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Fourier-correlation imaging
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We investigated whether correlations between the Fourier components at slightly shifted

frequencies of the fluctuations of the electric field measured with a one-dimensional antenna array

on board a satellite flying over a plane allow one to measure the two-dimensional brightness

temperature as a function of position in the plane. We found that the achievable spatial resolution

that resulted from just two antennas is on the order of hv, with v ¼ c=ðDrx0Þ, both in the direction

of the flight of the satellite and in the direction perpendicular to it, where Dr is the distance

between the antennas, x0 is the central frequency, h is the height of the satellite over the plane, and

c is the speed of light. Two antennas separated by a distance of about 100 m on a satellite flying

with a speed of a few km/s at a height of the order of 1000 km and a central frequency of order

GHz allow, therefore, the imaging of the brightness temperature on the surface of Earth with a

resolution of the order of 1 km. For a single point source, the relative radiometric resolution is on

the order of
ffiffiffi
v
p

, but, for a uniform temperature field in a half plane left or right of the satellite

track, it is only on the order of 1=v3=2, which indicates that two antennas do not suffice for a

precise reconstruction of the temperature field. Several ideas are discussed regarding how the

radiometric resolution could be enhanced. In particular, having N antennas all separated by at least

a distance on the order of the wave-length allows one to increase the signal-to-noise ratio by a fac-

tor of order N but requires averaging over N2 temperature profiles obtained from as many pairs of

antennas. Published by AIP Publishing. https://doi.org/10.1063/1.5017680

I. INTRODUCTION

Spatial aperture synthesis is a standard technique in radio-

astronomy.1 It allows one to achieve the fine resolution of a

large antenna by correlating time-delayed signals received

from the different antennas in an antenna array. In satellite-

based remote sensing, spatial aperture synthesis is a technique

of choice when relatively long wave-lengths are imposed by

applications such as the measurement of sea surface salinity or

surface soil moisture. When operating in the protected L-band

(1400–1427 MHz), a resolution of 10 km would already

require a single antenna with a size of 32 m. Spatial aperture

synthesis for passive microwave sensing, therefore, was pro-

posed to the European Space Agency (ESA)2 and imple-

mented for the first time in the “Soil Moisture and Ocean

Salinity” (SMOS) mission in 2009, which still operates

today.3,4 The satellite uses a deployable Y-shaped antenna

array and provides a spatial resolution between 27 and 60 km.

With the application-driven need for higher spatial reso-

lution down to the order of 1 km, even spatial aperture syn-

thesis leads to forbiddingly large antenna arrays, and,

therefore, there is an ongoing quest for finding alternative

concepts (see, e.g., Ref. 5 and references therein). Compared

with stationary antenna arrays on the Earth used for astron-

omy, one may wonder whether the motion of the satellite

could be used for creating a two-dimensional (2D) artificial

antenna array out of a one-dimensional (1D) moving array,

oriented perpendicular to the motion of the satellite. It turns

out that this is not possible when directly correlating the

observed microwave fields in the time domain: the useful

phase shift gained due to the motion of the satellite is, to the

first order in vs=c cancelled by the Doppler shift, where vs is

the speed of the satellite and c is the speed of light.6

In this paper, we examine another idea: instead of corre-

lating the signals in the time domain, we consider the correla-

tions between their Fourier components at slightly different

frequencies. This may seem surprising at first because, at the

level of the sources, the standard model assumption is that dif-

ferent frequencies are entirely decorrelated. Nevertheless, a

hypothetical monochromatic point source is seen by different

antennas at slightly different frequencies due to the slightly

different Doppler effect, and, hence, it makes sense to corre-

late different frequency components from different antennas

with each other. The useful frequency differences are tiny,

down to below 1 Hz, and correspondingly long acquisition

times are needed. However, one may hope that this opens, at

least in principle, a new way of achieving a resolution on the

order of a kilometer in passive microwave remote sensing in

the L-band by using the motion of the satellite for reducing a

2D antenna-array to a 1D array. The principle of the measure-

ment is illustrated in Fig. 1.

We derive the principles of this “Fourier-correlation

imaging” (FouCoIm) technique in detail and calculate the

achievable spatial and radiometric resolution (RR). An

emphasis is put on pushing analytical calculations as far as

possible and testing the method at the hand of simple situa-

tions, namely, a single point source and a uniform tempera-

ture field. An estimation of numerical values is done with a
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standard set of parameters: h¼ 700 km, vs¼ 7 km/s,

x0¼2p�1:4GHz, T¼300K, B¼20MHz, and Dr¼100m.

This leads to the important dimensionless parameters

bs ¼ vs=c¼ 2:33� 10�5, v¼ c=ðDrx0Þ ¼ 3:41� 10�4, and
~h � h=Dr ¼ 7000.

II. MODEL

We assume that the fluctuating microwave fields mea-

sured at the position of the satellite are created by fluctuating

microscopic electrical currents at the surface of the Earth

that are in local thermal equilibrium at absolute temperature

T(x, y), where x, y are coordinates of a point on the surface

of the Earth. The entire analysis will be in terms of classical

electro-dynamics. In Ref. 6, we derived the expression

Eðr1 þ vst; tÞ ¼ �
l0

4p

ð
d3r00

1

RðtÞ @t0 jðr00; t0Þjt0¼t�RðtÞ=c ; (1)

for the time-dependent electric field that arises from the cur-

rent fluctuations at the position of the satellite, with

RðtÞ ¼ jr1 þ vst� r00j, where r1 is the position of the antenna

at time t¼ 0, vs is the speed of the satellite in the Earth-fixed

reference frame, l0 is the magnetic permeability of a vac-

uum, and jðr00; tÞ is the current density as a function of space

and time. All expressions are in the Earth-fixed reference

frame, which is more convenient for the present study than

the satellite-fixed reference frame. It is shown in Ref. 6 that

Eq. (1) is the correct far field, when relativistic corrections of

the prefactor of order bs (due to the mixing of electric and

magnetic fields in a moving reference frame), and terms of

order b2
s in the phase are neglected. Equation (1) contains, in

the phase, the linear Doppler shift and relativistic effects

(including time dilation) up to the order bs. The far-field

approximation is justified for RðtÞ � k, where k (on the

order of cm in the microwave regime) is the wave-length of

the radiation (see Chap. 9 in Ref. 7).

We substitute the Fourier decomposition of the current

density,

jðr00; tÞ ¼ 1ffiffiffiffiffiffi
2p
p

ð1
�1

dx0eix0t~jðr00;x0Þ ; (2)

into (1). The question of whether one should differentiate

R(t) with respect to t was answered to the negative in Ref. 6,

but it is irrelevant if we neglect changes of the order bs to the

prefactor. We then find the time-dependent field seen by the

flying antenna,

Er1
ðtÞ � Eðr1 þ vst; tÞ ¼

K1ffiffiffiffiffiffi
2p
p

ð
d3r00

�
ð

dx0
ix0

jr1 þ vst� r00j
~jðr00;x0Þeix0ðt�jr1þvst�r00j=cÞ ;

(3)

with K1 ¼ �l0=ð4pÞ. The Fourier transform of that signal is

~Er1
ðx1Þ ¼

1ffiffiffiffiffiffi
2p
p

ð1
�1

dt1e�ix1t1 Er1
ðt1Þ; (4)

¼ K1

2p

ð1
�1

dt1

ð1
�1

dx0
ð

d3r00
ix0~jðr00;x0Þ
jr1 þ vst1 � r00j

� eiðx0�x1Þt1 e�ix0 jr1þvst1�r00 j=c : (5)

We assume that the current sources can be described by

a Gaussian process, in which sources at different positions or

different frequencies, or with different polarizations are

uncorrelated,

h~jiðr001;x1Þ~j
�
j ðr002;x2Þi ¼ dij

l3c
sc

dðr001 � r002Þdðx1

� x2Þhj~jiðr002;x2Þj2i ; (6)

where we introduced, for dimensional grounds, a correlation

length lc and a correlation time sc, and the polarizations are

indexed by i, j, which take values x, y, z. In principle, the

average h…i is over an ensemble of realizations of the sto-

chastic process, but we may assume ergodicity of the fluctua-

tions, such that they can also be obtained from a sufficiently

long temporal average. In practice, this means that one

should average over positions considered as equivalent in

terms of the ensemble, i.e., the time that the satellite takes to

FIG. 1. Setup of the proposed Fourier-correlation imaging technique. (Left) A satellite comprising at least two antennas flies at height h over the Earth and

registers the electric fields EðriðtÞ; tÞ in the microwave domain, arising from thermally fluctuating current densities on the surface of the Earth, as a function

of its proper time t at the time-dependent positions riðtÞ of the two antennas (i¼ 1, 2). (Right) The two electric fields are Fourier transformed and correlated

in a very narrow frequency band (width of order Hz and below). These correlations contain information about the position-dependent brightness tempera-

ture on the Earth.
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fly over a desired pixel size. For a satellite flying at a speed

on the order of km/s and a pixel size on the order of km, this

means a maximal averaging time on the order of a second.

This does not preclude calculating Fourier transforms with

finer spectral resolution from data acquired over much longer

times.

We make the assumption that only the current intensities

at the surface of the Earth contribute. In reality, the emission

seen by the satellite arises from a thin surface layer on the

Earth that has a finite thickness d on the order of a few centi-

meters,4,8 depending on the soil and its humidity, and the sat-

ellite also sees the cosmic microwave background. We

approximate the surface layer as a single plane located at

z00 ¼ 0, i.e., hj~jiðr002;x2Þj2i ¼ dhj~jiðx00; y00;x2Þj2idðz00Þ, and

neglect the cosmic microwave background because its tem-

perature is two orders of magnitude lower than that of the

Earth as well as other astronomical objects.

The current intensities are related to an effective temper-

ature T(x, y) by

hj~jiðx; y;xÞj2i ¼ K2Tðx; yÞ ; (7)

where K2 is a constant [see Eq. (A11)]. Equation (7) is valid

for �hx� kBT and, hence, well adapted to microwave emis-

sion at room temperature.

Equation (6) together with (7) is a standard model of

classical white noise currents, and appears in many places in

the literature, see e.g., Eq. (4.16) in Ref. 9. The equation is

an instance of the fluctuation-dissipation theorem that can be

found in standard text-books on statistical physics (see e.g.,

Part 1, Chap. XII, and Part 2, Chap. VIII in Ref. 10). In the

context of thermal radiation, it goes back at least to the origi-

nal Russian version of Ref. 11 (from 1953); see also Ref. 12.

The model has also been used to study coherence effects in

the thermal radiation of near-fields [see Eq. (3) in Ref. 13].

For completeness and in preparing the proof that the Fourier

components ~Er1
ðx1Þ represent a complex circular Gaussian

process over position and frequency, we present the deriva-

tion of (7) in Appendix A–D, based on Planck’s law for the

energy density of an electromagnetic (e. m.) field in thermal

equilibrium.

Compared with a black body, the emissivity of a real

body is modified by a mode-dependent emissivity factor

Biðx; y; x; k̂Þ, where k̂ is the direction of emission (from the

patch on the ground to the satellite) and a factor cos hðx; y; hÞ
of geometrical origin that takes into account the variation of

the radiation with respect to the normal surface (i.e., the pro-

jection of the area of a patch of the surface onto the plane per-

pendicular to the propagation direction). The temperature T(x,

y) is then really an effective temperature, Teffðx; yÞ
¼ TBðx; yÞ cos hðx; y; hÞ, where the brightness temperature

TBðx; yÞ is defined as the absolute temperature that a black-

body would need to have to produce the same intensity of

radiation at the frequency and in the direction considered (see

Appendix A 1). For simplifying notations, in the rest of the

paper, we write T(x, y) for short instead of Teffðx; yÞ, but keep

in mind its physical meaning, which, after all, is crucial for

data analysis and fitting vegetation and surface models to

observational data.8 We thus arrive at the current correlator

h~jiðr001;x1Þ~j
�
j ðr002;x2Þi ¼ dijK3 dðr001 � r002Þdðx1

� x2ÞTðx00; y00Þdðz00Þ ; (8)

which can be considered the statistical model that underlies

the imaging concept, and K3 ¼ l3cK2d=sc.

III. CORRELATION OF FOURIER COMPONENTS

For each antenna, the electric field component Ei;r1
ðtÞ is

transduced into a voltage Ui;r1
ðtÞ. We denote the frequency

response of the antennas and the eventual subsequent filters

by the complex function AðxÞ, the Fourier transform of the

time-dependent response function of the antenna and filter.

In the frequency domain, we simply have ~Ui;r1
ðx1Þ ¼ Aðx1Þ

~Ei;r1
ðx1Þ. With (8) we obtain the correlation function

between the voltages at two different frequency components,

x1, x2, measured at the positions of the antennas with the

original positions r1 and r2,

CF
ijðr1; r2;x1;x2Þ � h ~Ui;r1

ðx1Þ ~U
�
j;r2
ðx2Þi

¼ Cijðr1; r2;x1;x2ÞAðx1ÞA�ðx2Þ; (9)

Cijðr1; r2;x1;x2Þ ¼ h ~Ei;r1
ðx1Þ ~E

�
j;r2
ðx2Þi; (10)

¼K5dij

ð1
�1

dt1

ð1
�1

dt2

ð1
�1

dx0
ð

dx00dy00

� x02Tðx00;y00Þ
jr1þvst1�r00jjr2þvst2�r00j�eix0ðt1�t2Þ

�e�iðx1t1�x2t2Þe�i x0
c ðjr1þvst1�r00 j�jr2þvst2�r00jÞ ;

(11)

where now r00 ¼ ðx00; y00; 0Þ, and K5 ¼ K3K2
1=ð4p2Þ. The cor-

relation function CF
ijðr1; r2;x1;x2Þ is the filtered version of

the original unfiltered correlations Cijðr1; r2;x1;x2Þ. We see

from (9) that the latter can be obtained from the former simply

by dividing through the product of the known filter functions,

as long as the latter is non-zero. Outside the frequency

response of the antennas and filters, the measured correlations

CF
ijðr1; r2;x1;x2Þ vanish due to the vanishing of AðxÞ and no

longer carry any information. This will ultimately limit the

frequency range over which information on the brightness

temperature can be extracted or, equivalently, leads to a finite

geometrical resolution, even if a Cijðr1; r2;x1;x2Þ known for

all frequencies would lead to perfect resolution. However, this

appears only when inverting the measured signals and will be

discussed in Sec. IV A. For the moment, we assume that we

have access to the unfiltered Cijðr1; r2;x1;x2Þ through (9) for

all frequencies that we need and base the general development

of the theory on Cijðr1; r2;x1;x2Þ.
We change integration variables from t1, t2 to “center-

of-mass” and relative times, t ¼ ðt1 þ t2Þ=2 and s ¼ ðt2

�t1Þ, and introduce as well, a new integration variable for

the spatial integration, r0 � r00 � vst. This implies r1 þ vst1

� r00 ¼ r1 � vss=2� r0 and r2 þ vst2 � r00 ¼ r2 þ vss=2� r0.
The Jacobian of both transformations is equal to 1.

Furthermore, from now on, we take the satellite to move in

the x-direction, vs ¼ vsêx, where êx is the unit vector in the

x-direction. This leads to Tðx00; y00Þ ¼ Tðx0 þ vst; y
0Þ.

074502-3 Braun et al. J. Appl. Phys. 123, 074502 (2018)



The total phase U appearing as arguments of the expo-

nential functions under the integrals in (11) is

iU ¼ i s �x0 þ x2 þ x1

2

� �
þ tðx2 � x1Þ

�

�x0

c
jr1 � vss=2� r0j � jr2 þ vss=2� r0j
� ��

: (12)

We see that t only appears as a prefactor of ðx2 � x1Þ in the

phase (12) and as the argument vst in Tðx0 þ vxt; y0Þ.
Therefore, the integral over t boils down to a 1D Fourier

transform of the intensity of the current fluctuations in the

direction of the speed of the satellite, with a conjugate vari-

able proportional to the difference x2 � x1 of the frequen-

cies of the Fourier components that we correlate. This can be

made more explicit by introducing a position variable,

x¼ vst, along the path of the satellite. For the conjugate vari-

able, we define jx ¼ ðx2 � x1Þ=vs. We write jx and not kx

to distinguish this “wavevector” from the usual one obtained

from a single frequency and by dividing by c. We also intro-

duce the “center of mass frequency” xc � ðx1 þ x2Þ=2. It is

called “center frequency” for short in the rest of the paper

but should not be confused with the central frequency x0,

which is the fixed frequency in the middle of the band in

which the satellite operates (e.g., 2p� 1.4 GHz for the

SMOS satellite of ESA). With all this, we see that

ð
Tðx0 þ vst; y

0Þeiðx2�x1Þtdt ¼ 1

vs

ð
Tr0 ðxÞeijxx dx

¼
ffiffiffiffiffiffi
2p
p

vs

~T r0 ðjxÞ; (13)

�
ffiffiffiffiffiffi
2p
p

vs

~Tx0;y0 ðjxÞ : (14)

We defined Tðx0 þ vst; y
0Þ � Tr0 ðxÞ, where vst¼ x is under-

stood, and the spatial Fourier transform ~T r0 ðjxÞ of the tem-

perature field T(x, y) is in the x-direction. This notation

makes clear that, with these coordinates, the temperature

depends both on r0 and t, even though the motion of the sat-

ellite combines the two arguments into a single one, r0 þ vst.
We can think of ~T r0 ðjxÞ as the Fourier image of Tðr0 þ xêxÞ
with respect to the x coordinate, calculated with a starting

point r0; i.e., for all r0, we have a 1D spatial Fourier trans-

form of the intensity of the current fluctuations, where the

Fourier integral is defined with origin in r0. The Fourier

images obtained by translation of r0 in the x-direction are not

independent. Rather, we have

~Tx0;y0 ðjxÞ ¼
1ffiffiffiffiffiffi
2p
p

ð
dxTx0;y0 ðxÞeijxx

¼ 1ffiffiffiffiffiffi
2p
p

ð
dxT0;y0 ðxþ x0Þeijxx; (15)

¼ 1ffiffiffiffiffiffi
2p
p

ð
dx00T0;y0 ðx00Þeijxx00e�ijxx0 ¼ e�ijxx0 ~T0;y0 ðjxÞ :

(16)

We are thus led to

Cijðr1; r2;x1;x2Þ ¼ K5dij

ffiffiffiffiffiffi
2p
p

vs

ð1
�1

ds
ð1
�1

dx0x02
ð

dx0 dy0

�
~T 0;y0 ðjxÞe�ijxx0

jr1 � vss=2� r0jjr2 þ vss=2� r0j

� exp

	
i

�
s �x0 þ x2 þ x1

2

� �

� x0

c
ðjr1 � vss=2� r0j

�jr2 þ vss=2� r0jÞ
�


: (17)

We neglect the slow dependence of x02 compared with the

rapid oscillations of the phase factors in (17) and pull it out

of the integral as a prefactor x2
0. We can then perform the

integral over x0, and we findð1
�1

exp …½ �dx0 ¼ 2pd

�
sþ 1

c
ðjr1 � vss=2� r0j

� jr2 þ vss=2� r0jÞ
�

eis
x1þx2

2 : (18)

We introduce center-of-mass and relative coordinates for r1

and for r2; R ¼ ðr1 þ r2Þ=2 and Dr ¼ r2 � r1. We further

restrict vss to values much smaller than jR� r06Drj. This

implies a limitation of the integration range for s when cal-

culating the Fourier components; however, it is mild.

Because jR� r06Drj 	 h, it is enough to have s 
 h=vs,

which is typically on the order of 100s and, therefore, gives

time to resolve Fourier components down to a hundredth of a

Hertz. We can then approximate to the first order in vs,

jr1 � vss=2� r0j � jr2 þ vss=2� r0j ’ �êR�r0 � ðDrþ vssÞ :
(19)

Neglecting terms on the order of jDrþ vssj=jR� r0j and on

the order of b ¼ vs=c in the prefactor of the exponential as

well as a second order term on the order of bxcDr=c in the

phase, the integral over the Dirac d-function gives

Cijðr1; r2;x1;x2Þ ¼ K6dij

ð1
�1

dx0
ð1
�1

dy0
~T0;y0 ðjxÞe�ijxx0

jR� r0j2

� exp i
Dr � êR�r0

c
xc

� �
; (20)

and K6 ¼ ð2pÞ3=2x2
0K5=vs. The unit vector êR�r0 is obtained

by taking the original center-of-mass position of the antennas

at R ¼ ðx0; 0; hÞ, and r0 ¼ ðx0; y0; 0Þ. Equation (20) is one of

the central results of this paper. It shows that the two-

frequency correlation function of the fields at different

antenna positions is related linearly via a 2D integral trans-

formation to the brightness temperature field in the source

plane or, more precisely, to the Fourier transform of that field

in the x-direction. With T(x, y) defined on a 2D grid, the

reconstruction of T(x, y) from the measured correlation func-

tion thus becomes a matrix inversion problem that, in gen-

eral, has to be performed numerically. A crucial question is

the conditioning of the inversion problem. It will be studied

074502-4 Braun et al. J. Appl. Phys. 123, 074502 (2018)



in more detail in a subsequent paper dedicated to a numerical

approach.14

Here we give a simplified analytical treatment that

allows us to obtain estimates of the spatial and radiometric

resolutions, and thus provide evidence that the inversion

problem is sufficiently well conditioned for the reconstruc-

tion of T(x, y) from the measured Ci;jðr1; r2;x1;x2Þ. For

this, we study the situation in which the vector Dr from

antenna 1 to antenna 2 is orientated in the y0 direction,

r2 ¼ r1 þ Drêy, in which case, Dr � êR�r0 ¼ �Dry0=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � x0Þ2 þ y02 þ h2

q
, and Dr ¼ jDrj denotes the spatial

separation of the two antennas.

We switch to a dimensionless representation by taking

as the length scale the distance Dr between the two antennas.

We express all other lengths in this unit and introduce the

dimensionless coordinates n; g by x0 ¼ nDr; y0 ¼ gDr, and
~h � h=Dr. The dimensionless height ~h is for the standard

parameters ~h ¼ 7� 103. Equation (20) then reads

Cijðr1;r1þDrêy;x1;x2Þ

¼ K6dije
�ijxx0

ð1
�1

dgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ~h

2
q

�K jxDr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ~h

2
q

;
Drxc

c

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ~h

2
q

0
@

1
A ~Tðjx;gÞ ; (21)

where ~Tðjx; gÞ � ~T 0;gDrðjxÞ. The 1D integral kernel is

Kða; bÞ ¼
ð1
�1

dn
e
�i anþ bffiffiffiffiffiffi

n2þ1
p

� �
n2 þ 1

; (22)

which is itself defined through an integral over n. For fixed

h, Dr, xc, and jx, the integral kernel Kða; bÞ is a function of

g that relates the 1D Fourier transform ~Tðjx; gÞ to the

observed correlation function by integration over g. Suppose

that the integration over g can be inverted by finding the

inverse integral kernel. Integrating over the product of the

inverse kernel and the measured correlation function

expressed as a function of the center frequency xc, we then

obtain ~T0;DrgðjxÞ for all g and the chosen jx. If this can be

done for all relevant jx, we obtain for each point on the y
axis the Fourier transform in the x-direction of the intensity

of the brightness temperature. When taking the inverse

Fourier transform in the x-direction, we obtain the full x- and

y-dependent brightness temperatures.

The arguments a and b of K are given by Eq. (21) as

a ¼ jxDr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

; (23)

b ¼ Drxc

c

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q : (24)

Their physical meanings are as follows: a can be seen as

essentially the separation Dr between the two antennas in

units of the effective wave-length 1=jx used for Fourier

transformation of the temperature profile in the x-direction,

multiplied with a dimensionless measure of the distance of

the sources from the satellite. We recall that jx ¼ ðx2

�x1Þ=vs, i.e., the effective wave-length is chosen by fixing

the small frequency difference x2 � x1. This difference is

translated into a wave-vector not by division with the speed

of light but by the much smaller speed of the satellite. The

latter fact, combined with the large dimensionless distance

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ h2

p
in units of Dr, which is the meaning offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ ~h
2

q
), indicates that a need not be very small even for

x2 � x1 on the order of 1 Hz.

The parameter b depends, at least for y> h, only weakly

on the position due to the factor g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ h2

p
.

For y� h, it is to the first order in g (with g� 1 in that

regime) equal to y/h. The other factors in b, Drxc=c just give

kcDr where kc ¼ xc=c is the wave-vector that corresponds to

the central frequency. In other words, up to a factor 2p, the

ratio Drxc=c is just the distance between the two antennas in

units of the central wave-length.

By their definition, we only need a; b 2 R. For a, we

can consider that, in the end, the maximum jx should be on

the order of the inverse resolution Dxmin required in the x-

direction. When taking Dxmin on the order of 1 km and when

using the standard parameters, we get jajmax 	 jjxhj ’ 700.

With g varying from �1…1 (in reality, the extension of

the Earth limits the integration range to a maximum value on

the order of 107 � 108), b reaches its maximal value Drxc=c
for g!1. For standard parameters, xc ¼ 2p � 1.4 GHz,

jbj�30. Both a and b can be positive or negative, such that

there is also a regime where jbj � jaj, and, by studying the

properties of the kernel Kða; bÞ (see Appendix B), we find

that this is the most important regime. There, the kernel

essentially becomes independent of a and can be approxi-

mated as

Kða; bÞ ’
ffiffiffiffiffiffi
2p
b

s
eip=4e�ib ; (25)

valid for b=a� 1 [see Eq. (B5)].

IV. ESTIMATION OF GEOMETRICAL RESOLUTION

A. Approximate analytical inversion of the integral
kernel

At first sight, the requirement b� a appears unnatural,

given that a can already be on the order of 102 to 103.

Indeed, this leads to a first rather stringent condition that

must be met for the correlation function C to be non-zero. In

terms of the original parameters, b=a ¼ xcg=½cjxðg2 þ ~h
2Þ�.

For this to be much larger than 1, one needs

g

g2 þ ~h
2
� cjx

xc
¼ c

vs

Dx
xc

; (26)

or Dx=xc � ½vs=ð2c~hÞ�, where we already used the maxi-

mum value 1=ð2~hÞ of the function of g on the left hand side

(lhs) in (26). For the standard parameters, we find

Dx=xc � 1:66� 10�9. When operating at xc in the GHz
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regime, this means that the correlation function essentially

vanishes for Dx larger than a few Hertz and thus bears no

more information for the measurement of the position-

dependent brightness temperature.

Another way of seeing this is to observe that (26) limits

the integration range for g: The lhs of (26) is a function that

starts at 0 for g¼ 0, increases linearly, reaches a maximum

of 1=2~h at g ¼ ~h, and decays as 1=g for large g. Condition

(26) then limits the integration range of g to an interval

g1 
 g 
 g2, with

g1;2 ¼
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d2 ~h

2
q

2d
� g1;2ðjÞ; (27)

where d�cDx=ðvsxcÞ¼cjx=xc¼cj=ðxcDrÞ¼vj, j�jxDr,

and v¼c=ðxcDrÞ�1 (see Sec. I and Fig. 2). A finite real

integration range exists only for d<1=ð2~hÞ, equivalent to

j<xcDr
2c~h
�jMax. For a given g, we have j
jmaxðgÞ

�xcDr
c

g

g2þ~h
2
jMax. A finite minimal value of j can be

deduced from a maximum desired snapshot size in the

x-direction. Also the requirement s<h=vs may provide a

lower bound of the relevant values of j because it leads to

the smallest resolvable frequency and thus also to the small-

est resolvable Dx: Dx>2p=s)j¼DrDx=vs>Dr 2p
svs
�jmin.

Because the contributions from areas outside the

allowed range g1 
 g 
 g2 (or, correspondingly, for negative

g, �g2 
 g 
 �g1) are exponentially suppressed, we can

limit the integration range of g to that interval for a given jx

and replace the integral kernel by its approximate form, Eq.

(B5), extended to b < 0 by (B1), which yields

Kða; bÞ ’
ffiffiffiffiffiffi
2p
jbj

s
esignðbÞip

4e�ib (28)

in the allowed range and zero elsewhere. After the substitu-

tion f ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

, the result for Cii can be written as

Ciiðr1; r1 þ Drêy; j; ~kcÞ

’
ffiffiffiffiffiffi
2p
p K6e�ij~x0ffiffiffiffiffiffiffi

j~kcj
q ð1

�1
dfFðj; f; ~kcÞe�i~kcf; (29)

Fðj; f; ~kcÞ ¼ feisignð~kcÞp=4w f1ðjÞ; f2ðjÞ; f½ �

þ e�isignð~kcÞp=4w �f2ðjÞ;�f1ðjÞ; f½ �g

� ~T j;
f~hffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

 !
1ffiffiffiffiffi

jfj
p
ð1� f2Þ

; (30)

where ~Tðj; gÞ � ~T0;gDrðjxÞ (with j ¼ jxDr; ~x0 ¼ x0=Dr)

and wðf1; f2; fÞ is a window function equal to one for f1 
 f

 f2 and zero elsewhere. The window functions translate, in

a straight-forward fashion, the integration range for g into an

integration range for f. By definition, f ranges from

�1;…; 1. So f1; f2 lies within this interval, �1 
 f1; f2 
 1,

and the window functions take care of restricting the argu-

ment f of the integrand to the intervals 6½f1; f2�. We

replaced x1;x2 by the equivalent information j � jxDr
(related to Dx) and ~kc ¼ Drxc=c (related to xc), and con-

sider i ¼ j only. Given Eq. (29), it is tempting to try to

recover Fðj; f; ~kcÞ by Fourier transform. However, the

signð~kcÞ functions that appear in Fðj; f; ~kcÞ prevent (29)

from being a simple Fourier integral. Moreover, from the

measured data, we only have CF
ij , the filtered version of Cij,

that is restricted to a frequency range x1;x2 2 6½x0 � pB;
x0 þ pB�, where B is the bandwidth (20 MHz in SMOS for

the L-band). We assume here, for simplicity, a Gaussian fil-

ter and the same filter for both antennas. For a real filter

response function AðtÞ, its Fourier transform must satisfy

AðxÞ ¼ A�ð�xÞ. When also taking AðxÞ as real, we can

write it as

AðxÞ ¼ Gðx;�x0; bÞ þ Gðx; x0; bÞ½ �
ffiffiffi
b
p

p1=4 ; (31)

where Gðx; x0; bÞ ¼ exp ½�ðx� x0Þ2=ð2b2Þ�=
ffiffiffiffiffiffi
2p
p

b
� �

is a

normalized Gaussian centered at x0 with the standard devia-

tion b � 2pB. The factor
ffiffiffi
b
p

p1=4 assures that x0 � b; AðxÞ
is normalized according to

Ð1
�1 jAðxÞj

2 dx ¼ 1. Under the

same condition, we have

CF
iiðr1; r2; j; ~kcÞ ¼ Ciiðr1; r2; j; ~kcÞAðx1ÞA�ðx2Þ; (32)

Aðx1ÞA�ðx2Þ ¼
1

2
G ~kc; ~kc0;

~bffiffiffi
2
p

 !
þ G ~kc;�~kc0;

~bffiffiffi
2
p

 ! !
;

(33)

FIG. 2. Effectively contributing integration region as a function of j ¼ jxDr in terms of (a) g and (b) f. Only the area in the xy-plane between the two curves,

g1 
 g 
 g2, and, correspondingly, for f, contributes effectively to the correlation function for a given value of j. The two curves join at jMax ’ 0:21 (for the

numerical value for standard parameters, see Sec. I). Only the region with j; g 	 0 is shown; three more regions contribute in the other three quadrants, and

the boundaries are obtained by reflecting the graph at the g-axes and j-axes. The integration region translates directly into the area “seen” by the satellite in the

y-direction for a given wave vector j in the x-direction. For j! 0, the integration region is, in reality, cut off by the size of the Earth, and the smallest value

of j is determined by the desired size of the snapshot or the maximum time s < h=vs.
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where ~kc0 ¼ Drx0=c ¼ 1=v ’ 2932:55, and ~b ¼ Drb=c
’ 41:89. This contains the approximation of only using the

“diagonal” terms in the product of Aðx1ÞA�ðx2Þ, i.e., the

ones with signðx1Þ ¼ signðx2Þ, which is justified because

Dx� b� x0. The Fourier transform of CF
ii with respect to

~kc (denoted by F ~kc!f) gives a convolution product between

the FT of the Gaussians [which isffiffiffi
2
p

=~b
� �

G f; 0;
ffiffiffi
2
p

=~b
� �

e6i~kc0f] and Fðj; f; ~kcÞ, and leads to

F ~kc!f CF
iiðr1; r1 þ Drêy; j; ~kcÞ

ffiffiffiffiffiffiffi
j~kcj
2p

s
eijxx0

K6

2
4

3
5

¼
ffiffiffi
2
p

~b

X
r¼6

G f; 0;

ffiffiffi
2
p

~b

 !
cos ~kc0

fþ r
p
4

� �" #

? w f1ðjÞ; f2ðjÞ; rf½ � ~T j;
f~hffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

 !
1ffiffiffiffiffi

jfj
p
ð1� f2Þ

( )
;

(34)

where we used that the sign of ~kc0 in (32) determines the

one of ~kc in (30). Thus, we get back the original function

~T j; f~hffiffiffiffiffiffiffiffi
1�f2
p

� �
¼ ~Tðj; gÞ, cut by the two window functions

and multiplied with 1=½
ffiffiffi
f
p
ð1� f2Þ�, convoluted with the

product of a Gaussian of width
ffiffiffi
2
p

=~b and a rapidly oscillat-

ing cosine function. The factor 1=½
ffiffiffi
f
p
ð1� f2Þ� can be

tracked back to the change of variables from g to f and will

distort the image at the nadir and at infinity. Sources at

positive or negative g contribute differently due to the dif-

ferent sign of the p=4 phase shift. This already arises in

(28) due to the different phase shift in the asymptotics of

the Struve functions for negative or positive arguments and

leads to the sum over r ¼ 6. In general, an exact inversion

cannot simply be done by Fourier transform but needs a

numerical approach. Nevertheless, we can arrive at an esti-

mation of the resolution by considering a single point

source because then only one of the two terms in the sum

over r in (34) contributes, and the factor 1=½
ffiffiffi
f
p
ð1� f2Þ�

becomes a simple numerical factor given by the position of

the source.

B. Single point source and geometric resolution

1. Correlation function and reconstructed image

Let the point source be at position x00 ¼ 0; y00 ¼ gsDr
and with polarization i, where gs is situated in the allowed

range 0 
 g1ðjÞ 
 gs 
 g2ðjÞ for some j in the desired

range up to the largest considered j ¼ 2p=px, where px is the

pixel size. We thus have

Tðr00Þ ¼ T0dðx00Þdðy00 � gsDrÞDr2 : (35)

By following the above approximate analytical formal-

ism, we show, in Appendix A–D, that the reconstructed pro-

file is given by

Trecðx; yÞ ¼
T0

ffiffiffiffi
fs

p
ð1� f2

s Þffiffiffi
2
p

p3=2v~h
2

e�ðf�fsÞ2 ~b
2
=4

� cos ~kc0ðf� fsÞ þ
p
4

� �
sinc jmaxðfsÞ~x=p½ � ;

(36)

where fs¼gs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

s þ ~h
2

q
; jmaxðfsÞ� fs

ffiffiffiffiffiffiffiffiffiffiffiffi
1�f2

s

q
=ðv~hÞ; ~x¼ x=

Dr and sincðxÞ� sinðpxÞ=ðpxÞ.

2. Geometric resolution

We see that the reconstructed image of the point source

is a series of narrow peaks spaced by the inverse of ~kc0
due

to the rapidly oscillating cos -function, under an approximate

Gaussian in the y-direction centered at the position of the

source with a width in g given by Dg ¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
s þ ~h

2
q

=~b

	
ffiffiffi
2
p

~h=~b ¼ hc=½ðDrÞ2
ffiffiffi
2
p

pB�. It reminds one of a diffraction

image from a double slit, even though the envelope is a sinc-

function not Gaussian. Nevertheless, we adapt the definition

of resolution from that example, namely, that the best resolu-

tion is obtained from the smallest shift that makes a peak

move into the next trough. This leads to

~kc0

@

@g
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ ~h
2

q 




g¼gs

Dg ’ p ; (37)

hence, Dy ¼ Drpðg2
s þ ~h

2Þ3=2=ð~kc0
~h

2Þ. For y ’ h, this is on

the order of 2
ffiffiffi
2
p

phc=ðDrxcÞ ¼ vh. The numerical value for

the standard parameters gives Dy ’ 2.1 km, i.e., a resolution on

the order of a kilo-meter. However, for actually achieving this

resolution for an extended source, one has to face two issues:

(i) The reconstructed point-source image should be brought as

close as possible to a single narrow peak, and (ii) one has to

deal with the different phases from sources at a positive or neg-

ative g. The first issue can be addressed by superposing correla-

tion functions from pairs of antennas at different separations

and/or by changing the considered central frequency. This shifts

the pattern of peaks due to the cos function, and one can engi-

neer a rather narrow central peak (see Ref. 14 for details). The

second issue should be absent in a numerically exact inversion

of the integral kernel. The Gaussian envelope has a width of

hc=
ffiffiffi
2
p

pBDr
� �

, given by the inverse bandwidth, which is much

larger than the width of a single peak, namely, by a factor of

xc=ð4pBÞ ’ 35 for the standard parameters.

The resolution in the x-direction follows from the effec-

tive wave vector jmax in the sinc function. It depends on the

position of the source and reaches its maximum possible

value of jMax for gs ¼ ~h (i.e., ys¼ h). The inverse of jMax

therefore gives the best possible resolution in the x-direction

Dx 	 Dr

jMax

¼ 2hc

xcDr
: (38)

We conclude that, in both the x- and the y-direction, one can

expect a geometric resolution on the order of hv ¼ c=
ðDrxcÞ for sources close to y¼ h. For sources close to y¼ 0,

jðgsÞ goes to zero / gs, whereas, for larger ys, the decay of

jðgsÞ is / 1=gs. The geometric resolution in the x-direction
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deteriorates correspondingly. The resolution in the y-direc-

tion, however, depends only weakly on the source position,

as ðg2
s þ ~h

2Þ3=2=ð~kc
~h

2Þ increases monotonically from ~h at

ys¼ 0 to 2
ffiffiffi
2
p

at ys¼ h and keeps growing slowly beyond

ys¼ h. The resolution in the y-direction is what would also

be expected from a standard aperture-synthesization

approach. It should be kept in mind, however, that the proce-

dure here is very different, and it is rather remarkable that

correlating electric fields at two different frequencies can

lead to a resolution given by the central frequency.

The definition of jmax is based on the request that the

stationary phase approximation (SPA) should hold in the

regime b� a. In practice, the SPA is almost always better

than expected, such that, in the end, the result hv might be a

conservative estimate of the geometric resolution.

V. RADIOMETRIC RESOLUTION

Besides the geometric resolution, the radiometric resolu-

tion (RR), i.e., the smallest difference in temperature that the

system can measure for a given pixel, is the most important

characteristic of the satellite imaging system (one might also

call this radiometric uncertainty). Here we calculate the RR

for the idealized situations of a single point source consid-

ered above and for a uniform temperature field in the posi-

tive half-plane y> 0.

A. Fluctuations of the reconstructed temperature
profiles

The idea behind the calculation of RR is that the electric

field measurements yield random values whose fluctuations

and correlations reflect the thermal nature of the radiation

field. Thus, if one repeated the measurement many times

with the same field T(x,y), then one would obtain different

correlation functions in each run, and thus, after inverting

the linear relationship between Cij and T(x, y), also different

reconstructed T(x, y) (called Trec in the following) in each

run. The (relative) RR is then defined as the standard devia-

tion r½Trecðx; yÞ� divided by the average Trecðx; yÞ for a given

position x, y. In general, it will vary as the function of x, y,

and also depends on the temperatures at all positions, a

behavior well known from standard spatial aperture synthe-

sis. In reality, things still become a bit more complicated

because the measured signal is a superposition of the e.m.

field emitted by the antenna itself (at temperature Ta), and

the radiated field from the surface of the Earth. However,

these fields are uncorrelated, and their averaged squares just

add. For simplicity, we ignore the noise contribution of the

antennas in this first analysis, which amounts to calculating

the lower bounds of rðTrecÞ.
The starting point of the calculation is the assumption

that the current fluctuations jðr00; tÞ, which are at the origin of

the radiated thermal field, are described by a random

Gaussian process, both in time and space (see Sec. II). This

immediately implies, also that the temporal FT ~jðr00;x0Þ of

the current fluctuations is a Gaussian process, now over

space and frequency. Finally, the connection between
~jðr00;x0Þ and ~Er1

ðx1Þ is linear, which implies that ~Er1
ðx1Þ is

a Gaussian process over r1 and x1. By the nature of this vari-

able, it is a complex Gaussian process. One easily shows that

the average of ~Er1
ðx1Þ equals zero (if the average of all cur-

rent components is zero, which must be true at thermal equi-

librium). The correlation function Cij is the (complex)

covariance matrix of this Gaussian process, and all higher

correlations can be expressed in terms of it.

To assess the fluctuations of Trec, we first define a product

of Fourier coefficients of E from a single run (denoted by a )̂,

Ĉðr1; r2; j; ~kcÞ � Ĉzzðr1; r2;x1;x2Þ � ~̂Ez;r1
ðx1Þ ~̂E

�
z;r2
ðx2Þ;

(39)

¼ 1

2p

ð
dt1

ð
dt2Êz;r1

ðt1ÞÊz;r2
ðt2Þe�ix1t1þix2t2 ; (40)

and its corresponding filtered version Ĉ
Fðr1; r2; j; ~kcÞ

¼ Ĉðr1; r2; j; ~kcÞAðx1ÞA�ðx2Þ (with x1;x2 expressed in

terms of j; ~kc).

The fluctuations of Trecðx; yÞ are defined as DTrecðx; yÞ
� hTrecðx; yÞ2i � hTrecðx; yÞi2, where the average is over the

thermal ensemble. With Trecðx; yÞ from (C4), one finds

DTrecðx;yÞ¼
1

K2
6ð2pÞ3Dr2

ð
dj1 dj2 d ~kc1 d ~kc2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kc1

~kc2j
q

e�iðj1�j2Þð~x�~x0Þeið~kc1�~kc2Þf

� hĈFðr1;r2;j1; ~kc1ÞĈ
F�ðr1;r2;j2; ~kc2Þi

h
�hĈFðr1;r2;j1; ~kc1ÞihĈ

F�ðr1;r2;j2; ~kc2Þi
i
:

(41)

In Appendix A 2, we show that, in the narrow frequency

intervals considered, the correlation function contained

within the large parenthesis of (C4) can be written as

CF
zzðr1; r1; j13; ~kc13ÞCF�

zz ðr2; r2; j24; ~kc24Þ ; (42)

with jij ¼ Drðxj � xiÞ=vs, ~kcij ¼ Drðxi þ xjÞ=ð2cÞ 8i; j,
and the single-point function

Czzðr1; r1; j; ~kÞ ¼ K6e�ij~x0p
ð

dg0
~T0;g0 ðjÞe�jjj

ffiffiffiffiffiffiffiffiffiffi
g02þ~h

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02 þ ~h

2
q :

(43)

We calculate DTrec for the single point source considered in

Sec. IV B at the position of the source, i.e.,

DTrecðxs; ysÞ ¼ ½Trecðxs; ysÞ2� � ½Trecðxs; ysÞ�2, and for a uni-

form temperature field.

B. Single point source

For the single point source at position ð0; ysÞ, the corre-

lation function Czzðr1; r1; j; ~kÞ becomes [see Eq. (C1)]

Czzðr1; r1; j; ~kÞ ¼ K6

ffiffiffi
p
2

r
T0e�ij~x0

e�jjj
ffiffiffiffiffiffiffiffiffiffi
g2

sþ~h
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

s þ ~h
2

q : (44)
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Insert this into Eq. (41) to find

DTrecð0; ysÞ ¼
T2

0

16p2

ð
dj12dj34d ~kc12d ~k34

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kc12

~kc34j
q

� e�ðjj13jþjj24jÞ
ffiffiffiffiffiffiffiffiffiffi
g2

sþ~h
2

p
g2

s þ ~h
2

� G ~kc13; ~kc0;
~bffiffiffi
2
p

 !
þ G ~kc13;�~kc0;

~bffiffiffi
2
p

 !" #

� G ~kc24; ~kc0;
~bffiffiffi
2
p

 !
þ G ~kc24;�~kc0;

~bffiffiffi
2
p

 !" #

� eiðj12�j34�j13þj24Þ~x0þið~kc12�~kc34Þfs : (45)

We change integration variables to j13; ~kc13; j24; ~kc24. The

Jacobian is 1. In the product of the Gaussians, only the diag-

onal terms (i.e., with the same signs in front of ~kc0) contrib-

ute in the relevant regime ~kc0 � ~b, as for the opposite signs,
~kc12 ’ ~kc34 ’ 0. Finally, we approximate

~kc12 ¼ ~kc34 ’ ~kc0 (46)

and pull that factor out from the integral, which is permissi-

ble for all ranges of the variables for which the product of

Gaussians is non-negligible. The integrals can then be per-

formed, and we find, for the standard deviation, r½Trecð0; ysÞ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½Trecð0; ysÞ�

p
r Trecð0; ysÞ½ � ¼ T0ffiffiffi

2
p

p

j~kc0j1=2

g2
s þ ~h

2 þ b2f2
s

4

’ T0ffiffiffi
2
p

p

j~kc0j1=2

g2
s þ ~h

2
; (47)

where, in the last step, we used ~h � 1 and bfs � 1 (where,

once more, b ¼ vs=c).

From (36), we find

Trecð0; ysÞ ¼
T0

ffiffiffiffi
gs
p

2p3=2vðg2
s þ ~h

2Þ5=4
: (48)

When combined with (47), we obtain the relative RR

r Trecð0; ysÞ½ �
Trecð0; ysÞ

¼
ffiffiffiffiffiffiffiffi
2pv
gS

s
ðg2

s þ ~h
2Þ1=4 : (49)

For gs ¼ ~h, the relative RR is on the order of 0.055,

which corresponds at T¼ 300 K to r½Trecð0; hÞ� ’ 16:5 K.

When judging this value, it should be kept in mind that

it is based on expressing the fluctuations rðTrecÞ in units of

the reconstructed temperature, whose approximate analytical

form (48) is not an unbiased estimate of T0 itself due to the

additional geometrical factors / ffiffiffiffi
gs
p

=vðg2
s þ ~h

2Þ5=4
and the

constant 1=2p3=2. From standard radiometry, one is used to

obtain an RR that improves as 1=
ffiffiffiffiffiffiffiffi
tmes

p
with the total mea-

surement time, a fact that can be attributed to obtaining a

number of independent samples that scales / tmes. For

Fourier-correlation imaging, however, no such improvement

with tmes is possible because all measured fields for given

times are already used for calculating the Fourier transform

(see also the discussion in Sec. VI A).

C. Uniform temperature field

We now look at the second standard situation commonly

considered for the determination of the radiometric resolu-

tion, namely, a field of constant temperature. More precisely,

we consider

Tðx; yÞ ¼ T0 0 
 y 
 ŷ

0 else:

(
(50)

The restriction to sources in the upper plane is because

we still want to use Eq. (C4) for calculating the reconstructed

temperature profile. The cutoff ŷ arises physically from the

size of the Earth and prevents a divergence of the correlation

function.

From (13) we obtain

~Tðjx; gÞ ¼
ffiffiffiffiffiffi
2p
p

dðjxÞT0 0 
 y 
 ŷ

0 else:

(
(51)

The correlation function (43) becomes

Ciiðr1; r1; j; ~kcÞ ¼ K6

ffiffiffi
2
p

p3=2T0e�ij~x0dðjÞDr

ðĝ

0

dgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q ;

(52)

¼ K6

ffiffiffi
2
p

p3=2T0e�ij~x0dðjÞDrln
ĝ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ2 þ ~h

2
q

~h

0
@

1
A
; (53)

with ĝ � ŷ=Dr. For ŷ ¼ RE ’ 6370 km, the radius of the

Earth, and Dr ¼ 100 m, ĝ ¼ 63 700. We see that here, the

correlation function is perfectly diagonal in frequency, which

reflects the lack of structure of the temperature field in the

x-direction. Hence, we can set everywhere j¼ 0, which

greatly simplifies the analysis. The cutoff ĝ in Eq. (52) pre-

vents a logarithmic divergence that arises from

1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

� 1=g for g!1. Equation (52) can be

extended to a temperature field that is uniform everywhere,

from �ŷ to ŷ. In this case, the f-integral starts at �1þ �
rather than at 0. However, in this situation, we cannot use

Eq. (C4) anymore because it is valid only for sources at posi-

tive y (see the discussion after (34)).

Equation (52), when inserted into (41), and with the

same change of integration variables and approximation in

(46), leads to

r Trecð0; yÞ½ � ¼ T0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffi
j~kc0j

q
ln

ĝ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ2 þ ~h

2
q

~h

0
@

1
A
: (54)

The reconstructed temperature field [Eq. (C5)] is given by

Trecðx; yÞ ¼
T0ffiffiffiffiffiffi
2p
p

ð f̂

0

df0
e�

~b
2ðf�f0Þ2=4ffiffiffiffiffiffi
jf0j

p
ð1� f02Þ

cos ~kc0ðf� f0Þ þ p
4

� �
:

(55)

Unfortunately, no closed analytical form could be found

for the remaining integral, and even a numerical evaluation
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is not straight-forward because the Gaussian yields a very

narrow peak, broader, however, than the period of the cos -

function. But we can get an estimate of Trec by replacing the

Gaussian (normalized to an integral equal to 1), with a rect-

angular peak of width ar and height 1=ðarÞ centered, as the

Gaussian, at f. Here, r ¼
ffiffiffi
2
p

=~b, and a is a parameter of

order 1. This gives

Trecðx; yÞ ¼
T0

a

ðminðf̂;fþar=2Þ

maxð0;f�ar=2Þ
df0

cos ~kc0ðf� f0Þ þ p
4

� �
ffiffiffiffiffiffi
jf0j

p
ð1� f02Þ

:

(56)

A numerical evaluation of the integral is now relatively

straight-forward and shows a slowly varying Trecð0; yÞ as a

function of f in the interval f 2 ½ar=2; f̂ � ar=2�, whereas,

outside this interval, it oscillates rapidly. The slow variation

arises from the factor
ffiffiffiffiffiffi
jf0j

p
ð1� f02Þ, which distorts this

approximately reconstructed image. By pulling out this

slowly varying factor to get an analytical estimate of the

order of magnitude of Trecðx; yÞ, we are led to

Trecðx; yÞ ’ T0

ffiffiffi
2
p

a~kc0

1ffiffiffiffiffi
jfj

p
ð1� f2Þ

sin
a~kc0ffiffiffi

2
p

~b

 !
(57)

for f 2 ½ar=2; f̂ � ar=2�. Hence, in this interval and apart

from the distorting factor 1=
ffiffiffiffiffi
jfj

p
ð1� f2Þ identified previ-

ously, we recover a constant temperature field. The value of

the reconstructed temperature depends on the precise value

of a as well as the ratio ~kc0=~b. Outside the mentioned inter-

val, Trecðx; yÞ oscillates again as a function of f, which can

be understood from the fact that the box is cut off when f

gets within a distance ar=2 of 0 or f̂. The sought-after order

of magnitude can be estimated from the maximum value of

(57) as a function of a. As for standard parameters
~kc0=~b ’ 70, we can bound the sin -function by one (while

still having a � 1), in which case, we obtain Trecðx; yÞ
’ T0=~kc0 ¼ T0v in the mentioned f-interval. With all this,

and approximating

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~h

2 þ ĝ2

q
’ ĝ in the logarithm in (54),

we find the order of magnitude r½Trecðx; yÞ�=Trecðx; yÞ
� lnð2ĝ=~hÞ=v3=2. For f � 1, this is on the order of �105 for

standard parameters, i.e., a catastrophically large uncertainty.

A small value of r½Trecðx; yÞ�=Trecðx; yÞ is possible only ifffiffiffiffiffi
jfj

p
ð1� f2Þ is very small, but, apart from the fact that one

should not rely on this image-distorting factor, it could only

be sufficiently small for y unrealistically close to the nadir.

If one traces the difference back to the single-point

source, one realizes that, although rðTrecÞ scales in both

cases as 1=
ffiffiffi
v
p

, the difference comes from Trec itself: for the

single point source, it is on the order of 1=v but, for uniform

T in the upper half plane of order v, which explains a factor

1=v2 worse relative RR for the latter compared with the for-

mer. The factor 1=v in the single-point Trec arises from the

cutoff of the j integral: jMax scales as 1=v, and, for x¼ 0,

the j-integral in (C4) just gives a factor 2jMax � 1=v
because the correlation-function is independent of j in this

case. However, for a constant temperature in the upper half-

plane, the cutoffs jMax do not play a role because the dðjÞ-
function only picks up j¼ 0. This leads to the loss of one

factor, 1=v, in Trec. The second one comes from the integra-

tion over f0 in (55): the rapidly oscillating cos -function leads

to a factor 1=~kc0 ¼ v, whereas, for the point-source, only a

single point f ¼ fs contributes, such that the cosine is on the

order of one. One might wonder whether the relative radio-

metric resolution should be calculated by using, as a refer-

ence, the reconstructed T(x, y), if that is off by a factor of v.

Only a numerical approach can tell.

In light of the RR of standard radiometers that typically

scales as rðTÞ / 1=
ffiffiffiffiffiffiffiffiffi
Btint

p
, where tint is the integration time,

the fact that rðTrecÞ in Eqs. (47) and (54) is independent of

the bandwidth is rather surprising. Formally, the disappear-

ance of ~b can be traced back to using the lowest order in the

Laplace approximation of (45). The next order corrections

are of the order ~b, such that rðTrecÞ ! rðTrecÞ½1þOð~bÞ�.
One expects the sign of the correction to be positive because

the integrand is positive everywhere, and the lowest order

approximation amounts to replacing the Gaussians by nor-

malized Dirac-delta functions. Hence, for small but finite ~b,

rðTrecÞ is expected to increase with ~b, which is contrary to

the behavior of standard radiometers. Standard radiometers

are based on the van Cittert-Zernike theorem, which gives

the reconstructed temperature field as a Fourier transform of

the observed visibilities at a fixed frequency. Different fre-

quencies at the source are uncorrelated, and the scaling of

rðTrecÞ=T0 / 1=
ffiffiffiffiffiffiffiffiffi
Btint

p
just reflects averaging over a number

of independent measurements that scales / B tint. In

FouCoIm, the information is in the correlation between dif-

ferent, very narrowly spaced Fourier components, and aver-

aging over the central frequency does not lead to additional

information (see also Sec. VI B). Therefore, a larger band-

width does not improve the RR.

VI. NOISE REDUCTION

The bad signal-to-noise ratio for the radiometric resolu-

tion in the case of a uniform temperature field in the upper

half plane makes it essential to consider measures that lead

to a noise reduction and, in particular, averaging schemes.

A. Averaging over time

Instead of examining Trecðx; yÞ, for simplicity we con-

sider here the fluctuations of the measured “single shot” cor-

relation function Ĉij directly. The first idea that comes to

mind for reducing the fluctuations of Ĉij is to average over

the origin of the time interval from which we construct the

Fourier transform. Note that this is very different from an

ensemble that one would obtain by displacing the initial

position ri. However, averaging over the origin of time only

leads to an overall factor of

C exp ðr1; r2;x1;x2Þ �
ðsa=2

�sa=2

dt

ð
dt1

ð
dt2

� Ez;r1
ðt1 þ tÞEz;r2

ðt2 þ tÞe�ix1t1þix2t2 ;

(58)
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¼ sinc ðx1 � x2Þ
sa

2p

� �
Ĉðr1; r2;x1;x2Þ: (59)

Hence, correlation functions calculated by transforming

the measured fields by integrating with different starting

points in time are not statistically independent, which ren-

ders this kind of averaging useless. Indeed, this is to be

expected because all available data were already used. The

situation improves only slightly if the FTs are calculated

from a finite stretch of data (say, over a duration sF); then

shifting the origin in time will include some new random

data. For a satellite that is mapping the Earth rather than an

infinitely extended plane, it is, in fact, mandatory to shift the

origin of time every 0.28 s for standard parameters when a

new pixel of size 2 km comes into view of the satellite, but

this corresponds to analyzing a slightly new scenery. Most of

the pixels are still the same, but still, for averaging purposes,

we want to include only data that correspond to the same

scenery. Hence, the averaging time sa should be smaller than

the time for flying over one pixel, i.e., sa�0:28 s. With the

time interval used for Fourier transformation of length

sF ’ 100 s, we necessarily have sF � sa. It is then clear that

we still essentially use the same data with the exception of

some new data points at the edge of the time interval sF.

Therefore, the obtained Fourier components are not statisti-

cally independent but rather highly correlated, and not much

can be gained by averaging over time.

B. Additional frequency pairs

By using only a small frequency separation of width Dx
about the central frequency xc, which itself is allowed to

vary over a large bandwidth, B seems to be a very wasteful

use of all the pairs of frequency components ½ ~Ez;r1
ðx1Þ;

~Ez;r2
ðx2Þ�. Can we use different measured correlations Ĉðr1;

r2;x1;x2Þ with sufficiently different xc ¼ ðx1 þ x2Þ=2 as

independent data for improving the radiometric sensitivity?

To answer this question, we need to calculate the covariance

matrix V between two different correlators,

V � hĈðr1; r2;x1;x2ÞĈ
�ðr1; r2;x

0
1;x

0
2Þi

� hĈðr1; r2;x1;x2ÞihĈ
�ðr1; r2;x

0
1;x

0
2Þi ; (60)

as well as the pseudo-covariance matrix M,

M � hĈðr1; r2;x1;x2ÞĈðr1; r2;x
0
1;x

0
2Þi

� hĈðr1; r2;x1;x2ÞihĈðr1; r2;x
0
1;x

0
2Þi: (61)

Both matrices together determine the statistical properties

of the random process Ĉðr1; r2;x1;x2Þ. Note that, despite the

fact that Ez;rðxÞ can be considered a circularly symmetric

Gaussian process (see Appendix A–D) over r and x in the

narrow frequency band that we are interested in, the same is

not true for Ĉðr1; r2;x1;x2Þ � hĈðr1; r2;x1;x2Þi (which is

not even Gaussian). We need to know whether both V and M
essentially vanish for almost all pairs of pairs of frequencies,

with the first pair ðx1;x2Þ in a first region (notably, in the

central narrow strip S � x2 2 ½x1 � Dx;x1 þ Dx�), and the

second pair ðx01;x02Þ in another region in the ðx1;x2Þ plane

that we may want to consider, whereas the correlation func-

tions Cijðr1; r2;x1;x2Þ and Cijðr1; r2;x01;x
0
2Þ themselves

should still be non-zero. Such a situation would signal statisti-

cally independent non-vanishing correlation functions.

However, we saw that only within a central narrow strip S
(whose width is given by jmaxðgÞ) in the ðx1;x2Þ� plane Cij

is non-zero and that, within this strip, all pairs of frequencies

are used for obtaining a single profile T(x, y). Hence, this is

not a viable approach either. In Appendix D, we show the

same thing once more rigorously.

C. Additional antennas

So far, we considered only two antennas. As mentioned

before, to obtain a reconstructed single source image with a

single peak, one may sum the correlated signals from several

antenna pairs. It is to be expected that this will reduce

rðTrecÞ=Trec, but we have to figure out how far two pairs of

antennas have to be separated to essentially produce uncorre-

lated correlation functions. To answer this question, we have

to generalize Eq. (60) to pairs of correlators at different

points r01; r
0
2. We define

Vr � hĈðr1; r2;x1;x2ÞĈ
�ðr3; r4;x1;x2Þi

� hĈðr1; r2;x1;x2ÞihĈ
�ðr3; r4;x1;x2Þi; (62)

where we take riþ2 ¼ ri þ qiêy for i¼ 1, 2, i.e., the antennas

in the second pair are shifted by distance qi in the y-direction

compared with the corresponding ones in the first pair. From

(A14), we have

Vr ¼ Cðr1; r3;x1;x1ÞCðr4; r2;x2;x2Þ ; (63)

where, from (21) and (B6),

Cðr1; r3;x1;x1Þ ¼ K6

ð
dgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ ~h
2

q
� K 0;

q1x1

c

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q !

~Tð0; gÞ; (64)

¼ K6

ð
df

1� f2
J0

q1x1f
c

� �
� iH0

q1x1f
c

� �� �
: (65)

The corresponding result for Cðr4; r2;x2;x2Þ is

obtained from the last line in (64) by replacing q1 ! q2. For

the uniform temperature field in the upper half plane up to a

cutoff ŷ and also a cutoff of the same value in the x-direc-

tion, we have Tð0; gÞ ¼ ŷT0=p for 0 
 y 
 ŷ. No closed

form was found for the remaining integral over f, but a

closed form is easily obtained if we neglect the slowly vary-

ing envelope 1=ð1� f2Þ, which is legitimate for cutoffs ĝ
not too close to 1 and gives an idea on which length-scale Vr

will vanish. By plotting the results of the integration, one

finds that both the real and imaginary parts decay on a scale

of qix0=c � 1, where we have again used x1 ’ x2 ’ x0.

Hence, for the correlation functions of two pairs of antennas

to decorrelate, it is enough that one antenna in one pair be at
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a distance on the order of r � c=x0 ¼ k=2p, i.e., on the order

of the central wave-length k with respect to at least one

antenna of the other pair. For standard parameters, this is on

the order of 10 cm when neglecting factors are on the order

of 1 [the 2p helps, but, for the imaginary part of

Cðr1; r2;x1;x1Þ, there is a comparable factor in the scale].

Note also that, for smaller separations, the antenna would

start to couple such that this would be impractical anyhow.

When extending the separation of the two antennas in the

original pair to 2Dr ¼ 200 m, one would have a place for

approximately 2000 antennas in between. This, in turn,

would then allow correlations from 106 pairs of antennas,

where the antennas in each pair are still separated at least by

Dr ¼ 100 m. When considering that averaging of N tempera-

ture profiles obtained from N statistically independent corre-

lation functions improves the signal-to-noise ratio of the

average temperature profile by a factor
ffiffiffiffi
N
p

, we can improve

the signal-to-noise ratio (SNR) by a factor of 103. If consid-

ering the prefactors of order 1, 10 times more antennas can

be used, the SNR could be improved by a factor 104.

However, even such a large improvement is not yet sufficient

to beat the low SNR on the order of v3=2 ’ 10�5. It is quite

likely, however, that a displacement of an antenna also in the

x-direction by a distance on the order of k=ð2pÞ leads to a

completely decorrelated correlation function. If so, one

might gain another factor, up to 103 in the SNR, by consider-

ing quasi-1D antenna arrangements, with a width in the x-

direction on the order of 10 m. In the latter case, one should

then be able (after averaging temperature profiles obtained

from some 1014 correlation functions from that many pairs

of antennas) to achieve an SNR of 102 and, hence, an RR on

the order of a few degrees Kelvin. However, it is obvious

that the effort for doing so is huge, and the same geometrical

and radiometric resolution might be achievable more easily

with other means.

Other interesting ideas of improving the SNR involve

using focusing antennas for increasing the flux and/or

exploiting higher order correlation functions as well, but

these are beyond the scope of the present investigation.

VII. DISCUSSION

We examined the fundamental feasibility of a new type

of passive remote microwave imaging of a 2D scenery with

a satellite having only a 1D antenna array, arranged perpen-

dicular to the direction of flight of the satellite. We analyzed

the simplest possible configuration of only two antennas.

The scheme is based on correlating Fourier components of

the observed electric field fluctuations at the position of the

two antennas at slightly different frequencies, x1 and x2,

and leads effectively to a mapping of the 2D brightness tem-

perature as a function of position x, y to correlations as func-

tion of the center frequency xc ¼ ðx1 þ x2Þ=2 and the

frequency difference Dx ¼ x1 � x2. With two antennas

separated by Dr, the center frequency xc and a satellite fly-

ing at height h, the resolution both in the x- and y-directions

is on the order of hv ¼ hc=ðDrxcÞ. Only very small fre-

quency differences lead to correlations of a finite, useful

magnitude. For typical intended SMOS-NEXT values, they

are on the order of, at most, 10 Hz, which, however, still has

to be divided by the number of points in the x-direction that

one wants to resolve within a snapshot. This implies that one

must be able to measure GHz frequencies with an accuracy

on the order of 1/10–1/100 Hz. The speed vs of the satellite

only enters in the maximum frequency difference useful for

correlating the signals, which is given by Dx�ðDr=hÞ
ðvs=cÞxc.

In the minimal situation of two antennas, the relative

radiometric resolution rðTÞ=T is, for a single point source on

the order of
ffiffiffi
v
p

, whereas, for a uniform temperature field in

the positive half plane y> 0 (up to some large cutoff of the

size of the Earth), rðTrecÞ=Trec � 1=v3=2, which, for standard

parameters, is on the order of 105. We neglected, so far, the

additional noise that comes from the antennas themselves,

such that our results should be considered as lower bounds for

rðTrecÞ=Trec. However, it should be kept in mind that a factor

v in Trec estimated with the approximate analytical approach

largely contributes to the 1=v3=2 behavior. If referring the fluc-

tuations to the actual temperature, one finds

rðTrecÞ=T � 1=
ffiffiffi
v
p

, which already substantially improves the

situation. A numerical investigation that gives an unbiased

estimate of T(x, y) should be able to decide what is the correct

scaling. If the 1=v3=2 prevails, then such a large uncertainty

would prevent a direct application of the method with just two

antennas, and massive noise reduction is required. Some ideas

are discussed in Sec. VI, where it was found that one can

obtain statistically independent correlation functions by dis-

placing one antenna by a distance on the order of k=2p, where

k is the central wave-length. Hence, the signal-to-noise ratio

Trec=rðTrecÞ can be massively increased by a factor N when

using the correlations from �NðN � 1Þ=2 pairs of antennas

from N antennas separated all by at least a distance on the

order of k=2p. However, the computational effort and the size

of the overall structure seem forbiddingly large for achieving

a radiometric resolution on the order of a few degrees Kelvin

with a geometrical resolution on the order of 1 km.

An alternative application might be the precise localiza-

tion of very strong point sources that, by far, dominate the

more or less uniform background from the Earth’s thermal

emission. As long as one is not interested in a very precise

measurement of the intensity of the source, one might local-

ize it very precisely by using just two widely separated

antennas. These antennas need not even be on board the

same satellite. By having two satellites with a well-known

distance separated by approximately 100 km for instance, the

geometrical resolution achievable in the microwave regime

would be on the order of a meter in both the x- and the y-

direction, and with rather small computational effort, open-

ing interesting perspectives for such applications. With the

standard interferometry from just two antennas, one could

resolve the source only in the direction perpendicular to the

track of the satellite, whereas no resolution at all would be

possible in the direction of the track. We agree that control-

ling the distance between two satellites separated by 100 km

to within 10 cm is challenging but not completely unreason-

able given the performance of modern global positioning

systems. For the analytical analysis, we assumed that the dis-

tance is constant, but, in practice, the method can probably
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be extended to varying distances as long as these are known

precisely as a function of time, similarly, as for radio-

astronomy with phased antenna arrays.

It should also be kept in mind that the method can be

easily transferred to other types of waves, sources, and

media. For example, 2D (ultra-)sound imaging might be pos-

sible by observing the beating of the signals of just two mov-

ing microphones. Different physical systems can be easily

mapped to each other by comparing the corresponding

dimensionless parameters introduced in Sec. I.
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APPENDIX A: CURRENT FLUCTUATIONS AND
TEMPERATURE

The connection between the intensity of the current fluc-

tuations and the local temperature can be found, e.g., in

Refs. 9 and 11–13. For being self-contained and relating to

the notations used in this paper, we here give a short deriva-

tion of this connection. We also show that Êz;rðxÞ, in the fre-

quency range considered, is a circularly symmetric Gaussian

process.

1. Thermal radiation

We begin by recalling the energy density of electro-

magnetic black body radiation at frequency x, uðxÞ ¼
�hxqðxÞ f ðx; TÞ, where qðxÞ ¼ x2=ðp2c3Þ is the density of

states (the number of modes between frequencies x and

xþ dx per volume) and f ðx; TÞ ¼ 1=ðe�hx=ðkBTÞ � 1Þ is,

the thermal Bose occupation factor, with kB the Boltzmann

constant and T the absolute temperature of the radiation

field. An infinitesimal patch on the surface at position x, y
with surface dA and temperature T(x, y) in thermal equilib-

rium with the radiation field in its immediate vicinity, radi-

ates off an amount of energy per unit time and at

frequency x given by dA u c cos h in direction h with

respect to the normal surface. The energy density for both

polarization directions received at the position of the satel-

lite at distance R from this patch also varies / cos h, and

energy conservation requires

dusðxÞ ¼
dAuðxÞ cos h

2pR2
¼ dA�hx3 cos h

2p3c3R2ðe�hx=ðkBTÞ � 1Þ : (A1)

The Earth is a grey rather than a black body, and we,

therefore, have to include the emissivity of the patch

Bðx; y; x; h;uÞ in the direction of the satellite given by polar

and azimuthal angles. It can also depend on polarization,

which we skip here for simplicity. Integration over the whole

radiating surface gives the entire energy density at the posi-

tion of the satellite at this frequency,

usðxÞ ¼
ð

dx dy u

2pR2

¼
ð

dx dy�hx3 cos hðx; y; hÞBðx; y; x; h;/Þ
2p3c3ðh2 þ x2 þ y2Þðe�hx=ðkBTðx;yÞÞ � 1Þ : (A2)

In the microwave regime and at temperature T
’ 300 K; �hx is approximately four orders of magnitude

smaller than kBT, such that to first order in �hx/kBT, the Bose

factor, f ðx; TÞ ’ kBT=ð�hxÞ, with corrections on the order of

10�4. This simplifies us to

usðxÞ ¼
kB

2p3c3

ð
dx dy x2 TBðx; yÞ cos hðx; y; hÞ

h2 þ x2 þ y2
; (A3)

where we defined the brightness temperature TBðx; yÞ
� Tðx; yÞBðx; y; x; k̂Þ, i.e., the absolute temperature a black

body would need to have for producing the same thermal

radiation intensity at the frequency and in the direction k̂
considered, specified explicitly by the two angles ðh;uÞ. At

the same time, the total energy density (integrated over all

frequencies) at position r1 of antenna 1 is Us ¼
Ð

dxusðxÞ
¼ �0

2
hE2ðr1Þi, where the average is over the thermal ensem-

ble, but, due to ergodicity, we may also average over time,

h…isa
¼ 1

sa

Ð sa=2

�sa=2
ð…Þdt. In the end, one should take the limit

sa !1. In fact, we may even average over both the thermal

ensemble and time, i.e., Us ¼ �0

2
hhE2ðr1Þiisa

. Expressing

then the electric field in terms of its Fourier transform, the

time integral leads to a sinc-function,

Us ¼
�0

4p

ð ð
sinc ðx0 � xÞ sa

2p

� �
h~E�r1
ðxÞ~Er1

ðx0Þidx dx0;

(A4)

with sincðxÞ � sin ðpxÞ=ðpxÞ. For large sa, the sinc-function

can be replaced by ð2p=saÞdðx� x0Þ, and we are then left

with

Us ¼
�0

2sa

ð
hj~Er1

ðxÞj2idx: (A5)

Therefore, the energy density per unit frequency at fre-

quency omega is given by usðxÞ ¼ �0

2sa
hj~Er1

ðxÞj2i. Together

with Eq. (A3), we thus have

hj~Er1
ðxÞj2i ¼ sakB

p3�0c3

ð
dx dy

x2TBðx; yÞ cos hðx; y; hÞ
h2 þ x2 þ y2

: (A6)

The connection to the current fluctuations is found by

comparing this expression with what we obtain from Eq.

(11) if we do not use (7) yet. There we set i¼ j, r1 ¼ r2

¼ ð0; 0; hÞ; x1 ¼ x2, and vs¼ 0 because we are interested in

the energy density in a given fixed point r1, identical to the

original position of the antenna. This gives

hj ~Ei;r1
ðxÞj2i ¼ K4

ð1
�1

dt1

ð1
�1

dt2

ð1
�1

dx0

�
ð

dx dy
x02hj~jiðx; y;x0Þj2i

h2 þ x2 þ y2

�eiðx�x0Þðt1�t2Þ ; (A7)
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where K4 ¼ K2
1 l3

cd=ð4p2scÞ, and we have already restricted

the current density to the surface of the Earth, i.e., when

assuming hj~jiðr0;x0Þj2i ¼ dhj~jiðx; y;x0Þj2idðzÞ. In practice,

the time integrals that originate from the Fourier transforms

will be taken over a finite time sF. Because the only time-

dependence is in the exponential, the time integrals can be

done exactly, which leads toðsF=2

�sF=2

ðsF=2

�sF=2

dt1 dt2eiðx�x0Þðt1�t2Þ

¼ 2

ðx� x0Þ2
1� cos sFðx� x0Þ

� �� �
: (A8)

For a large sF, this function is highly peaked at x ¼ x0

and behaves as 2psFdðx� x0Þ, where the prefactor may be

verified by integrating both sides of the equation over x
from minus infinity to infinity. We are thus led to

hj ~Ei;r1
ðxÞj2i ¼ K42psF

ð
dx dy

x2hj~jiðx; y;xÞj2i
h2 þ x2 þ y2

: (A9)

The thermal fluctuations of the electric field are isotropic

in their intensity, such that one third of the energy is in a given

polarization direction i, i.e., hj ~Ei;r1
ðxÞj2i ¼ 1

3
hj~Er1

ðxÞj2i.
Inserting Eq. (A6) for the latter quantity, we are led to

hj ~Ei;r1
ðxÞj2i ¼ sakB

3p3�0c3

ð
dx dy

x2TBðx; yÞ cos hðx; y; hÞ
h2 þ x2 þ y2

:

(A10)

Comparison with Eq. (A9) allows one to identify

hj~jiðx; y;xÞj2i ¼ K2Teffðx; yÞ; (A11)

with K2 ¼ 32sasckB=ð3sFl3cdl0cÞ and Teffðx; yÞ � TBðx; yÞ
cos hðx; y; hÞ. Thus, the current fluctuations are given directly

by the brightness temperature [rescaled by the directional

cos hðx; y; hÞ], up to a constant prefactor. As mentioned in

the Introduction, we write T for short for Teff in the rest of

the article. The constant prefactor depends on the time inter-

vals for averaging and the Fourier transforms, but, in the

end, we will always be interested in relative radiometric res-

olution, i.e., r½Tðx; yÞ�=Tðx; yÞ, where r½Tðx; yÞ� denotes the

standard deviation of the reconstructed temperatures over the

thermal ensemble of the radiation field, such that the con-

stant prefactor cancels out.

2. Fluctuations of the reconstructed temperature profile

A Gaussian distribution of a complex jointly Gaussian

random vector z ¼ ðz1; z2;…; znÞ 2 C
n

is fully characterized

by the expectation values, EðziÞ 8i, the covariance matrix

K ¼ E½z z
† �, and the pseudo-covariance matrix M ¼ E½z zt�.

Both matrices together specify the correlations between the

four different combinations of real and imaginary parts of

the zi. The Gaussian distribution is called circularly symmet-

ric, if P(z) is invariant under the transformation z 7!zei/ with

an arbitrary real phase /. One shows that a distribution is

Gaussian symmetric if and only if M¼ 0. This implies imme-

diately that E½zi� ¼ 0 8i.15

The corresponding definitions and statements for complex

Gaussian processes are easily obtained by replacing the discrete

index i in zi by a continuous one, e.g., a time argument, or, in

our case, of Êz;rðxÞ, a 4-component real vector with a

“continuous index” x; r. To show that Êz;rðxÞ is a circularly

symmetric complex Gaussian process over x; r, we need to

prove that 0 ¼ Mðr1; r2;x1;x2Þ � hÊz;r1
ðx1ÞÊz;r2

ðx2Þi, at

least in the narrow frequency band in which we are interested.

In view of Eq. (5), for this, it is enough to show that

MJ � h~jz;r1
ðx1Þ~jz;r2

ðx2Þi ¼ 0. Expressed as Fourier trans-

forms of the time-dependent current densities, this correlator

equals

h~jz;r1
ðx1Þ~jz;r2

ðx2Þi ¼
1

2p

ð1
�1

dt1 dt2e�iðx1t1þx2t2Þ

� hjz;r1
ðt1Þjz;r2

ðt2Þi: (A12)

The physical origin of the current fluctuations are thermal

fluctuations, and the condition of the thermal equilibrium

implies that the current correlator is invariant under global

time translation (i.e., a shift of the origin of the time axis of t1
and t2 by the same amount) and, hence, depends only on

t2 � t1; hjz;r1
ðt1Þjz;r2

ðt2Þi ¼ f ðr1; r2; sÞ, where s ¼ t2 � t1,

and we will also use t ¼ ðt2 þ t1Þ=2. With this, we get

MJ ¼
1

2p

ð1
�1

dt e�iðx1þx2Þt
ð1
�1

ds e�iðx2�x1Þs=2f ðr1; r2; sÞ

¼
ffiffiffiffiffiffi
2p
p

dðx1 þ x2Þ~f r1; r2; ðx2 � x1Þ=2½ �; (A13)

where ~f ðr1; r2;xÞ is the Fourier transform of f ðr1; r2; tÞ with

respect to time t. The d-function implies that MJ vanishes

unless x1 ¼ �x2. But we are interested only in frequencies

in the small interval x2 2 ½x1 � Dx;x1 þ Dx�, centered

close to x0 on the order of 1.4 GHz. Hence, in this frequency

interval, we indeed have MJ¼ 0, and the complex Gaussian

process Êz;rðxÞ over x; r can be considered as circularly

symmetric. In particular, it does not contain any correlator of

the type E E but only of the type E E�.
The fact that the Gaussian random processes given by

~Ez;ri
ðxÞ are circularly symmetric in the narrow frequency

interval considered implies that it enjoys the property [see

Eq. (8.250) in Ref. 16]

hEiEjE
�
kE�l i ¼ hEiE

�
kihEjE

�
l i þ hEiE

�
l ihEjE

�
ki ; (A14)

where we have abbreviated Ei � ~Ez;rði mod 2Þ ðxiÞ. The correla-

tion function contained within the large parentheses of the

second line of (41), therefore, becomes

CF
zzðr1; r1; j13; ~kc13ÞCF�

zz ðr2; r2; j24; ~kc24Þ; (A15)

with jij ¼ Drðxj�xiÞ=vs, ~kcij ¼ DrðxiþxjÞ=ð2cÞ8i; j, and

where we used hĈFðr1; r2;j; ~kcÞi ¼ CFðr1;r2;j; ~kcÞ.
The fact that CF

zz and CF�
zz in (A15) contain the same

position arguments twice indicates that we cannot evaluate it

directly through Eq. (21) because the coordinate transforma-

tion to dimensionless variables based on the rescaling with

Dr becomes singular. We, therefore, have to go back a step

to Eq. (20), which yields
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CF
zzðr1; r1; j; ~kÞ ¼ K6e�ijxx0

ð1
�1

ð1
�1

dx0 dy0
~T0;y0 ðjxÞe�ij0xx0

x02 þ y02 þ h2
;

(A16)

¼ K6e�ijxx0p
ð

dy0
~T 0;y0 ðjxÞe�jjxj

ffiffiffiffiffiffiffiffiffiffi
y02þh2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02 þ h2

p :

(A17)

When compared with (21), we see that this result corre-

sponds formally to xc ¼ 0 in that equation, rather than Dr ¼ 0,

and (A17) is recovered by using the exact result (B2)]. We can

now re-introduce dimensionless variables via the same rescaling

with Dr, where Dr is still given by Dr ¼ jr2 � r1j, and ri

denotes as before the positions of the two antennae at t¼ 0, only

one of which still enters as argument in Czzðr1; r1; j13; ~k13Þ,
respectively, CF�

zz ðr2; r2; j24; ~kc24Þ. This gives

CF
zzðr1; r1; j; ~kÞ ¼ K6e�ij~x0p

ð
dg0

~T0;g0 ðjÞe�jjj
ffiffiffiffiffiffiffiffiffiffi
g02þ~h

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02 þ ~h

2
q ;

(A18)

which proves (41) in the main text with (42) and (43).

APPENDIX B: PROPERTIES OF THE INTEGRAL
KERNEL

Here, we establish the behavior and relevant parameter

regimes of the kernel Kða; bÞ. Note that, from (22), we

immediately obtain the relations

Kða; bÞ ¼ Kð�a; bÞ ¼ Kða;�bÞ�: (B1)

We, therefore, restrict the following discussion to

a; b 	 0.

Unfortunately, the integral over n in (22) cannot be done

analytically. However, we can find approximations for dif-

ferent cases. First consider b¼ 0. By using the methods of

residues, one easily finds

Kða; 0Þ ¼ pe�a : (B2)

More generally, one can obtain a useful expansion for a

small b by expanding exp �ib=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p� �
into a power

series, and then integrating term by term. We find

Kða; bÞ ¼
X1
n¼0

1

n!

ð1
�1
ð�ibÞn e�ian

ðn2 þ 1Þ1þ
n
2

dn; (B3)

¼
ffiffiffiffiffiffiffiffi
2pa
p X1

n¼0

�ib
ffiffiffiffiffiffiffiffi
a=2

p� �n

n!Cð1þ n=2Þ Kðnþ1Þ=2ðaÞ ; (B4)

where KnðxÞ is the modified Bessel function of the second

kind of order n. The zeroth order result (B2)] is recovered by

observing that K1=2ðxÞ ¼
ffiffiffiffi
p
2x

p
e�x. For a small b, the series

converges rapidly, and one can even improve the agreement

with the numerically calculated kernel by re-exponentiating

the first few terms. For example, up to the second order, we

have a polynomial p0 þ p1bþ p2b
2, which we want to write

as p0 exp ða1bþ a2b
2Þ. By expanding the exponential in

powers of b and by comparing powers up to the order b2,

one finds a1 ¼ p1=p0 and a2 ¼ p2=p0 � ðp1=p0Þ2=2. When

plotted together with the exact result, the thus-obtained

approximation agrees with Kða; bÞ for a¼ 2 visibly well up

to b ’ 4, i.e., well beyond the regime b� 1. For the fourth

order re-exponentiated form, the agreement extends up to

approximately b ’ 5. However, the exponential decay (B2)

already of the zeroth order term with a indicates that, for the

values of a ’ 102 to 103, the contribution to the g integral

for values such that b is on the order of or smaller than one,

can be entirely neglected.

In the opposite regime of a large b, an approximation

based on a stationary phase approximation can be found.

More precisely, one needs b� a. In this case, one can treat

e�ian=ðn2 þ 1Þ as a slowly varying factor compared with the

rapidly oscillating e�ib=
ffiffiffiffiffiffiffiffi
n2þ1
p

. The point of the stationary

phase of the latter term is found at n¼ 0 (where the phase

has a maximum). The second derivative of the phase at n¼ 0

equals 1. With this, we get

Kða; bÞ ’
ffiffiffiffiffiffi
2p
b

s
eip=4e�ib ; (B5)

valid for b=a� 1. Interestingly, the integral kernel becomes

independent of a in this regime, which is a consequence of

the fact that the stationary phase point is at n¼ 0, which thus

eliminates the factor a in the phase of the prefactor. We, fur-

thermore, see that, in this regime, there is no exponential

suppression of the kernel.

For a¼ 0, the kernel can be evaluated exactly,

Kð0; bÞ ¼
ð1
�1

dn
e
�i bffiffiffiffiffiffi

n2þ1
p

n2 þ 1
¼ p J0ðbÞ � iH0ðbÞ½ �; (B6)

where J0 is the zeroth Bessel function, and H0 is the zeroth

Struve function. Their asymptotic behavior gives back (B5).

In Fig. 3, we plot a, b as a function of g. We see that a

regime a < b exists for j < jMax, which defines jMax [see

the discussion after Eq. (27) for its precise value]. For

j� jMax; a� b. The regime a � b� 1 is also possible,

but it is restricted to a tiny g interval, such that its contribu-

tion to the integral over g is negligible. For a � b� 1, the

stationary phase points of nþ ðb=aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
become rele-

vant. Figure 3 shows the Im- and Re-parts of the six roots of

the corresponding stationary phase equation. We see that,

only for ðb=aÞ� 2:5, real stationary phase points exist.

However, because a � b� 1 occurs for sufficiently large j
for almost all g only for b < a (see Fig. 3), the kernel is

exponentially small in this regime a � b� 1. Altogether,

the only relevant regime is thus b� a� 1.

Although the asymptotic form of the integral kernel sug-

gests the use of the orthogonality relations of Bessel func-

tions, inverting (20) is, nevertheless, non-trivial due to the

more complicated dependence of a and b on g. However, the

above asymptotic form allows one to obtain an approximate

analytical inversion of the kernel, which allows for an esti-

mation of the resulting resolution, as we now show.
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APPENDIX C: RECONSTRUCTED IMAGE OF A POINT
SOURCE

From Tðr00Þ in (35) and Eq. (16), we obtain

~Tðj; gÞ ¼ T0Drffiffiffiffiffiffi
2p
p dðg� gsÞ: (C1)

Because g is assumed to be in the allowed range for the

point source considered, we can use the approximate analyti-

cal form of the integral kernel, Eq. (28), to get from Eq. (29)

the correlation function

Ciiðr1;r1þDrêy;j; ~kcÞ

¼K6T0Dr
e�ij~x0 eisignð~kcÞp=4ffiffiffiffiffiffiffiffiffiffiffi
j~kcjgs

q
ðg2

s þ ~h
2Þ1=4

e
�i~kc

gsffiffiffiffiffiffiffiffi
g2
sþ~h

2
p

h jmaxðgsÞ� jjj½ �;

(C2)

where hðxÞ is the Heaviside theta-function. When consider-

ing (34), we may define an approximative reconstructed

source function suitable for sources at gs > 0 through

~T recðj; gÞ � NF ~kc!f CF
iiðr1; r1 þ Drêy; j; ~kcÞ

ffiffiffiffiffiffiffi
j~kcj
2p

s
eijxx0

K6

2
4

3
5
;

(C3)

where N is a normalization constant. Due to the j-dependence

of the window functions, and the f dependence of the integral

transform compared with a simple Fourier transform of ~T , one

cannot get a normalization constant independent of the source

field. In particular, for the single point source,N would depend

on the position of the point source. However, we use Trec only

for estimating the geometric and radiometric resolution. For the

former, all prefactors are irrelevant. For the latter, we avoid the

problem by calculating relative uncertainties of rðTrecÞ=Trec

only, where any prefactor cancels. Hence, we set N ¼ 1 in the

following equations.

Inverting the Fourier transform in j leads to

Trecðx; yÞ ¼
1

2pK6Dr

ð1
�1

dj
ð1
�1

d ~kce�ijð~x�~x0Þei~kcf

� CF
iiðr1; r1 þ Drêy; j; ~kcÞ

ffiffiffiffiffiffiffi
j~kcj
2p

s
: (C4)

This equation is valid for all sources located in the posi-

tive y plane, not necessarily point sources. When we re-

express the correlation function through (29) and perform

the Gaussian integral over ~kc, we find a direct approximate

formal relation between the FT of the original T(x, y) in the

upper half plane and its reconstructed image Trecðx; yÞ,

Trecðx; yÞ ¼
1

2pDr

ð1
�1

dj
ð1
�1

df0

~T j;
f0 ~hffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f02
p

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf0jð1� f02Þ

p
� e�ij~xe�

~b
2ðf�f0Þ2=4 �

	
w f1ðjÞ; f2ðjÞ; f0
� �

� cos kc0ðf� f0Þ þ p
4

� �
þ w f1ðjÞ; f2ðjÞ;�f0

� �
� cos kc0ðf� f0Þ � p

4

� �

: (C5)

When using this expression, or by inserting (C2) into (32)

and the resulting filtered correlation function into (C4), we

find the reconstructed image of the single point source

Trecðx;yÞ ¼
T0

ffiffiffiffi
fs

p
ð1� f2

s Þffiffiffi
2
p

p3=2v~h
2

e�ðf�fsÞ2 ~b
2
=4

� cos ~kc0ðf� fsÞþ
p
4

� �
sinc jmaxðfsÞ~x=p½ �; (C6)

where fs ¼ gs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

s þ ~h
2

q
; jmaxðfsÞ � fs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

s

q
=ðv~hÞ, and

sincðxÞ � sin ðpxÞ=ðpxÞ, which proves Eq. (36) in the main

text.

APPENDIX D: ADDITIONAL FREQUENCY PAIRS

Here, we show once more that using additional fre-

quency pairs is of no use for substantially increasing the

radiometric resolution. We do so by proving that, for obtain-

ing statistically independent correlation functions, i.e., for M
and V in Eqs. (61) and (60) to vanish, the second pair of fre-

quencies x01;x
0
2 must not be in S. There, however,

Cijðr1; r2;x01;x
0
2Þ vanishes, such that one does not obtain a

second useful correlation function.

To see this, one first shows, with the help of (A14) and

in a few lines of calculation, that

FIG. 3. (Left) a and b as functions of g. Standard parameters are used (see Sec. I), and two different values for jx: jx ¼ 10�5= m (blue curve for a) and

jx ¼ 10�3= m (red curve for a); b (green dashed curve) is independent of jx. (Right) Real (red) and imaginary parts (blue) of the roots of the stationary

phase equation in the regime a � b as a function of b=a.
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V ¼ Czzðr1; r1;x1;x
0
1ÞC�zzðr2; r2;x2;x

0
2Þ; (D1)

M ¼ Czzðr1; r2;x1;x
0
2ÞCzzðr1; r2;x

0
1;x2Þ : (D2)

We have Czzðr1; r1;x1;x01Þ from (A18), where now

j ¼ ðx01 � x1ÞDr=vs, and, correspondingly, for

Czzðr2; r2;x2;x02Þ, where j ¼ ðx02 � x2ÞDr=vs. Whether V

and M are large or small can be judged by comparing them

to the product of the standard deviations of each factor. This

corresponds to calculating Pearson’s product-moment coeffi-

cients17 Vres � V
rðĈÞrðĈ0 Þ and Mres � M

rðĈÞrðĈ0 Þ, where we

define, for complex Ĉ, rðĈÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð<ĈÞ þ r2ð=ĈÞ

q
, and

Ĉ � Ĉzzðr1; r2;x1;x2Þ, Ĉ0 � Ĉzzðr1; r2;x01;x
0
2Þ for short.

When going through the same calculation as for V, we find,

after some algebra,

r2ðĈÞ ¼ Czzðr1; r1;x1;x1ÞCzzðr2; r2;x2;x2Þ; (D3)

¼ ðpK6Þ2I2ð0Þ; (D4)

where

IðjÞ �
ð1
�1

~T0;gðjÞe�jjj
ffiffiffiffiffiffiffiffiffiffi
g2þ~h

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q dg ; (D5)

and, hence, Ið0Þ ¼
Ð1
�1

~T 0;gð0Þffiffiffiffiffiffiffiffiffiffi
g2þ~h

2
p dg. This implies

jVresj ¼




 I ðx01 � x1ÞDr=vs

� �
I ðx02 � x2ÞDr=vs

� �
I2ð0Þ





: (D6)

For M, we have

jMresj ¼




Czzðr1; r2;x1;x02ÞCzzðr1; r2;x01;x2Þ
Czzðr1; r1;x1;x1ÞCzzðr2; r2;x2;x2Þ





; (D7)

¼




 Jðj120 ;xc120 ÞJðj102;xc102Þ

I2ð0Þ





 ; (D8)

where

Jðj120 ;xc120 Þ �
ð

dgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

� K j120

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

;
Drxc120

c

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ~h

2
q

0
@

1
A

� ~T0;gðj120 Þ (D9)

with j120 � ðx02 � x1Þ=vs, j102 � ðx2 � x01Þ=v2; xc120

� ðx1 þ x02Þ=2, and xc102 � ðx01 þ x2Þ=2. From the proper-

ties of the integration kernel K, we know that Czzðr1; r2;

x1;x02Þ vanishes if jx1 � x02j� ðx1 þ x02Þvs=ð2c~hÞ and, cor-

respondingly, Czzðr1; r2;x01;x2Þ. Hence, for jMj � 1 and

x1;2 and x01;2 all on the order of x0, we need jx1 � x02j
� x0vs=ðc~hÞ or jx01 � x2j� x0vs=ðc~hÞ. Note that x0vs=

ðc~hÞ ¼ ð1=vÞvs=h� vs=h.

For determining the properties of V, we consider our

two previous cases of sources.

1. Case 1: Single point source

Here, we have ~T independent of j, see Eq. (C1), which,

when inserted into (D5), yields

IðjÞ ¼ T0Drffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
s þ ~h

2
q e�jjj

ffiffiffiffiffiffiffiffiffiffi
g2

sþ~h
2

p
(D10)

and, hence,

jVresj ¼ e�
Dr
vs

ffiffiffiffiffiffiffiffiffiffi
g2

sþ~h
2

p
ðjx0

1
�x1jþjx02�x2jÞ : (D11)

For sources at gs � ~h, we, therefore, have jVresj � 1 if

jx01 � x1j > dx or jx02 � x2j > dx, where dx � vs=

Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

s þ ~h
2

q� �
� vs=ðDr ~hÞ ¼ vs=h � 10�2 Hz.

2. Case 2: Constant temperature field in the positive
upper half plane

Here, ~Tðjx; gÞ is given by Eq. (51). Hence, Vres ¼ 0 as

soon as x01 6¼ x1 or x02 6¼ x2. The dðjxÞ function in (51) arises

from the complete lack of structure of the temperature profile

in the x-direction. More realistic is at least a cutoff at the size

of the Earth, which we take as the same as in the y-direction. In

this case, one finds ~T r0 ðjxÞ ¼ ðŷT0=pÞsinc jxŷ
p

� �
and, hence,

IðjÞ ¼ ðŷT0=pÞsinc
jxŷ

p

� �ð ĝ

0

dgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ~h

2
q e�jjj

ffiffiffiffiffiffiffiffiffiffi
g2þ~h

2
p

: (D12)

The exponential factor in the integral again indicates

that Vres essentially vanishes if jx0i � xij� vs=h for i¼ 1 or

i¼ 2.

When comparing with the situation for M, we find that,

for both types of sources considered, V vanishes much more

rapidly as a function of the separation of two frequencies

because there is no factor 1=v multiplying vs=h. Hence, the

request for vanishing M is more restrictive.

The question of the usefulness of considering other fre-

quency pairs can now be phrased as the following: Can one

find pairs of frequencies ðx01;x02Þ, such that jx02 � x1j � Dx
� ð1=vÞvs=h or jx01 � x2j � Dx while still jx02 � x01j�Dx
for all frequencies x1;x2 with jx2 � x1j�Dx used in the

reconstruction of a temperature profile from Cðr1; r2;
x1;x2Þ? For a single frequency pair ðx01;x02Þ, all conditions

can be easily satisfied. It is enough that both pairs ðx1;x2Þ
and ðx01;x02Þ be inside the strip S and, at the same time, far

away from each other, i.e., jx1 � x01j � Dx, which implies

jx02 � x1j � Dx and jx01 � x2j � Dx at the same time.

However, the difficulty arises from the fact that we already

use all pairs ðx1;x2Þ in the full available band-width for the

reconstruction of a single temperature profile. This can be

seen, e.g., from Eq. (34), where we integrate over all ~kc

¼ Drðx1 þ x2Þ=ð2cÞ for recovering ~T . Hence, there really

are no new frequency pairs that can be used for improving the

signal-to-noise ratio of the reconstructed temperature profile.

The same conclusion can be arrived at more formally by

calculating the correlations between temperature profiles

obtained from different center frequencies. Let Trecðx; y; x0Þ
be the reconstructed temperature profile given by Eq. (C4),
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where we now keep explicit the dependence on the center

frequency x0, hidden in that equation in the filter functions

Aðx1;x0Þ, see Eqs. (32) and (33), and CF
ii ! Ĉ

F

ii is under-

stood, so as to get the temperature profile from a single reali-

zation of the noise process. We define the correlation

function

K Trecðx01Þ; Trecðx02Þ½ � � hTrecðx; y; x01ÞTrecðx; y; x02Þi
� hTrecðx; y; x01ÞihTrecðx; y; x02Þi;

(D13)

and its renormalized dimensionless version

Krel Trecðx01Þ; Trecðx02Þ½ � � K Trecðx01Þ; Trecðx02Þ½ �
=K Trecðx01Þ; Trecðx01Þ½ � (D14)

that satisfies Krel½Trecðx01Þ; Trecðx01Þ� ¼ 1. We have

K Trecðx01Þ; Trecðx02Þ½ �

¼ 1

2pK6Dr

� �2 ð
dj1 dj2 d ~kc1 d ~kc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kc1

~kc2j
q

2p

� e�iðj1�j2Þð~x�~x0Þeið~kc1�~kc2ÞfF

�
~kc1; ~k

ð1Þ
c0 ;

~bffiffiffi
2
p
�

� F

�
~kc1; ~k

ð2Þ
c0 ;

~bffiffiffi
2
p
�

� ½hĈzzðr1; r2;x1;x2ÞĈ
�
zzðr1; r2;x

0
1;x

0
2Þi

�hĈ�zzðr1; r2;x1;x2ÞihĈzzðr1; r2;x
0
1;x

0
2Þi� ; (D15)

where j1¼ðx2�x1ÞDr=vs; j2¼ðx02�x01ÞDr=vs; ~kc1¼ðx1

þx2ÞDr=ð2cÞ; ~kc2¼ðx01þx02ÞDr=ð2cÞ; ~k
ðiÞ
c0 ¼xðiÞ0 (i¼1, 2),

F ~kc; ~kc0;
~bffiffi
2
p

� �
¼Aðx1;x0ÞA�ðx2;x0Þ with ~kc0¼Drx0=c [see

Eq. (31)], and we used Trec2R. We evaluate

K½Trecðx01Þ;Trecðx02Þ� for the case of constant temperature

in the upper half plane. By using (60) and (52), and by

switching momentarily to integration variables x1;x2;x01;x
0
2

and then back to j1
~kc1, we are led to

K Trecðx01Þ;Trecðx02Þ½ �¼T2
0vs

2pc

ð
dj1 d ~kc1j~kc1je2if~kc1

�F

�
~kc1; ~k

ð1Þ
c0 ;

~bffiffiffi
2
p
�

F

�
~kc1; ~k

ð2Þ
c0 ;

~bffiffiffi
2
p
�
:

(D16)

The integral is clearly real, as it should be. The integral

over j1 leads, when integrated, from �1 to 1, to a diver-

gent factor, but that factor cancels [together with the remain-

ing prefactor T2
0vs=ð2pcÞ] when we consider the re-scaled

version of the correlation function Krel½Trecðx01Þ; Trecðx02Þ�.
If we set ~k

ð2Þ
c0 ¼ ~k

ð1Þ
c0 þ d~kc0, it is clear that the only remaining

scale for d~kc0 is ~b=
ffiffiffi
2
p

. The remaining integral over ~kc1 in

(D16) can, in fact, be evaluated analytically. The result is too

cumbersome to be reported here, but plotting it as a function

of d~kc0 shows that, indeed, the correlations decay only on a

scale on the order of ~b. This proves that, by shifting the cen-

ter frequency within the available bandwidth, one cannot

gain independent estimates of Trec that would allow one to

improve substantially the signal-to-noise ratio.
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