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Abstract The radiation of infrasound into the atmosphere and ocean due
to nonlinear interaction of surface gravity waves is examined. It is shown that
the radiation of infrasound into the atmosphere depends on the sound wave
propagating into the ocean. The results of numerical calculations of certains
characteristics of the radiated sound for various surface-wave spectra are
presented.

Introduction

It is known that storm regions in the ocean are sources of atmospheric infra-
sound, which can then propagate over very long distance [1, 2]. It appears
that surface waves can make a substancial contribution to this radiation.
By radiating infrasound into the water, for example, these waves are al-
most entirely responsible for the observed microseism level [3]. Radiation of
sound into the water as a result of nonlinear surface-wave interaction was
investigated in [3, 4]. A similar mechanism of radiation of sound into the
atmosphere was analyzed in [5], and this analysis was used in [6], with con-
sideration of sound propagation conditions in the atmosphere, as a basis for
certain estimates.

However, it was found that the analysis of the phenomenon in [5] was not
quite correctly formulated and too greatly simpli�ed. A result of this study
was that the radiation of sound into the water and into the atmosphere was
perfectly symmetrical. In reality, however, this is not the case. The ocean
surface is acoustically absolutely compliant for radiation of sound into the
water. As a result, bipolar sound sources produced, as it were, by forces
applied to the ocean surface appear on that surface. One such force in the
case being considered here will be the nonlinear force F = ρζ∂2ζ/∂t2 which
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arises on displacement of the free surface ζ(x, y, t), where ρζ is the mass of
the displaced liquid element per unit area and ∂2ζ/∂t2 is acceleration. For
the radiation of sound into the atmosphere, on the other hand,the ocean sur-
face is a surface of volume-velocity sources (monopoles) because of its low
acoustic compliance. The displacement of the interface due to nonlinear in-
teractions in the ocean (normal velocity w = ∂ζ/∂t) may serve as an example
of such a source. But force-driven acoustic sources do not usually form on a
surface with low compliance. Coincidentally, the generation of sound into the
atmosphere will be of monopolar nature, and not dipolar as was concluded
in [5].

Below we shall set forth the results of complete analysis of the radiation
of sound into both the water and the atmosphere with consideration of the
nonlinear interaction of the waves at the interface between these media. With
regard to the radiation of sound into the water, this will produce nothing new
compared with [4]. For the radiation into the air, however, the estimates of
[6] will be improved upon greatly. Thus, although the order of magnitude
of the radiated sound intensity will not change, its directional characteristic
will be substantially di�erent. It is found, for example, that the radiation at
small angles to the horizontal is much stronger than was found in [6].

Moreover, it will be seen below that the radiation of sound into the wa-
ter and the atmosphere is also asymmetrical because the radiation into the
atmosphere depends strongly on the interface reaction of the sound wave
propagating into water. Thus the acoustic �eld in the atmosphere cannot
be considered in isolation from the acoustic �eld in the water. On the other
hand, the radiation into the water can be treated by substituting a vacuum
for the atmosphere, as was done in [4].

1 Statement of problem and basic equations

We shall consider the two half-spaces z > 0 and z < 0, which are �lled with
air and water, respectively, and are characterized by equilibrium density
pro�les ρj0(z) and sonic velocities cj (j = 1 for air and j = 2 for water).
We shall denote the displacement of the boundary by ζ(x, y, t). We shall
describe the motions in the air and water with the hydrodynamic equations
of inviscid compressible �uids with consideration of the force of gravity. In
Euler coordinates, these equations take the form

ρj

(
∂vj
∂t

+ (vj∇) vj

)
= −∇pj − gρj∇z

∂ρj
∂t

+∇(ρjvj) = 0

(1)
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Where g is the acceleration of gravity and pj, ρj, and vj are the pressure,
density, and velocity of parcels of the medium. Assuming that the equilibrium
entropy is constant for each of the media and regarding oscillatory processes
are adiabatic, we write the equations of state in the linear approximation
in the form (note de bas: In our case, consideration of nonlinearity in the
equations of state yields negligibly small terms.)

pj − pj0(0) = c2
j [ρj − ρj0(0)] (2)

Dynamic and kinematic boundary conditions must be satis�ed at the inter-
face z = ζ(x, y, t) :

p1 = p2, vj∇z = ∂ζ/∂t at z = ζ(x, y, t). (3)

Putting vj = 0, we �nd the equilibrium density and pressure pro�les for the
ocean and the atmosphere from the �rst equation of (1), (3) with considera-
tion of (2):

ρj0(z) = ρj0(0) exp
{
−gz/c2

j

}
,

pj0(z) = pj0 + [ρj0(z)− ρj0(0)] c2
j ,

pj0 = p10(0) = p20(0).
(4)

At vj 6= 0, we represent all quantities that appear in (1)-(3) in the form of
expansions in a certain small parameter s:

ρj = ρj0(z) + sρj1 + s2ρj2 + ...
pj = pj0(z) + spj1 + s2pj2 + ...

vj = svj1 + s2vj2 + ...
ζ = sζ1 + s2ζ2 + ...

(5)

We substitute (5) into (1)-(3) after �rst transferring (3) to the plane z = 0
by series expansion in powers of ζ and equate terms with equal powers of s.
It is easily seen that (2) will then give a simple relation between ρji and pji
(i = 1, 2, ...):

pji = c2
jρji

It will subsequently be convenient to use the quantity Pji which is related to
pji by

pji = ρj0(z)Pji (6)

Now the �rst equation of (1) is written as follows for the i-th approximation:

∂vji/∂t+∇Pji = fji (7)

where fj1 = 0, fj2 = ∇{(P2
j1/2c

2
j)-(v

2
j1/2)}+ vj1 × curl vj1.
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It follows from (7) that when i = 1 : (∂/∂t)(curl vj1) = 0, and we may
put curl vj1 = 0 for the oscillatory processes under consideration. Conse-
quently, fj2 = ∇{(P2

j1/2c
2
j) - (v2

j1/2)} and, similarly, curl vj2 = 0 for the
second approximation. Thus,there exists a velocity potential (note de bas
: The possibility of introduction of the velocity potential arises out the as-
sumption of constant entropy in the media and the linearity of the equation
of state (2) ) φj,i, i.e.,

vji = −∇φji (8)

As a result, we obtain the following system of equations and boundary con-
ditions for the i-th approximation from (1)-(3) :

∆φji −
g

c2
j

∂φji
∂z
− 1

c2
j

∂2φji
∂t2

= Sji, Pji =
∂φji

∂t
+ Fji,

∂φji
∂z

∣∣∣∣
z=0

+
∂ζi
∂t

= Qji, (P2i −mP1i)z=0 − g(1−m)ζi = Ri,

(9)
where

Fj1 = Sj1 = Qj1 = R1 = 0,

Fj2 =
P2
j1

2c2
j

− (∇φj1)2

2
, Sj2 = − 1

c2
j

∂

∂t
(∇φj1)2 ,

Qj2 =
−∂2φj1
∂z2

∣∣∣∣
0

ζ1 + ∇φji|0∇ζ1,

R2 = −
(
∂P21

∂z
−m∂P11

∂z

)
0

ζ1 +
g

c2
1

(
n2P21 −mP11

)
0
ζ1 −

1

2

g2

c2
1

(n2 −m)ζ2
1 ,

m = ρ10(0)/ρ20(0), n = c1/c2.

Uniqueness of the solution of system (9) requires, in addition, that the
solution decrease or be a receding sound wave as z → ±∞.

2 Acoustic �eld in the ocean and the atmosphere

The small parameter m ' 1/800 appears in (9). Analysis of the �rst-
approximation solution of the equations leads to another small parameter
(κ is the wave number of the surface wave):

δj =

(
g

κc2
j

)1/2

=
ω

κcj
' λsurface

λsound
(10)
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the wavelength ratio of the surface and sound waves of equal frequency. Thus,
for example, we have δ ' 5 · 10−2 for air at a frequency of 0.1Hz. The
parameter δ1 decreases with increasing frequency.

Let us assume that there is a continuous surface-wave spectrum in the
�rst approximation. The solution of system (9) for i = 1 will be

φj1 = i

∫ ∞
−∞

ω(κ)

αj(κ)
a(~κ) exp(αj(~κ)z + iψ)d~κ

Pj1 =

∫ ∞
−∞

ω2(κ)

αj(κ)
a(~κ) exp(αj(~κ)z + iψ)d~κ

ζ1 =

∫ ∞
−∞

a(~κ) exp(iψ)d~κ

(11)

where ~κ = {κx, κy} , κ = |~κ|,ψ = ~κ~r−ω(κ)t+ ε(~κ) (ε(~κ) is a certain phase
angle), and, accurate terms of order δ2

j inclusive:

(1 +m)ω2(κ) = (1−m)g~κ,
αj(κ) = (−1)jκ{1− [1− (−1)j]δ2

j /2}
(12)

Substitution of (11) into the right-hand sides of the second-approximation
equations (9) endows the later with terms dependent on r and t : exp{i(~κ±
~κ′)~r − i[ω(κ) ± ω(κ′)t} where ~κ and ~κ′ are two arbitrary vectors within the
limits of the speci�ed wave spectrum. It was shown in [4] that only compo-
nents with the pus sign in the exponent correspond to sound waves receding
from the boundary, and that ~κ and ~κ′ must satisfy the condition

c1|~κ+ ~κ′| 6 [ω(κ) + ω(κ′)] (13)

To calculate the �eld at �nite distances z from the interface, it is also
necessary to consider inhomogeneous sound waves, for which c1|~κ + ~κ′| >
[ω(κ) + ω(κ′)]. This was done for the ocean [7].

Con�ning ourselves to waves that satisfy (13) (we shall call this region
Γ), we obtain:

Fj2 =

∫
Γ

Aj(~κ,~κ
′) exp(αj+(~κ)z + iψ+)d~κd~κ′

Sj2 =

∫
Γ

Bj(~κ,~κ
′) exp(αj+(~κ)z + iψ+)d~κd~κ′

Qj2 =

∫
Γ

Cj(~κ,~κ
′) exp(αj+(~κ)z + iψ+)d~κd~κ′

R2 =

∫
Γ

D(~κ,~κ′) exp(iψ+)d~κd~κ′

(14)
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where

ψ+ = ~q~r−Ωt+ ε, ~q = ~κ+ ~κ′, Ω = ω(κ) + ω(κ′), ε = ε(~κ) + ε(~κ)

Aj =
1

4
ω(κ)ω(κ′)

[
γj +

ω(κ)ω(κ′)

c2
jαj(κ)αj(κ′)

]
a(~κ)a(~κ′)

Bj =
−iΩ
2c2
j

ω(κ)ω(κ′)γja(~κ)a(~κ′)

Cj =
−i
4
{Ωαj+ − [ω(κ)αj(κ

′) + ω(κ′)αj(κ)] γj} a(~κ)a(~κ′)

D = −1

4

{
(1−m)

[
ω2(κ) + ω2(κ′)

]
− g

c2
j

[
n2β2 −mβ1 − g(n2 −m)

]}
a(~κ)a(~κ′),

αj+ = αj(κ) + αj(κ
′), γj = 1− ~κ~κ

αj(κ)αj(κ′)
, βj =

ω2(κ)

αj(κ)
+
ω2(κ′)

αj(κ′)
.

It is natural to seek the second approximation solution of system (9) in
the form:

Pj2 =

∫
Γ

Φj(z)eiψ+d~κd~κ′ (15)

Substituting (15) into (9), we obtain a system of ordinary di�erential equa-
tions in Φj, whose general solution satisfying the conditions as z → ±∞
takes the form

Φj =

Aj − iΩBj

α2
j+

(
1− q

c2
jαj+

+
k2
j − q2

α2
j+

)
 eαj+z + a(~κ)a(~κ′)µje

iλjκ (16)

where kj = Ω/cj and

λj = (−1)j+1kj

[(
1− q2

k2
j

− g2

4c2
jk

2
j

)1/2

+ i(−1)j
g

2c2
jkj

]
. (17)

The acoustic-pressure spectral amplitude µj of the waves receding from the
boundary are determined by substitution of (16) into the conditions for z = 0
(see (9)).

We note that the condition (13) is satis�ed only if ~κ ' −~κ′ and then
q/κ − δ1 is the small parameter introduced previously. This enables us to
expand the µj in powers of δj. If we con�ne ourselves to the principal terms



2 Acoustic �eld in the ocean and the atmosphere 7

of the expansion and neglect the parameter m by comparison with unity, the
ocean pressure P22 will not depend on the atmosphere pressure P12 in (9),i.e.,

L2φ22 = S22, P22 =
∂φ22

∂t
+ F22,

P22|0 = R2,
∂ζ2

∂t
= − ∂φ22

∂z

∣∣∣∣
0

+Q22,
(18)

where Lj ≡ ∆ − c−2
j ∂2/∂t2. The �rst three equations of system (18), to-

gether with the condition for z → +∞, fully determine φ22 and P22. The
last equation of (18) determines the second approximation for the interface
displacement ζ2. It is also found to be independent of the pressure in the at-
mosphere. This result is quite natural because of the large density di�erence
between water and air. Specifying a pressure distribution on the plane z = 0
in the system (18) corresponds to dipolar sound sources. Thus, the radiation
of sound into the ocean can be described by the distribution of the dipoles
on the undisturbed interface.

Calculation of the spectral amplitude µ2 on the basis of system (18) gives

µ2(κ) = −ω2(κ), (19)

which agrees with the analogous expression obtained in [4].
Now, regarding ∂ζ2/∂t as known, we obtain from the solution of the

problem for the acoustic �eld in the ocean a closed equation system for the
atmospheric �uctuations in the form

L1φ12 = S12, P12 = ∂φ12/∂t+ F12,
∂φ12

∂z

∣∣∣∣
z=0

= −∂ζ2

∂t
+Q12.

(20)

This time the sound sources are monopoles (the normal velocity distribution
is speci�ed on the plane z = 0). An estimate of orders of magnitude indicates
that the term Q12 in the right-hand side of the last equation in (20) stands
in relation to the term ∂ζ2/∂t as δ1 stands to unity. Hence it is clear that
the acoustic �eld in the water cannot be left out of account in calculating the
acoustic �eld in the atmosphere. The �eld in the water is largely responsible
for determining the term ∂ζ2/∂t. Solution of system (20) with neglect of Q12

by comparison with ∂ζ2/∂t results in the following expression for the spectral
amplitude of the acoustic pressure in the atmosphere :

µ1(κ, q) = ω2(κ)(n2 − sin2 θ1)1/2/ cos θ1, (21)

where θ1 = arcsin(qc1/2ω(κ)) is the angle between the propagation direction
of the sonic wave and the z-axis.
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The latter expression vanishes at θ1 equal to the angle of total internal
re�ection (θ1 = θi = arcsinn). This is explained by the fact that at θ1 = θi
the acoustic wave in the water propagates along the plane z = 0 without
causing displacements along the z-axis (ζ2 = 0).

At θ1 = π/2 the expression for µ1 increases without limit because of the
in-phase action of the surface monopole sound sources in these directions. In
the neighborhood of the angles θi and π/2, it is necessary to include higher
terms in expanding in the small parameters δj andm. We present expressions
obtained for µ1 with consideration of terms of the �rst order in δj and m:

µ1 = −iω2(κ)
(sin2 θ1 − n2)1/2 − 2δ1

[
1− sin2 θ1

(
1− 1

2
(~q~κ/qκ)2

)
+ 5n2/8

]
cos θ1 − i

[
(δ1/4)−m(sin2 θ1 − n2)1/2

]
(22)

At θ1 ' θi the improved relation (22) tells us little that is new, because
µ1 again vanishes at a certain θ1 near θi (θ1 ' θi + (2/n)δ2

1).

3 Spectral characteristics of the radiated sound

The acoustic pressure in a wave radiated on interaction of surface waves
will be given by relation (15) with Φj substituted from (16), where it is
necessary to consider only the second term (the �rst term corresponds to
inhomogeneous waves):

Pj =

∫ ∞
−∞

∫
q<2ω(κ)/c1

µj(κ, q)a(~κ)a(~q − ~κ) exp(iλjz + iψ+)d~κd~q. (23)

Here we have introduced the new variables of integration ~κ and ~q = ~κ + ~κ′.
The correlation function of the acoustic pressure at the two point r1 and r2

at level z and at times t1 and t2, with consideration of the δ correlation of
the random variables a(~κ) and a(~q − ~κ) (see, for example, [4]), is〈
Pj(~r1, z, t1)P ′j(~r2, z, t2)

〉
=∫ ∞

−∞

∫
q<2ω(κ)/cj

|µj|3a2(~κ)a2(~q − ~κ) exp i[(λj − λj∗)z + ~q~r − 2ω(κ)τ ]d~κd~q,

(24)

where ~r = ~r1 − ~r2, τ = t1 − t2, a
2(κ) is the spatial two-dimensional wave

spectrum. Assuming that it is su�ciently smooth and considering the small-
ness of q compared to κ, we cant put a2(~q − ~κ) ' a2(−~κ). Unfortunately,
very little is known concerning a2(~κ). Introducing the polar coordinates κ,
φ, d~κ = κdκdφ we shall assume for simplicity that a2(~κ) = A(κ)S(φ) then
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a2(−~κ) = A(κ)S(π+φ). The Fourier transform of (24) with respect to ~r and
τ will give the space-time spectrum of the square of the radiated acoustic
pressure:

P 2
j (~q, ω, z) =

1

2

∫ 2π

0

S(φ)S(π + φ)
∣∣∣µj(~q, ω

2
)
∣∣∣2·

A2
(
κ
(ω

2

))
ei(λj−λj∗)z

(
κ
dκ

dω

)
ω/2

dφ. (25)

It is also convenient to introduce the wave frequency spectrum Φ(ω) which
is related to A(κ) by

Φ(ω) = A[κ(ω)]

(
κ
dκ

dω

)
ω

∫ 2π

0

S(φ)dφ.

As a result, with consideration of the approximate dispersion equation
ω2 = gκ, we obtain for P 2

j (~q, ω, z)

P 2
j (~q, ω, z) = 2

S1

S2
0

exp[i(λj − λj∗)z]g2
∣∣∣µj (q, ω

2

)∣∣∣2ω−2Φ2
(ω

2

)
, (26)

where

S0 =

∫ 2π

0

S(φ)dφ, S1 =

∫ 2π

0

S(φ)S(π + φ)dφ.

We shall characterize the propagation direction of the sound wave by
the angle θj between the normal to its front and the z-axis and by the az-
imuth φa (cosφa = ~q∇x/q). Then q = (ω/cj) sin θj; and d~q = qdadφa =
(ω2/c2

j) cos θj sin θjdθjdφa. The acoustic anerdy �ux into the solid angle
dΩj = sin θjdθjdφa in the frequency banc dω is determined by the expression
IjdΩjdω = ρjP

2
j (d~qdω/2cj). With (4), (17), (21), and (26), we obtain

Ij =
S1

16S2
0

ρj0(0)g2

c3
j

ψjω
3Φ2

(ω
2

)
, (27)

where
ψ1(θ1) = | sin2 θ1 − sin2 θi|/ cos θ1; ψ2(θ2) = cos θ2. (28)

Following [6], we take the wave frequency spectrum in the following form
for numerical calculations of the intensity of the radiated sound:

Φ(ω) = (πM/2ω6) exp(−2g2/ω2V 2), (29)
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where V is the wind velocity and M = 3.05 · 104cm2/sec5. Substitution of
(29) into (27) gives

Ij = 2−6π−7M2S1

S2
0

ρj0(0)
g2

c3
j

ψjf
−9 exp

(
− 4g2

π2f 2V 2

)
. (30)

The maximum value of Ij is reached at the frequency fm = (2
√

2/3π)(g/V ):

Ijmax = 2.2 · 107(S1/S
2
0)ρj0(0)(g2ψj/c

3
j)(V/g)9. (31)

We note that if we calculated Ij by the scheme described in [6], we would
obtain an expression analogous to (30) with ψ1 = cos θ1. In our case, ψ1 be-
comes larger than cos θ1, beginning at angles θ1 ' 46�, and increases rapidly
with increasing θ1. This results in a substantial increase in the intensity of
the sound radiated into the atmosphere for glancing angles and, consequently,
increases the possible importance of this mechanism for explanation of the
observed (see, for example, [8]) atmospheric infrasonic noise due to storm
regions in the ocean.

Let us also note that somewhat di�erent frequency characteristics are
obtained for the radiated sound if we work from another representation of
the wave frequency spectrum. Thus, for example, Phillips' spectrum for the
equilibrium frequency range is widely known in oceanology [9]. We shall use
a modi�cation of the Phillips' spectrum proposed in [10], which is valid for
lower frequencies:

Φ(ω) = 8.1 · 10−3g2ω−5 exp[−0.74(ω0/ω)4], (32)

where ω0 is the characteristic frequency of the surface waves. Selecting ω0

such that the maximum values of (29) and (32) will coincide, we obtain
ω0 ' 0.93g/V . Substitution of (32) into (27) yields

Ij = 3.3 · 10−5π−7S1

S2
0

ρj0(0)
g6

c3
j

ψjf
−7 exp

[
−1.48

(
ω0

πf

)4
]
. (33)

Here the maximum of Ij corresponds to the frequency fm = 0.28g/V and
equals

Ijmax = 1.5 · 10−6(S1/S
2
0)ρj0(0)(g6ψj/c

3
j)(V/g)7. (34)

Comparison of (33)-(34) with (30)-(31), at a wind velocity V = 10m/sec,
for example, indicates that a low frequencies (on the order of a fraction of
a Hertz), surface waves with a spectrum in the form of (29) lead to much
larger values of the radiated acoustic energy, so that we have the ratio

(Ijmax)(31)

(Ijmax)(34)

' 15.
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At high frequencies, e.g., f = 10Hz, the opposite is observed:

(Ij)(30)

(Ij)(33)

' 27.

Fig. 1: Flux of acoustic energy radiated into the atmosphere vs. direction of
radiation : 1) calculation by approximate relation (30); 2) computer
calculation for f = 0.125Hz.

To supplement the above analytical analysis of equation system (9), the
latter was solved exactly on a BESM-6 computer, so that the range of validity
of the approximate relations (27)-(31) can be estimated. As we have already
noted, the error of the approximate relationships decreases with increasing
frequency of the radiated sound. Curve 1 on the �gure was plotted from (27),
using (28) as an expression for ψ1. The curve for f = 1Hz that was obtained
by the exact calculation is indistinguishable from curve 1. Curve 2 was
plotted from the exact calculations for f = 0.125Hz. This time the deviation
from curve 1 is noticeable, especially in the angle range around θ = θi.
However, the disagreement in this range could be reduced substantially if
curve 1 were plotted with ψ1 calculated with the series expansion in powers
of θ1 − θi (see the �rst relation in (22)).

We note that the frequency dependence of the radiated sound intensity
changes as θ1 → θi. In fact, when θ1 = θi we have from (22) |µ1| ∼ ω2δ1 ∼ ω.
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We then obtain ψ1 ∼ ω−2 in (30), so that I1 ∼ f−11 instead of f−9 at θ1, far
from θi.
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