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L.M. BREKHOVSKIKH, V.V. GONCHAROV, V.M. KURTEPOV, AND K. A. NAUGOL'NYKH

THE RADIATION OF INFRASOUND INTO THE ATMOSPHERE
BY SURFACE WAVES IN THE OCEAN*

The radiation of infrasound into the atmosphere and ocean due to nonlinear interaction of surface
gravity waves is examined. It is shown that the radiation of infrasound into the atmosphere de-
pends on the sound wave propagating into the ocean. The results of numerical calculations of
certain characteristics of the radiated sound for various surface-wave spectra are presented.

It is known that storm regions in the ocean are sources
of atmospheric infrasound, which can then propagate
over very long distances [1, 2]. It appears that surface
waves can make a substantial contribution to this radia-
tion. By radiating infrasound Into the water, for example,
these waves are almost entirely responsible for the ob-
served microseism level [ 3]. Radiation of sound into
the water as a result of nonlinear surface-wave inter-
action was investigated in [3, 4]. A similar mechanism
of radiation of sound into the atmosphere was analyzed
in [ 5], and this analysis was used in [ 6], with consider-
ation of sound-propagation conditions in the atmosphere,
as a basis for certain estimates.

However, it was found that the analysis of the phen-
omenon in [ 5] was not quite correctly formulated and
too greatly simplified. A result of this study was that the
radiation of sound into the water and into the atmosphere
wag perfectly symmetrical. In reality, however, this is
not the case. The ocean surface is acoustically absolute-
1y compliant for radiation of sound into the water. As a
result, bipolar sound sources produced, as it were, by
forces applied to the ocean surface appear on that sur-
face. One suchforcein the case being considered here
will be the nonlinear forece F = pLd°s/a1* which arises
on displacement of the free surface £(x, y, t), where pr
is the mass of the displaced liguid element per unit area
and &L/ dt* is acceleration. For the radiation of sound
into the atmosphere, on the other hand, the ocean sur-
face is a surface of volume-velocity sources (monopoles)
because of its low acoustic compliance. The displacement
of the interface due to nonlinear interactions in the ocean
(normal veloeity w- 4L/ dt) may serve as an example of
such a source. But force-driven acoustic sources do not
usually form on a surface with low compliance. Coinci-
dentally, the generation of sound into the atmosphere
will be of monopolar nature, and not dipolar as was con-
cluded in [ 5].

Below we shall set forth the results of a complete
analysis of the radiation of sound into both the water and
the atmosphere with consideration of the nonlinear inter-
action of the waves at the interface between these media.
With regard to the radiation of sound into the water, this
will produce nothing new compared with [4]. For the
radiation into the rir, however, the estimates of [ 6]
will be improved upon greatly. Thus, although the order
of magnitude of the radiated sound intensity will not
change, its directional characteristic will be substant-
ially different. It is found, for example, that the radia~
tion at small angles to the horizontal is much stronger
than was found in [ 6].

Moreover, it will be seen below that the radiation of
gound into the water and the atmosphere is also asym-
metrical because the radiation into the atmosphere
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depends strongly on the interface reaction of the sound
wave propagating into the water, Thus the acoustic field
in the atmosphere cannot be considered in isolation from
the acoustic field in the water. On the other hand, the
radiation into the water can be treated by substituting a
vacuum for the atmosphere, as was done in [4].

1. STATEMENT OF PROBLEM AND BASIC EQUATIONS

We shall consider the two half-spaces z > 0 and z < 0,
which are filled with air and water, respectively, and are
characterized by equilibrium density profiles ;)].O(Z) and

sonic velocities Cj (G = 1 for air and j = 2 for water). We

shall denote the displacement of the boundary by ¢(x, y,
t). We shall describe the motions in the air and water
with the hydrodynamie equations of inviscid compressible
fluids with consideration of the force of gravity. In Euler
coordinates, these equations take the form
pilavi/ at+ (v,V)vy] = =V p;— gp;Vz, N
ap,/ 8t + ¥V (pvy) =0,
where g is the acceleration of gravity and p,, pj, and vj
are the pressure, density, and velocity of parcels of the
medium. Assuming that the equilibrium entropy is con-
stant for each of the media and regarding oscillatory
processes as adiabatic, we write the equations of state
in the linear approximation in the form**

(@)

Dynamic and kinematic boundary conditions must be sat-
isfied at the interface z=={(z,y,!):

pi—pal0) =cilps—pal0)].

=L(x, u 1) 3)

pr=py, VsiVe=dl/dl at 3

Putting Vj = (), we find the equilibrium density and
pressure profiles for the ocean and the atmosphere from
the first equations of (1), (3) with consideration of (2):

pa(z) = pu(0) exp {-gz/ ¢/},
pa(z) = po -+ [pa(z) — p(0) Jcf,
Pos = pia(0) = pu(0).

@)

At vj # 0, we represent all gquantities that appear in (1)-

(3) in the form of expansions in a certain small parameter
8:

pr=pu(z) T spp T 8pat...,

pr=pu(z) Tsps + ot ...

vy = 8Vy T &'V

2 T

E=sbi+s0at...

**In our case, consideration of nonlinearity in the
equations of state yields negligibly small terms.
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We substitute (5) into (1)-(3) after first transferring (3)
to the plane z = 0 by series expansion in powers of ¢ and
equate terms with equal powers of s. It is easily seen
that (2) will then give a simple relation between Pii and

pji =18 «)
D= ¢fpa.

It will subsequently be convenient to use the quantity %,
which is related to pji by

Py =pn(2)Py. (6)

Now the first equation of (1) is written as follows for the
i-th approximation:

v/ Bt + VPy =iy, (7)

where f;, =0, 1, = V{(Pu3/2cf) — (v4?/2)} + vy Xeuriv,,

It follows from (7) that when i=1 (4/d¢t)(curlv,) =0 ,
and we may put curl v, =0 for the oscillatory processes
under consideration. Consequently, fu= V{(#,}/2¢}) -
—p,*/ 2} and, similarly, curl vu.=0 for the second
approximation, Thus, there exists a velocity potential*
qji' i.e,,

Vi = — V@ (8)

As a result, we obtain the following system of equations
and boundary conditions for the i-th approximation from
(1)-3):
aq?n
s o )
¢ 9z cf ot “ 7 at ~

14 at, . 9
e + ﬂb‘:()m U’:,~'m:7’,.)m—g('l—m);\=1i.( )
9z lize 9t

where Fy=8u=Qu=R, =0,
Py (Vga)® 9 1 9
Fp= 20; ‘---5*-*, nS;z"“ ”;;gl—(v‘vn)z.
ERR
On=——2| 8+ VauloVE,
~ L
AP, 0P\ . & 1 ¢ 4
"22“(’7—)7'"" s )o‘"fﬁ("'y““’"‘?“m‘"'é_c__f("z_m'!""

m = p(0) / pun(0), n =2,/ ca

Unigueness of the solution of system (9) requires, in
addition, that the solution decrease or be a receding
sound wave as z — +o.

2. ACOUSTIC FIELDS IN THE OCEAN AND THE
ATMOSPHERE

The small parameter m ~ 1/800 appears in (9).
Analysis of the first-approximation solution of the equa-
tions leads to another small parameter (x is the wave
number of the surface wave):

‘Y
é,=( g ) —Lz_}__ (10)
nelt %¢;  hso

the wavelength ratio of the surface and sound waves of
equal frequency. Thus, for example, we have § = 5-1072
for air at a frequency of 0.1 Hz. The parameter §; de-
creases with increasing frequency.

*The possibility of introduction of the velocity potent-
ial arises out of the assumption of constant entropy in
the media and the linearity of the equation of state (2).

Let us assume that there is a continuous surface-wave
spectrum in the first approximation. The solution of sys-
tem (9) for i = 1 will be

c @l
Pu = z‘_‘: :’Zji a(xyexploy(x)z + iphdx,

Pyu= j P—A(i)-a(z]oxpla,(z): + ipldw,
% alx) (11)

= J' ai{x)explipldsx,

where x = {x, »}, »= ||, p=ur—0(x)i+e(x) (e(x)
is a certain phase angle), and, accurate to terms of
order 6; inclusive:

’

(1+ m)w*(z) = ({1~ m)gn,
a(x) = (=1l — [1— (—1)7]87/ 2). (12)

Substitution of (11) into the right-hand sides of the second-
approximation equations (9) endows the later with terms
dependent on r and t: exp {i(x£%)r—ilo(z) * o(x) ]t}
where % and %, are two arbitrary vectors within the limits
of the specified wave spectrum. It was shown in [4] that
only components with the plus sign in the exponent corres-
pond to sound waves receding from the boundary, and

that » and »; must satisfy the condition

alztu| <o) +oly)]. (13)

To calculate the field at finite distances z from the inter-
face, it is also necessary to consider inhomogeneous
sound waves, for which ¢ |% + x| > [w(x) + o(x)]. This
was done for the ocean in [7].

Confining ourselves to waves that satisfv (13) (we shall
call this region I"), we obtain

Fo= J.A,-(n,x,)exp(a,,z + i dn dx,,
8= jlx,(u, ) explogz + i, Jdw s,
r .
(),»;zjc,(x‘u;)exp(i‘x.)dx dx,, (14)
Ry= jD(u.n.)exp(N:,)du A%y,
K
where
Po=qr—Q+e q=x+x, Q=0 +o(x), e==c(x) +ex),
A, = Yo (x)o(x) [+ o#) o)/ cfos(x)a(x) Ja(n)alz,),

B, = —(1Q/ 2¢f) o (n) @ (ns) ya(x)ala),

cy=—(i/4){Qa, — [0 (o (x) + o (x)a(x) ]1}a(x)a(x),
D= =17 (1= m) [0 6e) + 0 6u) 1~ Lo~ mp -

oy, = o(%) + (),

—g(n®— m)]}a(x}a(x,),

%, _wl(n) | o'(x)
T ale)

W T e

It is natural to seek the second approximation solution
of system (9) in the form

Pa= I(Il;(z)?“" dx dx,. (15)

Substituting (15) into (9), we obtain a system of ordinary
differential equations in q’j’ whose general solution
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satisfying the conditions as z — +m takes the form pi{%:g) = o' (%) (n* —sin* )" / cos By, (21)

G- propagation direction of the sonic wave and the z axis.

The latter expression vanishes at 9. equal to the
(16) angle of total internal reflection (i, = ;= aresin n), This
is explained by the fact that at #, = @ the acoustic wave
where k;=Q/¢; and in the water propagates along the plane z = 0 without
causing displacements along the z axis (& = 0).
¢ At = =a/2 the expression for y increases without
Ae=(—1)4'%k [( 1 -2 ___E
4 / 4 kP Acyk;

] e+ a ) a () pe™ where 1, = arcsin (ge,/ 2w (»)) is the angle between the
~ } Yia (%)

limit because of the in-phase action of the surface mono-
pole sound sources in these directions. In the neighbor-~

hood of the angles #; and 7/2, it is necessary to include
The acoustic-pressure spectral amplitudes yu. of the higher terms in expanding in the ¢mall parameters 51 and

waves receding from the boundary are determined by m, We present expressions obtained for y; with consider-
substitution of (16) into the conditions for z = 0 (see (9)). ation of terms of the first order in 8, and m:

We note that condition (13) is satisfied only if », = —=x J
and then q/x - &, is the small parameter introduced
previously. This enables us to expand the y. in powers

o=

1
int B, —nt) 9 T o tane ¥ ) EEnt/
of éj. K we confine ourselves to the principal terms of Gl = 3= 20: [1 i (1 2 Cawige) )hm '8]

—iw®(x) TR W — Y
the expansion and neglect the parameter m by compari- cos @, — [ (8,/4) — m (sin® O, — n*) "]
son with unity, the ocean pressure #.. will not depend
on the atmosphere pressure #,. in (9), i.e.,

(22)

At O, =03 the improved relation (22) tells us little

B that is new, because y; again vanishes at a certain

Ly =82, Pu= = + Fa, near #y (h~4;+ (2/0)875).
L
P . a8 3. SPECTRAL CHARACTERISTICS OF THE
wlo=Ry =] +0 RADIATED SOUND
_ 4 The acoustic pressure in a wave radiated on interaction
wi L= A —¢;*& / af*. > " = s
s;}:t];em (15), togéther with?ﬁ?gi;;&:efﬁ l;aii.o:;:){ ofssurface waves will be given by relation (15) with dzj
fully define ¢, and #... The last equation of (18) de- substituted from (16), where it is necessary to consider
termines the second approximation for the interface only the second term (the first term corresponds to in-
displacement £,. It is also found to be independent of homogeneous waves):
the pressure in the atmosphere. This result is quite
natural because of the large density difference between -
water and air. Specifying a pressure distribution on the Py= 5 f win, gla(x)a(q—=)explidz+iv, ) de dy, (23)
plane z = 0 in the system (18) corresponds to dipolar ~% g<dutifn
sound sources. Thus, the radiation of sound into the
ocean can be described by the distribution of the dipoles Here we have introduced the new variables of integration
on the undisturbed interface. »and q=x + ». The correlation function of the acoustic

Calculation of the spectral amplitude u, on the basis pressure at the two points ry and r; at level z and at

of system (18) gives times t; and t;, with consideration of the 6 correlation
of the random variables a(x) and al(q—x) (see, for
paln) = —w* (=), (19) example, [4]), is
which agrees with the analogous expression obtained in (Prr 2 )P, (0 5 13) -
14]. ' )

Now, regarding ¢f./d as known, we obtain from =I Ipslta? (32) @* (q—w) exp i[ (7.—h") s qu—20 () T] dx dq,
the solution of the problem for the acoustic field in the % a<alire N
ocean a clogsed equation system for the atmospheric (24)
fluctuations in the form

where re=r —r,1=1{ —1{;,a*(x) is the spatial two-
Liga = Siy, Poa=0@aldttFu, dimensional wave spectrum. Assuming that it is suffic-
s ot iently smooth and considering the smallness of ¢ compared
J%a e By (20) to #, we can put a*(q— =) =~ a*(—=). Unfortunately, very
9z L= at little is known concerning a’(x). Introducing the polar
coordinates %, ¢, ax = xdxd¢ we shall assume for
. This time the sound sources are monopoles (the normal simplicity that a*(x) = 4(x)S(p) then &*(—=z) =4 (x}S(a+
veloeity distribution is specified on the plane z = 0). An +@). The Fourier transform of (24) with respect to r
estimate of orders of magnitude indicates that the term and 1 will give the space-time spectrum of the square of
Q,; in the right-hand side of the last equation in (20) the radiated acoustic pressure:

stands in relation to the term ¢,/ d¢ as 6, stands to

unity. Hence it is clear that the acoustic field in the g% @

water cannot be left out of account in caleulating the P} (q.w.1)=-2~f S(g)8(x+q) l .u;(q' 7) ' :
acoustic field in the atmosphere. The field in the water o

is largely responsible for determining the term 4%,/ dt. A (” ( . )) TS ( e i ) d

Solution of system (20) with neglect of @, by comparison i T . @ (25)
with &g,/ dt results in the following expression for the

spectral amplitude of the acoustic pressure in the at- It is also convenient to introduce the wave frequency
mosphere: spectrum & (w) which is related to A(x) by
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» . (1 5
D (0)=A[x ()] (”'«l—:'). 5 S(e)dep.

As a result, with consideration of the approximate
dispersion equation w?® = gx, we obtain for P?{q, o, z)

S . s @
PHw 05) = 2grexplit~ 4218 | w0, 5| om0t ( ),
~ao -

b4

where

23 2
Sy fS(w)d(p. 8= [ S8+ ).

We shall characterize the propagation direction of
the sound wave by the angle #; between the normal to
its front and the z axis and by the azimuth ¢, (cos g, =
=qVz/q).Then ¢ = (0/c)sin?, and dq = qdgdp, = =
(w*/'c/ vos O, sin ©.dBdp..  The acoustic energy flux into
the solid angle dQ, = sin9ditdy, in the frequency band
dw is determined by the expression /4Qdo = p P, (dqdw / 2¢;).
With {4), (17), (21), and (26), we obtain

S, pel0)g* &
Fymaa T 0 b .
B T R (2 ) on

where
Po(B) = [sin® O, — sin? Byf 7 cos By (D) = cos B (28)
Following [ 6], we take the wave frequency spectrum
in the following form for numerical calculations of the
intensity of the radiated sound:

Diw) = (aM / 20°) exp (—2¢*/ V), (29)

where V is the wind velocity and M = 3. 05+ 10% cm?/sec5.
Substitution of (29) into (27) gives

Sl

o

) 'y 4g®
1= 2-30-Tpp pﬁm)% b exp( . ﬁ) .30

The maximum value of I, is reached at the frequency
fa = (2¥2/ 35) (g/ V):

Iy max=2.2 - 107(S5,/ 8:) s (0) (g™s/ ) (V / g)°.  (31)

We note that if we calcualted Ij by the scheme deseribed

in [ 6], we would obtain an expression analogous to (30)
with ¥ = cos¥. In our case, i becomes larger than
cos ¥y, beginning at angles #,~ 46°, and increases
rapidly with increasing @, This results in a substant-
ial increase in the intensity of the sound radiated into
the atmosphere for glancing angles and, consequently,
increases the possible importance of this mechanism
for explanation of the cbserved (see, for example, [8])
atmospheric infrasonic noise due to storm regions in
the ocean.

Let us also note that somewhat different frequency
characteristics are obtained for the radiated sound if we
work from another representation of the wave frequency
spectrum. Thus, for example, Phillips' spectrum for
the equilibrium frequency range is widely known in
oceanology [ 9]. We shall use a modification of the Phil-
lips spectrum proposed in [10 |, which is valid for
lower frequencies:

9, deg

I
o 1

Flux of acoustic energy rad-
iated into the atmosphere vs,
direction of radiation: 1) cal-
culation by approximate rela-
tion (30)}: 2) computer calcu-
lation for f = 0,125 Hz.

D{w) =84-10"'g*a~* exp [—0.74(w: / ©)*], 32)

where w, is the characteristic frequency of the surface
waves. Selecting w, such that the maximum values of (29)
and (32) will coincide, we obtain w,~ 0,93 g/V. Substi-
tution of (32) into (27) yields

a9 s A \gﬁ.-v 14 @o \*
1i=33 107" = pu 054 exp[ 1.48 (7) ] @33)

Here the maximum of I]. corresponds to the frequency

fm = 0,28 g/V and equals

15 max = 1.5 - 107°(8,/ S0 (0) (g ) (V/ g)". (34)

Comparison of (33)-(34) with (30)-(31), at a wind
velocity V = 10 m/see, for example, indicates that at low
frequencies (on the order of a fraction of a Hertz), sur-
face waves with a spectrum in the form of (29) lead to
much larger values of the radiated acoustic energy, so
that we have the ratio

(7 max) 150 ~15

(Ii mu)(!l)

At high frequencies, e.g., f = 10 Hz, the opposite is
observed:
(1)) sy
(CHIER)

To supplement the above analytical analysis of equation
system (9), the latter was solved exactly on a BESM-6
computer, so that the range of validity of the approxi-
mate relations (27)-(31) can be estimated. As we have
already noted, the error of the approximate relationships
decreases with increasing frequency of the radiated
sound. Curve 1 on the figure was plotted from (27), using
(28) as an expression for ;. The curve for f = 1 Hz that
was obtained by the exact calculation is indistinguishable
from curve 1. Curve 2 was plotted from the exact calcu-
lations for f = 0.125 Hz. This time the deviation from
purve 1 is noticeable, especially in the angle range
around © = f;, However, the disagreement in this range
could be reduced substantially if curve 1 were plotted
with 9, calculated with the series expansion in powers of
B3 (see the first relation in (22)).

We note that the frequency dependence of the radiated
sound intensity changes as #, — 9 In fact, when &, =#;
we have from (22) || ~ ©*6, ~ . We then obtain ¥, ~ o *
in (30), so that L ~ f!! instead of f~9 at 0., far from
¥4

= 27.
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