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Abstract

Fully dispersive deterministic evolution equations for irregular water waves are derived. The equations are formulated in
the complex amplitudes of an irregular, directional wave spectrum and are valid for waves propagating in directions up to
+90° from the main direction of propagation under the assumptions of weak nonlinearity, slowly varying depth and negligible
reflected waves. A weak deviation from straight and parallel bottom contours is allowed for. No assumptions on the vertical
structure of the velocity field is made and as a result, the equations possess exact second-order bichromatic transfer functions
when comparing to the reference solution of a Stokes-type analysis. Introduction of the so-called ‘resonance assumption’ leads
to the evolution equations of among others Agnon, Sheremet, Gonsalves and Stiassnie [Coastal Engrg. 20 (1993) 29-58]. For
unidirectional waves, the bichromatic transfer functions of the ‘resonant’ models are found to have only small deviations in
general from the reference solution. We demonstrate that the ‘resonant’ models can be solved efficiently using Fast Fourier
Transforms, while this is not possible for the ‘exact’ models. Simulation results for unidirectional wave propagation over a
submerged bar show that the new models provide a good improvement from linear theory with respect to wave shape. This
is due to the quadratic terms, enabling a nonlinear description of shoaling and de-shoaling, including the release of higher
harmonics after the bar. For these simulations, the similarity between the ‘exact’ and ‘resonant’ models is confirmed. A test
case of shorter waves, however, shows that the amplitude dispersion can be quite over-predicted in the models. This behaviour
is investigated and confirmed through a third-order Stokes-type perturbation analysis.
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1. Introduction

When a wave field propagates over varying depth, the wave spectrum changes due to shoaling, refraction and nonlinear
interactions. Numerous wave models can be used to model these effects, varying from solving the Navier—Stokes equations,
allowing for a free surface, over Boussinesq modelling in the time domain, to simple linear shoaling calculations. For large wave
fields of two horizontal dimensions, Navier—Stokes modelling is too computationally demanding and Boussinesq modelling still
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requires an extensive computational effort. For practical use, there is thus an interest in computationally faster models, yet being
more accurate than a simple linear wave shoaling calculation.

Evolution equations for the wave amplitudes of a complex wave spectrum represent a model class of this type. In such
models, time periodicity of the wave field is assumed, allowing for expanding the wave field as a Fourier series in time. The
Fourier coefficients are then functions of space, and under the assumptions of (1) negligible reflected waves, (2) slowly varying
depth and (3) weak nonlinearity, first-order differential equations for the spatial evolution of the Fourier amplitudes can be
derived. In this approach, the wave field in a physical domain can thus be found by integrating a set of first-order ordinary
differential equations in one spatial sweep, taking refraction, shoaling and nonlinear interactions into account. If the phases
of the Fourier amplitudes are retained in the modelling, the evolution equations are called deterministic. We shall focus on
deterministic evolution equations in this paper. The models derived provide a numerically efficient tool for the description of
shoaling, refraction and quadratic nonlinear interactions for wave fields in two horizontal dimensions.

Evolution equations are appropriate for describing nonlinear interactions between wave components. On an even depth
quadratic interactions can be removed from the equations and evolution equations describing four-wave interactions (cubic
nonlinearity) can be derived (see e.g. [1]). On variable depth, however, the quadratic interactions can be resonant in the form
of class Ill Bragg resonance [2] and can thus not be eliminated. Further, in shallow water quadratic interactions can be nearly
resonant, giving so-called triad interactions [3]. Contrary to four-wave interactions at deep water, triad interactions can build up
over just a few wave lengths in shallow conditions and are thus important in coastal areas. Away from shallow and intermediate
water, the quadratic interactions are non-resonant, giving rise to second-order bound waves, being phase locked to the first
order wave field. In this paper we shall retain only quadratic nonlinearity, thereby precluding any description of four-wave
interactions. The models derived will provide a correct description of the second-order wave field from deep to shallow water,
cubic effects being discarded.

Deterministic evolution equations have often been derived using a time domain Boussinesq formulation as starting point.
Examples are Freilich and Guza [4], Liu, Yoon and Kirby [5], Yoon and Liu [6], Madsen and Sgrensen [7], Chen and Liu [8]
and Kaihatu and Kirby [9]. Boussinesq formulations make an attractive starting point, since they provide a depth-integrated
formulation of the governing equations for water wave propagation. On the other hand, as Boussinesq formulations are derived
as asymptotic expansions of the governing equations from the shallow water limit, their accuracy generally decays in deeper
water.

As an alternative, evolution equations can be derived directly from the irrotational, inviscid governing equations. Hereby, the
linear phase speed and shoaling characteristics agree exactly with linear wave theory for all depths. Such models are therefor
denoted fully dispersive evolution equations. Agnon et al. [10] and Kaihatu and Kirby [11] derived fully dispersive evolution
equations for the complex Fourier amplitudes of the still water potential. Both derivations involved depth-integration of the
Laplace equation. Here the vertical variation of the velocity potential must be known a priori, and in both works the vertical
structure of a linear wave was assumed. As a result, the second-order bound wave field is not modelled with exact amplitudes.
Eldeberky and Madsen [12] pointed out that a quadratic transformation is needed, when results of the two above models are
transformed from the still water potential to free surface elevations. Using this transformation, they derived evolution equations
formulated directly in the complex Fourier amplitudes of the free surface elevation.

In this paper, a new derivation of fully dispersive deterministic evolution equations is given, free of assumptions on the
vertical variation of the velocity potential. We hereby, for the first time, obtain models having exact second-order properties.
We present evolution equations formulated in the complex Fourier amplitudes of either the still water potential or the free
surface elevation. Both formulations are derived for an angular spectrum representation of the wave field, allowing for wave
propagation in directions up t90° from the main direction of wave propagation. A weak deviation from straight and parallel
depth contours is allowed for. By invoking the so-called ‘resonance assumption’ within the nonlinear terms, the models of
Agnon et al. [10], Kaihatu and Kirby [11] and Eldeberky and Madsen [12] are recovered. Thus for short, we denote these
models the ‘resonant’ models.

Having derived ‘exact’ as well as ‘resonant’ models, we analyse them with respect to second-order transfer functions for
bichromatic wave propagation. The transfer functions derived are compared to the exact solution of a Stokes-type analysis of
the governing equations as given by Sharma and Dean [13]. As expected the transfer of the ‘exact’ models is identical to the
reference solution.

A well-known drawback of evolution equations is their representation of the nonlinear terms as convolution sums over the
Fourier amplitudes. If a wave field contains frequencies in time, the computational effort of evaluating these convolution
sums is @N2). This has traditionally limited the use of evolution equations to wave fields with a relatively small number of
frequencies. Recently, Bredmose, Schaffer and Madsen [14] have demonstrated that for the Boussinesq evolution equation
of Madsen and Sgrensen [7], the computational effort can be reducedw@®N) by calculating the nonlinear terms with
the aid of Fast Fourier Transforms. This technique, originally developed in the field of spectral methods for partial differential
equations, is used here to improve the computational efficiency of the ‘resonant’ models. The FFT speed-up can also be appliec
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to the angular spectrum variation, such that forfrequencies and/ angular wave modes, the evolution equations can be
solved at a cost of @M log M) (N log N)). This speed-up, however, is not applicable to the ‘exact’ models.

Although the ‘exact’ and ‘resonant’ models are derived for two-dimensional wave propagation, we here focus the validation
on unidirectional waves. The models are applied to two cases of weakly nonlinear wave propagation over a submerged bar,
using the experimental data of Beji and Battjes [15]. For a test of long wa¥es 0.32 on the bar top), the second-order terms
provide a clear improvement over results of linear theory, both with respect to wave shape and to release of higher harmonics
as the waves leave the bar top. For a test of shorter waies (.68 at the bar top), the wave shape on the bar top is improved
as well by the second-order terms, but accumulative phase errors are observed, indicating an over-prediction of the amplitude
dispersion in the models.

To look further into this, we extend the Stokes-type analysis of the models to third order, to obtain results for the amplitude
dispersion and third-order transfer for unidirectional waves.

The structure of the paper is as follows. In Section 2, a review of fully dispersive evolution equations is given while in
Section 3, the new exact models are derived. The bichromatic transfer functions for the new models are presented in Section 4
and the numerical speed-up technique using FFT is dealt with in Section 5. Model results for wave propagation over a submerged
bar are presented in Section 6, and the third-order analysis in Section 7.

2. Review of fully dispersive evolution equations
2.1. The evolution equations of Agnon et al. [ 10]

The evolution equations of Agnon et al. [10] were formulated in the complex Fourier amplitudes of the still water potential
and are valid for one horizontal dimension. The main steps in the derivation were the following: The free surface boundary
conditions were expanded around the still water level and combined into a single equation in the still water potential. A multiple
scales expansion in space and time was introduced to separate the fast and slow variation of the wave field. The governing
equations were next transformed to Fourier space (with respect to time) and the Laplace equation depth-integrated. Initially, the
vertical structure of bound waves as well as free waves was considered, that is

coshk(z + h)
coshkh

wherek can be a free wave number or a bound wave number. The model derived, however, was based on the vertical structure
of a free wave. Agnon et al. [10] defined a detuning parameter

u = (kbound— kfree)/ kiree 3

giving a measure of the deviation between bound and free wave numbers. The bound waves within the model are thus described
with an error of Qu).

The model was extended to two dimensions in Agnon and Sheremet [16], following the angular spectrum approach of
Dalrymple and Kirby [17]. They also developed stochastic evolution equations based on the deterministic model, this topic,
however, is not pursued in the present paper.

d(x,z,1)= ¢(x,z=0,1) D

2.2. The evolution eguations of Kaihatu and Kirby [11]

Kaihatu and Kirby [11] derived a set of evolution equations, essentially being an extension of the model of Agnon et al.
[10] to weakly two-dimensional wave propagation. Their starting point was the Laplace equation, which was depth-integrated
assuming a vertical structure of the velocity field corresponding to linear waves. The resulting equation was combined with the
free surface conditions, giving a nonlinear mild-slope equation. Next the following expansion was utilised

N .
[ e
d(x,y,D));=0= Z —w—gap(x,y)e'(fk”dx @pt), 3)
p=—N P

wherey is the long-shore spatial coordinate dhdis ay-averaged free wave number. The amplitudgéx, y) are complex
numbers, satisfying—, = a;; andag € R. The frequencies are given ag = pwy, wherews is the smallest radian frequency

resolved in the spectrum. As a next step, a slow variation of the Fourier amplitudes was assumed:,,,thab}ﬁ(szx, 3y)
where$ is a small ordering parameter. The resulting model thus only retained the derivafivea, , anda, yy, thereby
forming a set of evolution equations fep. Numerically, they-dependence was allowed for by solving the equations on a set of
parallel lines in thec-direction. The double-derivative was then handled by a finite difference approximation. In an appendix,
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the model was extended to allow for a spatially varying current. For one horizontal dimension and no current, the model is
identical to the model of Agnon et al. [10].

2.3. The second-order transformation from¢ to n

Both of the two above models were compared to experimental results. Agnon et al. [10] simulated a laboratory test of almost
unidirectional irregular waves propagating onto an open beach, and also field measurements of shoaling waves in Walker Bay
South Africa. Kaihatu and Kirby [11] simulated the test of Whalin [18] for regular wave propagation over a semicircular shoal
and the test of breaking irregular waves on a plane sloping beach of Mase and Kirby [19]. For the latter purpose, the breaking
model of Mase and Kirby [19] was incorporated.

In both of these works, however, the transformation between the Fourier amplitudes of the still water level and the Fourier
amplitudes of the free surface elevation was linear. This is inconsistent with the second-order accuracy of the models, as pointec
out by Eldeberky and Madsen [12]. Eldeberky and Madsen [12] gave a second-order transformation between these amplitudes
and transformed the evolution equations of Agnon et al. [10], as well as Agnon and Sheremet [16], to sets of evolution equations
formulated directly in the complex amplitudes of the free surface elevation. The correction of the transformation improves the
accuracy of super-harmonic energy transfer significantly.

Kaihatu [20] discussed this correction of the deterministic model as well. The influence of the new second-order terms was
examined by deriving fully nonlinear solutions to the equations in the amplitudes of the still water potential. The solutions were
then transformed to free surface elevations, using either the linear transformation or the correct second-order transformation. Ir
shallow water, essentially no difference was found, while at deep water, the effect was found to be more pronounced.

3. Derivation of the new evolution equations

In this section we present a new derivation of fully dispersive evolution equations, leading to a model with exact second-
order transfer. We first derive a set of equations formulated in the complex Fourier amplitudes of the still water level potential.
Subsequently, we transform these equations to the complex Fourier amplitudes of the free surface elevation.

3.1. Governing equations and scaling

We consider the motion of an inviscid irrotational fluid, as depicted in Fig. 1. A Cartesian coordinate éyste) = (X, z)
with the z-axis pointing upwards from the still water level is adopted. The surface elevation is derirtedand the velocity
potentialg (X, z, t). The velocity field within the fluid igu, v, w) andg is the acceleration of gravity. The depth is described by
h(x), measuring the distance from the bottom to the still water level.

The governing equations are

V2¢ + ¢, =0, —h<z<n, @)
¢ —=V¢-Vn—n =0, z=n, (5)
¢ +gn+ (V)2 +¢?)/2=0, z=n, 6)
¢:+Vh-V¢=0, 7=—h, @)

Ty~

M
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¢ (x,y,z,t)
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Fig. 1. Definition sketch for derivation of fully dispersive evolution equations.
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stating local continuity (4), the kinematic and dynamic free surface conditions (5), (6), and impermeability of the bottom (7).
V is the horizontal gradient operator, i.¥.—= (% %) We shall assume a classical Stokes scaling of the variables, that is

X / I
X=%, z=2 ho, h=h"ho,

7 gag
t=—, n=aon, $=°>—¢

wo wo

where a prime denotes dimensionless variables&fdg, wg, ag) are typical measures of wave number, depth, frequency and
amplitude, respectively. This gives the nonlinearity parametekqag, which will appear as a factor on the nonlinear terms, if

the above variables are inserted into the governing equations. However, instead of using the dimensionless variables, we shall
carry out the derivation and analysis in the dimensional variables, keeping an arifig@br in front of the nonlinear terms.

Thus in the following,e is to be regarded as a small ordering parameter, which should simply be omitted in any numerical
evaluation of the expressions. We thus assume weak nonlinearity of the wave field. Further, we assume that the sea bed is
varying slowly as function oX, i.e.,h = h(ex), and that the deviation from uniform depth in thelirection is Q).

3.2. Rewriting the governing equations

We follow the lines of Madsen and Schéaeffer [21] and Agnon, Madsen and Schéffer [22], taking basis in an exact power
series solution to the Laplace equation. The starting point is to expand the velocity potential as a powerzseries in

o
P20 =) "u(x,1). ®)
n=0
Itis easily seen thapg = ¢ (X, 0,7) = @ and¢y = w(X, 0, 1) = W. Further, insertion of (8) into the Laplace equation yields the
well-known recursion relatiog,, o = —V2¢, /((n + 1)(n + 2)) and thereby the solution
00 2n2n 2n+1g2n
'V z \Y
,Z, 1) = -1 D+ (-)'—->—W. 9
$(X,2,1) §< TR vy ©
We identify the above series {@V) as the Taylor series of the functions ¢g€) and sinzV)/V, thus allowing us to write the
series as

o (X, z,1) =CogzV)P + %Sin(zV)W, (10)

where the capitalised form of the trigonometric functions has been used to indicate that they denote operators. In the above
equation both series operators are even function.dfhey are thus scalar operators, just [€. We indicate this by using a
non-boldV in their arguments and shall be using this convention throughout.

Next, we utilise the assumption of slowly varying depths= h(¢X), and retain only first-order derivatives of the depth
variation. As shown by Mei [23] and Agnon [24], a convenient way of dealing with this is to introduce a constant reference
depthi(x) = hg+ 8(x) and expand the bottom boundary condition arokgdr his proves to be advantageous, when combining
the sea bed condition with the series solution (10). We shall later resubstitute the true local,depttwe thus note that the
use of a reference level is just a technicality, that does not introduce any bounds on the depth range of model application. Taylor
expanding the sea bed condition around the constant referencé deyields

1
b, + V% + Eszvzqsz + V8- (Vo —8Ve,) =0(83,62V8), z=—ho. (11)

where the Laplace equation (4) has been used to rewrite dpulifierentiations tdv2 operations. To lowest order, this equation
states thap, = O (8, V4§), allowing for writing the sea bed condition in the compact form

¢: =—V - (8Vp) +0(83,62V5,8(V8)?), z=—ho. (12)

The advantage of this formulation is that it is defined on a constant lexel-%q. All effects of varying depth are thus
represented by and when the series solution (10) is inserteddoithe operators will thus have the argumégV, where
V andhg can be interchanged. This simplifies the derivation considerably, since in géremdlV are not interchangeable.
The assumption of mildly sloping bottom allows us to neglect all but first-order derivativéswifile as the last step in the
derivation, we can replace the reference depihwith the local depthi, implying § = 0 andV§ = V. Insertion of (10)
into (12) yields

Sin(hgV)V® + CoshgV)W = —V - {§(CoshgV)V® — Sin(hgV)W)}. (13)
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We now invoke the free surface boundary conditions to expgiégsterms of®. Expanding (5) and (6) aroung= 0 yields
— W +¢(yV2® + Vi - V) = O(e?) (14)
gn+ o +e((V)2/2+ W2/2 4 yW;) = O(e?), (15)

where we have used the Laplace equation to eliminate higher-order derivati#ewiti respect taz. To lowest order, these
equations readV = n; + O(e) andn = —®&; /g + O(¢e). This can be used to eliminat® andn in the nonlinear terms. We write
the resulting equations as

1 1
_W—f¢tt+8|: ((ptz)

1 1 1
; 2 +—(@7), - g((V‘I’)Z)z - §¢,v2¢] = 0(?), (16)

ttt 2g3
1

0 +e| V2t i(cbz)
an t 2 2g2 t )it 2 52

qatz,] =0(?). (17)

3.3. Transforming to the frequency domain

Until now, the equations have been formulated in the time domain. We now transform them to the frequency domain, utilising
the expansions

N

nwn= Y fple.y) e = Z Z ap () @@L K k) (18)
p:—N —NI=—M

Px,1) = Z By, )7 = Z Z by 1) &P = K dekiy) (29)
p=—N —NIl=—

These expansions are Fourier series in time just like the expansion (3pwithpw1, a_p | = “;,1' ap,; € R and similarly

for b, ;. As a difference to the expansion (3), we here treatythvariation of the wave field through a Fourier expansion as

well. This idea has been used by Dalrymple and Kirby [17], see also Dalrymple, Suh, Kirby and Chae [25], Suh, Dalrymple and
Kirby [26], Chen and Liu [8] and Agnon and Sheremet [16], and makes it possible to treat waves propagating at angles deviating
up to+90° from thex-direction. The wave numbers in thedirection,k; , are chosen with fixed increments, thakjs= Ik ,

wherek{ is the smallest wave number resolved in $hdirection. For each frequeney,, andy-mode wave numbd{ly, the
geometrical length of the wave number vedigr; = (kx ky) is given by the linear dispersion relation. We denote this length

by k, = |k |, and thex-component ok , ; is then glven by the Pythagorean relation

(k5 1)* = k5 = (k). (20)
Similarly to the above expansions, we expa¥ids
N .
W, y)= > Bpx,y) e (21)
p=—N

Substitution of this expansion and the first part of (19) into (16) then gives

2
2 A A
wp = _¢p +e Z FE /)7—s¢squ—s (22)
s=p—N
with
) i i i i 1
F(’I)y s = 2g wsz % s®p — 2¢ 5 3WsWp— sw3 - gwpvs : fos - gwpfs(vs)z - wa(vpfs)z, (23)

where e.gV, operates o only and similarly forv ,_. We next transform the linear equation (13) to the frequency domain
and insert the above result far,. This gives

2
Sin(hOV)V$p+Cos(hoV)|: $p+e Z F@ sy €:|
s=p—N
wZ
—_v. {5(00thV)V¢3p - Sin(hOV)?”ép)} +0(e?), (24)
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where we have utilised that the right-hand side eventually becomes a bed-slope term of magitusecd that the quadratic
terms ofw, can be consistently omitted here. Operation on both sides with the operathpBggives

2 2
(v Tan(hoV) + w—”)q?,, = —SedhgV)V - {a<<:os(hovw¢3p - Sin(hoV)w—f’ép>}
g g

N
2 A oA
—¢ Z Fﬁ,l_s¢x¢p_x+0(ez). (25)
s=p—N

3.4. Splitting the dispersion operator

For linear wave propagation on constant depth, the above equation states that

a)2 N
(v Tan(hoV) + —”)¢p =0 (26)
g

and we denote the operator working étin this expression as ‘the dispersion operator’. In the following we split this operator,
to obtain a left-hand side appropriate for evolution equations. We follow the lines of Agnon [24], who split the dispersion
operator to obtain a mild-slope equation.

The Tan-operator is to be interpreted through its infinite Taylor series, and the operator as a whole can therefore be considered
as a polynomial irv of infinite order. Two of the roots are the progressive linear wave nunmbesstik ,. This can be seen by
insertion, using that tgiv) = itanhu. As the operator is even ki, one obtains the scalar resulk, tanhk,hg + a)f,/g =0,
the well known dispersion relation for linear water waves. Besides the progressive wave number solutions, there is an infinite
set of evanescent wave modes, represented by theVoet(sik‘i", ikg", ...). The polynomial can be factorised, with each of
the factors beingV — Vyoot). One of these factors i& + ik ,), and we define the remaining factor by

2

& V +ik
V Tan(h V)+—”)57” 27
( O F ) = RV kpho) (@7)
which implies
hoV +ikpho
H(hoV, Kk pho) = . 28
(hoV. Kpho) hoV Tan(hoV) + k ,hotanhk ,ho (28)
We now apply the above result to (25) to obtain
N N w2 N
(V +ikp)pp = —H(hoV, K pho) SechoV)V - {5<Cos(hOV)V¢p - Sin(hoV)—p¢p> }
8
a 2
—& Y H(oV.kpho)FC)_ bsdps. (29)
s=p—N

This is a set of evolution equations in the Fourier amplitudes of the still water potential. In the following, we express the infinite
series operators involved in terms of free wave numbers, thus turning the above equation into a practically applicable model.
We first treat the bed slope term (the one involvigUsing (26) we write this as

SechgV)
hoVTan(hgV) + kphotanhk ,ho)

Thed= (hoV +ikph)V - {8 SechoV) Ve, ). (30)

To discard all but first-order derivatives &fwe insert
V=v"4V’ (31)

where it is understood that® operates solely of, while VW operates solely ot. We next Taylor expand iW? and retain
only the first-order term ive. For doing this we rewrite (30) to a scalar expression. The first operator in (30) (the fraction) is
scalar, and thus just a function of the scalar argument

r=vv.v =\/(VW)2+2VW-V‘S + (V82 (32)
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Further, as to lowest ord&f" = —ik ,, the remaining part ofpeq can be writtergVe (VW + V%) - (8 Seahov")VW¢,) and
thus
Sedhor) SedhoVW)

8 ((oW)2 5§ yWys A
rTan(hor)—i—kptanf(kpho)V (V)7 + V2 v5)od,. 33)

Thed=—
As we have assumed that the lateral variation ¢ weak, we can us¥? = (3;3, 0) in the above term, Wher&f\? is operating
solely on$. Thereby only the first vectorial component is non-zero, and we can express this as

Sedhor) SechgV"W)
7 Tan(hof) + kp tanhk )7

Toed= — (VW) + 020)5¢ (34)

with 7 = \/(VW)Z — 2iky, 3% + (3%)2 and wherek; is thex-component of the wave number vector. The right-hand side in (34)
is a scalar operator that can easily be expanded arafﬂaab. Schematically, the result is

fbed: Opl&i’p + OP25x¢;p + OPS(Sxx(Z’p + - (35)

and we truncate after thig term, as we have assumed a mild slope of the sea bed. Further, we shall after the expansion set the
reference levekq equal to the local depth, implying 2g = h(x) and thuss = 0, 8, = hy. In this process the first term in the
above expansion vanishes, and we are left with the second term which upon inseRi8r=of-ik , can be evaluated to

~ K2(26 + 25inM(20)) + (k3 h)?(2 cosh2e) — 3sinh(2«) — 4c) i, . 1

CRRN
Toed =1 (522 + sinh(2«))2 W= T2 {eeple (36)

wherex = kph andc is thex-component of the group velocity vect%%‘% 2. The latter form of the bed slope term is well
established in the Ilterature see e.g. Radder [27], Dalrymple and Klrby [17] and Agnon and Sheremet [16] We emphasise that
no bounds on the depth variation applies for this term, except for the mild slope assumption. D@gmﬂg— 0), we can
incorporate the above result into (29) in the following way

Lo Vaileg,) Y A
(V +ikp)hp = —c ;Cx“’ bp—e Y HOV.kph)FD_ bsps. 37)
sp s=p—N

3.5. Expanding in the y-direction
We now expand this result in thedirection. Following Dalrymple et al. [25], we allow for a weak deviation from straight
and parallel bottom contours by defining a set of laterally averaged wave numbers
Ly

_2 1 (5, o K@)
kp(X)=L—y/kp(x,y)dy, Zp(x) =1-vp(x,y) (38)

where we assume, < O(e). Similarly, we define a set of-wave numbers

(K5, 0)? =k2 - (k). (39)

Due to the assumptiory, < O(e) we can use the laterally averaged wave numbers in all terms on the right-hand side of (37), the
error being @=2). We thus insert the right-most part of the expansion (19) using the laterally averaged wave numbers into (37).
As the Fourier amplitudes,, ; are independent of, we are only interested in the first coordinate of the resulting equation,
describing the variation in the-direction. This reads

M

by | Podetk)y 1 ey, o 2) o~ oA
Z 9bp.1 (k e [)bpl e iUk dethyy) 2 L Z (hV,kph)FAE,;,_S%qﬁp—s,
Py dx 2cgp

(40)

where the right-hand side has been written in its unexpanded form for simplicitii ateshotes the first vectorial component
of H, see (46).
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The above equation is not easily decoupled into separate equatiortd fqyox, sincek;‘?l depends ony as well
as /. Following Dalrymple et al. [25] we get around this by observing that subtracting (39) from (20) Ig%vesl?f, =
2 Gk =k )+ O(v2) and thus by invoking (38)

];2
7 )4 2
k;,l — ;’IZ_—ZIEX vp—l—O(vp). (41)
pil

Insertion of this into (40) gives

i 3bp.i -k2 —i([ky drk) y) 1 dcgp . . @) 2
) {__.Zk u,,b,,,}e JBadekin __p 2 TG SN Y k) FD by, (42)
p.l

X
P 0x 2cgp 0x S=p—N
which is easily decoupled using the lateral Fourier expansion of
M Y
vp= 3 b, ek, (43)
I=—M

The product ob,, andb, ; can thus be expressed through a convolution in the same way as in the nonlinear terms. This produces
the model

- in{i+M, M}

b, 1 X . k2 min{ R
9x = 5t gy rd eI 2 Ppubpi—t

&p pil t=max{i—M,—M}

N min{l+M,M} k)‘ . "
¢ Z Z Hv . k[’lh)va s.d—tbsitbp—si—1 € S E A ) ) (44)
s=p—N t=max{i—M,—M}
where

=2 i 22 i i i 2, 1 2
va st Ea)swp_swp 2 S 3WsWp— bw +ga)pk” kp 50— t—}-zgu)p skg + 2g kp s (45)

and

~ " hoox + ik; h
AV, Kk, h) = * : 46
IV Kpt1) = 3 Tannw) 1 kph tanti i (46)

This is the main result of this paper, along with a similar set of evolution equations formulated in the wave amplitudes for the
free surface elevation, see (53). In the summation range for the outer sum of (44) we have assumgdgiztvays positive.
This is due to the requiremeht ,, ; = b;,z ensuring that the time series fgris real and eliminating the need for solving for
negative values op. A similar symmetry, however, does not apply for thimdex, and the summation ranges must therefore
allow for positive as well as negative values/ofn this context it should be noted that the summation ranges can be reduced
further, utilising symmetry properties of the summation. However, as we find the above notation easier to work with, we do not
go further into this. Details on such reductions can be found in e.g., Mei [28].

The above model describes the transformation of a directionally spread wave field over slowly varying bathymetry, including
second-order nonlinearity. Depth changes inithdirection implies changes of amplitude (the first term on the right-hand side)
as well as phase changes (through chang@;gfin the exponential functions), while depth changes inthdirection only
gives rise to phase changes (second term on the right-hand side).

3.6. The ‘resonant’ and ‘exact’ model

In the above result, (44), we have not yet inserted an expressidvi forthe H-operator within the nonlinear terms. For
each pair of interacting wave components, we may approximate the gradient of their product by the values associated with their
linear wave numbers. This corresponds to set¥ng —i(Ks; +K,_s;—;) in each term of the sum. This results in a model
which has exact second-order transfer functions.

Another approach is to assume resonance of the forcing nonlinear terms with the free wave mode at the receiving frequency.
This amounts to assuming = —ik, ;. Doing so, the model of Agnon and Sheremet [16] is recovered, agreeing for the unidi-
rectional case with the model of Kaihatu and Kirby [11]. The resonance assumption is only valid in shallow water, where the
dispersion is vanishing.
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We note thatH(nV, Kp,ih) is not singular forv = —ik,, ;. To evaluate its value at resonance, we consider the limit for
V = (8, —ikly) — —ik, , i.e. the limit for fixedy-wave number. We obtain

—ikx’+ikx
lim H®V,k, h) = S—
V=kp P k‘—>k‘ — 2/g+w2/g
N kK —k i ok i
= lim ig P8 Tp_ 8 (47)
K=k~ COSOp 1 2 —wf  COOp 1 dwh  2wpcgp COSHp

wherew'2 = gk’ tanhk’h andd,, ; is the angle between thedirection and the wave number vectgy ;. We look closer at the
two different interaction kernels (‘exact’, ‘resonant’) in Sections 4 and 7.

3.7. Evolution equationsin n

The evolution equations (37) can be transformed into evolution equations in the complex amplitudes of the free surface
elevation,n. Such a transformation was presented by Eldeberky and Madsen [12] for the models of Agnon et al. [10] and
Kaihatu and Kirby [11]. We follow the same route here.

A second-order relation betwedp, and ¢3,, can be derived by inserting the expansions (18)—(19) into the dynamic free
surface boundary condition (17). To lowest order the resulting equation qﬁe,ads(ig/wp)ﬁp + O(¢), which can be used in
the quadratic terms within the second-order accuracy. We hereby obtain the relation

¢p— —77p+8| Z T qﬁsﬁp—s'f‘o(gz), (48)
s=p—N
T(Z) _ g2 ke -k 1 WsWp—g (49)
s, p—s pra)swp s p—s 20)17 pr .

We now calculatgV + ikp)z[sp from this expression. For each of the nonlinear terms in the summation of (48), we use the
linear approximationfV + ik ;) = (—=i(ks + k—s) + ik ;) to obtain

N
(V+|kp)¢p——(V+lkp)np+e 3 K+ Kpos KT, Giisiips. (50)
s=p—N

In (37) we can easily express the quadratic products in terms gfdingplitudes, again using the linear part of (48). Combining
the resulting equation with the above expression yields

N

L Vilegpt . .
(V+Ikp)np=—8% fip +ie Z Wy, p—stisfip—s (51)
s=p—N
with
_® _ @ _ @p (2
Wi p—s = 2 (ks +Kp—s kp)Tg p—s gwswp_s H(V, kph)Fy p—s° (52)
where 1‘2)_“ E(ZI), and HhV, k,h) are defined in (48), (23) and (28), respectively.

When they- dependence of the wave amplitudes is treated through a Fourier expansion, corresponding to the right-most
expansion in (18), the resulting model reads

2 min{{+M,M}

dap, | 1 9c A
az = —EZCX ip », i =+ ei Zkf; Z l)p’tﬂlpylft
&p p.l r=max{i—M,—M)
min{l{+M,M} £ ) de
. ~ —i (k¥ +i* —k
+le Z Z Ws,p—s,t,l—ta‘v,tap—s,l—te f( sa p=sil=t p’l) (53)

s=p—N t=max{/—M,—M}

with
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2
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Wt p—si—r = (ks +ky gy, _k%l)(iz(uswp_x Kt - Kp—si—r — 2t T2

—e—2P _F(hV,k, mF?

. 54
WsWp—s s,t,p—s,l—t (4

For noy-dependence of the bathymetry, use of the resonance assurWp#ionik , ; in the H-term recovers the model of El-
deberky and Madsen [12], while use of the linear approximatios; —i(ks; + Kk, —s), yields a model with exact second-order
transfer for bichromatic waves. This particular model forms the main result of this paper together with (44). As already men-
tioned, the above equations describe the evolution of a complex directional wave spectrum due to varying depth and nonlinear
interactions in terms of a set of coupled ordinary differential equations.

4. Second-order bichromatic transfer functions

We now analyse the evolution equations derived with respect to second-order bichromatic transfer functions. The refer-
ence solution can be obtained by applying a Stokes expansion technique to the governing equations (4)—(7) and deriving the
amplitudes of the second-order bound wave field given the amplitudes of the first-order primary wave field.

We here cite the solution of Sharma and Dean [13], but using the notation of Schéffer and Steenberg [29]. For a primary
progressive wave field on constant depth of the form

1 i 1 ;
n(l) = EAn gfn + EAm gom +c.c, 9/' =w;t— kj - X, (55)
with k,, # Kk, , the second-order bound wave field is

1 i 1 o 1 o 1 6
n®@ = >GnmAnAn g Gntm) 1 EG,,,nAnA,,eZ"’n + 5 GmmAmAm e 4 5Gn—mAnA-m g =) 1 cc. (56)

where
8 H,
Gn,m = (((Un +wm)ﬂ - Ln,m)v (57)
8 Dp,m
1
= 5 fork, =k
n,m = 2 orkn . " (58)
1, otherwise
%Ky -k 1 20k2 K
Hpm = (wn +wm)(wnwm_mem>+§(ws+w§n)_%<;’:+£>v (59)
Dy = gKnm tanhKmh — (wn + wm)za (60)
Knm = |kn + km|, (61)
1(g%kn -k

In the above notation, the conventimj = Aj, w_j=-0j, k_j = —kj is used. This eliminates the need for distinguishing
between sub-harmonic and super-harmonic bound waves. Super-harmonic waves are obtained by takengpbottositive,
while sub-harmonic waves are obtained by takingpsitive andn negative.

We now derive the transfer functia®, ,, for evolution equations. For two primary wave components

n(l) =ay ei(wntfkn'x) +am ei(wmt*km'x) +c.C. (63)
with k;, # k;,,, four bound wave componen (,22,1 77;(1221 nf,,zfm, nff)_m will be forced. Their evolution will be described with
one equation for each, which can be expressed as

dar+q.r+q
ox

where(r, ¢) can take the value@:, m), (n,n), (m, m) and(n, —m) and the usual four indices ot have been replaced by the
two indices(r, ¢) similarly to the adopted one-index notation for the forcing wavgsa,, ). Integration with respect to gives

£ S Y —i(k* X __ X
— 205, Wy garag &K K s rsg)x "

25, W, gara SX X gx

,q VVr,q9rdq —i(k) -k —k X

Urtqr+q = T X X e G )X, (65)
ki +kg —kitqrtq
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Matching (63) with (55) gives, = 1 A, and similar forg, and the physical wave field of the above bound wave component is
thus

l S W ArA H (kX XNy (1Y DA
Nbound= T r"]ix r,qur 4q e'((wr-i-wq)f (k¥ +kg)x— (ki +kz)y) +c.c. (66)
rtkg — r+q,r+q

which corresponds to the first component in (56) farg) = (n, m), the second fofr, ¢) = (n,n) and the third and fourth
for (r,q) = (m,m), (n, —m), respectively. Matching these expressions thus establishes the result for the bichromatic transfer
function of the evolution equations

Sn.mW.
GEVO —_ n,mVVn,m . 67)
i kﬁ + k;rn - k;:—&-m,n—&-m

Given a kerne\Tvn,m for a set of evolution equations, their second-order bichromatic transfer functions can thus be determined
and compared to the target solution (57)—(62). We note that since (44) and (53) are consistent to second order, these model
have identical second-order properties.

4.1. Comparison of transfer functions

As a first check, the transfer functions of the ‘exact’ evolution equations were compared analytically to the transfer func-
tions (57). This was done using Mathematica, and it was found that the transfer functions are identical. This agreement of the
exact second-order transfer functions is the test proving that the models (44) and (53) are consistent second-order models, whe
V = —i(ks +Kp—s) isinserted into the kernel function.

We next turn to the ‘resonant’ models. As an analytical check, the kernel functigp Wof (53) with V = —ik, ; was
compared to the kernel of the equations of Eldeberky and Madsen [12], again with the aid of Mathematica, yielding a perfect
match.

Next, we compare the transfer functions of the ‘resonant’ model to the exact transfer functions. We here focus on uni-
directional wave propagation. In Fig. Qia’o, the transfer function for self-self interaction, is plotted against dimensionless
angular l‘requency)(h/g)l/2 for the ‘resonant’ model. The result is normalised with the exact transfer function (57). The trans-
fer function is remarkably close to the reference solution, the largest deviation being an over-prediction of 3.5% at intermediate
depth. The full range of bichromatic transfer, still for unidirectional wave propagation is examined in Fig. 3, where the ratio
betweenGEY0 and G'9®Sis plotted for(wy (h/g)Y/?, wm (h/g)*/?) € [0; 27]. The super harmonic transfer of the evolution

n,m

equations is very close to the target of Stokes theory. The small variation observed for the self-self interaction is seen as two
small curves close to the diagonal. The reason for the good agreement in the super-harmonic reg%ﬁgghﬁcays to zero
1.035
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3
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Fig. 2. Second-order self-self interaction transfer function for evolution equations invoking the resonance assumption. The values a@ normalise
with the exact transfer function.
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Fig. 3. Second-order bichromatic transfer functions for evolution equations invoking the resonance assumption. The values are normalised with
the exact transfer function.

for large forcing frequencies. Hence the transfer is dominated by the first téfm,’ms which does not involve the H operator.

The sub-harmonic transfer is under-predicted in a region parallel to the diagonal and over-predicted along the diagonal. Lines
being parallel to the diagonal represent constant receiving frequencies. Parallel lines close to and below the diagonal represent
long waves forced sub-harmonically by waves having close frequencies.

5. Speeding up the calculationsusing FFT

The computational effort of a direct evaluation of the right-hand side of (SSQM?(NZ). For a large number of frequencies
(corresponding to a long time series) or a large numbeneéve modes, this makes the model infeasible to apply. This problem
has traditionally limited the use of evolution equations of the above type.

For the one-dimensional Boussinesq evolution equations of Madsen and Sorensen [7], Bredmose et al. [14] showed that
the nonlinear terms can be calculated using Fast Fourier Transforms at a computational effovtlofy ®). This method
of speeding up the calculation of a convolution sum has been used extensively within spectral methods for partial differential
equations, see e.g. Canuto, Hussaini, Quarteroni and Zang [30]. In the field of evolution equations, Dalrymple et al. [25] used
this technique to calculate a term corresponding to the second term on the right-hand side of (44). This term is associated
with the non-uniformity of depth in the lateral direction. However, for treatment of the nonlinear terms within spatial evolution
equations for wave propagation, this speed-up technique appears to be new. Unfortunately, this method of speeding up the
calculations cannot be applied directly to the new ‘exact’ models. We detail this later in this section. First, however, we describe
the method of the numerical speed-up for the ‘resonant’ models.

Consider the very first term in the nonlinear sums of (53)

N min{{+M,M}

. - g =
termy =le Z Z {kﬁzmks,t “Kp—s,1—ras,10p—5,1—¢
s=p—N t=max{i—M,—M} SEPS

NG I LY } (68)
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For simplicity we evaluate the dot product of the two wave number vectors, and consider only the first term arising. The other
term can be treated similarly as the first—as is also the case for all the other terms in the convolution sums. We write the new
term as

N min{l+M,M} (k )2 i* o
termyy = IS i fkpldx Z Z t 7|fk“dx p—s,l— la i e—l f k’pﬂ’lﬂdx . (69)
2° s=p—N t=maxi—M,—m} . “S wps "
Inspired by this expression, we define
k" -~ . y
] -

—NIl=—M

Z Z { 7if1;;71 dx } eipwt e—ik]vy. (71)

—Ni=—M
which are functions of andy. Further, we define the Fourier amplitudes of their product as
2N 2M

5182 = Z Z [@]p’leipwteikz"y' (72)

p=—2NI1=-2M
The convolution theorem then states that the double summation in (69) is ed@biy, ;, and we thus have

[k dv

termyy =ie 2 (57521, (73)

This is the key point of the speed-up technique. Given the valueg pfor 1< p < N and—M <! < M, and the associated

wave numbers and angular frequencigsandso can be calculated by an inverse Fourier transformation inytdé@ection

followed by an inverse Fourier transformation in time. This gives the valuag ahds; on a grid in the(y, t) plane, and

the productsqso> can be calculated for eacly, r). Applying two forward Fourier transformations, one in time and one in the
y-direction then gives the values ps2], ; needed. If all Fourier transformations are carried out using FFTsg iezam thus

be calculated with a computational effort of @7 log M) (N log N)). The same procedure can be applied to all the other terms

in the ‘resonant’ versions of the models (53) and (44). The second term on the right-hand sides of these models can be treate
similarly, although less complicated, since it only involves a single convolution.

As can be seen in (72), the quadratic terms contain Fourier components with frequencies up to double as large as those
described in the spectrum resolved. As these higher frequencies do not belong to the spectrum resolved, care must be taken 1
avoid any aliasing from these frequencies onto the frequency range modelled. Aliasing among the frequencigsritime
and—M, ..., M in the y-direction is avoided if more than 3N points are used for describing the time variatigspcdnd more
than 3M points are used to describe theariation. Practically, as the FFT algorithm is most efficient for signal lengths being
a product of small prime factors, the number of points in (tiyrgirection) should be chosen as the smallest products of this
type, exceeding3N, 3M). More details on aliasing can be found in e.g. Canuto et al. [30].

While the above speed up technique is easily applied to the ‘resonant’ models, it cannot be applied to the ‘exact’ models.
The reason is thati(hV, k pih) With V = —i(ky,; + kp s,1—¢) cannot be written as a product of independent factors, each
depending solely on one of the index paigs 1), (s,t) and(p —s,l —t) asin (69). It is therefore not possible to define series
like s1 ands» for an evaluation of the nonlinear terms in the time domain.

Hence, the ‘resonant’ models are more feasible for practical use. We have already found that the second-order transfer for
these models is generally close to that of the ‘exact’ models for unidirectional wave propagation. We now validate and compare
the models for two test examples.

6. Application to wave propagation over a submerged bar

We validate the models by applying them to an example of weakly nonlinear, unidirectional wave propagation over a sub-
merged bar. We base the test on the experiments of Beji and Battjes [15]. Irregular waves of different significant wave height,
peak frequency and spectral shape were propagated over a submerged bar. The depth of the wave flume was 0.4 m, while o
the bar top the depth was 0.1 m. The upward slope of the bar y&3 While the downward slope wag10. The surface
elevation was sampled at 10 Hz in eight stations along the flume. The bathymetry is sketched in Fig. 4 where the stations for
the measurements are also marked. We here pick two tests of non-breaking waves.
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Fig. 4. Bathymetry and stations for the experiments of Beji and Battjes [15].

6.1. Atest onlong waves

For the first test, the incident waves are described by a JONSWAP spectrum with a peak frequency of 0.4 Hz and a
significant wave height oH; = 2.9 cm. A JONSWAP spectrum (JOint North Sea Wave Project) is a modification of the
Pierson—Moscowitz spectrum, see e.g. Sumer and Fredsge [31]. The time series has a gjgth 8968 s, corresponding
to a frequency resolution of; = 1/ Tgyr = 1.11 x 103 Hz. The wave model (53) in its unidirectional form was run with 1800
frequencies corresponding to a maximum frequency of 2 Hz. The Fourier amplitudes of the experimental time series in station 1
was used as initial condition, and the evolution equations were integrated with a constant spatial step length of 0.1 m. Reducing
the step length to 0.05 m had no significant impact on the results. Note that when solving evolution equations, the choice of
step length is not governed by a Courant number criterion as for time domain models. If the present test was to be modelled
using a time domain model, resolving the shortest wave by two points per wave period would give a time step of 0.25 s. With
the current choice of spatial step length of 0.1 m, this would correspond to a Courant number of nearly 5 (!) in the deep part of
the domain. This avoidance of the Courant number criterion is one of the reasons for the computational efficiency of evolution
equations.

Results from the ‘exact’ model are shown together with experimental time series for stations 3,5 and 8 in Fig. 5. These
stations correspond to the two upper corners of the bar and the lower corner after the bar. The time interval depicted represents
a typical part of the time series.

The record from station 3 consists of two wave groups with a single isolated wave in between. The high waves have an
asymmetric shape, corresponding to a forward leaning of their spatial profiles, resulting from the shoaling process on the bar
front. The model results match the data well, except for a few spurious oscillations following the tallest wave crests.

When the waves reach the flat bottom at the bar top, the forward leaning wave shape is no longer stable. The waves change
their shape through nonlinear interactions which from a spectral point of view happens through energy exchange between
the different frequency components. At the bar top the water is fairly shallowe=(0.32 for the peak frequency) and the
guadratic interactions therefore approach near-resonance, (see e.g. Phillips [3]). As a result the shape of the waves changes
rather dramatically over the bar top. In station 5, the recorded waves are thus seen to be more spiky when compared to station 3
and do not show much asymmetry. The numerical results reproduce the data well, although for the highest waves the crests
are seen to be followed by a spurious trough. The highest waves also exhibit small phase errors, the numerical waves arriving
slightly too early.

On the down-hill side of the bar, the waves are subject to de-shoaling. In this process some of the high-frequency content of
the waves is released as free harmonics, thus resulting in a higher content of high-frequency wave energy behind the bar than in
front of the bar. This is clearly seen in the time series of station 8, were the typical wave period is apparently half the period of
the waves seen in station 3. The numerical model results exhibit this behaviour as well. Some of the waves are reproduced with
reasonable accuracy, while for other waves, phase errors and amplitude errors are seen. In general, the wave model gives a fail
reproduction of the overall wave pattern.

Starting from linear theory, a second-order model like the one used here, is the first step towards a fully nonlinear calculation
of the wave evolution. It is therefore interesting to compare the performance of the present wave model to results of linear wave
theory. Thus in Fig. 6, numerical results from a linear run of (53) is shown together with the experimental data. When comparing
to the second-order results in Fig. 5, it is evident that the linear waves show a lack of asymmetry in station 3, while in station 5,
the wave profiles are too broad, have too deep troughs and too small crest heights. These observations are clear indications of
too low content of higher harmonics. Consequently at the down-hill side of the bar, station 8, no reduction of the apparent wave
period is obtained and the linearly predicted wave field shows little resemblance with the experimental data. For this test, the
second-order terms thus provide a clear improvement from linear theory.
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Fig. 5. Time series in three stations for the long wave test of Beji and Battjes [15]. Experimental data and results of ‘exact’ model.
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Fig. 6. Time series in three stations for the long wave test of Beji and Battjes [15]. Experimental data and results of linearised model.
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Fig. 7. Time series in three stations for the long wave test of Beji and Battjes [15]. Comparison between ‘exact’ and ‘resonant’ model.

Results of the ‘exact’ and ‘resonant’ models are compared in Fig. 7. Only the first half of the time interval of Figs. 5 and 6
is shown, since the last half interval shows an even smaller deviation. We see that the deviation between the model results is
hardly discernible. Thus compared to the deviation between the model results and experimental data, the difference betweel
the ‘exact’ and ‘resonant’ model is insignificant.
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Fig. 8. Time series in three stations for the short wave test of Beji and Battjes [15]. Experimental data and results of ‘exact’ model.
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Fig. 9. Time series in three stations for the short wave test of Beji and Battjes [15]. Experimental data and results of linearised model.
6.2. Shorter waves

For the second test chosen, the incoming wave spectrum is a JONSWAP spectrum with a peak frequency of 1 Hz and a
significant wave height of 4.1 cm. The duration of the time seridgis= 899.68 s and the evolution equations were solved
with 2700 frequencies, corresponding to a maximum frequency of 3 Hz.

First we examine the results for the time interwal [490, 520] s. Results of the ‘exact’ model are compared to experimental
data in Fig. 8, while results of a linear model run are compared to data in Fig. 9. In general, both models are able to capture
the individual waves. However, the waves calculated with the nonlinear evolution equations show a forward phase shift when
compared to the data. This phase shift is not present for the linear results and is thus a consequence of nonlinearity. In station 5,
the results of the linear model in general exhibit too deep wave troughs. This behaviour is not seen for the results of the nonlinear
evolution equations, although for this station the phase shift has increased due to accumulative effects. For station 8, both models
reproduce the overall variation of the wave field, although phase errors and spurious high-frequency oscillations are present in
the results.

We now focus on the results for a single tall wave group, covering the time intesvg825 340] s. Numerical results of the
nonlinear evolution equations are compared to the measured time series in Fig. 10, while linear results and data are compared in
Fig. 11. For station 3, the asymmetry and spikiness of the measured waves indicate the presence of second harmonic energy in
the wave spectrum. The nonlinear evolution equations capture the appearance of the second harmonics and thus reproduce th
shape of the waves with a good improvement from linear theory. The same holds for the results of station 5. For these stations
phase errors are evident for both models, the linear model results exhibiting a backward phase shift and the nonlinear model
exhibiting a forward phase shift in time. This shows that there is a nonlinear contribution to the phase speed in the data, and
that the nonlinear model overestimates this contribution. For station 8, these phase shifts accumulate for both models and thus
make a judgement of the reproduction of wave shape difficult.

Results of the ‘exact’ and the ‘resonant’ model are compared in Fig. 12. We see that for the smaller waves the deviations are
insignificant, while for the larger waves, some differences in wave shape occur. For these large waves, however, the deviation to



676 H. Bredmose et al. / European Journal of Mechanics B/Fluids 24 (2005) 659-682

0.051 Data
— Exact
£ op
=
-0.05 | Station 3
325 330 335 340
005 Data
—_ Exact
)
=
-0.05 ' Station 5
325 330 335
0.051 = Data
— — Exact
E o
=
-0.05 L | Station 8
325 330 335 340
tls]

Fig. 10. Time series in three stations for the short wave test of Beji and Battjes [15]. Experimental data and results of ‘exact’ model.
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Fig. 11. Time series in three stations for the short wave test of Beji and Battjes [15]. Experimental data and results of linearised model.
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Fig. 12. Time series in three stations for the short wave test of Beji and Battjes [15]. Results of ‘exact’ model and ‘resonant’ model.

the measured data is relatively large. From a modelling point of view, the results of the two models can therefore be considered
of equal quality for this test case.

Although the above tests show that the second-order terms make an improvement over linear theory with respect to wave
shape, the results of the second test gives evidence that the amplitude dispersion is over-predicted in the model. This leads t
undesirable accumulative phase errors. Motivated by these observations, we thus investigate the amplitude dispersion withir
the models in the following section.



H. Bredmose et al. / European Journal of Mechanics B/Fluids 24 (2005) 659682 677

7. Third-order transfer and embedded amplitude dispersion

The above results suggest that the amplitude dispersion in the models formulatésiomer-predicted. Kaihatu [20] in-
vestigated the nonlinear contribution to the phase speed in the ‘resonant’ model formulateyd aalculating fully nonlinear
regular wave solutions. For small waves it was found that the nonlinear phase speed exceeds the phase speed of Stokes third
order waves (presumably with a zero Eulerian mean current below wave trough levet) fot.5, wherek is the linear wave
number. For larger values &f, the nonlinear phase speed was found to be smaller than for Stokes waves. For shallow water
waves, comparisons with stream function theory confirmed the over-prediction of the phase speed in shallow water, although
the transition from over-prediction to under-prediction of the phase speed occurred at a much smaller wavechuené,

It is desirable to investigate the amplitude dispersion of the model formulate@snwell. We choose to use a third-order
Stokes-type analysis for this, which additionally to results for the amplitude dispersion and third-order transfer of the model
yields insight into the process that creates the nonlinear contribution to the phase speed. We restrict the analysis to unidirectional
wave propagation and follow the approach of Bredmose et al. [14]. We look for a solution of the form

& 82 ~ 53 ~
n(x,t) = —cosd + —Apc0Sd + —A3C0S P (74)
k1 k1 k1

with
0 = wt — k1x, w=w1(1+82w13) (75)

and wheres = k141 is assumed small. The coefficierité,, Az, w13) are dimensionless functions bk, being of order @1)
in the e-hierarchy. As reference solution, we use Stokes third-order waves with a zero net mass$u) (corresponding to
unidirectional wave propagation towards a beach. This solution is given in Fenton [32] and reads in our notation

. 1+3S5+352+253
Ol (76)
8(1-25)3
2+782 1 1
13 (77)

T A1-5)2 2«ktanh

with « = kh and S = sech 2. Omission of the last term im3 leads to the solution corresponding to a zero Eulerian mean
velocity below wave trough levek = 0). The ratio of these two solutions far 3 can be as large as 2.5, and it is therefore
important to specify which reference solution is used. We noteARas independent of the mass flux.

In evolution equationsy,, are fixed numbers and are therefore not allowed to be modified by nonlinear effects as in (75).
The nonlinear modification of the wave speed therefore enters through a change of the effective wave number, and we thus
search for a solution of the form (74) but with

0 =wit —kx, k=ki(1—e%k13). (78)

Matching the solution ansatz (74) with the expansion (18) gives

le iy 162 - ionk 163 - @ik
=_—¢ VY gp=C Ayl kdx e S fpelGkha)x 79
U= 5 2= 542 3= 5513 (79)
For constant depth and unidirectional wave propagation, the evolution equations (53) take the form
N .
ap.x = i Z Ws,p—sasap—s g1 ksthp—s—kp)x (80)
s=p—N

where, again, we have adopted the two-index notation for the kernel funtion the presence of only three harmonics, (80)
form the system

ay,x = 2iWp, _jaga_q e k2= 2k0x, (81)
a x =Wy qa? e @akax, (82)
a3, = 2iWy jajap e kithka—ka)x (83)

and insertion of (79) now gives a hierarchy of equations.iithe (€9, e1)-equations are identically satisfied, while axd),
(82) yields the solution for». At O(¢3), (81) gives the solution fok; 3, while (83) gives the solution fod 3. The solutions are
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Fig. 13. A nonlinear wave and the two linear waves having same wave number and same frequency, respectively.
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where the result foR, is consistent with the bichromatic transfer function (67) derived in Section 4.

To relatek13 to w13, we consider the sketch in Fig. 13. Here a curve representing the linear dispersion relation for water
waves is drawn, and a nonlinear wave is represented by a point positioned above this curve. If this nonlinear wave is describec
through a change @b, the nonlinear wave originates from the linear wave having the same wave numjyemd the vertical
distance between this wave and the nonlinear wayédg w13. Similarly, if the nonlinear wave is described through a change
of the wave number, it originates from the linear wave having the same angular frequgi@an( the horizontal distance
between this wave and the nonlinear wavezislkm. We can relaté 3 to w13 by considering the triangle defined by these two
linear waves and the nonlinear wave. As the slope of the dispersion CL%geviﬂe haves2wiwiz = 82k1k13%—w, and thereby

C
w13= —Sk13. (87)
Clin
Note that since the deviation between the wave numbers and angular frequencies for the linear and nonlinear waves are of orde
0(2), cg, the group velocity, andji, the linear phase speed, can be evaluated in any of the three points as desired.

7.1. Analysisof model in ¢

As (44) and (53) are only consistent to second order, their third-order properties are not identical. Hence we need to
analyse (44) separately. In its unidirectional form, we write (44) as

N
bpx=— Z Us, p—sbsbp—s g1 ksthp—s—kp)x (88)
s=p—N
where U, ,—s =H(*V, kph)Fg?;,_s. We insert the solution ansatz
. . 2 . 3
(=118 8 itmkx 118 5 &% i@kx g, 118 5 8T i@ka (89)
2w1 ky 2w1 Tk 2w1 Tk

whered, and®3 are dimensionless functions bk and where agaik = k1(1 — £2k13). Insertion into (88) leads to

~ g Ug1

Pp=— 90
27 " g 2ky(kp — 2kp) (50)
B3= (i)z U1.1U21 (91)
®1) 2k2(kp — 2k1)(k3 — 3k1)
kyz=— (i)ziul»luzl (92)
w1) 2%3(kp — 2k1)
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Fig. 14. A5 for fully dispersive evolution equations, normalised &by for Stokes waves. Results for the resonance assumption are shown as
well.

which have a clear similarity with (84)—(86). We now calculate the free surface elevation amplitudes corresponding to (89) using
the second-order transformation (48). The quadratic terms in this transformation can easily be expressed in terms of potential
amplitudes by using the linear part of the transformation. Hereby a transformation exprgssimgerms of only potential
amplitudes is obtained. Using this transformation we get

~ le —ikx 3

= —-——08e O . 93
n % +0(e”) (93)
. 1/ g U1 w1 (2))82 _Dikx
fo=—c(S——2t 4 L@ )" o 2ikx (94)

Z(wl ki(kp —2k1)  gk1 Y1)k
2)
ﬁ3=}<§(£>2 U11Uz1 . Y1131 )8_8—3ikx (95)
2\2\w1/) Ko -2k (k3 =3k kkp — 2k / ke

where the results foffj1, 172) are consistent with the results of the analysis of the model formulat@o{ﬁﬁ), while the result
for 53 is not. The first term in the above result fgg results from the linear transformation ¢§, while the second term is
produced by the quadratic part of the transformation (48).

7.2. Results of analysis

We can now compare the third-order transfer and embedded amplitude dispersion of the evolution equations to the reference
solution of Stokes third-order theory. In Fig. 14 the third-order transfer funclipof the evolution equations formulated in
the amplitudes of the free surface elevation as well as the evolution equations formulated in the amplitudes of the still water
velocity potential is plotted. All curves are normalised with the reference solution of Stokes third-order wave theory. The
transfer is seen to be over-predicted for the modej.itn shallow water, the model agrees with Stokes wave theory, but in
deep water, the transfer function converges towards a value of around 2.2 times that of Stokes waves. For thepnbéel in
transfer is first over-predicted in shallow and intermediate water and then under-predicted decaying to zero in deep water. The
largest over-prediction is 58% and occurs éy/h/g = 0.92, while the transition to the region of under-prediction occurs in
w+/h/g = 1.25. The influence of the resonance approximation is illustrated as well and is seen to be small. This is explained
by the expression faf 3 which consists of a product of two super-harmonic interaction coeffic@hm and\7\72,1. For super-
harmonic interactions, the resonance approximation does not imply significant changes to the transfer function, as can be seen
in Fig. 3.

To analyse the embedded amplitude dispersion, we compgyef the evolution equations t@43 for Stokes third-order
waves on a zero net mass flux in Fig. 15. The plot shows that the evolution equations over-predict the amplitude dispersion
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Fig. 15.w13 for fully dispersive evolution equations, normaliseddys for Stokes waves witlrg = 0. Results for the resonance assumption
are shown as well.

severely. The equations formulatedjover-predict the amplitude dispersion by a factor of 5éQfh /g = 1.03. Towards deep

water, the amplitude dispersion decays, but stitbigii/g = 2 (not shown in the figure) correspondingith = 39.5, w13 is

more than 1.5 times as large as for Stokes waves. For the short wave calculation of Secthh,(‘g)Zl/Z varies between 1.27

and 0.63 for the peak frequency, and the third-order analysis therefore explains the over-prediction of amplitude dispersion
observed.

For the evolution equations i, the analysis shows a similar over-prediction in shallow and intermediate water, while
for deeper water the amplitude dispersion decays towards zero. The largest over-prediction oecyfs/fpe= 0.95, where
w13 is nearly four times as large as for Stokes waves. The transition between over-prediction and under-prediction occurs for
w+/h/g = 1.36. The effect of the resonance approximation is small, and most pronounced for the mpdeédéndecay ofv13
in deep water for the model i can be explained by the decay 5;‘2[3_9 for super-harmonic forcing by large frequencies.

Thus for deep water, the interaction coefficient for super-harmonic interaction vanishes, makihecay, see (86).

As already noted, the use of a reference solution for a zero net mass §lux @) gives a larger over-prediction of the
amplitude dispersion than if the reference solution for a zero mean Eulerian velocity below wave trough leveldg sl (

The effect is illustrated in Fig. 16, whetg 3 for the ‘exact’ model iry is plotted, normalised with either of the two reference
solutions. The two reference solutions can differ by up to a factor of 2.5, as can be seen in the plot. For both reference solutions,
however, the amplitude dispersion is over-predicted by the model formulate&aor the ‘resonant’ model formulated ¢n(not

included in the figure), the transition from over-prediction to under-prediction of the amplitude dispersign£dd occurs at

w~/h/g = 1.16 corresponding tbh = 1.49. This agrees very well with the findings of Kaihatu [20].

Given that the evolution equations derived are correct to second order, it may seem surprising that the third-order properties
analysed deviate significantly from the reference solution. However, as the derivation of the models has only been carried out
with second-order accuracy, the third-order properties of the models are rather arbitrary.

Together with the simulations of Section 6 the above findings show that fully dispersive evolution equations may be less
successfully applied to wave fields where third-order properties are important or at least to wave fields having a large spectral
content in the frequency range of strongly over-predicted amplitude dispersion. While a general over-prediction of the third-
order transfer may be tolerable, the over-prediction of amplitude dispersion leads to undesirable accumulative phase errors
An extension to third order would cure these problems, but seems infeasible if the numerical efficiency is to be retained.
However, an approximate correction term may possibly cure the problems of amplitude dispersion, thus rendering a model
still consistent to second order and with improved, although not exact, third-order properties. Such a modification is subject to
current investigations.
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Fig. 16.w13 for the ‘exact’ version of the evolution equations (53). The two curves are obtained by normalising;witr third-order Stokes
waves with a zero net mass fluxs(= 0) and a zero Eulerian mean flux velocity below wave trough leyekf 0), respectively.

8. Summary and discussion

A new derivation of second-order fully dispersive evolution equations with no assumptions on the vertical structure of the
velocity field has been presented. The equations are valid for weakly nonlinear wave propagation at angte30dfriam
the main direction of propagation with a weak deviation from straight and parallel bottom contours. The models are formulated
in the complex Fourier amplitudes of the still water potential or the complex Fourier amplitudes of the free surface elevation
and have, as a novelty, exact second-order bichromatic transfer functions. By utilising the ‘resonance assumption’, the models
of Agnon et al. [10], Kaihatu and Kirby [11] and Eldeberky and Madsen [12] are recovered.

The second-order bichromatic transfer functions of the models have been derived using a perturbation analysis. For the
‘exact’ models the transfer functions are identical to the reference solution of Sharma and Dean [13]. For unidirectional wave
propagation the bichromatic transfer of the ‘resonant’ models is generally close to the exact transfer function, especially for
super-harmonics.

The numerical efficiency related to the solution of the ‘resonant’ models can be improved by using Fast Fourier Transforms
to evaluate the nonlinear terms. This leads to a tremendous reduction in the computational work. Thieéprencies and
M lateral wave modes, the models can be solved with a computational effoxi(&f I6g M) (N log N)) instead of the usual
effort of O(M2N2) associated with direct evaluation of the convolution sums.

In this paper we have restricted the model validation to unidirectional wave propagation. A test of relatively long waves
passing a submerged bar shows that the inclusion of second-order nonlinearity gives a clear improvement of the wave shape as
well as of the description of the important release of higher harmonics after the bar top. For the second test of shorter waves, the
second-order effects on the wave profiles are most evident on the bar top, again leading to improved results for the second-order
models, but cumulative phase errors due to an over-prediction of the amplitude dispersion have been observed as well. For both
simulations results of the ‘exact’ and ‘resonant’ models showed only small deviations.

The over-prediction of the amplitude dispersion has been investigated further through a third-order Stokes-type analysis of
the equations. For the ‘exact’ model formulated in the wave amplitudes, the third-order transfer is over-predicted from shallow
to deep water, the over-prediction being more than a factor of 2 in the deep water limit. For a zero net mass flux, the model
formulated inn over-predicts the amplitude dispersion with up to a factor of 5 in intermediate water. If, alternatively, the
reference solution for a zero mean Eulerian velocity below wave trough level is used for comparison, the over-predictions is
smaller, i.e., around a factor of 2 at maximum for the ‘exact’ model formulated The models formulated i shows over-
prediction of the amplitude dispersion and third-order transfer at intermediate depth, decaying to zero at deep water. For both
third-order properties investigated, the effect of the resonance approximation has been found small.

While the derivation of fully dispersive evolution equations with exact second-order transfer is a worthwhile theoretical
result, the restriction of the FFT speed-up to the ‘resonant’ models, makes these ‘resonant’ models the attractive choice for
practical use. The present results show that for unidirectional wave propagation the practical difference between the ‘exact’
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and ‘resonant’ models is small. A further investigation of the differences for two-dimensional wave propagation is therefore an
interesting next step. The strong over-prediction of the amplitude dispersion is a new finding that restricts the application area
of the models to wave fields where third-order effects are unimportant or to frequency ranges away from the region of strong
over-prediction. A full inclusion of third-order terms would fix the problem but seems infeasible if the numerical efficiency is

to be retained. However, an approximate correction term may help on the third-order problems. Such a correction would extend
the scope of the models and ongoing research is investigating this matter.
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