k~ + k~. (21) 

2.  A c o u s t i c  W a v e s  

By c o m p a r i s o n  with the f requency w of the acoust ic  waves ,  12 and N a re  negligibly smal l .  The force  of 
g rav i ty  for  acoust ic  waves  in the ocean is  l ikewise negligible.  T h e r e f o r e ,  in Eqs.  (19) and (20) one may place 
s = q = N = g = 0. E x c l u d i n g  W f r o m  (19) and (20). we obtain 

p , ,  + (~,=:,c~(z) _ ~ 2 ) p  = 0 

which is the bas ic  equation in ocean acoust ics .  

The var ia t ion  of the sound veloci ty c (z) in the thickness  of the ocean is not large (no more  than by 5%), 
but it is e x t r e m e l y  essent ia l .  Specifically,  the p resence  of a min imum of c (z) at  a ce r t a in  depth leads to the 
fo rmat ion  of an acoust ic  waveguide (an underwater  acoust ic  channel) over  which the sound at low f requencies  
(for which the absorpt ion in the w a t e r  is low) may propagate  over  exceedingly g r e a t  d is tances .  The re  a re  data 
f rom expe r imen t s  on an invest igat ion of acoust ic  fields at d is tances  of 22,000 km f rom explosion sound sources  
and at a dis tance of 2800 km f r o m  tonal sources .  

3.  

W :  

S u r f a c e ,  I n t e r n a l ,  a n d  I n e r t i a l  W a v e s  

Neglect ing compres s ib i l i t y  (c = =o) and excluding I) f rom (19) and (20), we obtain the equation for  
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Wry | - , ~  14 ( uv ) '  -I- (~  -- ,v2)~'~l w = o, 

(9 , 
V--= V g ~ z z T i ~ .  

(22) 

a) Su r f ace  W a v e s .  In th is  c a s e ,  n e i t h e r  s t r a t i f i c a t i o n  of the  w a t e r  n o r  the  r o t a t i o n  of the  e a r t h  p l ay  a 
r o l e  (s = q = N = 0). F r o m  (22) we ob ta in  the  equa t ion  

d ~ W 
- -  -~ W = O. (23) 

dz" 

Having  e x p r e s s e d  P in t e r m s  of W in the b o u n d a r y  c o n d i t i o n s  (16), we ob ta in  

( ~ W~= _ u = gW - - - -~  W' = 0 (24) 

f o r  th is  e a s e .  W r i t i n g  the  so lu t i on  of (23) in the  f o r m  

W = c~ e k~ + c2 e -kz 

and s u b s t i t u t i n g  i t  into the b o u n d a r y  c o n d i t i o n s ,  we obta in  the w e l l - k n o w n  d i s p e r s i o n  equa t ion  f o r  s u r f a c e  w a v e s  
in an ocean  of f in i te  dep th :  

~2 = ~g th ~H (25) 

wi th  the w e l l - k n o w n  Limiting c a s e s  

:-.H~: 1, ~ 2 = ~ g ;  ~/:/<((1, ( , , /~=c=l/ ' f f -H=const .  

b) I n t e r n a l  W a v e s .  F o r  the t i m e  be ing ,  we s h a l l  a s s u m e  tha t  co >> .~2 and s h a l l  n e g l e c t  the e a r t h t s  r o t a -  
t ion .  E q u a t i o n  (22) c a n  be  w r i t t e n  in the f o r m  

d ~ W  ~3 1 - -  W = O . ~  (26) 
dz----V- " - ~ 

Let  us c o n s i d e r  two c a s e s  h e r e .  In the f i r s t  of t h e m  a s s u m e  that  the m e d i u m  is  unbounded and that  N = c o a s t .  
T h e n  Eq.  (26) is  s a t i s f i e d  by s o l u t i o n s  of the f o r m  W = W0ex  p (•  z) fo r  wh ich  

N z 
k* = ~,2 ~ k ~ = ~2 + k2. (27) 

0.)2 ) 

Using  ~ to deno te  the ang le  which  is m a d e  by the v e c t o r  k wi th  the v e r t i c a l ,  we w r i t e  the d i s p e r s i o n  equa t ion  
(27) in the f o r m  

sin 0 = ~,,,:N (~ = + 1). (28) 

Hence  i t  fo l lows  tha t :  

1) w a v e s  may  e x i s t  only fo r  o: < N; 

2) fo r  a s t i p u l a t e d  # a f r e q u e n c y  i s  uniquely  d e t e r m i n e d  by Eq.  (28). The  w a v e l e n g t h  (and th is  m e a n s  the 
p h a s e  ve loc i t y )  may  be a r b i t r a r y  u n d e r  t h e s e  c o n d i t i o n s .  

Hav ing  begun by tak ing  p = 1 in o r d e r  to be s p e c i f i c  (the wave  p r o p a g a t e s  in the d i r e c t i o n  of p o s i t i v e  z) ,  
we ob ta in  the fo l lowing  r e s u l t  f o r  the g roup  v e l o c i t y  by d i f f e r e n t i a t i n g  the reLa t ionsh ip  w = N ( ~ / k ) :  

v /'d~~ 
.. ~ I V  - v . .  

It  is  not  d i f f i cu l t  to v e r i f y  the f ac t  tha t  (vgrk) = 0 ( i .e . ,  Vg r i s  d i r e c t e d  normaL to k; s ee  F ig .  1, w h e r e  we have  
t a k e n  ky = 0). F o r  the p r e s s u r e  we  obta in  

P = -- ikz ~oo ~ Wo ei (kr-~ot). (30) 

We have  Vp = - i k p  which  m e a n s  the p r e s s u r e  g r a d i e n t  i s  d i r e c t e d  a long  k. 

T u r n i n g  to  Eqs .  (11) and us ing  117) and 118), we ob ta in  

u = - - - ~ - - V z  ~,, ~ c , = i t ,  W 0e i(k ..... o. 131) 
/ 
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Fig. i Fig.- 9. Figo 3 

for  the velocity of the part icles .  It is not difficult to verify the fact that (uk) = 0 (i.e.+ the par t ic les  move in 
the plane containing the vector  k and the z axis along Lines perpendicular  to k). 

The energy flux averaged with respec t  to time is determined hy the express ion 

I =  I ( p U *  + c . e . )=  l[,00N~Wor (32) 

The energy flux is directed along the group-veloci ty  vector .  As is evident f rom Fig. 1, for a wave traveling 
upward the energy flux will be directed downward, and vice versa.  

F o r  reflection f rom the boundary, say,  of the ocean bottom, the wave has interesting features if the 
bottom is inclined (Fig. 2). Since the frequency of the wave is conserved during reflection,  the wave vector  
kre f of the reflected wave must  make the same angle ~ with the ver t ical  as the angle in the incident wave, and 
it is determined by Eq. (28). Thus,  the angle of incidence here is equal to the angle of reflection, but relative 
to the ver t ica l  ra ther  than to the normal  to the surface.  

Fur the r ,  the reflected wave must  always compensate the component of the particle velocity in the in- 
cident wave which is normal  to the boundary. For  this purpose it is necessary  for  the velocities of the t races  
of the incident and reflected waves along the boundary to be identical. This means that the project ions of the 
wave vectors  of the incident and reflected waves onto the boundary must  be identical. Fo r  the case when both 
the normal  to the boundary and the wave vector  kinc of the incident wave lie in the plane of the diagram,  we 
have 

kincStn (~ - -  '~) = k.mfsia (~ + '~), (33) 

in such a way that the wavelength (the wave number) changes during reflection; this does not contradict  any-  
thing, since at the given frequency the wavelength may be a rb i t ra ry .  

I ~ t  us now consider  the case of a waveguide for  internal waves. Fo r  the time being we shall not re jec t  
the assumption N = const,  while the waveguide will be considered caused by the presence  of the surface and 
bottom of the ocean (the horizontal  bottom). The genera l  solution of Eq. (26) will be 

W = Cle ~jzz q- C28 -ikzz, 
(34) 

k .  = r; m" - -  1 �9 

Substituting it into the boundary conditions [which will again be wri t ten in the form (24)]. we obtain the d i spe r -  
sion equation 

gkz tg k z t t  = N + - -  m', (35) 

f rom which we find the allowable values for  k z .  

One of the solutions of Eq. (35) cor responds  to smaU kzH and will be equal to 6re assume tankzH ~ kz H, 
w<N) 

= " 1 / ~  - -  ms (36) 
ko+ V ~ - "  

It will immediately be evident what kind of a wave this is if we find .~0 f rom (34): 

o} 

+o = 

This is a surface wave in shallow water  having a propagation velocity c = ~,g-~'. Stratification of the medium 
in no way has any effect on it. In order  to find the other roots of (35), we note that for N = const  we have 
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p (Z) = P00 e-2uz, N 2 = 2r g ,  and since vH << 1, it follows that g / H ( N  2 - o92) ~ I / v H  >> i .  There fore ,  the roots  
will be very  close to 

k , ~ t t  = nT: (n  = ++_ 1, +_2, . . . ) .  

F o r  the horizontal  wave number we obtain the following resul t  using (34): 

n r. ( N '  1 "~- ,,o. 
: ' = ~ - \ ~ -  ] �9 

(37) 

The d ispers ion  curves  are  shown schematical ly  in Fig. 3. 

In the genera l  case  N = N(z) the problem can again be reduced to solution of Eq. (26) for  the boundary 
conditions (24). In each case ,  one of the waves turns out to be of the surface type (maximum of ]W] at z = 0), 
and there is a set of waves having ex t remal  points in the interval 0 < z < H. 

c) Iner t ia l  (gyroscopic) Waves. This type of wave may be obtained from Eq. (22) on the assumption that 
N = 0 (the liquid is homogeneous):  

W" +[4o_~ (P" k)'-"--~2] W=O... (38) 

For solutions in the form 

we obtain 

from (38); i.e., 

W = IV, exp ( • ih. z) 

k~ = __4 (o_ k)' -- .:-2 
O) Z 

(39) 

or  

,~=2p2 cos 0 (~ = - l). (41) 

where d is the angle between k and IL The value of p is chosen f rom the condition p cos d > 0. Thus,  the angle 
is fixed for the given frequency. The wavelength may be a rb i t ra ry .  We see that the proper t ies  of an inert ial  

wave are  very s imi lar  to the proper t ies  of the internal wave considered above. Specifically, for  reflection 
f rom the boundary kref  mus t  make the same angle with l~ as kinc does. Just  as in the case of an internal wave, 
we find 

d~, 2 0  k ~o 
~ g r = ~ = : ~  k k k '  vgrk = 0 .  (42) 

for  the group velocity. The group velocity is no rmal ' t o  the direct ion of propagation of the wave k. 

Finding the two horizontal  components of the part icle velocity and p, we d iscover  that the par t ic les  move 
in planes normal  to k along c i rc les  having the radius W 0 / s i n  ~. The energy flux is equal to 

l = ~"~ sin'--~ ~g" (43} 

It may be shown that in an inertial wave motions take place in such a way that the component of the 
Coriolis force lying in the plane of rotation of the particles is balanced by the centrifugal force. The com- 
ponent in the direction k creates a pressure gradient in the wave. 

In experiments it is inertial waves corresponding to } = 0 (w = 2~z) that are observed most frequently; 
these are frequently called inertial oscillations. It is possible that their prominence is caused by the fact that 
the waves of other forms are impeded by the presence of the stratification of the medium. 

d) Gravitational-Gyroscopic Waves. Equation (22) allows simultaneous consideration of both the stratifi-  
cation of the ocean (N ;~ 0) and the rotation effects (~ ~ 0). In the case N = const, we obtain 

_ k~ ..}_ 1 [4 (k o),  + .\;~ .:.o] = O, (44) 
m2 
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o r  

r ~-- N' sin" ,~ + 4~ cos 2 (/~o). (45) 

for  a wave stipulated in the form (39); here  ,9 is the angle between k and the z axis. In this case ,  we have 
waves which may be called gravi ta t ional -gyroscopic .  In (44) the te rm ky~y may be neglected in the expression 
k~ = ky~2y + kz~2 z if ky << k z (i.e., if the scale of variat ion of the field in the z direct ion is considerably smal le r  
than the wavelength in the y direction). Then, taking account of the fact that kz = kcos  ~, ~z = ~2 sin~a, we shall 
have 

~ = N 2 sin 2 ~ + 4~ cos 2 ~ sin' ~ (46) 

instead of (45). For  the same reason, the quantity i~y is usually neglected in considering the ocean as a wave- 
guide for gravitational-gyroscopic waves. In this Case, we obtain the following equation for W(z) for an a rb i -  
t rary  N = N(z) from (22): 

W " - -  -? iV --- 0 (47) 

having the boundary conditions 

W = : - - n = [  g W - ~  (1 -- q') W']z.0 = 0 .  (48) 

For  N = 0, we have a solution in the form of the combination exp (• k2z = ~2/(1 _q2) for purely inert ial  
waves. Substitution into the boundary conditions yields the charac te r i s t i c  equation for  kz: (g /kz)  tan kzH = 
(w2/~2)0 - _ q2). F r o m  this we obtain 

r 

o~ ~ = gHl_ - - -~ ,  m ~ - 4 c ~  = gH~2 or 
(49) 

o'  = ~* g H  + 4 o~. 

for  a z e r o w a v e  (kzH << 1). Thus, l ongwaveshavea  dispers ion of the propagation velocity when the ea r th ' s  
rotation is taken into account. 

F o r  ~ < 2~z we have ~2 < 0 which cor responds  to nonpropagating waves which may be manifested locally 
and may propagate along the boundaries of depth differentials ,  along coast l ines ,  etc. 

4 .  R o s s b y  W a v e s  

The essen t ia |  factor  causing the presence of Rossby waves is the variat ion of a ver t ica l  component of 
the Coriol is  force as a function of the latitude r Fo r  the simple descript ion of these waves,  one may again 
r e so r t  to the equations wri t ten in rec tangular  coordinates in the oscula tory  plane without assuming,  as  in the 
previous sect ions,  that the Coriolis  force 2~ s in~  is constant  but taking the next (linear) t e rm of its expansion 
in powers of y (x = y = 0 is the point of osculation between the sphere and the plane): 

2,0. sin ? ---- 2Q (sin ~,0 + cos 9oA?) ---- 2 ~ sin ?o + ~Y; (50) 

= 2Qcos ~o (51) 

Here  ~0 -= ~x=0,y=0; a is the radius of the earth.  Henceforth the "0" subscr ipt  of ~ will be dropped. Cons ider -  
ation of the te rm ~y in (50) is frequently called considerat ion of the 3-effect.  and in this case the oscula tory 
plane is called the "E-plane, while the analysis of Rossby waves on the 3-plane is called /~-plane approximation. 
We shall likewise limit ourselves  to this approximation. 

The fact  that in Eqs. (14) for  kz >> ky the t e rms  containing s (i.e., the horizontal  component fly of the angular-  
velocity vector  ~) may be neglected is a fact  that great ly  simplifies things. Then in the last  equation in (14) 
the left side may depend only on z, while the right side may depend only on x. Setting each of them equal to 
the constant ~ (the separat ion paramete r ) ,  we obtain the following sys tem of equations f rom (14) (it is likewise 
natural  that e = ~): 

i 0 I [  
U - iqV = 

ox'  (52) 

V - iqU '~ Oy' 
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ou + s  
dx 8y = i ~,~II; 

P' + poo(w' -- NI)W = O, 

W ' +  ~ P = O .  
Poo 

(53) 

F r o m  (52) we obtain the following equation for  V by e l iminat ing U and 1t and assuming  that  d q / d y  = / 3 / w :  

0---~ + 0-~ -~+-o ,~x  q- uo-~(1 - -  r ~) V = O .  (54) 

It may be shown that fo r  operat ion in the fl-plane we mus t  a s sume  w << .q, q2 >> 1. T h e r e f o r e ,  unity may  be 
neglected in c o m p a r i s o n  with q2. Let us seek  a solution for  (54) in the fo rm of plane waves  

V = l/~ exp [i(k~,x + kyy)]. (55) 

Then f r o m  (54) we obtain the d i spe r s ion  equation 

k]. + k]. + ~ kx + 4 ,o_, sin' ? = 0, (56) 

o r  

(s k.~. +- 2o~1 + k~, = ~ 4 .-o2 sin 2 ?. (57) 

Here  e is an eigenvatue of the s y s t e m  of equations (53) having the boundary conditions (16). 
f r o m  (53) and f r o m  the boundary condit ions,  we obtain the equation 

with the boundary conditions 

E[iminat ing P 

w" + k ~ w  = o, k] = ~ ( x ,  - ,0") (58) 

I~=_H =- ( g W  - 1- W']/~=o= O. 
The la t te r  coincides with Eq. (26) and with the boundary conditions (24) if we place e = ~2/w2. 

As a resu l t ,  we have 

(59)  

% = l:gH (60) 

fo r  the ze ro  mode and 

n 9 T ~ 

-:. ---- (61) H~(N'--~o ') 

for  the n-th mode.  Let  us now turn again fo r  Eq. (57) f rom which many in teres t ing  co ro l l a r i e s  der ive .  

In o rder  fo r  Eq. (55) to r e p r e s e n t  conventional  propagat ing waves  (kx and ky a re  real ) ,  the r ight  side in 
(57) mus t  be g r e a t e r  than zero:  i .e . ,  

o r ,  taking account  of the value of fi f r o m  (51), 

_[5 ~ 2 ~/~o. sin ~ (62) 

1 
tg ~ < 2 a  ~ - - - - ~ "  (63) 

Thus ,  for  a s t ipulated f requency w waves  may exis t  only in a band containing the equator  fo r  a s i te  latitude 
sa t i s fy ing condition (63). The higher  r the n a r r o w e r  the band. F o r  a st ipulated latitude ~o, the f requency 
w mus t  be lower than the c r i t i ca l  f requency Wcr, where  

1 
~'~ = �9 (64)  

2 a VTtg ? 

F o r  a z e r o  ( "ba ro t rop ic , )  wave e = 1 / g H ,  

V g H  
~r = (~ < ~cr). (65) 

2 a t g ?  
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For  waves of higher o rde rs  ("baroclinic" waves),  E is substantialLy g rea te r ,  and consequentLy O~cr is Lower 
and causes  the band in which waves exist  to be substantially narrower .  

Note fur ther  that Eq. {57) may be satisfied only for kx < 0 (i.e., waves may propagate onLy f rom east  to 
west). F r o m  (57) it is Uk~wise c lear  that for  a stipulated w the tip of the vector  k lies on a c i rc le  with its 
center  at the point ky = 0. kx = - / ~ / 2 ~ .  The radius of the c i rc le  is equal to (fl/2w) 2 - 4 e ~  2 sin 2 r Assuming 
that w and ~ are  far  f rom the cr i t ica l  values, Let us negLect the second t e rm in this express ion and consider  
a barot ropic  wave. It is not difficuLt to show that the velocity of the particLes in the xy plane is normal  to ~. 
The dispers ion equation (56) is wri t ten as 

O) = § k,:. 

F o r  the group velocity we have 

vgr ' Oky, = ~- (cos 2 7, - -  sin 2 ",-), (66) 

where Vg r is directed f rom the tip of the } vector  to the center  of the c i rc le .  For  7 = 0. Vgr is directed oppo- 
site to }. 

L E C T U R E  2. M U L T I W A V E  I N T E R A C T I O N S  IN T H E  O C E A N  

Nonlinear interactions between waves play an important rote in the formation of wave fields in the ocean. 
Thus,  for  example,  one of the possibLe mechanisms for  the generat ion of internal waves is their resonance 
interaction with surface waves. The existence of a resonance triad consist ing of two surface waves and one 
internal wave may be proved by the following simple reasoning. In Lecture 1 it was demonstrated that the 
maximum possible frequency of the propagating internal waves is the maximum Vgis~l~ frequency in the ocean: 
N2m = gmax{(1/po)(dpo/dz)}.  This frequency is fair ly Low (10 -2 Hz or lower), while the frequencies of surface 
waves are  substantially higher  {10 -1 Hz or  higher). It is obvious that the synchronism conditions may be ful-  
f i l ledfor  the difference frequency wl(kl) - o~2(k2)betweentwo surface  waves that differ  little in their  lengths 
(k 1 ~ k2) but propagate in a rb i t r a ry  di rect ions:  ks = kl - k2, ~3{k3) = ~vl(kl)- ~v2(k2). In [2] a synchronism curve 
was obtained (see Fig.  1) on which the tip of the vector  k2 satisfying the synchronism conditions for  the f i rs t  
mode of the internal wave must  lie. The synchronism curves  for the higher modes are  situated inside the de-  
picted curve and approach a c i rc le  having the radius kl with increas ing mode number.  

F o r  the resonance tr iplet  of waves kl, k2, k3 one may calculate the interaction coefficient and write a 
three-wave sys tem of abridged equations. However,  in oceanology, unlike optics, acoustics,  andradio  physics,  
monochromat ic  waves are  encountered ext remely  rare ly .  The spec t rum of the wave is usually continuous in k. 
There fore ,  along with the original  resonance triad, many other wave tr iplets will participate in the interaction 
(for example,  any pair  k 2, k 3 tying on the synchronism curve wilt interact  in a resonance manner  with the wave 
kl). Specular reflect ion of some resonance tr iads reLative to one of the wave vec tors  will likewise lead to a new 
resonance triad of waves. Moreover ,  there exists a so-cat ted "almost  resonance"  tr iads - i . e . ,  tr iads of waves 
for  which the synchronism conditions are fulfilled approximately:  A = o~ 1 - ~2 - ~ ~ 0. The effect of these 
interact ions is likewise substantial  for  smal l  detuntngs. ActualLy, for  the corresponding three-wave sys tem of 
equations with the detuning A it is not difficuLt to show by anaLyzing the integrals of the sys tem that the maxi-  
mum possible energy toss of the ene rgy -ca r ry ing  decay wave is 

= - - , ,  {1) E m (~)  H 1 H ~l ~8 

where H is the total sys tem energy;  ~2 and ~3 are  the interaction coefficients in the equations for nondecay 
waves. The "aLmost resonance"  c r i t e r ion  for the sys tem of waves:  A / ~  < 1 / 2 derives f rom (1). 

1.  S p e c t r a l  F o r m  o f  t h e  E q u a t i o n s  

Thus,  at  Least for  oceanoLogy problems,  it is of in teres t  to investigate muitiwave interact ions on the 
basis  of the spectraL method of solving nonlinear wave problems expounded in [3, 7, 8]. The principal idea 
of this method consis ts  in the following. Let there be a cer ta in  nonlinear sys tem of part ia l  differential  equa-  
tions and in the linear approximation without allowance for dissipative p rocesses  let the solution, for  example, 
of the initial problem be representable  in the form of a superposit ion (spectrum) of harmonic waves propagating 
without any change in shape: 
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:Fig. 1 Fig. 2 

] ' Z  . . . .  . w(r,  z, t) = a ,  .~k ( ) exp ( i k r  - -  i ,o~Odk. (2) 
�9 ~ I ,  +_2 .... 

Here  we have wr i t ten  out the r ep re sen ta t i on  of a ce r t a in  des i red  quantity (for example ,  the ve r t i ca l  velocity 
component  of the par t ie te~  of the liquid) in o rde r  to be specif ic ;  r - {x, 'y} and z a r e  the space  coord ina tes  and 
a r e  a s sumed  to be Car t e s i an ,  although depending on the s y m m e t r y  of the p rob lem they may a l so  be expanded 
in spher ica l ,  cy l indr ica l ,  and other  ha rmon ie s ;  k is the hor izontal  wave vec tor ;  a~.dk is the complex  ampli tude 

- -1 /  12 �9 V - -b '  V Y 
of the wave (a k =(ak) ); Wk(~ k = -~l~) and ~k  = ~p~v a re  se t s  of na tura l  f requencies  and eigenfunct ioas of the 
co r respond ing  boundary-wave  p rob l em  for  any fixed k. 

In the nonl inear  case ,  a s suming  the se t  of eigenfunctions to be comple te ,  the solution of the init ial  p r o b -  
lem may likewise be sought in the f o r m  (2) but with ampl i tudes  which depend on t ime t. The s y s t e m  of equations 
fo r  the ampl i tudes  which is equivalent  to the or iginal  s y s t e m  of pa r t i a l  d i f ferent ia l  equations is wr i t t en  in the 
f o r m  

�9 

. . . .  (3)  

a ;  (o) = %, 

A VlV2-P V t ~ V VlV2-V 
where  ~ is the nonl inear i ty  p a r a m e t e r ;  ktk2_ k = Wkt + w - ~k  is the detuning; Dklk2_ k a r e  the in terac t ion  

coeff ic ients ;  the init ial  ampl i tudes  a ~  a r e  de te rmined  natural ly  f r o m  the initial conditions fo r  the or iginal  s y s -  
t em of equations.  The pr inc ipa l  difficulty in wri t ing such a s y s t e m  res ides  in calculat ing the in teract ion coe f -  

D vtv2-v In [9, 10] these coeff ic ients  w e r e  identified with the coeff ic ients  of expansion of the Hami l ton iaa  f ic ient  klk2-k" 

of the or iginal  s y s t e m  of equations in powers  of a~. However ,  for  specif ic  calcula t ions  it is difficult  to obtain 
the Hamil ton[an,  and addit ional diff icult ies  develop during cons idera t ion  of the at tenuation of the waves .  T h e r e -  
fo re ,  it is p r e f e r a b l e  to der ive  the equations in s p e c t r a l  f o rm d i rec t ly  f rom the or iginal  sy s t em of par t i a l  d i f -  
fe ren t ia [  equations.  In [3], this p rocedure  was ca r r i ed  out for  a s y s t e m  of hydrodynamics  equations for  an 
i ncompres s ib l e  fluid in an oceanic waveguide with al lowance for  only th ree -wave  in terac t ions  (i.e., in the 
quadra t ic  approximat ion) .  

The s y s t e m  of equations (3) is substant ia l ly  simplif ied in the case  when for  t = 0 the s p e c t r u m  of a~ is 
d i sc re t e .  Then and at  subsequent  t imes  the s pec t rum r e m a i n s  d i sc re t e  (only waves  of the type kl = Zmik i 
develop,  where  m i a r e  a r b i t r a r y  in tegers) ,  and (3) goes  over  into a s y s t e m  of ordinary  d i f ferent ia l  equations:  

= D ~ _ /  •  [*~=Js-*t" ~4) b~ "~:1 ~ " *"-" ~tz"' b"'~ exp (--  i ~' . . . .  t) 
l ,  ".t, ~s 

In [3] the s impl ic i ty  of applying asympto t ic  methods of solving pa r t i a l  d i f ferent ia l  equations (abridged 
equations) to the s y s t e m  (4) was noted. Let us demons t r a t e ,  for  example ,  the method of obtaining the nonlinear 
c o r r e c t i o n  to the f requency fo r  a ha rmonic  wave in a medium having s t rong d i spers ion .  A s s u m e  that for  t = 0 
there  is only one wave b~, and fo r  s impl ic i ty  a s s u m e  there  is no cubic nonlineari ty.  Then for  large values of 
detuning A v l v 2 - v  al l  combinat ion ha rmon ic s  of the wave b~ wilt  be of the o rde r  of r and the s y s t e m  (4) will  be /s - j  
wr i t ten  as follows with al lowance for  jus t  the pr inc ipa l  t e r m s :  

" b= b_, exp (--  i• t), A,, ~ '  2o;, 
vl 

b~' ~ . . . . . .  "'= ----- ~= w= ~o~ exp (i A., t), D~' = D "~'2_~_I, . . . . .  Dj' = DzI_~. ...... 

607 



After  integration of the second equation by par ts ,  substitution into the f i rs t  equation, and averaging,  we obtain 
the following resul t  accura te  to e~: 

whose solution cor responds  to a harmonic  wave having the frequency 

The numerical  solution of the sys tem of equations (4) by the reduction method, in which the abridged 
sys tem involving an ever  g rea te r  number N of equations are  solved successively until the solution is r e p r o -  
duced with a sufficient degree of accuracy ,  allows the p rocess  involving the interaction of waves over fairly 
large time intervals to be described.  It is desirable  to premise  the section of an optimal set of N waves on a 
pre l iminary  analysis  such as that expounded, for example, in [3]. At present ,  there is a p rogram which 
allows isolation of all possible interacting tr iplets km = +kl • kj, calculation of the interaction coefficients 
between the waves of each triplet,  and the solution of the stated Cauchy problem for any stipulated sys tem 
of surface and internal  waves kl, k2 . . . . .  kn of an oceanic waveguide. We shall  now go over to an exposition 
of the resul ts  of computation according to this program.  

2. I n s t a b i l i t y  of  T h r e e - W a v e  I n t e r a c t i o n s  

A s a resul t  of the calculat ions,  it was revealed that multiwave interact ion may have a substantial  influence 
on the redistr ibut ion of energy among waves of the resonance triad. We called this effect  instability of t h ree -  
wave resonance interactions.  

The instability may be self-developing when it appears as a resul t  of the excitation of combination waves. 
Its analysis  was ca r r i ed  out on the following model. Assume that for  t = 0 the amplitudes of only two surface 
waves 1, 2 which are  in resonance with the different internal wave 3 are  nonzero. During the interaction p r o -  

3 

cess ,  combination waves develop having k = ~, mik i among which there may be resonance t r iplets ,  "almost  

resonance"  tr iplets and nonresonance triplets.  If only nonresonance wave tr iplets develop, then their effect 
weakly influences the period of the p rocess  involving pumpover of energy between the waves of the resonance 
triad. The maximum amplitudes of the original  wave tr iplet  remain  pract ical ly  unchanged. Note that this p r o -  
cess  may be descr ibed in the f i r s t  approximation by introducing a nonlinear cor rec t ion  to the frequencies of the 
original  wave tr iplets .  In [8] it is noted that in cer ta in  exceptional cases  (for example,  when the phase t r a j e c -  
tory for  the original  wave tr iplet  is close to a separatr ix)  the effect of nonresonance interactions is intensified 
and may resu l t  in a fundamental change in the cha rac t e r  of the solution. 

Additional resonance interact ions lead to a substantial  change both of the charac te r i s t i c  period of the 
three-wave p rocess  and of the limiting amplitudes of the waves. Under these conditions, the amplitudes of 
the displacements  of the combination waves likewise become large. 

Along with self--developing instability, a "priming" instability of a resonance sys tem of waves relative 
to smal l  perturbat ions in the initial spec t rum is a lso possible.  This instability is s t ronger  and is more  f r e -  
quently encountered than the self-developing instability, since one can always find waves among the pr iming 
waves which a re  in resonance with the original  ones. 

As an example,  let us consider  the sys tem of waves which is displayed in Fig. 2 and is obtained f rom the 
original resonance triad 1, 2, 3 by multiple specular  reflect ions relative to the wave vec tors  1 and 2. As has 
a l ready been noted above, all  of the tr iads obtained in this manner  will be resonance tr iads.  In Fig. 2 the 
waves 1, 2, 4, 6, 7, 10 are surface waves,  while the remaining ones are  internal waves. At the initial time, 
the unit amplitudes of the surface waves 1, 2 were stipulated, while the remaining surface waves had an ampl i -  
tude of 0.001 (priming), and the amplitudes of all of the internal waves were equal to zero.  

The time variat ion of the amplitudes of the waves is shown in Fig. 3 where the dashed curve depicts 
the same variat ion for  interaction of only the waves of the principal  triplet.  F r o m  the dependences presented 
it follows that the three-wave interaction of surface and internal waves in the ocean is unstable, and the th ree -  
wave approximation remains  valid only on a time interval of the order  of the charac te r i s t i c  time T of the or ig i -  
nal process .  This resu l t  may be clarified by considering the process  of three-wave interaction of the principal  
tr iplet ,  since for  this tr iplet  it follows f rom the conservat ion integrals  that at time t = T (see likewise Fig. 3) 
all of the energy of the wave sys tem is mainly contained in the surface wave 2. At this t ime, the tr iplets  
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, Vll i 
b 

Fig. 3 

(1, 2, 3) and (2, 6, 8) are  pract ica l ly  of equal justification, and therefore henceforth the wave 6 is also inten- 
sively excited along with the wave 1. A more  detailed exposition of this is given in [3]. Note that the complete 
t r ans fe r  of the sys tem energy to waves 2 is caused by the low rat io  between the frequencies  of the internal 
and sur faces  waves (w3/wl << 1)o In the case of interaction of waves having close frequencies (for example, 
p lasma waves),  this type of instability is conserved but will develop more  slowly, since in this case  the pr in-  
cipal wave tr iplet  remains  isolated af ter  one cycle T. But some portion of the energy will be t ransfe r red  to 
other waves during each cycle.  

Note likewise that muir[wave interact ions may lead to enr ichment  of the angular  spec t rum of the surface 
waves when they interact  with internal waves,  and also to more  effective generat ion of internal waves (see 
Fig. 3). 

3.  M o d e l  O n e - D i m e n s i o n a l  E q u a t i o n  f o r  N o n l i n e a r  W a v e  T h e o r y  

Certa in  multiwave p roces se s  in the ocean may be investigated using the example of the s implest  one- 
dimensional  equation which we chose to be 

~ + L I J ~ - - ~ u 0 - U  U(x, 0 ) = F ( x ) ,  (5) 
Ot Ox' 

where  L is a cer ta in  l inear opera tor  descr ibing the possible dispers ion and attenuation of the waves;  e is the 
nonlinearity pa ramete r .  The spect ra l  form of Eq. (5) is obtained trivially (see [8]) and has the following form 
in the case  of a d iscre te  wave spect rum:  

where Yn is the attenuation coefficient. The simulation of any par t icu lar  types of waves is accomplished by 
changing the d ispers ion  law. Thus, for  acoust ic  waves Wn = c0kn, the Kor t eweg-de  Vries (KDV) equations a re  
Wn = -fi(kn) 3. Below we shall  likewise use the d ispers ion taws shown in Fig. 4 (curve i cor responds  approxi-  
mately to the d ispers ion of an internal wave; curve 2 cor responds  to the sol i tary resonance of the triplet of 
waves k0, k0, 2k0). 

Using the example of the KDV equation, the efficiency of solving the spec t ra l  equations by the reduction 
method was checked in [8]. Fo r  this purpose,  the dis tor t ion of a sinusoidal wave in time was t raced,  and the 
resul ts  of the calculation were compared with those obtained in [11] by d i rec t  numerica l  integration of the KDV 
equation. The solution of the spec t ra l  equations for  20 equations f rom (6) led to complete agreement  with the 
calculat ions car r ied  out in [11]. 

Note that the same type of resul t  was obtained for  surface and internal waves in shallow water  on the 
basis  of solving the sys tem of equations (4) in the case of a unidirectional and one-mode spec t rum of waves. 
The resul ts  of the calculation a re  fairly close to those obtained in [11]; however,  for  an increase  in ocean depth 
(kI-I > 1 / 2 0 )  the difference became perceptible.  Moreover ,  for  a fair ly pronounced nonlinearity (ka > 1 / 5 0 )  
the picture was distorted due to the effect of nonresonance interactions with higher modes of internal waves. 

Thus,  the applicability limits of the KDV equation for  surface and internal waves in shallow water  (this 
equation has been used widely in a number  of papers ;  see, for  example,  [12]) require  fur ther  refinement. 

4.  I n t e r a c t i o n  o f  W a v e  P a c k e t s  

Let us go over to an analysis  of the interaction of initially quasimonochromat ic  wave packets. Assume 
that for  t = 0 there is a sys tem of waves having an energy concentrated near  k 0. If the wave k 0 is at  resonance 
with the wave 2k0, while the higher harmonics  are  nonresonance harmonics ,  then it is usually assumed that 
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the interaction of quasimonoehromatic  packets is analogous to resonance interaction of monochromatic  waves 
k0, k0, 2k 0. We considered this process  using the following model. In the original equidistant spect rum of 
waves having a subdivision interval Ak = k 0 /15 ,  only the amplitudes of the waves having the numbers 12 < n < 
18 a re  nonzero at the initial time. Then the sys tem of equations (6) was solved by the reduction method. 

The resul ts  of the calculation showed the interaction process  is complex and i r r egu la r  in cha rac te r :  all 
the waves of the d i spers ion- f ree  segment  (resonance interactions) and f rom a cer ta in  intervaL having a low 
dispers ion (nalmost resonance~ interactions) are  excited to an equal extent. The time variat ion of the wave 
spec t rum in the case  of a d ispers ion law corresponding to curve 2 in Fig, 4 is i l lustrated by the spec t rograms  
(Fig. 5), where the spec t rum is depicted as continuous for the sake of cLarity (the dashed.dot  curve is for t = 0, 
the dashed curve is for t = 25, and the solid line is for  t = 100). The time is measured  in periods T O of the wave 
k 0. The bottom spec t rog rams  shows the spect rum averaged over the entire caLculated time interval (0 to 500). 
A compar ison with the case of interaction of monochromatic  waves demonstrated that the resul ts  coincide only 
on the initial time interval which is of the order  of the charac te r i s t i c  interaction time of the resonance triad 
[(1/15) c in our case]. Naturally,  this interval widens when the width of the initial spect rum of the wave is r e -  
duced, the d ispers ion is intensified, and the nonlinearity is reduced. In the case  of a d ispers ion law c o r r e -  
sponding to curve 1 (Fig. 4), the average spec t rum is pract ical ly  uniform over the entire d ispers ion- f ree  
late rva i. 

Note likewise that the spect ra l  method allows the p rocess  by which equilibrium spect ra  of a large group 
of waves reach a steady state to be t raced for excitation of la rge-sca le  motions by external  sources  in the 
presence  of strong absorption in the shortwave range. Th e specific scheme for  solving a problem of this type 
is given in [8] where the example of a one-dimensional  equation (5) is used to investigate the establishment of 
the limiting wave s p e c t r u m .  

Thus,  in investigating nonlinear wave p rocesses  by asymptotic methods one should not forget  the possible 
substantial  effect of multiwave resonance and "aLmost resonance"  interactions on the behavior  of the process .  
This effect may lead to instability of the traditional three-wave interaction in a continuous wave spectrum, the 
t ransformat ion  and expansion of spectral ly narrow wave packets,  etc.;  this substantially limits the time in ter -  
val suitable for  the applicability of asymptotic methods. In this connection, the spect ra l  method for the numer -  
ical solution of the equations of nonlinear wave theory would appear to be effective; this method allows the non- 
Linear interaction p rocesses  to be traced over  fair ly long time intervals.  

L E C T U R E  3. I N T F R A C T I O N  OF W A V E S  W I T H  N O I S E  

i .  I n t r o d u c t i o n  

Waves of var ious types propagate in the ocean: surface and internal gravi tat ional  waves,  surface capi l -  
lary waves,  acoustic waves,  Rossby waves,  and inertial  waves.  The nonLinear effects of the interaction of 
waves Lead to an exchange of energy between the waves. As a resuLt, energy fluxes f rom oscillations of one 
type to others develop in the ocean, and a cer ta in  energy distribution over the degrees  o f  f reedom is e s t ab -  
lished whose knowledge is important  for  an understanding of the behavior of the ocean as a whole treated as 
some physicaL syste m . 

An important  aspect  of this overal l  probLem is the problem of the propagation of a weakLy nonLinear wave 
in a region perturbed by noise that is treated as a random ensemble of waves. The present  Lecture is devoted 
prec ise ly  to an analysis  of this problem. Based on the resul ts  obtained, one may in principle also consider  
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a different  problem: namely,  the clar i f icat ion of the cha rac t e r  of the behavior of the noise spec t rum in an 
irte rtia L frequency Late rva L 

Nonlinear wave- in terac t ion  effects which lead to an exchange in energy between waves may cause a t tenua-  
tion of a wave of finite amplitude propagating through a region with intense noise. 

2.  G e n e r a l  E x p r e s s i o n s  f o r  t h e  A t t e n u a t i o n  C o e f f i c i e n t  

Let us cons ider  the case  in which a regula r  plane wave of finite amplitude ak(t ) exp (ikx - io.]~t) propagates  
in a region of the medium which is perturbed by intense noise. For  simplici ty,  we shall assume that it is a 
d i sc re te  sys tem of traveling plane waves of the form 

Cq eiqx-i 'qr (qt = O, 5= 1,..., +-- or 

which propagates  in all possible direct ions.  The amplitudes are  assumed to be real ,  so that 

* = c _ q ,  to = - -  (1 )  C q - -q  COqj 

and random, so that ~'q = 0, cq(t)c~(t') : R~(t - t ' ) ,  where R~ is a corre la t ion  function of such a fo rm that for 
a sufficiently smooth function f ( t ) the  relationship 

co  

( [ . )  ~'~ (t) d~ --- IV~ .1' [ (,) at. N~ R:, ( ) ,  (2) 
o 

is satisfied,  where rq is the cor re la t ion  time. It As assumed that there is one wave per solid angle ~2 0 = k~/k~ 
(i.e., k~ is an area on the surface of a sphere having the radius k0, whose size cha rac te r i zes  the scale of the 
angular  correct ion) .  I n o r d e r  to be specific,  we assume that the amplitude of the wave is a quantity of the same 
order  of magnitude as are  the spec t ra l  amplitudes of the noise. 

In the second approximation,  the nonlinear interactions of the waves may be described by an equation of 
the form [13] 

y,  = ~ V**, ,, gh' g,- exp [i (%, Jr r - -  %) t], (3) 
t / ' - -  k - - k '  

where Vkk,k, is the interaction potential; Yk(t) are  slowly varying amplitudes which are assumed to be no rma l -  
ized in such a way that the relationship 

y,y** = N,  = $k/% (4) 

is satisfied; here $,  is the energy density of the k-wave, and it is also convenient to introduce the Mach num- 
ber :  

~, k~ ko ---- $ ,  ko 3 ~ = p c ~ AI~. 

We shall assume that the noise field is stipulated while neglecting the variat ion of its average c h a r -  
ac te r i s t i c s  as a resul t  of [nteractiorl with the isolated wave amplitude ak (i.e., we shall t rea t  it as a Large 
r e s e r v o i r  whose energy is large in compar ison with the energy of the considered wave). This approximation, 
which, as it were ,  cor responds  to the pa rame t r i c  approximation, allows linearization of the nonlinear equa- 
tion (4), since one of the mult ipl iers  of the quadratic t e rms  turns out to be a well-known pa rame te r  - the 
stipulated amplitude of the noise-field wave. As a resul t ,  the problem stated can be reduced to the linear 
problem of propagation of a plane wave in a stat ist ically inhomogeneous medium created by noise perturbations.  
In order  to solve this problem, it is convenient to apply the L i f sh i t s -Rozen t sve ig  method [14] according to 
which the amplitude of the considered wave must  be represented in the form of the sum of its average magni-  
tude and a fluctuat~onat cor rec t ion :  

a , - -  a,  ,~-b,, 

where bk = 0. 

Thus, the amplitude of a wave propagating in the direct ion q is, in general ,  made up of three par ts :  

where Cq is the stipulated amplitude of the noise wave. Substituting this express ion into Eq. (3). we obtain 
the equation 
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v~ = ~ V,q.~.(~,~,q. + cr + b~.)(J,a,r + cr + be.) exp [i(%. + ,%. - ~'~)tl. ( 6~ 
qs 

q~q--q' 

After  averaging this express ion with allowance for  the fact that c k, = 0. bq, = 0. we obtain the following 
resul t  for q = k, q '  = k ' ,  q" = k" = k - k ' :  

an-- ~ ~.,,~b.,c,.e'", (7) 
j~c 

where Ax k = x k, + Xk. - x k. Note that the two t e r m s  which are  on the average nonzero (namely, the t e rms  

proport ional  to eq,Cq, and bq,bqn) are  not wri t ten out in the right side of this equation. 

The f i r s t  of them cor responds  to interaction of the n o i s e - n o i s e  type and therefore  does not apply to the 
considered effect of interaction of a wave with noise; the second is a quantity which is of a higher order  smal l -  
ness in the wave amplitude. 

Note that along with Eq. (7), which descr ibes  the variat ion of the regula r  par t  of the amplitude a k of 
the considered wave due to its interaction with noise within the f ramework  of the given approximation, one may 
write still another equation for the average amplitude; this equation is obtained after  averaging of Eq. (6) in the 
same approximation as that used for Eq. (7) but for q = 2k, q '  = q" = k and descr ibes  the effect of the develop- 
ment and growth of the second harmonic of the considered k-wave as a resul t  of this sel f -act ion:  

= ~ ~a,., a aa exp 

Now subtracting Eqs, (7) and (8) f rom Eq. (6) wri t ten for  qw = k, q '  = q - k, we obtain the equation for the f luc-  
tuation par t  of the wave amplitude which develops as a resul t  of its interaction with noise: 

- i , ~ -  t ( 9 )  Dq -~- V q . q _ k ,  a c q _ k a # e  ~ , 

where A~q = Xk + ~ q - k -  Wq. T e r m s  with factors  of the type akbq_ k and Ckbq_ k are  quantities of higher order  
of the wave amplitude and are  therefore  dropped. The t e rm which is proport ional  to the product  ekeq_kand which 
descr ibes  the interaction of noise waves is mutually canceled with the t e rm ~q in the left side of  the equation 
within the f ramework  of the considered approximation (the react ion of the wave on the noise field is neglected). 
Substituting the express ion  for  bkv into Eq. (7), we rewri te  it in the form 

�9 t 

~ , =  .~ .V , .v .  ~. c v .  d t ' V , r _ , . . ~ c _ , . a ~ g ' )  " ~  �9 (10) 
~oo 

Here A ~  = w k, + r - r k, AO~k. = x_ k, + x k -- U:k.. 

By virtue of condition (1), w_ k = -Wk, and therefore  we obtain 

a t ~ k _  r = - -  At~ k. 0 . 1  ) 

Taking Eq. (2) which descr ibes  the corre la t ion  charac te r i s t i c s  of the noise into account along with Eq. 0.1), we 
obtain the equation for a k f rom 0.0) with allowance for the fact  that C_k, = Ck,:* 

t 

a. = ~ Vaa'a-vV.-v , -v , .  j" dt" e 's~*e-c' R~,a,(t). (12) 
k" --0o 

Note that Eq. 0-2) is essent ial ly  the integral  equation for  the averaged wave amplitude; in principle,  it 
allows the se l f -consis tent  solution to be derived for  the amplitude of a wave propagating in the noise field but 
not at a l l  the cor rec t ion  to its unperturbed value. 

As is evident. ~k is determined by the cor re la t ion  proper t ies  of the noise field and the form of the in te r -  
action potential charac te r iz ing  the coupling between the wave and the noise. We seek the solution for a k in the 
form ak = ak eifit, where a~ is the unperturbed value of the wave amplitude. 

Then f rom Eq. (9) we obtain the following result  while likewise taking into account the form of the c o r -  
relat ion function stipulated by Eq. (2): 

i~k= ~. I/' ( dt'd~a(t-"')Nk, e '~(t-c) (13) 
a" t "--*iz, 
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Here V 2 = Vkk,k_k,. Vk_k,k,k; for resonance interact ions,  V 2 = I Vkk,k.  t 2. In view of the smal lness  of flk which 
is proport ional  to the square of the interact ion potential,  one may assume that eiflk(t-t ') = 1 which allows inte-  
grat ion to be per formed:  

;f' exp ~(i Aw k ":k') -- 1 (14) 
e ~ ' ~ d i = - ,  iA~ k 

Isolating the real  and imaginary par ts  of flk r, we obtain the following general  express ions  for the d i s -  
pers ion  cor rec t ion  to the frequency fi~ and for  the absorption coefficient fi~ which are  caused by the interaction 
of the wave with the noise field: 

1 --  COS .-koou ':k' 
~' = - -  L' V ~ N , ,  Am~ ( 1 5 )  

The transi t ion to a continuous spec t rum presents  no difficulty, since, for  example,  the express ions  for  
the absorpt ion coefficient may be wri t ten in the form 

sin Atoa "; k , ~" = ~ dk3' V' N,, �9 ~m++ ( 1 6 )  

Equation (16) is the general  express ion  for  the absorption coefficient of a wave propagating in an intense 
noise field. 

3. A t t e n u a t i o n  o f  L o w - F r e q u e n c y  a n d  H i g h - F r e q u e n c y  W a v e s  

Let us emphasize the following two facts  which are  related to this expression.  F i r s t ,  taking into account 
the fact  that N k = $k/Wk,, where g k '  is the spectra l  density of the noise energy,  we a r r ive  at the important  
conclusion to the effect that the absorption coefficient of the wave is determined by the noise intensity and is 
independent of the amplitude of the considered wave. The time r k, which enters  into this equation cha rac te r i zes  
the duration of an e lementary  interaction of three waves,  unlike the time Tx during which attenuation of the 
waves takes place as a resul t  of multiple coll is ions.  It is natural  to adopt the growth time of the combination 
tone as a resul t  of three-wave interaction as the time Tk,: 

._, _ V ~ h ' ~  M .  ( 1 7 )  

"+' V ~  
In the case of acoustic waves,  Eq. (16) leads to the following express ion for the coefficients of absorption of a 
low-frequency wave having the frequency w in nonequilibrium noise [15]: 

2 r.~ 2 m $ M 2 
~" = - -  ~ 8 2 c"k --. (18) 

3 ~ c ~ ~0 

Here e = (y + 1 ) / 2  is the nonlinearity index of the medium; $ is the energy density of the noise. This formula 
coincides with the resul ts  obtained by Landau and Rumer  [16] for the coefficient of sound absorption in metals ;  
a s imi la r  express ion,  derived by a different method, was used by Krasi l 'n ikov,  Rudenko, and Chirkin [6] in 
discuss ing the nonlinear mechanism of the attenuation of low-frequency sound in the ocean. 

In the case of a high-frequency (compared with the charac te r i s t i c  noise frequency w0) wave, the following 
resul t  was obtained instead of Eq. (18): 

2 r . ~  m S 

~C~Wo 
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T H R E E - M O D E  I N T E R A C T I O N  IN AN I N C O M P R E S S I B L E  F L U I D  

A.  M. O b u k h o v  UDC 532.782 

1. I N T R O D U C T I O N  

Hydrodynamics  is ,  incontrover t ib ly ,  a c l a s s i c a l  example  of an essen t ia l ly  nonlinear  field theory.  A c a -  
demic ian  Gaponov-Grekhov  [1], p res iden t  of the Organizing Commit tee  has  a l ready  spoken of this in his in-  
t roductory  r e m a r k s  at the second school.  The exact  solution of the one-d imens iona l  p rob lem of gasdynamics  - 
the famous  , s imp le  wave"  that was  a l ready  d i scovered  by Riemann more  than one hundred y e a r s  ago - is c u r -  
rent ly  st i l l  the touchstone (the s tandard problem)  for  the development  of many p rob lems  in the nonl inear  theory 
of wave p r o c e s s e s .  Nonl inear  acous t i c s ,  which makes  full uti l ization of the a r s e n a l  of modern  methods (spe-  
c i f ica l ly ,  the wel l  developed theory of t h r e e - m o d e  in terac t ions) ,  is  developing successful ly .  

In p r o b l e m s  in the hydrodynamics  of an incompress ib l e  medium,  the evolution of the s y s t e m  is l ikewise 
de te rmined  by t h r e e - m o d e  in terac t ions ,  since the equations of motion a re  quadra t ica l ly  nonlinear.  Under 
these condit ions,  however ,  a s e r i e s  of specif ic  diff icult ies  assoc ia ted  with the isolat ion of "vor tex  modes"  
in specif ic  p rob lems  develops ,  as wel l  as  diff icult ies  caused by the very  compl ica ted  nature  of the " l inkage ,  
of the modes in p rac t i ca l  s y s t e m s  having a large number  of degrees  of f r e edom (for example ,  in a turbulized 
fluid). 

Neve r the l e s s ,  the notion of t h r e e - m o d e  in teract ions  may a lso  turn out to be useful in the dynamics  of an 
incompress ib le  fluid; this will  be demons t ra ted  using the example  of the s imp le s t  hydrodynamic  s y s t e m s  which 
allow rea l iza t ion  under l abora to ry  conditions. 

2. A P P R O X I M A T I O N  OF T H E  H Y D R O D Y N A M I C S  E Q U A T I O N S  A C C O R D I N G  T O  

T H E  G A L E R K I N  M E T H O D .  T H E  N O T I O N  O F  S Y S T E M S  OF 

T H E  H Y D R O D Y N A M I C  T Y P E  

Let  us cons ider  the motion of an incompress ib l e  fluid inside a c losed ves se l  V which is bounded by a 
solid sur face  S. The s ta te  of the s y s t e m  at any t ime t is de te rmined  by the velocity field - a  d i v e r g e n c e - f r e e  
vec to r  field v(x,  t) (divv = 0) sat isfying the boundary condition Vn = 0 on S. If at f i r s t  we avoid the effect  of 
v i scos i ty ,  then the evolution of the s y s t e m  is descr ibed  by the c l a s s i c a l  Eu le r  equations:  

a v  = _ ( ~ v )  ~, - v p ;  ( i )  
Ot 

he re  the density is taken to be unity; p is the s c a l a r  p r e s s u r e  field. The p r e s s u r e  in an incompress ib le  fluid 
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