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Abstract

Fully dispersive deterministic evolution equations for irregular water waves are derived. The equations are formu
the complex amplitudes of an irregular, directional wave spectrum and are valid for waves propagating in directio
±90◦ from the main direction of propagation under the assumptions of weak nonlinearity, slowly varying depth and ne
reflected waves. A weak deviation from straight and parallel bottom contours is allowed for. No assumptions on the
structure of the velocity field is made and as a result, the equations possess exact second-order bichromatic transfe
when comparing to the reference solution of a Stokes-type analysis. Introduction of the so-called ‘resonance assump
to the evolution equations of among others Agnon, Sheremet, Gonsalves and Stiassnie [Coastal Engrg. 20 (1993) 2
unidirectional waves, the bichromatic transfer functions of the ‘resonant’ models are found to have only small devia
general from the reference solution. We demonstrate that the ‘resonant’ models can be solved efficiently using Fa
Transforms, while this is not possible for the ‘exact’ models. Simulation results for unidirectional wave propagation
submerged bar show that the new models provide a good improvement from linear theory with respect to wave sh
is due to the quadratic terms, enabling a nonlinear description of shoaling and de-shoaling, including the release
harmonics after the bar. For these simulations, the similarity between the ‘exact’ and ‘resonant’ models is confirme
case of shorter waves, however, shows that the amplitude dispersion can be quite over-predicted in the models. This
is investigated and confirmed through a third-order Stokes-type perturbation analysis.
 2005 Elsevier SAS. All rights reserved.

Keywords: Nonlinear wave transformation; Deterministic spectral modelling; Fully dispersive wave theory; Fast Fourier Transform;
Bichromatic transfer; Amplitude dispersion

1. Introduction

When a wave field propagates over varying depth, the wave spectrum changes due to shoaling, refraction and
interactions. Numerous wave models can be used to model these effects, varying from solving the Navier–Stokes e
allowing for a free surface, over Boussinesq modelling in the time domain, to simple linear shoaling calculations. For lar
fields of two horizontal dimensions, Navier–Stokes modelling is too computationally demanding and Boussinesq mode
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requires an extensive computational effort. For practical use, there is thus an interest in computationally faster models,
more accurate than a simple linear wave shoaling calculation.

Evolution equations for the wave amplitudes of a complex wave spectrum represent a model class of this type
models, time periodicity of the wave field is assumed, allowing for expanding the wave field as a Fourier series in ti
Fourier coefficients are then functions of space, and under the assumptions of (1) negligible reflected waves, (2) slowl
depth and (3) weak nonlinearity, first-order differential equations for the spatial evolution of the Fourier amplitudes
derived. In this approach, the wave field in a physical domain can thus be found by integrating a set of first-order
differential equations in one spatial sweep, taking refraction, shoaling and nonlinear interactions into account. If th
of the Fourier amplitudes are retained in the modelling, the evolution equations are called deterministic. We shall
deterministic evolution equations in this paper. The models derived provide a numerically efficient tool for the descri
shoaling, refraction and quadratic nonlinear interactions for wave fields in two horizontal dimensions.

Evolution equations are appropriate for describing nonlinear interactions between wave components. On an ev
quadratic interactions can be removed from the equations and evolution equations describing four-wave interactio
nonlinearity) can be derived (see e.g. [1]). On variable depth, however, the quadratic interactions can be resonant in
of class III Bragg resonance [2] and can thus not be eliminated. Further, in shallow water quadratic interactions can
resonant, giving so-called triad interactions [3]. Contrary to four-wave interactions at deep water, triad interactions can
over just a few wave lengths in shallow conditions and are thus important in coastal areas. Away from shallow and inte
water, the quadratic interactions are non-resonant, giving rise to second-order bound waves, being phase locked t
order wave field. In this paper we shall retain only quadratic nonlinearity, thereby precluding any description of fou
interactions. The models derived will provide a correct description of the second-order wave field from deep to shallo
cubic effects being discarded.

Deterministic evolution equations have often been derived using a time domain Boussinesq formulation as starti
Examples are Freilich and Guza [4], Liu, Yoon and Kirby [5], Yoon and Liu [6], Madsen and Sørensen [7], Chen and
and Kaihatu and Kirby [9]. Boussinesq formulations make an attractive starting point, since they provide a depth-in
formulation of the governing equations for water wave propagation. On the other hand, as Boussinesq formulations ar
as asymptotic expansions of the governing equations from the shallow water limit, their accuracy generally decays
water.

As an alternative, evolution equations can be derived directly from the irrotational, inviscid governing equations. Her
linear phase speed and shoaling characteristics agree exactly with linear wave theory for all depths. Such models ar
denoted fully dispersive evolution equations. Agnon et al. [10] and Kaihatu and Kirby [11] derived fully dispersive ev
equations for the complex Fourier amplitudes of the still water potential. Both derivations involved depth-integration
Laplace equation. Here the vertical variation of the velocity potential must be known a priori, and in both works the
structure of a linear wave was assumed. As a result, the second-order bound wave field is not modelled with exact am
Eldeberky and Madsen [12] pointed out that a quadratic transformation is needed, when results of the two above m
transformed from the still water potential to free surface elevations. Using this transformation, they derived evolution e
formulated directly in the complex Fourier amplitudes of the free surface elevation.

In this paper, a new derivation of fully dispersive deterministic evolution equations is given, free of assumptions
vertical variation of the velocity potential. We hereby, for the first time, obtain models having exact second-order pro
We present evolution equations formulated in the complex Fourier amplitudes of either the still water potential or
surface elevation. Both formulations are derived for an angular spectrum representation of the wave field, allowing
propagation in directions up to±90◦ from the main direction of wave propagation. A weak deviation from straight and pa
depth contours is allowed for. By invoking the so-called ‘resonance assumption’ within the nonlinear terms, the m
Agnon et al. [10], Kaihatu and Kirby [11] and Eldeberky and Madsen [12] are recovered. Thus for short, we deno
models the ‘resonant’ models.

Having derived ‘exact’ as well as ‘resonant’ models, we analyse them with respect to second-order transfer func
bichromatic wave propagation. The transfer functions derived are compared to the exact solution of a Stokes-type a
the governing equations as given by Sharma and Dean [13]. As expected the transfer of the ‘exact’ models is identi
reference solution.

A well-known drawback of evolution equations is their representation of the nonlinear terms as convolution sums
Fourier amplitudes. If a wave field containsN frequencies in time, the computational effort of evaluating these convolu
sums is O(N2). This has traditionally limited the use of evolution equations to wave fields with a relatively small num
frequencies. Recently, Bredmose, Schäffer and Madsen [14] have demonstrated that for the Boussinesq evolution
of Madsen and Sørensen [7], the computational effort can be reduced to O(N logN) by calculating the nonlinear terms wit
the aid of Fast Fourier Transforms. This technique, originally developed in the field of spectral methods for partial diff
equations, is used here to improve the computational efficiency of the ‘resonant’ models. The FFT speed-up can also
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to the angular spectrum variation, such that forN frequencies andM angular wave modes, the evolution equations can
solved at a cost of O((M logM)(N logN)). This speed-up, however, is not applicable to the ‘exact’ models.

Although the ‘exact’ and ‘resonant’ models are derived for two-dimensional wave propagation, we here focus the va
on unidirectional waves. The models are applied to two cases of weakly nonlinear wave propagation over a subme
using the experimental data of Beji and Battjes [15]. For a test of long waves (kh = 0.32 on the bar top), the second-order ter
provide a clear improvement over results of linear theory, both with respect to wave shape and to release of higher h
as the waves leave the bar top. For a test of shorter waves (kh = 0.68 at the bar top), the wave shape on the bar top is impro
as well by the second-order terms, but accumulative phase errors are observed, indicating an over-prediction of the
dispersion in the models.

To look further into this, we extend the Stokes-type analysis of the models to third order, to obtain results for the am
dispersion and third-order transfer for unidirectional waves.

The structure of the paper is as follows. In Section 2, a review of fully dispersive evolution equations is given w
Section 3, the new exact models are derived. The bichromatic transfer functions for the new models are presented in
and the numerical speed-up technique using FFT is dealt with in Section 5. Model results for wave propagation over a s
bar are presented in Section 6, and the third-order analysis in Section 7.

2. Review of fully dispersive evolution equations

2.1. The evolution equations of Agnon et al. [10]

The evolution equations of Agnon et al. [10] were formulated in the complex Fourier amplitudes of the still water po
and are valid for one horizontal dimension. The main steps in the derivation were the following: The free surface b
conditions were expanded around the still water level and combined into a single equation in the still water potential. A
scales expansion in space and time was introduced to separate the fast and slow variation of the wave field. The
equations were next transformed to Fourier space (with respect to time) and the Laplace equation depth-integrated. In
vertical structure of bound waves as well as free waves was considered, that is

φ(x, z, t) = coshk(z + h)

coshkh
φ(x, z = 0, t) (1)

wherek can be a free wave number or a bound wave number. The model derived, however, was based on the vertica
of a free wave. Agnon et al. [10] defined a detuning parameter

µ = (kbound− kfree)/kfree (2)

giving a measure of the deviation between bound and free wave numbers. The bound waves within the model are thus
with an error of O(µ).

The model was extended to two dimensions in Agnon and Sheremet [16], following the angular spectrum app
Dalrymple and Kirby [17]. They also developed stochastic evolution equations based on the deterministic model, th
however, is not pursued in the present paper.

2.2. The evolution equations of Kaihatu and Kirby [11]

Kaihatu and Kirby [11] derived a set of evolution equations, essentially being an extension of the model of Agno
[10] to weakly two-dimensional wave propagation. Their starting point was the Laplace equation, which was depth-in
assuming a vertical structure of the velocity field corresponding to linear waves. The resulting equation was combined
free surface conditions, giving a nonlinear mild-slope equation. Next the following expansion was utilised

φ(x, y, t)|z=0 =
N∑

p=−N

− ig

ωp
ap(x, y)ei(

∫
k̄p dx−ωpt), (3)

wherey is the long-shore spatial coordinate andk̄p is ay-averaged free wave number. The amplitudesap(x, y) are complex
numbers, satisfyinga−p = a∗

p anda0 ∈ R. The frequencies are given asωp = pω1, whereω1 is the smallest radian frequenc

resolved in the spectrum. As a next step, a slow variation of the Fourier amplitudes was assumed, that isap = ap(δ2x, δy)

whereδ is a small ordering parameter. The resulting model thus only retained the derivativesap,x, ap,y andap,yy , thereby
forming a set of evolution equations forap . Numerically, they-dependence was allowed for by solving the equations on a s
parallel lines in thex-direction. The doubley-derivative was then handled by a finite difference approximation. In an appe
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the model was extended to allow for a spatially varying current. For one horizontal dimension and no current, the
identical to the model of Agnon et al. [10].

2.3. The second-order transformation from φ to η

Both of the two above models were compared to experimental results. Agnon et al. [10] simulated a laboratory test
unidirectional irregular waves propagating onto an open beach, and also field measurements of shoaling waves in W
South Africa. Kaihatu and Kirby [11] simulated the test of Whalin [18] for regular wave propagation over a semicircula
and the test of breaking irregular waves on a plane sloping beach of Mase and Kirby [19]. For the latter purpose, the
model of Mase and Kirby [19] was incorporated.

In both of these works, however, the transformation between the Fourier amplitudes of the still water level and the
amplitudes of the free surface elevation was linear. This is inconsistent with the second-order accuracy of the models,
out by Eldeberky and Madsen [12]. Eldeberky and Madsen [12] gave a second-order transformation between these a
and transformed the evolution equations of Agnon et al. [10], as well as Agnon and Sheremet [16], to sets of evolution e
formulated directly in the complex amplitudes of the free surface elevation. The correction of the transformation impr
accuracy of super-harmonic energy transfer significantly.

Kaihatu [20] discussed this correction of the deterministic model as well. The influence of the new second-order te
examined by deriving fully nonlinear solutions to the equations in the amplitudes of the still water potential. The solutio
then transformed to free surface elevations, using either the linear transformation or the correct second-order transfor
shallow water, essentially no difference was found, while at deep water, the effect was found to be more pronounced.

3. Derivation of the new evolution equations

In this section we present a new derivation of fully dispersive evolution equations, leading to a model with exact
order transfer. We first derive a set of equations formulated in the complex Fourier amplitudes of the still water level p
Subsequently, we transform these equations to the complex Fourier amplitudes of the free surface elevation.

3.1. Governing equations and scaling

We consider the motion of an inviscid irrotational fluid, as depicted in Fig. 1. A Cartesian coordinate system(x, y, z) = (x, z)

with thez-axis pointing upwards from the still water level is adopted. The surface elevation is denotedη(x, t) and the velocity
potentialφ(x, z, t). The velocity field within the fluid is(u, v,w) andg is the acceleration of gravity. The depth is described
h(x), measuring the distance from the bottom to the still water level.

The governing equations are

∇2φ + φzz = 0, −h < z < η, (4)

φz − ∇φ · ∇η − ηt = 0, z = η, (5)

φt + gη + (
(∇φ)2 + φ2

z

)
/2= 0, z = η, (6)

φz + ∇h · ∇φ = 0, z = −h, (7)

Fig. 1. Definition sketch for derivation of fully dispersive evolution equations.
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stating local continuity (4), the kinematic and dynamic free surface conditions (5), (6), and impermeability of the bott
∇ is the horizontal gradient operator, i.e.,∇ = ( ∂

∂x
, ∂

∂y
). We shall assume a classical Stokes scaling of the variables, that

x = x′
k0

, z = z′h0, h = h′h0,

t = t ′
ω0

, η = a0η′, φ = ga0

ω0
φ′,

where a prime denotes dimensionless variables and(k0, h0,ω0, a0) are typical measures of wave number, depth, frequency
amplitude, respectively. This gives the nonlinearity parameterε = k0a0, which will appear as a factor on the nonlinear terms
the above variables are inserted into the governing equations. However, instead of using the dimensionless variable
carry out the derivation and analysis in the dimensional variables, keeping an artificialε factor in front of the nonlinear terms
Thus in the following,ε is to be regarded as a small ordering parameter, which should simply be omitted in any num
evaluation of the expressions. We thus assume weak nonlinearity of the wave field. Further, we assume that the s
varying slowly as function ofx, i.e.,h = h(εx), and that the deviation from uniform depth in they-direction is O(ε).

3.2. Rewriting the governing equations

We follow the lines of Madsen and Schäeffer [21] and Agnon, Madsen and Schäffer [22], taking basis in an exac
series solution to the Laplace equation. The starting point is to expand the velocity potential as a power series inz:

φ(x, z, t) =
∞∑

n=0

znφn(x, t). (8)

It is easily seen thatφ0 = φ(x,0, t) ≡ Φ andφ1 = w(x,0, t) ≡ W . Further, insertion of (8) into the Laplace equation yields
well-known recursion relationφn+2 = −∇2φn/((n + 1)(n + 2)) and thereby the solution

φ(x, z, t) =
∞∑

n=0

(−1)n
z2n∇2n

(2n)! Φ + (−1)n
z2n+1∇2n

(2n + 1)! W. (9)

We identify the above series in(z∇) as the Taylor series of the functions cos(z∇) and sin(z∇)/∇, thus allowing us to write the
series as

φ(x, z, t) = Cos(z∇)Φ + 1

∇ Sin(z∇)W, (10)

where the capitalised form of the trigonometric functions has been used to indicate that they denote operators. In
equation both series operators are even functions of∇. They are thus scalar operators, just like∇2. We indicate this by using
non-bold∇ in their arguments and shall be using this convention throughout.

Next, we utilise the assumption of slowly varying depth,h = h(εx), and retain only first-order derivatives of the dep
variation. As shown by Mei [23] and Agnon [24], a convenient way of dealing with this is to introduce a constant ref
depthh(x) = h0+δ(x) and expand the bottom boundary condition aroundh0. This proves to be advantageous, when combin
the sea bed condition with the series solution (10). We shall later resubstitute the true local depthh, and we thus note that th
use of a reference level is just a technicality, that does not introduce any bounds on the depth range of model applicati
expanding the sea bed condition around the constant reference levelh0 yields

φz + δ∇2φ + 1

2
δ2∇2φz + ∇δ · (∇φ − δ∇φz) = O

(
δ3, δ2∇δ

)
, z = −h0. (11)

where the Laplace equation (4) has been used to rewrite doublez-differentiations to∇2 operations. To lowest order, this equati
states thatφz = O(δ,∇δ), allowing for writing the sea bed condition in the compact form

φz = −∇ · (δ∇φ) + O
(
δ3, δ2∇δ, δ(∇δ)2

)
, z = −h0. (12)

The advantage of this formulation is that it is defined on a constant levelz = −h0. All effects of varying depth are thu
represented byδ and when the series solution (10) is inserted forφ, the operators will thus have the argumenth0∇, where
∇ andh0 can be interchanged. This simplifies the derivation considerably, since in generalh and∇ are not interchangeable
The assumption of mildly sloping bottom allows us to neglect all but first-order derivatives ofδ, while as the last step in th
derivation, we can replace the reference depthh0 with the local depthh, implying δ = 0 and∇δ = ∇h. Insertion of (10)
into (12) yields

Sin(h0∇)∇Φ + Cos(h0∇)W = −∇ · {δ(Cos(h0∇)∇Φ − Sin(h0∇)W
)}

. (13)
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We now invoke the free surface boundary conditions to expressW in terms ofΦ. Expanding (5) and (6) aroundz = 0 yields

ηt − W + ε
(
η∇2Φ + ∇η · ∇Φ

) = O(ε2) (14)

gη + φt + ε
(
(∇Φ)2/2+ W2/2+ ηWt

) = O(ε2), (15)

where we have used the Laplace equation to eliminate higher-order derivatives ofΦ with respect toz. To lowest order, thes
equations readW = ηt + O(ε) andη = −Φt/g + O(ε). This can be used to eliminateW andη in the nonlinear terms. We writ
the resulting equations as

−W − 1

g
Φtt + ε

[
− 1

2g3

(
Φ2

t

)
t t t

+ 1

2g3

(
Φ2

t t

)
t
− 1

g

(
(∇Φ)2

)
t
− 1

g
Φt∇2Φ

]
= O(ε2), (16)

gη + Φt + ε

[
1

2
(∇Φ)2 + 1

2g2

(
Φ2

t

)
t t

− 1

2g2
Φ2

t t

]
= O(ε2). (17)

3.3. Transforming to the frequency domain

Until now, the equations have been formulated in the time domain. We now transform them to the frequency domain,
the expansions

η(x, t) =
N∑

p=−N

η̂p(x, y)eiωpt =
N∑

p=−N

M∑
l=−M

ap,l(x)ei(ωpt−∫
kx
p,l dx−k

y
l y) (18)

Φ(x, t) =
N∑

p=−N

φ̂p(x, y)eiωpt =
N∑

p=−N

M∑
l=−M

bp,l(x)ei(ωpt−∫
kx
p,l dx−k

y
l y)

. (19)

These expansions are Fourier series in time just like the expansion (3) withωp = pω1, a−p,l = a∗
p,l

, a0,l ∈ R and similarly
for bp,l . As a difference to the expansion (3), we here treat they-variation of the wave field through a Fourier expansion
well. This idea has been used by Dalrymple and Kirby [17], see also Dalrymple, Suh, Kirby and Chae [25], Suh, Dalrym
Kirby [26], Chen and Liu [8] and Agnon and Sheremet [16], and makes it possible to treat waves propagating at angles
up to±90◦ from thex-direction. The wave numbers in they-direction,ky

l
, are chosen with fixed increments, that isk

y
l

= lk
y
1,

wherek
y
1 is the smallest wave number resolved in they-direction. For each frequencyωp , andy-mode wave numberky

l
, the

geometrical length of the wave number vectorkp,l = (kx
p,l

, k
y
l
) is given by the linear dispersion relation. We denote this len

by kp = |kp,l |, and thex-component ofkp,l is then given by the Pythagorean relation(
kx
p,l

)2 = k2
p − (

k
y
l

)2
. (20)

Similarly to the above expansions, we expandW as

W(x,y) =
N∑

p=−N

ŵp(x, y)eiωpt . (21)

Substitution of this expansion and the first part of (19) into (16) then gives

ŵp = ω2
p

g
φ̂p + ε

N∑
s=p−N

F(2)
s,p−s φ̂s φ̂p−s (22)

with

F(2)
s,p−s = i

2g3
ω2

s ω2
p−sωp − i

2g3
ωsωp−sω

3
p − i

g
ωp∇s · ∇p−s − i

2g
ωp−s (∇s )

2 − 1

2g
ωs(∇p−s )

2, (23)

where e.g.∇s operates onφs only and similarly for∇p−s . We next transform the linear equation (13) to the frequency dom
and insert the above result for̂wp . This gives

Sin(h0∇)∇φ̂p + Cos(h0∇)

[
ω2

p

g
φ̂p + ε

N∑
s=p−N

F(2)φ̂s φ̂p−s

]

= −∇ ·
{
δ

(
Cos(h0∇)∇φ̂p − Sin(h0∇)

ω2
p

φ̂p

)}
+ O(ε2), (24)
g
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where we have utilised that the right-hand side eventually becomes a bed-slope term of magnitude O(ε), such that the quadrati
terms ofŵp can be consistently omitted here. Operation on both sides with the operator Sec(h0∇) gives(

∇ Tan(h0∇) + ω2
p

g

)
φ̂p = −Sec(h0∇)∇ ·

{
δ

(
Cos(h0∇)∇φ̂p − Sin(h0∇)

ω2
p

g
φ̂p

)}

− ε

N∑
s=p−N

F(2)
s,p−s φ̂s φ̂p−s + O(ε2). (25)

3.4. Splitting the dispersion operator

For linear wave propagation on constant depth, the above equation states that(
∇ Tan(h0∇) + ω2

p

g

)
φ̂p = 0 (26)

and we denote the operator working onφ̂ in this expression as ‘the dispersion operator’. In the following we split this oper
to obtain a left-hand side appropriate for evolution equations. We follow the lines of Agnon [24], who split the disp
operator to obtain a mild-slope equation.

The Tan-operator is to be interpreted through its infinite Taylor series, and the operator as a whole can therefore be c
as a polynomial in∇ of infinite order. Two of the roots are the progressive linear wave numbers∇ = ±ikp . This can be seen b
insertion, using that tan(iu) = i tanhu. As the operator is even inkp , one obtains the scalar result−kp tanhkph0 + ω2

p/g = 0,
the well known dispersion relation for linear water waves. Besides the progressive wave number solutions, there is a
set of evanescent wave modes, represented by the roots∇ = (±kev

1 ,±kev
2 , . . .). The polynomial can be factorised, with each

the factors being(∇ − ∇root). One of these factors is(∇ + ikp), and we define the remaining factor by(
∇ Tan(h0∇) + ω2

p

g

)
≡ ∇ + ikp

H(h0∇,kph0)
(27)

which implies

H(h0∇,kph0) = h0∇ + ikph0

h0∇ Tan(h0∇) + kph0 tanhkph0
. (28)

We now apply the above result to (25) to obtain

(∇ + ikp)φ̂p = −H(h0∇,kph0)Sec(h0∇)∇ ·
{
δ

(
Cos(h0∇)∇φ̂p − Sin(h0∇)

ω2
p

g
φ̂p

)}

− ε

N∑
s=p−N

H(h0∇,kph0)F(2)
s,p−s φ̂s φ̂p−s . (29)

This is a set of evolution equations in the Fourier amplitudes of the still water potential. In the following, we express the
series operators involved in terms of free wave numbers, thus turning the above equation into a practically applicable

We first treat the bed slope term (the one involvingδ). Using (26) we write this as

Tbed= − Sec(h0∇)

h0∇Tan(h0∇) + kph0 tanh(kph0)
(h0∇ + ikph0)∇ · {δ Sec(h0∇)∇φ̂p

}
. (30)

To discard all but first-order derivatives ofδ, we insert

∇ = ∇w + ∇δ (31)

where it is understood that∇δ operates solely onδ, while ∇w operates solely onφ. We next Taylor expand in∇δ and retain
only the first-order term in∇δ . For doing this we rewrite (30) to a scalar expression. The first operator in (30) (the fract
scalar, and thus just a function of the scalar argument

r = √∇ · ∇ =
√(∇w

)2 + 2∇w · ∇δ + (∇δ
)2

. (32)
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Further, as to lowest order∇w = −ikp , the remaining part ofTbedcan be writtenh0∇δ(∇w + ∇δ) · (δ Sec(h0∇w)∇wφ̂p) and
thus

Tbed= − Sec(h0r)Sec(h0∇w)

r Tan(h0r) + kp tanh(kph0)
∇δ

((∇w)2 + ∇δ · ∇w)
δφ̂p. (33)

As we have assumed that the lateral variation ofh is weak, we can use∇δ = (∂δ
x,0) in the above term, where∂δ

x is operating
solely onδ. Thereby only the first vectorial component is non-zero, and we can express this as

T̃bed= − Sec(h0r̃)Sec(h0∇w)

r̃ Tan(h0r̃) + kp tanhkph
∂δ
x

((∇w)2 + ∂δ
x∂w

x

)
δφ̂ (34)

with r̃ =
√

(∇w)2 − 2ikx
p∂δ

x + (∂δ
x)2 and wherekx

p is thex-component of the wave number vector. The right-hand side in

is a scalar operator that can easily be expanded around∂δ
x = 0. Schematically, the result is

T̃bed= OP1δφ̂p + OP2δx φ̂p + OP3δxx φ̂p + · · · (35)

and we truncate after theδx term, as we have assumed a mild slope of the sea bed. Further, we shall after the expansio
reference levelh0 equal to the local depthh, implying h0 = h(x) and thusδ = 0, δx = hx . In this process the first term in th
above expansion vanishes, and we are left with the second term which upon insertion of∇w = −ikp can be evaluated to

T̃bed= κ
κ2(2κ + 2sinh(2κ)) + (kx

ph)2(2κ cosh(2κ) − 3sinh(2κ) − 4κ)

(kx
ph)2(2κ + sinh(2κ))2

hx

h
φ̂p = − 1

2cx
gp

∂

∂x

{
cx
gp

}
φ̂p (36)

whereκ = kph andcx
gp is thex-component of the group velocity vector

∂ωp

∂kp

kp

kp
. The latter form of the bed slope term is we

established in the literature, see e.g. Radder [27], Dalrymple and Kirby [17] and Agnon and Sheremet [16]. We emph
no bounds on the depth variation applies for this term, except for the mild slope assumption. Defining∇x = ( ∂

∂x
,0), we can

incorporate the above result into (29) in the following way

(∇ + ikp)φ̂p = −ε
∇x{cx

gp}
2cx

gp
φ̂p − ε

N∑
s=p−N

H(h∇, kph)F(2)
s,p−s φ̂s φ̂p−s . (37)

3.5. Expanding in the y-direction

We now expand this result in they-direction. Following Dalrymple et al. [25], we allow for a weak deviation from strai
and parallel bottom contours by defining a set of laterally averaged wave numbers

k̄2
p(x) = 1

Ly

Ly∫
0

k2
p(x, y)dy; k2

p(x, y)

k̄2
p(x)

= 1− νp(x, y) (38)

where we assumeνp � O(ε). Similarly, we define a set ofx-wave numbers(
k̄x
p,l(x)

)2 = k̄2
p − (

k
y
l

)2
. (39)

Due to the assumptionνp � O(ε) we can use the laterally averaged wave numbers in all terms on the right-hand side of (3
error being O(ε2). We thus insert the right-most part of the expansion (19) using the laterally averaged wave numbers in
As the Fourier amplitudesbp,l are independent ofy, we are only interested in the first coordinate of the resulting equa
describing the variation in thex-direction. This reads

M∑
l=−M

{
∂bp,l

∂x
+ i

(
kx
p,l − k̄x

p,l

)
bp,l

}
e−i(

∫
k̄x
p,l dx+k

y
l y) = −ε

1

2cx
gp

∂cx
gp

∂x
φ̂p − ε

N∑
s=p−N

H̃(h∇, kph)F(2)
s,p−s φ̂s φ̂p−s ,

(40)

where the right-hand side has been written in its unexpanded form for simplicity andH̃ denotes the first vectorial compone
of H, see (46).
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The above equation is not easily decoupled into separate equations for∂bp,l/∂x, since kx
p,l

depends ony as well

as l. Following Dalrymple et al. [25] we get around this by observing that subtracting (39) from (20) givesk2
p − k̄2

p =
2k̄x

p,l
(kx

p,l
− k̄x

p,l
) + O(ν2

p) and thus by invoking (38)

kx
p,l − k̄x

p,l = − k̄2
p

2k̄x
p,l

νp + O
(
ν2
p

)
. (41)

Insertion of this into (40) gives

M∑
l=−M

{
∂bp,l

∂x
− i

k̄2
p

2k̄x
p,l

νpbp,l

}
e−i(

∫
k̄x
p,l dx+k

y
l y) = −ε

1

2cx
gp

∂cx
gp

∂x
φ̂p − ε

N∑
s=p−N

H̃(h∇, kph)F(2)
s,p−s φ̂s φ̂p−s , (42)

which is easily decoupled using the lateral Fourier expansion ofνp

νp =
M∑

l=−M

ν̂p,l e−iky
l y . (43)

The product ofνp andbp,l can thus be expressed through a convolution in the same way as in the nonlinear terms. This p
the model

∂bp,l

∂x
= −ε

1

2cx
gp

∂cx
gp

∂x
bp,l + εi

k̄2
p

2k̄x
p,l

min{l+M,M}∑
t=max{l−M,−M}

ν̂p,t bp,l−t

− ε

N∑
s=p−N

min{l+M,M}∑
t=max{l−M,−M}

H̃(h∇, k̄p,lh)̃F(2)
s,p−s,t,l−t

bs,t bp−s,l−t e−i
∫
(k̄x

s,t+k̄x
p−s,l−t−k̄x

p,l )dx
, (44)

where

F̃(2)
s,p−s,t,l−t

= i

2g3
ω2

s ω2
p−sωp − i

2g3
ωsωp−sω

3
p + i

g
ωpk̄s,t · k̄p−s,l−t + i

2g
ωp−sk

2
s + i

2g
ωsk

2
p−s (45)

and

H̃(h∇,kp,lh) =
h0∂x + ikx

p,l
h

h∇ Tan(h∇) + kph tanhkph
. (46)

This is the main result of this paper, along with a similar set of evolution equations formulated in the wave amplitudes
free surface elevationη, see (53). In the summation range for the outer sum of (44) we have assumed thatp is always positive.
This is due to the requirementb−p,l = b∗

p,l
ensuring that the time series forφ is real and eliminating the need for solving f

negative values ofp. A similar symmetry, however, does not apply for thel-index, and the summation ranges must there
allow for positive as well as negative values ofl. In this context it should be noted that the summation ranges can be re
further, utilising symmetry properties of the summation. However, as we find the above notation easier to work with, w
go further into this. Details on such reductions can be found in e.g., Mei [28].

The above model describes the transformation of a directionally spread wave field over slowly varying bathymetry, in
second-order nonlinearity. Depth changes in thex-direction implies changes of amplitude (the first term on the right-hand
as well as phase changes (through change ofk̄x

p,l
in the exponential functions), while depth changes in they-direction only

gives rise to phase changes (second term on the right-hand side).

3.6. The ‘resonant’ and ‘exact’ model

In the above result, (44), we have not yet inserted an expression for∇ in the H-operator within the nonlinear terms. F
each pair of interacting wave components, we may approximate the gradient of their product by the values associated
linear wave numbers. This corresponds to setting∇ = −i(ks,t + kp−s,l−t ) in each term of the sum. This results in a mo
which has exact second-order transfer functions.

Another approach is to assume resonance of the forcing nonlinear terms with the free wave mode at the receiving f
This amounts to assuming∇ = −ikp,l . Doing so, the model of Agnon and Sheremet [16] is recovered, agreeing for the
rectional case with the model of Kaihatu and Kirby [11]. The resonance assumption is only valid in shallow water, wh
dispersion is vanishing.
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We note that̃H(h∇,kp,lh) is not singular for∇ = −ikp,l . To evaluate its value at resonance, we consider the limi

∇ = (∂x,−iky
l
) → −ikp,l , i.e. the limit for fixedy-wave number. We obtain

lim∇→kp,l

H̃(h∇,kp,lh) = lim
k
′x→kx

p,l

−ikx′ + ikx
p,l

−ω
′2/g + ω2

p/g

= lim
k′→k

ig
1

cosθp,l

k′ − kp

ω′2 − ω2
p

= ig

cosθp,l

∂kp

∂ω2
p

= ig

2ωpcgp cosθp,l
, (47)

whereω′2 = gk′ tanhk′h andθp,l is the angle between thex-direction and the wave number vectorkp,l . We look closer at the
two different interaction kernels (‘exact’, ‘resonant’) in Sections 4 and 7.

3.7. Evolution equations in η

The evolution equations (37) can be transformed into evolution equations in the complex amplitudes of the free
elevation,η. Such a transformation was presented by Eldeberky and Madsen [12] for the models of Agnon et al. [
Kaihatu and Kirby [11]. We follow the same route here.

A second-order relation between̂ηp and φ̂p can be derived by inserting the expansions (18)–(19) into the dynamic
surface boundary condition (17). To lowest order the resulting equation readsφ̂p = (ig/ωp)η̂p + O(ε), which can be used in
the quadratic terms within the second-order accuracy. We hereby obtain the relation

φ̂p = ig

ωp
η̂p + εi

N∑
s=p−N

T(2)
s,p−s η̂s η̂p−s + O(ε2), (48)

T(2)
s,p−s = g2

2ωpωsωp−s
ks · kp−s − 1

2
ωp + ωsωp−s

2ωp
. (49)

We now calculate(∇ + ikp)φ̂p from this expression. For each of the nonlinear terms in the summation of (48), we u
linear approximation(∇ + ikp) = (−i(ks + kp−s ) + ikp) to obtain

(∇ + ikp)φ̂p = ig

ωp
(∇ + ikp)η̂p + ε

N∑
s=p−N

(ks + kp−s − kp)T(2)
s,p−s η̂s η̂p−s . (50)

In (37) we can easily express the quadratic products in terms of theη̂ amplitudes, again using the linear part of (48). Combin
the resulting equation with the above expression yields

(∇ + ikp)η̂p = −ε
∇x{cx

gp}
2cx

gp
η̂p + iε

N∑
s=p−N

Ws,p−s η̂s η̂p−s (51)

with

Ws,p−s = ωp

g
(ks + kp−s − kp)T(2)

s,p−s − g
ωp

ωsωp−s
H(h∇,kph)F(2)

s,p−s , (52)

where T(2)
s,p−s , F(2)

s,p−s and H(h∇,kph) are defined in (48), (23) and (28), respectively.
When they-dependence of the wave amplitudes is treated through a Fourier expansion, corresponding to the ri

expansion in (18), the resulting model reads

∂ap,l

∂x
= −ε

1

2cx
gp

∂cx
gp

∂x
ap,l + εi

k̄2
p

2k̄x
p,l

min{l+M,M}∑
t=max{l−M,−M}

ν̂p,t ap,l−t

+ iε
N∑

s=p−N

min{l+M,M}∑
t=max{l−M,−M}

W̃s,p−s,t,l−t as,t ap−s,l−t e−i
∫
(k̄x

s,t+k̄x
p−s,l−t−k̄x

p,l )dx (53)

with
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W̃s,t,p−s,l−t = (
k̄x
s,t + k̄x

p−s,l−t − k̄x
p,l

)( g

2ωsωp−s
k̄s,t · k̄p−s,l−t − ω2

p

2g
+ ωsωp−s

2g

)
− g

ωp

ωsωp−s
H̃(h∇, k̄p,lh)̃F(2)

s,t,p−s,l−t
. (54)

For noy-dependence of the bathymetry, use of the resonance assumption∇ = −ikp,l in theH̃-term recovers the model of E
deberky and Madsen [12], while use of the linear approximation,∇ = −i(ks + kp−s), yields a model with exact second-ord
transfer for bichromatic waves. This particular model forms the main result of this paper together with (44). As alrea
tioned, the above equations describe the evolution of a complex directional wave spectrum due to varying depth and
interactions in terms of a set of coupled ordinary differential equations.

4. Second-order bichromatic transfer functions

We now analyse the evolution equations derived with respect to second-order bichromatic transfer functions. T
ence solution can be obtained by applying a Stokes expansion technique to the governing equations (4)–(7) and de
amplitudes of the second-order bound wave field given the amplitudes of the first-order primary wave field.

We here cite the solution of Sharma and Dean [13], but using the notation of Schäffer and Steenberg [29]. For a
progressive wave field on constant depth of the form

η(1) = 1

2
An eiθn + 1

2
Am eiθm + c.c., θj = ωj t − kj · x, (55)

with kn 
= km, the second-order bound wave field is

η(2) = 1

2
Gn,mAnAm ei(θn+θm) + 1

2
Gn,nAnAne2iθn + 1

2
Gm,mAmAm e2iθm + 1

2
Gn,−mAnA−m ei(θn−θm) + c.c. (56)

where

Gn,m = δ̃n,m

g

(
(ωn + ωm)

Hn,m

Dn,m
− Ln,m

)
, (57)

δ̃n,m =
{

1
2 for kn = km,

1, otherwise,
(58)

Hn,m = (ωn + ωm)

(
ωnωm − g2kn · km

ωnωm

)
+ 1

2

(
ω3

n + ω3
m

) − g2

2

(
k2
n

ωn
+ k2

m

ωm

)
, (59)

Dn,m = gKnm tanhKnmh − (ωn + ωm)2, (60)

Knm = |kn + km|, (61)

Ln,m = 1

2

(
g2kn · km

ωnωm
− ωnωm − (

ω2
n + ω2

m

))
. (62)

In the above notation, the conventionA−j = A∗
j
, ω−j = −ωj , k−j = −kj is used. This eliminates the need for distinguish

between sub-harmonic and super-harmonic bound waves. Super-harmonic waves are obtained by taking bothn andm positive,
while sub-harmonic waves are obtained by takingn positive andm negative.

We now derive the transfer functionGn,m for evolution equations. For two primary wave components

η(1) = an ei(ωnt−kn·x) + am ei(ωmt−km·x) + c.c. (63)

with kn 
= km, four bound wave components,η
(2)
n,m, η

(2)
n,n, η

(2)
m,m, η

(2)
n,−m will be forced. Their evolution will be described wit

one equation for each, which can be expressed as

∂ar+q,r+q

∂x
= 2iδ̃r,qW̃r,qaraq e−i(kx

r +kx
q −kx

r+q,r+q )x
, (64)

where(r, q) can take the values(n,m), (n,n), (m,m) and(n,−m) and the usual four indices of̃W have been replaced by th
two indices(r, q) similarly to the adopted one-index notation for the forcing waves(an, am). Integration with respect tox gives

ar+q,r+q = − 2δ̃r,qW̃r,qaraq

kx + kx − kx e−i(kx
r +kx

q −kx
r+q,r+q )x

. (65)

r q r+q,r+q
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Matching (63) with (55) givesar = 1
2Ar and similar forq, and the physical wave field of the above bound wave compone

thus

ηbound= −1

2

δ̃r,qW̃r,qArAq

kx
r + kx

q − kx
r+q,r+q

ei((ωr+ωq)t−(kx
r +kx

q )x−(k
y
r +k

y
q )y) + c.c. (66)

which corresponds to the first component in (56) for(r, q) = (n,m), the second for(r, q) = (n,n) and the third and fourth
for (r, q) = (m,m), (n,−m), respectively. Matching these expressions thus establishes the result for the bichromatic
function of the evolution equations

GEvo
n,m = − δ̃n,mW̃n,m

kx
n + kx

m − kx
n+m,n+m

. (67)

Given a kernel̃Wn,m for a set of evolution equations, their second-order bichromatic transfer functions can thus be dete
and compared to the target solution (57)–(62). We note that since (44) and (53) are consistent to second order, the
have identical second-order properties.

4.1. Comparison of transfer functions

As a first check, the transfer functions of the ‘exact’ evolution equations were compared analytically to the transf
tions (57). This was done using Mathematica, and it was found that the transfer functions are identical. This agreem
exact second-order transfer functions is the test proving that the models (44) and (53) are consistent second-order mo
∇ = −i(ks + kp−s) is inserted into the kernel function.

We next turn to the ‘resonant’ models. As an analytical check, the kernel function Ws,p−s of (53) with ∇ = −ikp,l was
compared to the kernel of the equations of Eldeberky and Madsen [12], again with the aid of Mathematica, yielding a
match.

Next, we compare the transfer functions of the ‘resonant’ model to the exact transfer functions. We here focus
directional wave propagation. In Fig. 2,GEvo

11 , the transfer function for self-self interaction, is plotted against dimension

angular frequencyω(h/g)1/2 for the ‘resonant’ model. The result is normalised with the exact transfer function (57). The
fer function is remarkably close to the reference solution, the largest deviation being an over-prediction of 3.5% at inte
depth. The full range of bichromatic transfer, still for unidirectional wave propagation is examined in Fig. 3, where th
betweenGEvo

n,m andGStokes
n,m is plotted for(ωn(h/g)1/2,ωm(h/g)1/2) ∈ [0;2π ]2. The super harmonic transfer of the evoluti

equations is very close to the target of Stokes theory. The small variation observed for the self-self interaction is see

small curves close to the diagonal. The reason for the good agreement in the super-harmonic region is thatF̃(2)
s,p−s decays to zero

Fig. 2. Second-order self-self interaction transfer function for evolution equations invoking the resonance assumption. The values ared
with the exact transfer function.
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Fig. 3. Second-order bichromatic transfer functions for evolution equations invoking the resonance assumption. The values are norm
the exact transfer function.

for large forcing frequencies. Hence the transfer is dominated by the first term inW̃s,p−s which does not involve the H operato
The sub-harmonic transfer is under-predicted in a region parallel to the diagonal and over-predicted along the diagon
being parallel to the diagonal represent constant receiving frequencies. Parallel lines close to and below the diagona
long waves forced sub-harmonically by waves having close frequencies.

5. Speeding up the calculations using FFT

The computational effort of a direct evaluation of the right-hand side of (53) is O(M2N2). For a large number of frequencie
(corresponding to a long time series) or a large number ofy wave modes, this makes the model infeasible to apply. This prob
has traditionally limited the use of evolution equations of the above type.

For the one-dimensional Boussinesq evolution equations of Madsen and Sorensen [7], Bredmose et al. [14] sh
the nonlinear terms can be calculated using Fast Fourier Transforms at a computational effort of O(N logN). This method
of speeding up the calculation of a convolution sum has been used extensively within spectral methods for partial di
equations, see e.g. Canuto, Hussaini, Quarteroni and Zang [30]. In the field of evolution equations, Dalrymple et al. [
this technique to calculate a term corresponding to the second term on the right-hand side of (44). This term is a
with the non-uniformity of depth in the lateral direction. However, for treatment of the nonlinear terms within spatial ev
equations for wave propagation, this speed-up technique appears to be new. Unfortunately, this method of speed
calculations cannot be applied directly to the new ‘exact’ models. We detail this later in this section. First, however, we
the method of the numerical speed-up for the ‘resonant’ models.

Consider the very first term in the nonlinear sums of (53)

term1 = iε
N∑

s=p−N

min{l+M,M}∑
t=max{l−M,−M}

{
k̄x
s,t

g

2ωsωp−s
k̄s,t · k̄p−s,l−t as,t ap−s,l−t

× e−i
∫
(k̄x

s,t+k̄x
p−s,l−t−k̄x

p,l )dx
}
. (68)
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For simplicity we evaluate the dot product of the two wave number vectors, and consider only the first term arising. T
term can be treated similarly as the first—as is also the case for all the other terms in the convolution sums. We write
term as

term11 = iε
g

2
ei

∫
k̄x
p,l dx

N∑
s=p−N

min{l+M,M}∑
t=max{l−M,−M}

{
(k̄x

s,t )
2

ωs
as,t e−i

∫
k̄x
s,t dx

}{ k̄x
p−s,l−t

ωp−s
ap−s,l−t e−i

∫
k̄x
p−s,l−t dx

}
. (69)

Inspired by this expression, we define

s1 =
N∑

p=−N

M∑
l=−M

{ (k̄x
p,l

)2

ωp
ap,l e−i

∫
k̄x
p,l dx

}
eipωt e−iky

l y , (70)

s2 =
N∑

p=−N

M∑
l=−M

{ k̄x
p,l

ωp
ap,l e−i

∫
k̄x
p,l dx

}
eipωt e−iky

l y . (71)

which are functions oft andy. Further, we define the Fourier amplitudes of their product as

s1s2 ≡
2N∑

p=−2N

2M∑
l=−2M

[ŝ1s2]p,l eipωt eiky
l y . (72)

The convolution theorem then states that the double summation in (69) is equal to[ŝ1s2]p,l , and we thus have

term11 = iε
g

2
[ŝ1s2]p,l ei

∫
k̄x
p,l dx

. (73)

This is the key point of the speed-up technique. Given the values ofap,l for 1 � p � N and−M � l � M , and the associate
wave numbers and angular frequencies,s1 and s2 can be calculated by an inverse Fourier transformation in they-direction
followed by an inverse Fourier transformation in time. This gives the values ofs1 and s2 on a grid in the(y, t) plane, and
the products1s2 can be calculated for each(y, t). Applying two forward Fourier transformations, one in time and one in
y-direction then gives the values of[ŝ1s2]p,l needed. If all Fourier transformations are carried out using FFTs, term11 can thus
be calculated with a computational effort of O((M logM)(N logN)). The same procedure can be applied to all the other te
in the ‘resonant’ versions of the models (53) and (44). The second term on the right-hand sides of these models can
similarly, although less complicated, since it only involves a single convolution.

As can be seen in (72), the quadratic terms contain Fourier components with frequencies up to double as large
described in the spectrum resolved. As these higher frequencies do not belong to the spectrum resolved, care must
avoid any aliasing from these frequencies onto the frequency range modelled. Aliasing among the frequencies 1, . . . ,N in time
and−M, . . . ,M in they-direction is avoided if more than 3N points are used for describing the time variation ofs1s2 and more
than 3M points are used to describe they-variation. Practically, as the FFT algorithm is most efficient for signal lengths b
a product of small prime factors, the number of points in (time,y-direction) should be chosen as the smallest products of
type, exceeding(3N,3M). More details on aliasing can be found in e.g. Canuto et al. [30].

While the above speed-up technique is easily applied to the ‘resonant’ models, it cannot be applied to the ‘exact’
The reason is that̃H(h∇, k̄p,lh) with ∇ = −i(k̄s,t + k̄p−s,l−t ) cannot be written as a product of independent factors, e
depending solely on one of the index pairs(p, l), (s, t) and(p − s, l − t) as in (69). It is therefore not possible to define se
like s1 ands2 for an evaluation of the nonlinear terms in the time domain.

Hence, the ‘resonant’ models are more feasible for practical use. We have already found that the second-order tr
these models is generally close to that of the ‘exact’ models for unidirectional wave propagation. We now validate and
the models for two test examples.

6. Application to wave propagation over a submerged bar

We validate the models by applying them to an example of weakly nonlinear, unidirectional wave propagation ove
merged bar. We base the test on the experiments of Beji and Battjes [15]. Irregular waves of different significant wav
peak frequency and spectral shape were propagated over a submerged bar. The depth of the wave flume was 0.4 m
the bar top the depth was 0.1 m. The upward slope of the bar was 1/20, while the downward slope was 1/10. The surface
elevation was sampled at 10 Hz in eight stations along the flume. The bathymetry is sketched in Fig. 4 where the st
the measurements are also marked. We here pick two tests of non-breaking waves.
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Fig. 4. Bathymetry and stations for the experiments of Beji and Battjes [15].

6.1. A test on long waves

For the first test, the incident waves are described by a JONSWAP spectrum with a peak frequency of 0.4 H
significant wave height ofHs = 2.9 cm. A JONSWAP spectrum (JOint North Sea Wave Project) is a modification o
Pierson–Moscowitz spectrum, see e.g. Sumer and Fredsøe [31]. The time series has a length ofTdur = 899.68 s, corresponding
to a frequency resolution off1 = 1/Tdur = 1.11× 10−3 Hz. The wave model (53) in its unidirectional form was run with 18
frequencies corresponding to a maximum frequency of 2 Hz. The Fourier amplitudes of the experimental time series in
was used as initial condition, and the evolution equations were integrated with a constant spatial step length of 0.1 m.
the step length to 0.05 m had no significant impact on the results. Note that when solving evolution equations, the
step length is not governed by a Courant number criterion as for time domain models. If the present test was to be
using a time domain model, resolving the shortest wave by two points per wave period would give a time step of 0.25
the current choice of spatial step length of 0.1 m, this would correspond to a Courant number of nearly 5 (!) in the dee
the domain. This avoidance of the Courant number criterion is one of the reasons for the computational efficiency of e
equations.

Results from the ‘exact’ model are shown together with experimental time series for stations 3,5 and 8 in Fig. 5
stations correspond to the two upper corners of the bar and the lower corner after the bar. The time interval depicted r
a typical part of the time series.

The record from station 3 consists of two wave groups with a single isolated wave in between. The high waves
asymmetric shape, corresponding to a forward leaning of their spatial profiles, resulting from the shoaling process o
front. The model results match the data well, except for a few spurious oscillations following the tallest wave crests.

When the waves reach the flat bottom at the bar top, the forward leaning wave shape is no longer stable. The wav
their shape through nonlinear interactions which from a spectral point of view happens through energy exchange
the different frequency components. At the bar top the water is fairly shallow, (kh = 0.32 for the peak frequency) and th
quadratic interactions therefore approach near-resonance, (see e.g. Phillips [3]). As a result the shape of the wave
rather dramatically over the bar top. In station 5, the recorded waves are thus seen to be more spiky when compared t
and do not show much asymmetry. The numerical results reproduce the data well, although for the highest waves
are seen to be followed by a spurious trough. The highest waves also exhibit small phase errors, the numerical wave
slightly too early.

On the down-hill side of the bar, the waves are subject to de-shoaling. In this process some of the high-frequency c
the waves is released as free harmonics, thus resulting in a higher content of high-frequency wave energy behind the
front of the bar. This is clearly seen in the time series of station 8, were the typical wave period is apparently half the p
the waves seen in station 3. The numerical model results exhibit this behaviour as well. Some of the waves are reprod
reasonable accuracy, while for other waves, phase errors and amplitude errors are seen. In general, the wave model
reproduction of the overall wave pattern.

Starting from linear theory, a second-order model like the one used here, is the first step towards a fully nonlinear ca
of the wave evolution. It is therefore interesting to compare the performance of the present wave model to results of lin
theory. Thus in Fig. 6, numerical results from a linear run of (53) is shown together with the experimental data. When co
to the second-order results in Fig. 5, it is evident that the linear waves show a lack of asymmetry in station 3, while in s
the wave profiles are too broad, have too deep troughs and too small crest heights. These observations are clear indic
too low content of higher harmonics. Consequently at the down-hill side of the bar, station 8, no reduction of the appar
period is obtained and the linearly predicted wave field shows little resemblance with the experimental data. For this
second-order terms thus provide a clear improvement from linear theory.



674 H. Bredmose et al. / European Journal of Mechanics B/Fluids 24 (2005) 659–682

el.

odel.

odel.

and 6
l results is

between
Fig. 5. Time series in three stations for the long wave test of Beji and Battjes [15]. Experimental data and results of ‘exact’ mod

Fig. 6. Time series in three stations for the long wave test of Beji and Battjes [15]. Experimental data and results of linearised m

Fig. 7. Time series in three stations for the long wave test of Beji and Battjes [15]. Comparison between ‘exact’ and ‘resonant’ m

Results of the ‘exact’ and ‘resonant’ models are compared in Fig. 7. Only the first half of the time interval of Figs. 5
is shown, since the last half interval shows an even smaller deviation. We see that the deviation between the mode
hardly discernible. Thus compared to the deviation between the model results and experimental data, the difference
the ‘exact’ and ‘resonant’ model is insignificant.
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Fig. 9. Time series in three stations for the short wave test of Beji and Battjes [15]. Experimental data and results of linearised m

6.2. Shorter waves

For the second test chosen, the incoming wave spectrum is a JONSWAP spectrum with a peak frequency of 1
significant wave height of 4.1 cm. The duration of the time series isTdur = 899.68 s and the evolution equations were solv
with 2700 frequencies, corresponding to a maximum frequency of 3 Hz.

First we examine the results for the time intervalt = [490;520] s. Results of the ‘exact’ model are compared to experime
data in Fig. 8, while results of a linear model run are compared to data in Fig. 9. In general, both models are able to
the individual waves. However, the waves calculated with the nonlinear evolution equations show a forward phase s
compared to the data. This phase shift is not present for the linear results and is thus a consequence of nonlinearity. In
the results of the linear model in general exhibit too deep wave troughs. This behaviour is not seen for the results of the
evolution equations, although for this station the phase shift has increased due to accumulative effects. For station 8, bo
reproduce the overall variation of the wave field, although phase errors and spurious high-frequency oscillations are
the results.

We now focus on the results for a single tall wave group, covering the time intervalt = [325;340] s. Numerical results of th
nonlinear evolution equations are compared to the measured time series in Fig. 10, while linear results and data are co
Fig. 11. For station 3, the asymmetry and spikiness of the measured waves indicate the presence of second harmoni
the wave spectrum. The nonlinear evolution equations capture the appearance of the second harmonics and thus re
shape of the waves with a good improvement from linear theory. The same holds for the results of station 5. For thes
phase errors are evident for both models, the linear model results exhibiting a backward phase shift and the nonline
exhibiting a forward phase shift in time. This shows that there is a nonlinear contribution to the phase speed in the
that the nonlinear model overestimates this contribution. For station 8, these phase shifts accumulate for both model
make a judgement of the reproduction of wave shape difficult.

Results of the ‘exact’ and the ‘resonant’ model are compared in Fig. 12. We see that for the smaller waves the devia
insignificant, while for the larger waves, some differences in wave shape occur. For these large waves, however, the de
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Fig. 11. Time series in three stations for the short wave test of Beji and Battjes [15]. Experimental data and results of linearised m

Fig. 12. Time series in three stations for the short wave test of Beji and Battjes [15]. Results of ‘exact’ model and ‘resonant’ mod

the measured data is relatively large. From a modelling point of view, the results of the two models can therefore be co
of equal quality for this test case.

Although the above tests show that the second-order terms make an improvement over linear theory with respec
shape, the results of the second test gives evidence that the amplitude dispersion is over-predicted in the model. Th
undesirable accumulative phase errors. Motivated by these observations, we thus investigate the amplitude dispers
the models in the following section.
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7. Third-order transfer and embedded amplitude dispersion

The above results suggest that the amplitude dispersion in the models formulated inη is over-predicted. Kaihatu [20] in
vestigated the nonlinear contribution to the phase speed in the ‘resonant’ model formulated inφ by calculating fully nonlinear
regular wave solutions. For small waves it was found that the nonlinear phase speed exceeds the phase speed of S
order waves (presumably with a zero Eulerian mean current below wave trough level) forkh � 1.5, wherek is the linear wave
number. For larger values ofkh, the nonlinear phase speed was found to be smaller than for Stokes waves. For shallo
waves, comparisons with stream function theory confirmed the over-prediction of the phase speed in shallow water,
the transition from over-prediction to under-prediction of the phase speed occurred at a much smaller wave number,kh ≈ 0.3.

It is desirable to investigate the amplitude dispersion of the model formulated inη as well. We choose to use a third-ord
Stokes-type analysis for this, which additionally to results for the amplitude dispersion and third-order transfer of th
yields insight into the process that creates the nonlinear contribution to the phase speed. We restrict the analysis to uni
wave propagation and follow the approach of Bredmose et al. [14]. We look for a solution of the form

η(x, t) = ε

k1
cosθ + ε2

k1
Ã2 cos 2θ + ε3

k1
Ã3 cos 3θ (74)

with

θ = ωt − k1x, ω = ω1(1+ ε2ω13) (75)

and whereε = k1A1 is assumed small. The coefficients(Ã2, Ã3,ω13) are dimensionless functions ofkh, being of order O(1)

in theε-hierarchy. As reference solution, we use Stokes third-order waves with a zero net mass flux (cs = 0), corresponding to
unidirectional wave propagation towards a beach. This solution is given in Fenton [32] and reads in our notation

Ã3 = 3
1+ 3S + 3S2 + 2S3

8(1− S)3
, (76)

ω13 = 2+ 7S2

4(1− S)2
− 1

2

1

κ tanhκ
(77)

with κ = kh andS = sech2κ . Omission of the last term inω13 leads to the solution corresponding to a zero Eulerian m
velocity below wave trough level (cE = 0). The ratio of these two solutions forω13 can be as large as 2.5, and it is theref
important to specify which reference solution is used. We note thatÃ3 is independent of the mass flux.

In evolution equations,ωp are fixed numbers and are therefore not allowed to be modified by nonlinear effects as i
The nonlinear modification of the wave speed therefore enters through a change of the effective wave number, an
search for a solution of the form (74) but with

θ = ω1t − kx, k = k1(1− ε2k13). (78)

Matching the solution ansatz (74) with the expansion (18) gives

a1 = 1

2

ε

k1
e−i(k−k1)x , a2 = 1

2

ε2

k1
Ã2 e−i(2k−k2)x , a3 = 1

2

ε3

k1
Ã3 e−i(3k−k3)x . (79)

For constant depth and unidirectional wave propagation, the evolution equations (53) take the form

ap,x = i
N∑

s=p−N

Ws,p−sasap−s e−i(ks+kp−s−kp)x (80)

where, again, we have adopted the two-index notation for the kernel functionW̃. In the presence of only three harmonics, (8
form the system

a1,x = 2iW2,−1a2a−1 e−i(k2−2k1)x , (81)

a2,x = iW1,1a2
1 e−i(2k1−k2)x , (82)

a3,x = 2iW2,1a1a2 e−i(k1+k2−k3)x , (83)

and insertion of (79) now gives a hierarchy of equations inε. The(ε0, ε1)-equations are identically satisfied, while at O(ε2),
(82) yields the solution forÃ2. At O(ε3), (81) gives the solution fork13, while (83) gives the solution for̃A3. The solutions are
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Ã2 = W1,1

2k1(k2 − 2k1)
, (84)

Ã3 = W2,1W1,1

2k2
1(k2 − 2k1)(k3 − 3k1)

, (85)

k13 = W2,−1W1,1

2k3
1(k2 − 2k1)

(86)

where the result for̃A2 is consistent with the bichromatic transfer function (67) derived in Section 4.
To relatek13 to ω13, we consider the sketch in Fig. 13. Here a curve representing the linear dispersion relation fo

waves is drawn, and a nonlinear wave is represented by a point positioned above this curve. If this nonlinear wave is
through a change ofω, the nonlinear wave originates from the linear wave having the same wave number (k1), and the vertica
distance between this wave and the nonlinear wave isε2ω1ω13. Similarly, if the nonlinear wave is described through a cha
of the wave number, it originates from the linear wave having the same angular frequency (ω1) and the horizontal distanc
between this wave and the nonlinear wave isε2k1k13. We can relatek13 to ω13 by considering the triangle defined by these t
linear waves and the nonlinear wave. As the slope of the dispersion curve is∂ω

∂k
we haveε2ω1ω13 = ε2k1k13

∂ω
∂k

, and thereby

ω13 = cg

clin
k13. (87)

Note that since the deviation between the wave numbers and angular frequencies for the linear and nonlinear waves a
O(ε2), cg , the group velocity, andclin , the linear phase speed, can be evaluated in any of the three points as desired.

7.1. Analysis of model in φ

As (44) and (53) are only consistent to second order, their third-order properties are not identical. Hence we
analyse (44) separately. In its unidirectional form, we write (44) as

bp,x = −
N∑

s=p−N

Us,p−sbsbp−s e−i(ks+kp−s−kp)x (88)

where Us,p−s ≡ H(h∇, kph)F(2)
s,p−s . We insert the solution ansatz

b1 = 1

2

ig

ω1

ε

k1
e−i(k−k1)x , b2 = 1

2

ig

ω1
Φ̃2

ε2

k1
e−i(2k−k2)x , b3 = 1

2

ig

ω1
Φ̃3

ε3

k1
e−i(3k−k3)x (89)

whereΦ̃2 andΦ̃3 are dimensionless functions ofkh and where againk = k1(1− ε2k13). Insertion into (88) leads to

Φ̃2 = − g

ω1

U1,1

2k1(k2 − 2k1)
, (90)

Φ̃3 =
(

g

ω1

)2 U1,1U2,1

2k2
1(k2 − 2k1)(k3 − 3k1)

, (91)

k13 = −
(

g

ω1

)2 U1,1U2,−1

2k3(k − 2k )
, (92)
1 2 1
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which have a clear similarity with (84)–(86). We now calculate the free surface elevation amplitudes corresponding to (8
the second-order transformation (48). The quadratic terms in this transformation can easily be expressed in terms o
amplitudes by using the linear part of the transformation. Hereby a transformation expressingη̂p in terms of only potentia
amplitudes is obtained. Using this transformation we get

η̂1 = 1

2

ε

k1
e−ikx + O(ε3), (93)

η̂2 = −1

2

(
g

ω1

U1,1

k1(k2 − 2k1)
+ ω1

gk1
T(2)

1,1

)
ε2

k1
e−2ikx, (94)

η̂3 = 1

2

(
3

2

(
g

ω1

)2 U1,1U2,1

k2
1(k2 − 2k1)(k3 − 3k1)

+ 3
U1,1T(2)

2,1

k2
1(k2 − 2k1)

)
ε3

k1
e−3ikx (95)

where the results for(η̂1, η̂2) are consistent with the results of the analysis of the model formulated inη (53), while the result
for η̂3 is not. The first term in the above result forη̂3 results from the linear transformation ofφ̂3, while the second term i
produced by the quadratic part of the transformation (48).

7.2. Results of analysis

We can now compare the third-order transfer and embedded amplitude dispersion of the evolution equations to the
solution of Stokes third-order theory. In Fig. 14 the third-order transfer functionÃ3 of the evolution equations formulated
the amplitudes of the free surface elevation as well as the evolution equations formulated in the amplitudes of the s
velocity potential is plotted. All curves are normalised with the reference solution of Stokes third-order wave theo
transfer is seen to be over-predicted for the model inη. In shallow water, the model agrees with Stokes wave theory, b
deep water, the transfer function converges towards a value of around 2.2 times that of Stokes waves. For the modeφ, the
transfer is first over-predicted in shallow and intermediate water and then under-predicted decaying to zero in deep w
largest over-prediction is 58% and occurs forω

√
h/g = 0.92, while the transition to the region of under-prediction occur

ω
√

h/g = 1.25. The influence of the resonance approximation is illustrated as well and is seen to be small. This is e
by the expression for̃A3 which consists of a product of two super-harmonic interaction coefficientsW̃1,1 andW̃2,1. For super-
harmonic interactions, the resonance approximation does not imply significant changes to the transfer function, as ca
in Fig. 3.

To analyse the embedded amplitude dispersion, we compareω13 of the evolution equations toω13 for Stokes third-order
waves on a zero net mass flux in Fig. 15. The plot shows that the evolution equations over-predict the amplitude d
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Fig. 15.ω13 for fully dispersive evolution equations, normalised byω13 for Stokes waves withcS = 0. Results for the resonance assumpt
are shown as well.

severely. The equations formulated inη over-predict the amplitude dispersion by a factor of 5 forω
√

h/g = 1.03. Towards deep
water, the amplitude dispersion decays, but still inω

√
h/g = 2π (not shown in the figure) corresponding tokh = 39.5, ω13 is

more than 1.5 times as large as for Stokes waves. For the short wave calculation of Section 6.2,ω(h/g)1/2 varies between 1.2
and 0.63 for the peak frequency, and the third-order analysis therefore explains the over-prediction of amplitude d
observed.

For the evolution equations inφ, the analysis shows a similar over-prediction in shallow and intermediate water,
for deeper water the amplitude dispersion decays towards zero. The largest over-prediction occurs forω

√
h/g = 0.95, where

ω13 is nearly four times as large as for Stokes waves. The transition between over-prediction and under-prediction o
ω

√
h/g = 1.36. The effect of the resonance approximation is small, and most pronounced for the model inη. The decay ofω13

in deep water for the model inφ can be explained by the decay of̃F
(2)
s,p−s for super-harmonic forcing by large frequencie

Thus for deep water, the interaction coefficient for super-harmonic interaction vanishes, makingω13 decay, see (86).
As already noted, the use of a reference solution for a zero net mass flux (cS = 0) gives a larger over-prediction of th

amplitude dispersion than if the reference solution for a zero mean Eulerian velocity below wave trough level is used (cE = 0).
The effect is illustrated in Fig. 16, whereω13 for the ‘exact’ model inη is plotted, normalised with either of the two referen
solutions. The two reference solutions can differ by up to a factor of 2.5, as can be seen in the plot. For both reference
however, the amplitude dispersion is over-predicted by the model formulated inη. For the ‘resonant’ model formulated inφ (not
included in the figure), the transition from over-prediction to under-prediction of the amplitude dispersion forcE = 0 occurs at
ω

√
h/g = 1.16 corresponding tokh = 1.49. This agrees very well with the findings of Kaihatu [20].
Given that the evolution equations derived are correct to second order, it may seem surprising that the third-order p

analysed deviate significantly from the reference solution. However, as the derivation of the models has only been c
with second-order accuracy, the third-order properties of the models are rather arbitrary.

Together with the simulations of Section 6 the above findings show that fully dispersive evolution equations may
successfully applied to wave fields where third-order properties are important or at least to wave fields having a large
content in the frequency range of strongly over-predicted amplitude dispersion. While a general over-prediction of t
order transfer may be tolerable, the over-prediction of amplitude dispersion leads to undesirable accumulative pha
An extension to third order would cure these problems, but seems infeasible if the numerical efficiency is to be r
However, an approximate correction term may possibly cure the problems of amplitude dispersion, thus rendering
still consistent to second order and with improved, although not exact, third-order properties. Such a modification is s
current investigations.
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8. Summary and discussion

A new derivation of second-order fully dispersive evolution equations with no assumptions on the vertical structur
velocity field has been presented. The equations are valid for weakly nonlinear wave propagation at angles up to±90◦ from
the main direction of propagation with a weak deviation from straight and parallel bottom contours. The models are for
in the complex Fourier amplitudes of the still water potential or the complex Fourier amplitudes of the free surface e
and have, as a novelty, exact second-order bichromatic transfer functions. By utilising the ‘resonance assumption’, th
of Agnon et al. [10], Kaihatu and Kirby [11] and Eldeberky and Madsen [12] are recovered.

The second-order bichromatic transfer functions of the models have been derived using a perturbation analysis
‘exact’ models the transfer functions are identical to the reference solution of Sharma and Dean [13]. For unidirection
propagation the bichromatic transfer of the ‘resonant’ models is generally close to the exact transfer function, espe
super-harmonics.

The numerical efficiency related to the solution of the ‘resonant’ models can be improved by using Fast Fourier Tra
to evaluate the nonlinear terms. This leads to a tremendous reduction in the computational work. Thus forN frequencies and
M lateral wave modes, the models can be solved with a computational effort of O((M logM)(N logN)) instead of the usua
effort of O(M2N2) associated with direct evaluation of the convolution sums.

In this paper we have restricted the model validation to unidirectional wave propagation. A test of relatively long
passing a submerged bar shows that the inclusion of second-order nonlinearity gives a clear improvement of the wav
well as of the description of the important release of higher harmonics after the bar top. For the second test of shorter w
second-order effects on the wave profiles are most evident on the bar top, again leading to improved results for the sec
models, but cumulative phase errors due to an over-prediction of the amplitude dispersion have been observed as we
simulations results of the ‘exact’ and ‘resonant’ models showed only small deviations.

The over-prediction of the amplitude dispersion has been investigated further through a third-order Stokes-type an
the equations. For the ‘exact’ model formulated in the wave amplitudes, the third-order transfer is over-predicted from
to deep water, the over-prediction being more than a factor of 2 in the deep water limit. For a zero net mass flux, th
formulated inη over-predicts the amplitude dispersion with up to a factor of 5 in intermediate water. If, alternative
reference solution for a zero mean Eulerian velocity below wave trough level is used for comparison, the over-pred
smaller, i.e., around a factor of 2 at maximum for the ‘exact’ model formulated inη. The models formulated inφ shows over-
prediction of the amplitude dispersion and third-order transfer at intermediate depth, decaying to zero at deep water
third-order properties investigated, the effect of the resonance approximation has been found small.

While the derivation of fully dispersive evolution equations with exact second-order transfer is a worthwhile the
result, the restriction of the FFT speed-up to the ‘resonant’ models, makes these ‘resonant’ models the attractive c
practical use. The present results show that for unidirectional wave propagation the practical difference between th
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and ‘resonant’ models is small. A further investigation of the differences for two-dimensional wave propagation is ther
interesting next step. The strong over-prediction of the amplitude dispersion is a new finding that restricts the applica
of the models to wave fields where third-order effects are unimportant or to frequency ranges away from the region
over-prediction. A full inclusion of third-order terms would fix the problem but seems infeasible if the numerical efficie
to be retained. However, an approximate correction term may help on the third-order problems. Such a correction wou
the scope of the models and ongoing research is investigating this matter.
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