FUNDAMENTALS OF OCEAN ACOUSTICS

Third Edition

FUNDAMENTALS OF OCEAN ACOUSTICS

Third Edition

L.M. Brekhovskikh Yu.P. Lysanov Moscow, Russia

With 120 Figures

L.M. Brekhovskikh P. P. Shirshov Institute of Oceanology Russian Academy of Sciences Nakhimovskii pr. 36 117851 Moscow Russia abrekh@mail.ru

Series Editors: Robert T. Beyer Department of Physics Brown University Providence, RI 02912 USA Yu.P. Lysanov Andreev Acoustics Institute Russian Academy of Sciences Shvernik Street 4 117036 Moscow Russia

Alexandra I. Tolstoy ATolstoy Sciences 8610 Battailles Court Annandale, VA 22003 USA

Library of Congress Cataloging-in-Publication Data Brekhovskikh, L.M. (Leonid Maksimovich) [Teoreticheskie osnovy akustiki okeana. English] Fundamentals of ocean acoustics/L.M. Brekhovskikh, Yu.P. Lysanov.—3rd ed. p. cm.—(Modern acoustics and signal processing) Includes bibliographical references and index. ISBN 0-387-95467-8 (acid-free paper) 1. Underwater acoustics. I. Lysanov, IU.P. (IUrii Pavlovich) II. Title. III. AIP series in modern acoustics and signal processing. QC242.2 .B73313 2002 551.46'01—dc21 2002024159

ISBN 0-387-95467-8

Printed on acid-free paper.

© 2003, 1991, 1982 Springer-Verlag New York, Inc.

AIP Press is an imprint of Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10872598

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg A member of BertelsmannSpringer Science+Business Media GmbH

Preface to the Third Edition

This is the third edition of our book *Fundamentals of Ocean Acoustics*, revised and supplemented, including much new material responding to the progress in the theory of sound propagation and scattering in the ocean over the last 10 years. New topics are devoted mainly to such questions as the intrathermocline lenses and their effect on sound fields in the ocean, weakly divergent bundles of rays, ocean acoustic tomography, coupled modes, invariants of an interference pattern in a range-dependent oceanic waveguide, sound scattering by random highly anisotropic volume inhomogeneities (fluctuations of the refractive index of the sea medium) with a fractal spectrum, fractal nature of low-frequency attenuation in the underwater sound channel, small-slope approximation in treating sound scattering from the rough sea surface (Voronovich's approach), sound scattering by an air bubble near the sea surface, collective bubble behaviour, etc. Both the direct and inverse problems are considered. Some recent experimental data are also added. More than 60 new references are presented. Some new references and figures are preceded by the letter A.

The book is intended for experts in acoustics and oceanology, engineers, postgraduates, and students of universities and institutes of geophysical and hydrometeorological profiles. Thus, it can be used as a scientific monograph and textbook of advanced type.

The authors are grateful to T.I. Tsyplakova for her great help in preparing the manuscript.

Moscow, Russia December 2001 L.M. Brekhovskikh Yu.P. Lysanov

Preface to the Second Edition

The general structure of this second edition remains the same as the first. However, the reader will find some new material in almost every chapter, for example, Snell's law for a range-dependent environment, the hybrid ray-mode method, invariants of an interference pattern in the coordinates of range and frequency, new considerations concerning the parabolic equation method, peculiarities of the correlation function of the field scattered by a sea surface, the new phenomenon of fore-reverberation, etc. New references have also been added. Errata of the first edition have been corrected.

Moscow, Russia October 1990 L.M. Brekhovskikh Yu.P. Lysanov

Preface to the First Edition

The continents of our planet have already been exploited to a great extent. Therefore man is turning his sight to the vast spaciousness of the ocean whose resources—mineral, biological, energetic, and others—are just beginning to be used. The ocean is being intensively studied. Our notions about the dynamics of ocean waters and their role in forming the Earth's climate as well as about the structure of the ocean bottom have substantially changed during the last two decades.

An outstanding part in this accelerated exploration of the ocean is played by ocean acoustics. Only sound waves can propagate in water over large distances. Practically all kinds of telemetry, communication, location, and remote sensing of water masses and the ocean bottom use sound waves. Propagating over thousands of kilometres in the ocean, they bring information on earthquakes, eruptions of volcanoes, and distant storms. Projects using acoustical tomography systems for exploration of the ocean are presently being developed. Each of these systems will allow us to determine the three-dimensional structure of water masses in regions as large as millions of square kilometres.

The rapidly extending applications of ocean acoustics require a manual where the theory of sound propagation in the ocean in its most fundamental form is systematically and rather completely presented. The authors have tried to write such a book. After looking through its contents the reader can see that all the most significant aspects of the theory are presented in this book. These include a deterministic theory of the underwater sound channel whose characteristics either are constant or change with distance, the theory of anti-channel, shallow water, the problems of sound reflection from the bottom, and so on. The stochastic aspects of the theory are also presented rather completely for sound scattering at the random ocean surface and at the bottom, propagation in the presence of internal waves, turbulence, etc.

The authors are thoroughly convinced that theory cannot be developed without close connection with experiment. Hence, a book on theoretical underwater acoustics should also elucidate principal experimental data. On the other hand, mixing theory and experimental facts in the presentation is undesirable since theory is more "fundamental" and steady in time as compared with the rapidly changing experimental background. Solving this contradiction, the authors preface the main theoretical chapters with a rather bulky first chapter where the most interesting experimental facts are presented and the main characteristics of the ocean as an acoustical medium are considered. If it were possible to revise the book continuously after its publication, then the first chapter would have to be rewritten every other year or so, while the principal content of the theoretical chapters would have to be changed approximately every ten years.

The book is intended for students, postgraduates, researchers, and practical workers dealing with ocean acoustics.

The authors are sincerely grateful to V.M. Kurtepov for his critical reading of the book, V.V. Vavilova who had the main task of translating the book into English, and I.F. Treshchetenkova and E.A. Turina for their great help in preparing the manuscript.

Moscow, Russia January 1982 L.M. Brekhovskikh Yu.P. Lysanov

Contents

Preface to the Third Edition Preface to the Second Edition Preface to the First Edition						
1	The Ocean as an Acoustic Medium					
	1.1	Sound	Velocity in Sea Water	1		
	1.2	Typica	al Vertical Profiles of Sound Velocity			
		and Co	orresponding Conditions of Sound Propagation	2		
		1.2.1	Underwater Sound Channel (USC)	2		
		1.2.2	Surface Sound Channel	6		
		1.2.3	USC with Two Axes	8		
		1.2.4	Antiwaveguide Propagation	9		
		1.2.5	Propagation of Sound in Shallow Water	9		
	1.3	Absor	ption of Sound	10		
	1.4	Variab	vility of the Ocean and Its Effect on Acoustics	12		
		1.4.1	Large-Scale Currents and Frontal Zones	12		
		1.4.2	Synoptic (Meso-Scale) Eddies	13		
		1.4.3	Internal Waves	15		
		1.4.4	Fine Vertical Structure of Waters	17		
		1.4.5	Small-Scale Turbulence	18		
	1.5	Ocean	Surface	20		
	1.6	Sound	Scattering at the Ocean Surface	22		
	1.7	Sound	Scattering by Air Bubbles	25		
	1.8	Deep-	Scattering Layers (DSL)	26		
	1.9	Ocean	Bottom	28		
	1.10	Ambie	ent Noise	30		
	1.11	Intrath	nermocline Lenses	32		
2	Ray Theory of the Sound Field in the Ocean					
	2.1	Wave	Equation for an Inhomogeneous Medium	35		
		2.1.1	Simplest Solutions of the Helmholtz Equation	37		
	2.2	Refrac	ction of Sound Rays	38		

	2.3	Horizontal Distance Covered by a Ray	41				
	2.4	Constant-Gradient Approximation of the Sound					
		Velocity Profile	42				
	2.5	Sound Intensity, Focusing Factor, and Caustics	43				
	2.6	"Three-Dimensional" Refraction	47				
	2.7	Snell's Law for the Range-Dependent Ocean	50				
	2.8	Ocean Acoustic Tomography	52				
	2.9	Weakly Divergent Bundles of Rays	56				
3	Reflection of Sound from the Surface and Bottom of the Ocean:						
	Plar	ie Waves	61				
	3.1	Reflection and Transmission Coefficients at an Interface					
		Separating Two Liquids	61				
	3.2	Transmission of a Sound Wave from Water into Air					
		and Vice Versa	65				
	3.3	Sound Wave Reflection from an Ocean Bottom					
		Consisting of Liquid Layers	67				
		3.3.1 Reflection from a Homogeneous Layer	67				
		3.3.2 Reflection from an Arbitrary Number of Layers	71				
	3.4	Sound Reflection from a Solid	72				
		3.4.1 Analysis of the Reflection Coefficient	75				
	~ ~	3.4.2 Surface Rayleigh and Stonely Waves	76				
	3.5	Reflection from a Continuously Layered Medium	78				
4	Refl	Reflection of Sound from the Surface and Bottom of the Ocean:					
	Poir	It Source	80				
	4.1	Sound Field of an Underwater Source	00				
		Located Near the water Surface	80				
		4.1.1 wave Representations	80				
		4.1.2 Ray Representation	81				
		4.1.3 Directional Pattern	81				
	4.2	4.1.4 Radialed Power	84				
	4.2	Expansion of a Spherical wave into Plane waves	03 07				
	4.5		0/				
	4.4	Lateral wave	91				
	4.3	Caustics	95				
5	Dro	nagation of Sound in Shollow Water	101				
5	5 1	Pagation of Sound in Snahow Water Ray Representation of the Sound Field in a Layer	101				
	5.1	Trage Sources	101				
	52	Integral Representation of the Field in the Laver	102				
	53	Normal Modes in the Ocean with a Derfactly	105				
	5.5	Reflecting Bottom	105				
	54	Relation Between the Different Representations of the Field	100				
	5.4	Relation Detween the Different Representations of the FIEld	109				

	5.5	Normal Modes in a Two-Layered Liquid	10
	5.6	Averaged Decay Law	13
		5.6.1 Homogeneous Layer $(c = c_1 = c_h)$	14
		5.6.2 Layer with Negative Refraction	16
6	Und	lerwater Sound Channel 1	18
v	61	Simple Ray Theory of the USC: Trapping Coefficient	
	011	of the USC	18
		6.1.1 "Linear" Model of the USC	19
		6.1.2 Travel Time	21
	6.2	Canonical Underwater Sound Channel	23
	6.3	Convergence Zones	25
	6.4	Field of a Point Source in the Underwater Sound Channel	
		as a Sum of Normal Waves (Modes)	28
	6.5	Integral Representation of the Sound Field in the USC 1	30
	6.6	Transformation of the Integral Representation	
		into the Sum of Normal Modes	31
		6.6.1 Linear Waveguide	32
	6.7	Normal Modes in the WKB Approximation: Phase Integral 1	36
		6.7.1 Normal Modes and Rays	40
		6.7.2 Spatial Periods of Interference	43
_	ъ		40
/	Kan	Normal Modes in an Almost Stratified Medium:	.49
	/.1	Normai Modes III all Almost Stratified Medium:	40
	7 2	A dishetia Approximation: Day Invariant	51
	1.2	Autabatic Approximation. Ray invariant	51
		7.2.1 Ray Invariant	54
		7.2.2 An Example of Using the Kay Invariant	54
		of the Adiabatic Approximation and Pay Invariant	57
		7.2.4 Coupled Modes	50
	73	Rays in a Horizontal Plane	61
	1.5	7.3.1 The Case of a Coastal Wedge	61
	74	Parabolic Equation Method	63
	7.4		05
8	Anti	iwaveguide Sound Propagation 1	.69
	8.1	Linear Antiwaveguide Adjacent to Water Surface 1	69
	8.2	Symmetric Antiwaveguide: Quasi-Modes	72
	8.3	Symmetric Antiwaveguide: Lateral Wave 1	79
9	Scat	ttering of Sound at Rough Surfaces 1	83
	9.1	Rayleigh Parameter	83
	9.2	Method of Small Perturbation (MSP)	84
	9.3	Average Intensity	86
		9.3.1 An Infinite Surface	86
		9.3.2 Bounded Scattering Surface: Far Zone	87
		6	

		9.3.3 Correlation Function of the Scattered Field	189			
	9.4	Scattering Coefficient for the Ocean Surface				
	9.5	Frequency Spectrum of the Scattered Field				
	9.6	Reflection Coefficient in the Specular Direction				
	9.7	Method of Tangent Plane: Basic Concept				
	9.8	Average Field				
	9.9	Scattering Coefficient of High-Frequency Sound	205			
		9.9.1 Scattering Pattern	207			
	9.10	Frequency Spectrum	210			
	9.11	Sound Scattering from a Surface with Two Scales				
		of Roughness				
	9.12	Surface Channel with a Rough Boundary	215			
		9.12.1 Attenuation Along a Single Ray	215			
		9.12.2 Averaged Decay Law for a Coherent Field	217			
	9.13	Fore-reverberation of Sound in the Ocean	218			
	9.14	Small-Slope Approximation in Wave Scattering				
		by Rough Surfaces	221			
10	Soun	d Propagation in the Random Ocean	227			
	10.1	Amplitude and Phase Fluctuations	227			
		10.1.1 Phase Fluctuations	228			
		10.1.2 Amplitude Fluctuations	232			
	10.2	Scattering of Sound by Random Inhomogeneities	234			
		10.2.1 Average Intensity of a Scattered Field	235			
		10.2.2 Volume Scattering Coefficient	237			
		10.2.3 Sound Scattering by Highly Anisotropic Inhomogeneities				
		with a Fractal Spectrum	239			
		10.2.4 Attenuation of Low-Frequency Sound				
		in an Underwater Sound Channel	240			
	10.3	Phase Fluctuations due to Internal Waves	242			
	10.4	Fluctuations in Multipath Propagation	247			
11	Scatt	tering and Absorption of Sound by Gas Rubbles in Water	250			
	11 1	Sound Scattering by a Single Ideal Bubble	250			
	11.2	Scattering and Absorption of Sound by a Real Bubble	253			
	11.2	Dispersion of Sound Velocity	257			
	11.0	Sound Scattering by an Air Bubble Near a Sea Surface	259			
	11.5	Collective Bubble Oscillations	262			
-	<u> </u>					
References 2						
Inc	Index 2					