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Highlights

• A new Stokes profile parameterization based on the Phillips profile

• The profile is a much better match than the monochromatic profile

• The shear is also much closer to the shear under the full spectrum

• The profile requiers only the Stokes surface drift and transport
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Abstract

A new approximation to the Stokes drift velocity profile based on the exact

solution for the Phillips spectrum is explored. The profile is compared with

the monochromatic profile and the recently proposed exponential integral

profile. ERA-Interim spectra and spectra from a wave buoy in the central

North Sea are used to investigate the behaviour of the profile. It is found

that the new profile has a much stronger gradient near the surface and lower

normalized deviation from the profile computed from the spectra. Based on

estimates from two open-ocean locations, an average value has been estimated

for a key parameter of the profile. Given this parameter, the profile can

be computed from the same two parameters as the monochromatic profile,

namely the transport and the surface Stokes drift velocity.

Keywords: Stokes drift; Wave modelling; Stokes-Coriolis force; Langmuir

turbulence parameterization; Trajectory modelling.
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1. Introduction1

The Stokes drift (Stokes, 1847) is defined as the difference between the2

Eulerian velocity in a point and the average Lagrangian motion of a particle3

subjected to the orbital motion uw of a wave field,4

vs =

〈∫ t

uw dt · ∇uw

〉
. (1)

Here the averaging is over a period appropriate for the frequency of sur-5

face waves (Leibovich, 1983). The Stokes drift velocity profile is required for6

a number of important applications in ocean modelling, such as the com-7

putation of trajectories of drifting objects, oil and other substances (see8

McWilliams and Sullivan 2000, Breivik et al. 2012, Röhrs et al. 2012, Röhrs9

et al. 2015 and references in Breivik et al. 2013). Its magnitude and direc-10

tion is required for the computation of the Stokes-Coriolis force which enters11

the momentum equation in Eulerian ocean models (Hasselmann 1970, We-12

ber 1983, Jenkins 1987, McWilliams and Restrepo 1999, Janssen et al. 2004,13

Polton et al. 2005, Janssen 2012, and Breivik et al. 2015),14

Du

Dt
= − 1

ρw

∇p+ (u + vs)× f ẑ +
1

ρw

∂τ

∂z
. (2)

Here u is the Eulerian current vector, f the Coriolis frequency, ρw the density15

of sea water, vs the Stokes drift velocity vector, ẑ the upward unit vector, p16

the pressure and τ the stress.17

Langmuir circulation, first investigated by Langmuir (1938), manifests18

itself as convergence streaks on the sea surface roughly aligned with the19

wind direction. In a series of papers (Craik and Leibovich 1976, Craik 1977,20

Leibovich 1977, Leibovich 1980) a possible instability mechanism arising from21

a vortex force vs×ω between the Stokes drift and the vorticity of the Eulerian22

current was proposed to explain the phenomenon (named the second Craik-23

Leibovich mechanism, CL2, by Faller and Caponi 1978). It is now commonly24
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accepted that CL2 is the main cause of Langmuir circulation in the open25

ocean (Thorpe, 2004). Langmuir turbulence is believed to be important for26

the formation and depth of the ocean surface boundary layer (OSBL) (Li27

and Garrett 1997 and Flór et al. 2010), and a realistic representation of28

the phenomenon in ocean models is important (see Axell 2002, Rascle et al.29

2006). A common parameterisation of the Langmuir turbulence production30

term in the turbulent kinetic energy equation relates it to the shear of the31

Stokes drift profile (Skyllingstad and Denbo 1995, McWilliams et al. 1997,32

Thorpe 2004, Kantha and Clayson 2004, Ardhuin and Jenkins 2006, Grant33

and Belcher 2009 and Belcher et al. 2012),34

De

Dt
= νmS

2 − νhN
2 + νmS · ∂vs

∂z
− ∂

∂z
(w′e)− 1

ρw

∂

∂z
(w′p′)− ε. (3)

Here, e represents the turbulent kinetic energy per unit mass; w′e′ and w′p′35

are the turbulent transport and pressure correlation terms (Stull 1988, Kan-36

tha and Clayson 2000). The shear production and the buoyancy produc-37

tion terms are well known quantities where S · S = S2 = (∂u/∂z)2, and38

N2 = −(g/ρw)dρw/dz. Further, νh,m are turbulent diffusion coefficients39

and ε represents the dissipation of turbulent kinetic energy. It is the term40

νmS · ∂vs/∂z, representing the Langmuir turbulence production, that is of41

interest in this study. It is important to note that it involves the shear of42

the Stokes drift. This quantity drops off rapidly with depth, and clearly any43

parameterisation of the Langmuir production term will depend heavily on44

the form of the Stokes drift velocity profile.45

Climatologies of the surface Stokes drift have been presented, either based46

on wave model integrations (Rascle et al., 2008; Webb and Fox-Kemper, 2011;47

Tamura et al., 2012; Rascle and Ardhuin, 2013; Carrasco et al., 2014; Webb48

and Fox-Kemper, 2015) or on assumptions of fully developed sea (McWilliams49

and Restrepo, 1999). However, the Stokes profile is not so readily available50

as it is expensive and impractical to integrate the two-dimensional wave51
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spectrum at every desired vertical level. It is also numerically challenging to52

pass the full two-dimensional spectrum for every grid point of interest from53

a wave model to an ocean model. As was discussed by Breivik et al. (2014),54

hereafter BJB, it has been common to replace the full Stokes drift velocity55

profile by a monochromatic profile [see e.g. Skyllingstad and Denbo (1995),56

McWilliams and Sullivan (2000), Carniel et al. (2005), Polton et al. (2005),57

Saetra et al. (2007), and Tamura et al. (2012)]. But this will lead to an58

underestimation of the near-surface shear and an overestimation of the deep59

Stokes drift (Ardhuin et al, 2009; Webb and Fox-Kemper, 2015). This was60

partly alleviated by the exponential integral profile proposed by BJB, but it61

too exhibited too weak shear near the surface.62

Here we explore a new approximation to the full Stokes drift velocity63

profile based on the assumption that the Phillips spectrum (Phillips, 1958)64

provides a reasonable estimate of the intermediate to high- frequency part of65

the real spectrum. The paper is organized as follows. First we present the66

proposed profile in Sec 2. We then investigate its behaviour for a selection67

of parametric spectra in Sec 3 before looking at its performance on two-68

dimensional wave model spectra in Sec 4 for two locations with distinct wave69

climate, namely the North Atlantic and near Hawaii. The latter location70

is swell-dominated whereas the former exhibits a mix of swell and wind sea71

(Reistad et al., 2011; Semedo et al., 2015) typical of the extra-tropics. Finally,72

in Sec 5 we discuss the results and we present our conclusions along with some73

considerations of the usefulness of the proposed profile for ocean modelling74

and trajectory estimation.75

2. Approximate Stokes drift velocity profiles76

For a directional wave spectrum E(ω, θ) the Stokes drift velocity in deep77

water is given by78

vs(z) =
2

g

∫ 2π

0

∫ ∞

0

ω3k̂e2kzE(ω, θ) dωdθ, (4)
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where θ is the direction in which the wave component is travelling, ω is the79

circular frequency and k̂ is the unit vector in the direction of wave propaga-80

tion. This can be derived from the expression for a wavenumber spectrum81

in arbitrary depth first presented by Kenyon (1969) by using the deep-water82

dispersion relation ω2 = gk. For simplicity we will now investigate the Stokes83

drift profile under the one-dimensional frequency spectrum84

F (ω) ≡
∫ 2π

0

E(ω, θ)dθ,

for which the Stokes drift speed is written85

vs(z) =
2

g

∫ ∞

0

ω3F (ω)e2kz dω. (5)

From Eq (5) it is clear that at the surface the Stokes drift is proportional to86

the third spectral moment [where the n-th spectral moment of the circular87

frequency is defined as mn =
∫∞

0
ωnF (ω) dω],88

v0 = 2m3/g. (6)

A new approximation to the Stokes drift profile was proposed by BJB,89

and named the exponential integral profile,90

ve = v0
e2kez

1− Ckez
, (7)

where the constant C = 8 was found to give the closest match. Here, the91

inverse depth scale ke serves the same purpose as the average wavenumber92

km used for a monochromatic profile,93

vm = v0e2kmz. (8)

The profile (7) was found to be a much better approximation than the94
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monochromatic profile (8) with a 60% reduction in root-mean-square er-95

ror reported by BJB, and has been implemented in the Integrated Forecast96

System (IFS) of the European Centre for Medium-Range Weather Forecasts97

(ECMWF); see Janssen et al. (2013) and Breivik et al. (2015).98

Here we propose a profile based on the assumption that the Phillips spec-99

trum (Phillips, 1958)100

FPhil =

{
αg2ω−5, ω > ωp

0, ω ≤ ωp

, (9)

yields a reasonable estimate of the part of the spectrum which contributes101

most to the Stokes drift velocity near the surface, i.e., the high-frequency102

waves. Here ωp is the peak frequency. We assume Phillips’ parameter α =103

0.0083. The Stokes drift velocity profile under (9) is104

vPhil(z) = 2αg

∫ ∞

ωp

ω−2e2ω2z/g dω. (10)

An analytical solution exists for (10), see BJB, Eq (11), which after using105

the deep-water dispersion relation can be written as106

vPhil(z) =
2αg

ωp

[
exp (2kpz)−

√
−2πkpz erfc

(√
−2kpz

)]
. (11)

Here erfc is the complementary error function and kp = ω2
p/g is the peak107

wavenumber. From (11) we see that for the Phillips spectrum (10) the surface108

Stokes drift velocity is109

v0 ≡ vPhil(z = 0) =
2αg

ωp

. (12)

For large depths, i.e. as z → −∞, Eq (11) approaches the asymptotic limit110
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[see BJB, Eqs (14)-15)]111

lim
z→−∞

vPhil = − v0

4kpz
e2kpz. (13)

This means the exponential integral profile (7) proposed by BJB has too112

strong deep flow when fitted to the Phillips spectrum. This could be al-113

leviated by setting the coefficient C = 4 in Eq (7), but at the expense of114

increasing the overall root-mean-square (rms) deviation over the water col-115

umn. Further, although the profile (7) is well suited to modelling the shear116

at intermediate water depths, its shear near the surface is too weak. Under117

the Phillips spectrum (10) the shear is118

∂vPhil

∂z
= 4α

∫ ∞

ωp

e2ω2z/g dω, (14)

for which an analytical expression exists [see Gradshteyn and Ryzhik (2007),119

Eq (3.321.2)],120

∂vPhil

∂z
= α

√
−2πg

z
erfc

(√
−2kpz

)
. (15)

Near the surface the shear tends to infinity. This strong shear is not captured121

by either the exponential integral profile (7) or the monochromatic profile (8).122

Let us now assume that the Phillips spectrum profile (11) is also a reason-123

able approximation for Stokes drift velocity profiles under a general spectrum,124

and that the low-frequency part below the peak contributes little to the over-125

all Stokes drift profile so that it can be ignored. The general profile (5) can126

be integrated by parts, and for convenience we introduce the quantity127

G(ω) =

∫
ω3F (ω) dω + C1, (16)
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where C1 is a constant of integration. The integral (5) can now be written128

vs(z) =
2

g

(
−G(ωp)e2ω2

pz/g − 4z

g

∫ ∞

ωp

ωG(ω)e2ω2z/g dω

)
. (17)

We note that for the Phillips spectrum (9), the quantity ωG(ω) becomes129

ωGPhil(ω) = ω

[∫ ω

ωp

s3FPhil(s) ds+ C1

]
= −αg2 + αg2 ω

ωp

+ C1ω, (18)

which is a constant, −αg2, if we set C1 = −αg2/ωp. In this case the solution130

to Eq (17) is Eq (11) as would be expected.131

Assume now that in the range ωp < ω < ∞ the quantity ωG(ω) is132

quite flat also for an arbitrary spectrum, and that it drops to zero below ωp.133

Introduce134

β = −〈ωG(ω)〉
m3ωp

,

where the averaging operator is defined over a range of frequencies, ∆ω, from135

the peak frequency to a cutoff frequency, ωc, such that 〈X〉 ≡ ∆ω−1
∫ ωc

ωp
X dω.136

Since we have assumed β to be constant the ωG(ω) in the second term of137

Eq (17) can be factored out and we can approximate Eq (17) by Eq (11),138

vs(z) ≈ v0

[
e2kpz − β

√
−2kpπz erfc

(√
−2kpz

)]
. (19)

We note that if F is the Phillips spectrum (9) then139

〈ωGPhil(ω)〉 = −〈ω5FPhil(ω)〉 = −αg2. (20)

Assuming this to be a reasonable approximation for general spectra we find140

that we can approximate β as follows,141

β̂ =
2〈ω5F (ω)〉
gv0ωp

. (21)
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Here we have substituted m3 = 2v0/g. The Stokes transport V =
∫ 0

−∞ v dz142

under Eq (19) can be found [see Appendix A and Gradshteyn and Ryzhik143

2007, Eq (6.281.1)] to be144

V =
v0

2kp

(1− 2β/3). (22)

Provided the transport and the surface Stokes drift are known, as is usually145

the case with wave models, we can now use the assumption that the Phillips146

spectrum is a good representation of the Stokes drift to determine an inverse147

depth scale k by substituting it for the peak wavenumber kp in Eq (22),148

k =
v0

2V
(1− 2β/3). (23)

Note that we still need to estimate β, which for the Phillips spectrum is149

exactly one.150

3. Parametric spectra151

We now test the profile (19) on a range of other parametric spectra. In152

each case we have estimated β by averaging over the range from the peak153

frequency ωp to a cut-off frequency here set at ωc = 10ωp.154

Table 1 summarizes the normalized rms (NRMS) error of the Phillips155

profile approximation and the previously studied exponential integral profile.156

The NRMS is defined as the difference between the speed of the approximate157

profile (mod) and the speed of the full profile, divided by the transport (which158

is numerically integrated from the full profile),159

δv = V −1

∫ 0

−H
|vmod − v| dz. (24)

Here H is some depth below which the Stokes drift can be considered negli-160

gibly small.161

10
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We first compare the Phillips spectrum against the Phillips approxima-162

tion. Here, β = 1 and any discrepancy in terms of NRMS is due to roundoff163

error. We then investigate the fit to the Pierson-Moskowitz (PM) spectrum164

(Pierson and Moskowitz, 1964) for fully developed sea states,165

FPM(ω) = αg2ω−5 exp

[
−5

4

(ωp

ω

)4
]
. (25)

As seen in Table 1, the NRMS under the PM spectrum is markedly reduced166

with the new profile. The β value is also quite close to unity. This is also167

the case for the JONSWAP spectrum (Hasselmann et al., 1973), with a peak168

enhancement factor γ = 3.3,169

FJONSWAP(ω) = FPMγ
Γ, (26)

where170

Γ = exp

[
−1

2

(
ω/ωp − 1

σ

)2
]
. (27)

Here σ is a measure of the width of the peak. We have also looked at bimodal,171

unidirectional spectra by adding a narrow Gaussian spectrum representing172

1.5 m swell at 0.15 Hz and 0.05 Hz to a JONSWAP and PM wind sea spec-173

trum, respectively. We see in Table 1 that the estimates of β for the combined174

swell and wind sea spectra are still close to unity. The NRMS difference is175

markedly higher for the exponential integral profile proposed by BJB for all176

spectra, including the bimodal ones.177

The assumption that the Phillips profile is a good fit to parametric spectra178

can also be tested in a more straightforward manner without making any as-179

sumption of the behaviour of the quantity ωG(ω) by simply fitting a Phillips180

profile (β = 1) to various spectra. In Fig 1 we have fitted the Phillips profile181

to the surface Stokes drift v0 and the transport V from parametric spectra182

and compared the approximate profile to the full profile. The results show183

that for the Phillips spectrum the approximation matches the full profile (to184

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

within roundoff error). More interestingly, the Pierson-Moskowitz and the185

JONSWAP spectra are both very well represented by the Phillips approxi-186

mation (see Fig 1). This simply confirms what we found in Table 1. A more187

challenging case is the Donelan-Hamilton-Hui (DHH) spectrum (Donelan188

et al., 1985) which has an ω−4 tail,189

FDHH(ω) = αg2ω−4ω−1
p e−(ωp/ω)4γΓ, (28)

and will consequently behave very differently in the tail. The spectrum is190

identical to the JONSWAP spectrum except for substitution of the peak191

frequency ωp for ω and a Jacobian transformation removing the factor 5/4192

in the exponential. It is worth noting that the surface Stokes drift under the193

DHH spectrum is ill-defined (Webb and Fox-Kemper, 2011, 2015), since194

vDHH(0) = αg2ω−1
p

∫ ∞

0

ω−1e−(ωp/ω)4γΓ dω, (29)

which is unbounded because the integrand asymptotes to195

lim
ω→∞

ω−1e−(ωp/ω)4γΓ(ω) = ω−1. (30)

Setting a cut-off frequency at 100ωp yields the results shown in Fig 1 for196

Tp = 10 s. As can be seen the Phillips approximation is not good, but it does197

in fact represent a small improvement compared with the monochromatic and198

exponential integral approximations.199

4. ERA-Interim spectra in open-ocean conditions200

Although β can be estimated from the spectrum as shown in Eq (21),201

it is a quantity which will not be generally available from wave models.202

We find that β = 1.0 is a very good approximation for a dataset of two-203

dimensional spectra taken from the ERA-Interim reanalysis (Dee et al., 2011)204

in the North Atlantic Ocean for the period of 2010 (same location as used by205

12
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BJB) as well as a swell-dominated location near Hawaii (20◦N, 160◦W). The206

temporal resolution is six hours and the spatial resolution of the wave model207

component of ERA-Interim is approximately 110 km. The angular resolution208

is 15◦ while the frequency resolution is logarithmic over 30 frequency bins209

from 0.0345 Hz. We have computed the two-dimensional Stokes drift velocity210

vector at every 10 cm from the surface down to 30 m depth from the full211

spectra. Comparing the approximate profiles to the full profiles (see Figs 2-3)212

reveals that in most cases the Phillips profile (19) is a closer match to the213

full profile than the exponential integral profile (7), even in cases with very214

complex spectra (see the tri-peaked spectrum in Fig 4 associated with the215

profile in Fig 3b). In particular, it is a very good match to the shear near the216

surface, which becomes very high, and in the case of the Phillips spectrum217

infinite. Fig 5 reveals the much stronger shear near the surface achieved by218

the Phillips profile. In fact, the gradient is an almost perfect match to that of219

the full profile. This is unsurprising since near the surface the high-frequency220

ω−5 tail will dominate the shear. ECWAM adds a high-frequency diagnostic221

tail (ECMWF, 2013)222

vHF(z) =
16π3

g
f 5

c

∫ 2π

0

F (fc, θ)k̂ dθ

∫ ∞

fc

exp (−µf 2)

f 2
df, (31)

where µ = −8π2z/g. This integral is similar to (10) and the solution is223

similar to (19) [see eg Gradshteyn and Ryzhik 2007, Eq (3.461.5)], yielding224

vHF(z) =
16π3

g
f 5

c

∫ 2π

0

F (fc, θ)k̂ dθ

[
exp (−µf 2

c )

fc

−√µπ erfc (fc
√
µ)

]
. (32)

For the surface Stokes drift this simplifies to225

vHF(0) =
16π3

g
f 4

c

∫ 2π

0

F (fc, θ)k̂ dθ. (33)
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Here, the cut-off frequency fc of ECWAM is related to the mean wind sea226

frequency as 2.5fws. Eq (31) is exactly the profile under the Phillips spectrum227

(9) on which our approximation is based and it is unsurprising then that the228

profile (11) is a good match to the full profile as we get close to the surface229

where the high frequency part of the spectrum dominates the Stokes drift230

velocity.231

Fig 6 shows that the Phillips profile has an NRMS deviation about half232

that of the exponential integral profile for the North Atlantic location. The233

numbers are quite similar for the Hawaii swell location.234

5. Discussion and concluding remarks235

Although the exponential integral profile proposed by BJB represents a236

major improvement over the monochromatic profile, it appears clear that the237

Phillips profile (10) is a much better match, especially for representing the238

shear near the surface; see Eq (15). Studies of ERA-Interim spectra at two239

open-ocean locations near Hawaii and in the North Atlantic Ocean show that240

β = 1.0 is a very good estimate for a wide range of sea states. This allows us241

to compute the profile from the same two parameters as the monochromatic242

profile, namely the transport and the surface Stokes drift velocity, and it is243

thus no more expensive to employ in ocean modelling. We have shown here244

that the profile works remarkably well in a variety of situations, including245

swell-dominated cases. In Appendix C it is shown that the profile is also a246

better match for profiles under measured 2 Hz spectra in the central North247

Sea. This shows that the fit is not dependent on the assumption of an ω−5
248

tail since these spectra have no high-frequency diagnostic tail added to them.249

The new profile also comes closer to the DHH spectrum which has an ω−4
250

tail, but here the match is naturally quite poor (see Fig 1). We conclude251

that for applications concerned with the shear of the profile, in particular252

studies of Langmuir turbulence, the proposed profile is a much better choice253

than the monochromatic profile, but it is also clearly a better option than254

14
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the previously proposed exponential integral profile.255

The question of how best to represent a full two-dimensional Stokes drift256

velocity profile with a one-dimensional profile was discussed by BJB where257

it was argued that using the mean wave direction is better than using the258

surface Stokes drift direction since the latter would be heavily weighted to-259

ward the direction of high-frequency waves. This still holds true, but it is260

clear that spreading due to multi-directional waves affects the Stokes drift261

[see Webb and Fox-Kemper 2015], and although we model the average profile262

well, situations with for example opposing swell and wind waves will greatly263

modify individual profiles. This will also affect the Langmuir turbulence264

as parameterised from the Stokes drift velocity profile, as demonstrated by265

McWilliams et al. (2014) for an idealised case of swell and wind waves prop-266

agating in different directions. Li et al. (2015) investigated the impact of267

wind-wave misalignment and Stokes drift penetration depth on upper ocean268

mixing Southern Ocean warm bias with a coupled wave-atmosphere-ocean269

earth system model and found that Langmuir turbulence, parameterized us-270

ing a K-profile parameterization (Large et al., 1994). They found a sub-271

stantial reduction in the demonstrated that a K-profile parameterization for272

a coupled system consisting of a spectral wave model and the Community273

Earth System Model. This is impossible to model with a simple parametric274

profile like the one proposed here, but a combination of two such parametric275

profiles, one for the swell and one representing the wind waves is straightfor-276

ward to implement.277

The method presented here to derive an approximate Stokes drift profile278

based on the Phillips profile could also be relevant for other wave-related279

processes. The proposed mixing by non-breaking waves (Babanin, 2006) was280

implemented in a climate model of intermediate complexity by Babanin et al.281

(2009) and was compared against tank measurements by Babanin and Haus282

(2009). In a similar vein, mixing induced by the wave orbital motion as283

suggested by Qiao et al. (2004) has been tested for ocean general circulation284

15
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models (Qiao et al., 2010; Huang et al., 2011; Fan and Griffies, 2014). These285

suggested mixing parameterizations bear some semblance to the Langmuir286

turbulence parameterization in that they involve the shear of an integral of287

the wave spectrum with an exponential decay term. Qiao et al. (2004) pro-288

poses to enhance the diffusion coefficient by adding a term which involves the289

second moment of the wave spectrum. It will thus be somewhat less sensi-290

tive to the higher frequencies than the Stokes drift velocity profile. By again291

assuming that the wave spectrum is represented by the Phillips spectrum292

(9), we find an analytical expression for the mixing coefficient (see Appendix293

B). Although we do not pursue this any further here it is worth noting that294

similar approximations to those presented for the Stokes drift profile could295

thus be found for the proposed wave-induced mixing by Qiao et al. (2004).296

Wave-induced processes in the ocean surface mixed layer have long been297

considered important for modelling the mixing and the currents in the upper298

part of the ocean. Using the proposed profile for the Stokes drift velocity299

profile is a step towards efficiently parameterising these processes. Although300

more work is needed to quantify the impact of these processes on ocean-only301

and coupled models, it appears clear that the impact on the sea surface tem-302

perature (SST) may be on the order of 0.5 K (Fan and Griffies, 2014; Janssen303

et al., 2013; Breivik et al., 2015). As the coupled atmosphere-ocean system304

is sensitive to such biases, for instance through the triggering of atmospheric305

deep convection, see Sheldon and Czaja (2014), wave-induced mixing could306

play an important role in improving the performance of coupled climate and307

forecast models.308
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Spectral shape β NRMS Phillips NRMS exp int
Phillips 1 0.001 0.573
JONSWAP (γ = 3.3) 0.96 0.148 0.650
PM 1.05 0.231 0.957
JONSWAP+swell (f = 0.15 Hz) 0.94 0.058 0.581
PM+l.f. swell (f = 0.05 Hz) 1.04 0.240 0.920

Table 1: Statistics of the two Stokes drift velocity profiles for three parametric unimodal
spectra and two bimodal spectra. In all experiments the wind sea peak frequency fp = 0.1
Hz. For the two bimodal spectra the swell wave height is 1.5 m. The swell frequency is
listed in the experiment description (where l.f. stand for low frequency).
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(b)

Stokes drift profile under the Pierson-Moskowitz spectrum (Tp  = 10 s)
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(c)

Stokes drift profile under the JONSWAP spectrum (Tp  = 10 s)
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(d)

Stokes drift profile under the DHH spectrum (Tp  = 10 s)
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Figure 1: A comparison of the merits of the three approximate profiles against four para-
metric spectra. The normalized rms difference compared to the Stokes profile integrated
from the parametric spectrum is marked in the legends. Panel a: The Phillips spectrum.
The Phillips approximation is identical to the parametric spectrum to within roundoff error
and overlaps exactly (Phillips approximation marked in red; the original Phillips profile in
green but underneath the red curve). Panel b: The Pierson-Moskowitz spectrum. Panel c:
The JONSWAP spectrum. The Pierson-Moskowitz and JONSWAP spectra are extremely
well modelled by the Phillips approximation and overlap nearly perfectly. Panel d: The
Donelan-Hamilton-Hui spectrum. This spectrum has an ω−4 and has a quite different
Stokes drift profile. The Phillips approximation is still the best of the three approximate
profiles.
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Figure 2: The Stokes drift profile under a full two-dimensional wave spectrum from the
ERA-Interim reanalysis. The location is in the north Atlantic. The upper panel is a zoom
of the upper 7 m while the lower panel shows the profile to 25 m. The red line is the
Phillips approximation.
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Figure 3: The Stokes drift profile under a full two-dimensional wave spectrum from the
ERA-Interim reanalysis. The location is near Hawaii. The upper panel is a zoom of the
upper 7 m while the lower panel shows the profile to 25 m. The red line is the Phillips
approximation.
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Figure 4: The one-dimensional spectrum associated with Fig 3b shows three peaks corre-
sponding to swell and wind sea.
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Figure 5: The Stokes drift shear under a full two-dimensional wave spectrum from the
ERA-Interim reanalysis. The location is in the swell-dominated Pacific near Hawaii at
20◦N, 200◦E. The red line is the Phillips approximation.
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Figure 6: The NRMS difference between the full Stokes profile and the monochromatic
profile to 30 m depth (vertical resolution 0.1 m). The location is in the North Atlantic.
Panel b: The NRMS difference of the exponential integral profile is on average about one
third that of the monochromatic profile shown in Panel a. Panel c: The NRMS difference
between the Phillips approximation and the full profile is about half that of the exponential
integral profile (BJB).
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Appendix A. The transport under a Phillips-type spectrum314

The Stokes transport under Eq (19) is315

V = v0

∫ 0

−∞


e2kpz − β

√
−2kpπz erfc

(√
−2kpz

)

︸ ︷︷ ︸
GR6.281.1


 dz. (A.1)

The second term can be solved by applying Eq (6.281.1) of Gradshteyn and316

Ryzhik 2007 as follows. Introduce the variable substitution x =
√−z and317

rewrite the second term (marked GR6.281.1) in Eq (A.1)318

2
√

2kpπ

∫ ∞

0

x erfc
(√

2kpx
)

dx. (A.2)

We can now introduce q = 3/2 and p =
√

2kp and employ Eq (6.281.1) of319

Gradshteyn and Ryzhik 2007,320

∫ ∞

0

x2q−1erfc px dx =
Γ(q + 1/2)

2
√
πqp2q

=
1

3
√
π(2kp)3/2

. (A.3)

The full integral (A.1) can now be written321

V =
v0

2kp

(1− 2β/3). (A.4)

Appendix B. An analytical expression for the wave-induced mix-322

ing coefficient of Qiao et al. (2004)323

The wave-induced mixing coefficient proposed by Qiao et al. (2004) can324

be written325

Bν = l23w
∂

∂z



∫ 2π

0

∫ ∞

0

ω2e2kzE(ω, θ) dω dθ

︸ ︷︷ ︸
I




1/2

, (B.1)
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where the mixing length l3w is assumed proportional to the wave orbital326

radius. We assume that the wave spectrum is represented by the Phillips327

frequency spectrum (9), which renders the integral I in Eq (B.1) as328

I = αg2

∫ ∞

ωp

ω−3e2ω2z/g dω. (B.2)

After integration by parts and by performing a variable substitution u = ω2
329

a solution to the integral (B.2) can be found from Eq (3.352.2) of Gradshteyn330

and Ryzhik (2007),331

I =
1

2
αg2

[
ω−2

p e2ω2
pz/g − 2z

g
Ei(2ω2

pz/g)

]
. (B.3)

Appendix C. A comparison against measured spectra in the cen-332

tral North Sea333

We have estimated the profile from the same observational spectra as334

was used by BJB from the Ekofisk location in the central North Sea for the335

period 2012 (more than 24,000 spectra in total). The location is (56.5◦N,336

003.2◦E). The sampling rate was 2 Hz and 20-minute spectra were computed337

as described by BJB. The NRMS difference is shown in Fig C.1. As can338

be seen from Panel c, the new profile reduces the NRMS difference slightly339

compared with the exponential integral and quite dramatically compared340

with the monochromatic profile. It is worth noting that no ω−5 tail has been341

fitted to the spectra, so the improvement is present even without adding a342

high-frequency tail.343
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Figure C.1: A comparison of the full Stokes profile computed from 2 Hz Waverider obser-
vations at Ekofisk (56.5◦N, 003.2◦E, central North Sea, 72 m depth) for the year 2012 and
the three approximate profiles. Panel a: The average NRMS difference of the monochro-
matic profile compared to the full profile is 0.34. 0.114001530208 Panel b: The NRMS
difference of the exponential integral profile is on average 0.13 or one third that of the
monochromatic profile shown in Panel a. Panel c: The NRMS difference between the
Phillips approximation and the full profile is somewhat smaller again (0.11).
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