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a b s t r a c t

In this study, it is shown (i) that, as a result of the nonlinearity of the seawater equation of state, unre- 
solved scales represent a major source of uncertainties in the computation of the large-scale horizontal 
density gradient from the large-scale temperature and salinit y fields, and (ii) that the effect of these 
uncertain ties can be simulated using random proce sses to represent unresolved temperature and salinity 
fluctuations. The results of experiments performed with a low resolution global ocean model show that 
this parameterization has a considerable effect on the average large-scale circulation of the ocean, espe- 
cially in the regions of intense mesoscale activity. The large-scale flow is less geostrophic, with more 
intense associated vertical velocities, and the average geographical position of the main temperat ure 
and salinity fronts is more consistent with observations. In particular, the simulations suggest that the 
stochastic effect of the unresolved temperature and salinity fluctuations on the large-scale density field
may be sufficient to explain why the Gulf Stream pathway systematically overshoots in non-stochastic 
low resolution ocean models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

One of the most salient feature of today’s state-of-the- art ocean 
models is that they are essentiall y deterministic models, in the 
sense that they do not involve random numbers to represent uncer- 
tainties in the model equation s, paramete rs and forcing, or to sim- 
ulate the effect of unresolved processes. Yet, this deterministic 
model dynamics is known to become chaotic as soon as mesoscale 
eddies are resolved by the model, so that the simulated mesoscale 
flow can only be viewed as one random realization sampled from a
large set of possibilities. It is thus only in a statistical sense that the 
mesoscale can be compared to the real world, and it is only as a
stochastic process that the effect of the mesoscale in the model 
can be analysed. Mesoscale fluctuations indeed produce a consid- 
erable effect on the general circulation of the ocean (Zhai et al.,
2004; Penduff et al., 2010 ), with prominent contributions to
momentum, heat and salt fluxes, which cannot be easily parame- 
terized in low resolution models.

As a general rule, the effect of uncertainties or unresolved pro- 
cesses (even if unbiased) does not average to zero in a nonlinear 
model. For instance, if the wind is fluctuating or if it is uncertain,
then neglecting the fluctuations or the uncertainti es systematical ly
underestimate s the air–sea momentum flux (proportional to the 
square of the wind speed). In the same way, the average effect of
ll rights reserved.
the mesoscale fluctuations does not vanish in the two nonlinear 
terms of the primitive equations: the advection term and the equa- 
tion of state. Concerning the advection term, this effect was origi- 
nally parameterized in ocean models using empirically specified
horizontal diffusion (Bryan et al., 1979 ), and afterwards using more 
and more sophisticated advection/diffus ion operators (see Griffies
et al., 2000 for a review). Concerning the equation of state, the ef- 
fect of the mesoscale temperature and salinity fluctuations on the 
large-scal e density field is generally ignored, maybe because it can- 
not be easily parameterized using a deterministic formulation .
However , it can easily be argued (see Section 3.1), that, in low res- 
olution ocean models, the resulting approximat ion in the large- 
scale density is a major source of uncertainties in the horizontal 
pressure gradient, and thus in the horizontal momentum balance 
equation .

A different point of view can also be adopted to deal with model 
uncertainti es. Rather than parameterizi ng their mean effect in the 
model, they can be explicitly simulated by including a random 
forcing in the model equations. This can be done to produce 
ensemble forecasts (Buizza et al., 1999; Palmer et al., 2005 ) or to
simulate model error in ensemble data assimilation methods 
(Evensen, 1994 ). In such applications, the random forcing is not 
only responsib le for the dispersion of the ensemble ; it can also pro- 
duce a significant mean effect in the simulations (Berner et al., in
press; Williams, 2012; Palmer, 2012 ). In this study, the same kind 
of approach is used to simulate the uncertainti es that unresolved 
mesoscale temperat ure and salinity fluctuations produce on the 
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large-scale horizontal density field. The objective is to propose a
simple (empirically specified) stochastic paramete rization of these 
uncertainties (in Section 3), and to evaluate the impact that this 
parameterizati on may have on the ocean circulation (in Section 4),
as simulated by a low resolution global model configuration (de-
scribed in Section 2).

2. A low resolution global ocean model 

The purpose of this section is to present the NEMO primitive 
equation model and to describe the ORCA2 low resolution global 
ocean configuration.

2.1. The NEMO primitive equation model 

The ocean general circulation model that is used in this study is
the NEMO model (Nucleus for European Modelling of the Ocean),
as described in Madec (2008). The model approximat es the ocean 
circulation by the primitive equation s:

� the momentum balance equation:
@Uh

@t
¼ � ðr� UÞ � Uþ 1

2
rðU2Þ

� �
� f k� Uh �

1
q0
rhp

þ DU þ FU ð1Þ
where t is time; k, the local upward unit vector; U, the velocity vec- 
tor (Uh is the horizont al component, orthogonal to k, and w, the ver- 
tical veloci ty); p is pressure; q0, a reference density; and f ¼ 2X� k,
the Coriolis accelerat ion (where X is the Earth angular velocity);
� the hydrostatic equilibriu m equation:
@p
@z
¼ �qg ð2Þ
where z is the vertical coordinat e (in the direction of k); q is in situ 
density; and g, gravitatio nal accelerat ion;
� the incompress ibility equation:
r � U ¼ 0 ð3Þ

Salinity
� the heat and salt conservation equations:
A
Δρ
B

B1
B2
@T
@t
¼ �r � ðTUÞ þ DT þ FT ð4Þ

@S
@t
¼ �r � ðSUÞ þ DS þ FS ð5Þ
(T,S)ρsi
ty
where T is potential temperat ure and S, salinity;
� the equation of state:
D
en
q ¼ q T; S;p0ðzÞ½ � ð6Þ
(T,S)

Temperature

φ

Fig. 1. Sea water equation of state (thick solid line) for joint temperature and 
salinity variations between 2 �C and 24 �C (bottom axis) and 32 and 37:5 (top axis)
respectively. A typical distribution of unresolved temperature and salinity fluctu-
ations is represented by the grey histogram, which superposes two Gaussian 
distributions with means at T = 8 �C, S ¼ 33:5 and T = 16 �C, S ¼ 35:5, and identical 
standard deviations: rT = 2.5 �C, rS ¼ 0:625. The density at point A is computed by
applying the equation of state to the mean of the distribution: T = 12 �C and 
S ¼ 34:5, whereas the density at point B takes into account the distribution of
unresolved temperature and salinity fluctuations. Points B1 and B2 show that the 
same density can be obtained as the mean of two densities obtained from opposite 
temperature and salinity fluctuations.
where p0ðzÞ ¼ q0gz is the reference pressure as a function of depth.

In these equation s, DU ;DT and DS represent the parameterization of
small-scale physics for momentum, temperature and salinity, and 
FU ; FT and FS are surface forcing terms.

These equations are complemen ted by boundary conditions,
which are applied at the ocean bottom and at the interface with 
the atmosphere . Kinematic conditions consist in a ‘no flow’ condi- 
tion across the ocean bottom:

w ¼ �Uh � rhH ð7Þ

where H is ocean depth, and a progno stic equation for the sea sur- 
face height g:

@g
@t
¼ �r � ðH þ gÞUh

� �
þ P� E ð8Þ
where Uh is the vertical average of horizont al velocity; P, precipit a-
tion; and E, evaporation. Dynamic boundar y conditio ns parameter -
ize the exchange of momentu m and heat across the bottom and 
surface boundaries. Since they depend on the paramete rization 
used for DU and DT , they will be describ ed later in Section 2.2.

From Eqs. (2) and (8), it results that the horizontal pressure gra- 
dient rhp in Eq. (1) is given by:

rhp ¼ rhps þ
Z f¼0

f¼z
grhqdf ð9Þ

where ps ¼ qsgg is the surface pressure gradient, and qs is surface 
density . Thus the horizont al pressure gradient depends on the ther- 
mohaline structure of the ocean (T and S) throug h the equation of
state in Eq. (6). In realistic application s of NEMO, the equation of
state is the standard empirical equation defined by the Joint Panel 
on Oceanograp hic Tables and Standard s (UNESCO, 1983 ), in a ver- 
sion that has been reformulate d by Jackett and McDougall (1995)
(by a modification of the coefficients of the K polynom ial in the 
equation below), to allow direct computa tion of in situ density from 
potenti al temperatur e (rather than in situ temperat ure):

qðT; S; pÞ ¼ qðT; S;0Þ
1� p=KðT; S;pÞ ð10Þ

where qðT; S;0Þ is a 15-term polynom ial in T and S; and KðT; S;pÞ, a
26-term polynomi al in T; S and p. One of the main characterist ics of
the seawate r equation of state is thus to be quite nonlinea r (see
Fig. 1). In addition , it must be remembe red that, in principle , it is
only valid for a fluid parcel in thermo dynamic equilibrium .

2.2. The ORCA2 configuration

The NEMO configuration used in this study is the ORCA2 config-
uration, as described in Madec and Imbard (1996). It is a low res- 
olution configuration, which is provided with the model code 
(<http://ww w.nemo-ocean .eu/> ), and which is used here exactly 
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as distributed in the version 3.3 of NEMO (except that full steps are 
used instead of partial steps to discretize bottom topograp hy, see 
below). See Table 1 for a summary of the main model parameters.

ORCA2 numerics. In this configuration, the NEMO model Eqs.
(1) to (6) are discretized using an ORCA type horizontal grid, with 
a horizontal resolution of 2� � 2� (reduced to a meridional grid 
spacing of 1=2� in tropical regions), and 31 z-coordinat e levels 
along the vertical (from 10 m resolution in the first 120 m to
500 m resolution for the last levels). The bottom boundary is dis- 
cretized using full steps of the vertical grid, so that the discretiza- 
tion of Eq. (9) for the horizontal pressure gradient remains 
straightforw ard down to the bottom, without vertical re-interpola- 
tion of T and S in the partial step to obtain the last level density gra- 
dient (see Barnier et al., 2006 for more details about partial steps).
On the other hand, the time derivatives in Eqs. (1), (4), (5) and (8)
are discretized using a leap-frog scheme, with a time step 
Dt ¼ 5760s (15 time steps per day).

ORCA2 physics. This discretization of the equation s is designed 
to resolve the large-scal e component of the ocean circulation,
while the effect of small-scale physics is parameterized in Eqs.
(1), (4) and (5) by diffusion operators in DU ;DT and DS. Lateral dif- 
fusion of momentum and tracers is obtained by an iso-neutral 
Laplacian operator , with specified viscosities and diffusivities (see
Table 1), which is complemen ted at the lateral boundaries by a
condition of no heat and salt fluxes for Eqs. (4) and (5) and by a
condition of no slip for Eq. (1). Vertical diffusion of momentum 
and tracers is obtained by a turbulent closure scheme based on a
prognostic equation for turbulent kinetic energy and a closure 
assumption for turbulent length scales, see Blanke and Delecluse,
1993, which is complemen ted, at the bottom boundary, by a
parameterizati on of bottom friction (momentum flux) and geo- 
thermal heating (heat flux), and at the surface boundary, by a
parameterizati on of air–sea fluxes. In addition to this subgrid scale 
Table 1
Main model parameters for the ORCA2 configuration (see Madec, 2008 for more 
details about the formulation of the numerica l schemes).

ORCA2 numerics 

Horizontal resolution 2� � 2� , reduced to 2� � 1=2� in tropical regions 
Vertical resolution 31 z-levels (from 10 m to 500 m vertical resolution)
Bathymetry 

discretization 
Full steps approximation 

Momentum 
advection 

Vector form, energy and enstrophy conserving 

Tracer advection Total variance dissipation (TVD) scheme 
Time stepping 

scheme 
Leap frog, with Asselin filter (c ¼ 0:1)

Time step Dt ¼ 5760s (for internal and external modes, see text)

ORCA2 physics 

Lateral viscosity m ¼ 40;000 m2/s (horizontal), smaller in the tropics 
Lateral diffusivity k ¼ 2000 m2/s (iso-neutral), smaller in the tropics 
Bottom boundary 

layer 
Diffusive parameterization, with kbbl ¼ 1000 m2/s

TKE 
parameterization 

As in Madec and Imbard (1996)

Additional mixing 
options 

Double diffusive and tidal mixing parameterizations 

ORCA2 initial and boundary conditions 

Initial condition January climatology from the World Ocean Database 
Bottom friction Linear friction, with coefficient r ¼ 4� 10�4

Geothermal heating As in Emile-Geay and Madec (2009)
Atmospheric forcing 

formulation 
CORE bulk formulas (Large and Yeager, 2009 )

Atmospheric data 10 m wind, air temperature and humidity (6-hourly)
incoming short wave and long wave radiation (daily)
total precipitation (monthly)

Surface salinity 
restoring 

To Levitus climatology (with cs ¼ �166:67 mm/day).

River runoffs Monthly climatology, from the CORE database.
paramete rization, an additional term is introduced in the momen- 
tum balance Eq. (1) to damp the fast external gravity waves (see
Roullet and Madec, 2000 for more details). This parameterization 
can be interpreted as a diffusion of the vertically integrated volume 
flux divergen ce (first term in the right hand side of Eq. 8), which is
designed in such a way that the faster external gravity waves no
longer propagat e (so that the above time step is also sufficient to
resolve the external mode).

ORCA2 initial condition and forcing. The two model simula- 
tions described in this paper are started from rest (U ¼ 0;g ¼ 0),
and from climatological temperat ure and salinity fields corre- 
sponding to the January climatology from the World Ocean Data- 
base, Levitus et al., 1998 . The atmospheric forcing is computed 
using the CORE bulk parameterization (Large and Yeager, 2009 )
and climatological atmosph eric data (see Table 1 for more details).
The same atmosph eric conditions are thus applied from year to
year in a perpetual way.
3. Uncertainti es in the horizontal density gradient 

As mentioned in Section 2.2, in a low resolution ocean model,
the primitive Eqs. (1)–(6) are used to describe the large-scale com- 
ponent of the ocean circulation. In the averaging of the equation s
to extract the large scales, the effect of unresolved scales does 
not cancel out in the nonlinear terms of the equations, which are 
(i) the advection terms (first term in the right hand side of Eqs.
(1), (4) and (5)), and (ii) the equation of state (Eq. (6), with the for- 
mulation given by Eq. (10)). In the advection terms, unresolv ed
scales are assumed to produce an additional diffusion, which is
paramete rized by DU ;DT and DS (see Section 2.2). In the equation 
of state, the effect of unresolved scales is generally neglected,
which means that the large-scale density q is computed from the 
large-scal e potential temperat ure T and salinity S using the equilib- 
rium formulation of the equation of state given by Eq. (10).
Through the thermal wind Eq. (9), this approximat ion generate s
uncertainti es in the relation between the large-scale thermohal ine 
structure of the ocean (as obtained from Eq. (4) and (5)) and the 
large-scal e horizontal pressure gradient, which is known to be
one of the dominant terms in the momentum balance equation 
(Eq. (1)). The remaining of this paper is dedicated (i) to quantifying 
the importance of this approximat ion (in Section 3.1), (ii) to pro- 
posing a parameterizati on of the resulting uncertainty in the 
large-scal e density (in Section (3.2), and (iii) to evaluating the im- 
pact of this uncertainty on the model circulation (in Section 4).
3.1. Effect of the unresolved scales on the large-scale density 

The effect that unresolv ed mesoscale fluctuations produce in
the computati on of the large-scal e density gradient has already 
been discussed in Appendix B of two papers by McDougall and 
McIntosh (1996), McDouga ll and McIntosh (2001). In the first
one, the authors estimate that the error produced by unresolved 
temperat ure fluctuations of 1 �C can be 3% of the typical mean den- 
sity gradient. Furthermore, they also show that this error is propor- 
tional to the mean square of unresolved temperat ure fluctuations
(Eq. (B3) in McDougall and McIntosh (1996) or Eq. (19) below).
This means that the effect is 100 times larger for unresolved tem- 
perature fluctuations of 10 �C (more typical of the Gulf Stream 
front). In addition, as will be shown below, the effect is also signif- 
icantly amplified if there is a density maximum close to the middle 
of the front, which can happen if temperature and salinity varia- 
tions across the front have an opposite effect on density (as in
the Gulf Stream front). This can be related to the cabbeling process 
(e.g. Klocker and McDougall, 2010 ), by which denser water is pro- 
duced by mixing two types of water of equal density but with dif- 
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ferent temperature and salinity (and which leads to the sinking of
the resulting denser water). In a similar way, if density is computed 
from average (large-scale) temperature and salinity (as in all stan- 
dard ocean models), then it is quite systematically larger than the 
(correct) average density (which should be used in the large-scal e
thermal wind Eq. (9)). This is like a spurious ‘artificial cabbelling’
that should be avoided to write consistent equations for the 
large-scale flow. To quantify the magnitud e of this effect, the first
thing to do is thus to introduce a mathematical description of the 
averaging (or filtering) operator extracting the large-scale compo- 
nent of the ocean circulation, and then to compute the density mis- 
fit that is produced if this filtering operator is applied after rather 
than before the equation of state.
(a) Impact of averaging temperat ure and salinity on density . If wðx;x0Þ
denotes the averaging operator (where x and x0 are spatial coordi- 
nates), and if T 0ðxÞ; S0ðxÞ are the unresolved fluctuations of potential 
temperature and salinity, then the large-scale density qðxÞ can be
written:

qðxÞ ¼
Z

q Tðx0Þ þ T 0ðx0Þ; Sðx0Þ þ S0ðx0Þ; p0ðzÞ
� �

wðx; x0Þdx0 ð11Þ

This corresp onds to replacing the assumpt ion that the large-scal e
fluid parcel is in equilibrium (which is made in Eq. (6) by applying 
the equation of state to the large scale) by the assumpt ion of local 
equilibrium (by applying the equation of state locally). This is
clearly still an assumpt ion, but it is the standard assumption that 
is made to apply equilibrium thermodynam ics to fluid mechan ics.
Furthermor e, it must be noted that the two assumpt ions would pro- 
duce the same result if the equation of state was linear, since by
definition of the averaging operator:Z

Tðx0Þ þ T 0ðx0Þ
� �

wðx; x0Þdx0 ¼ TðxÞ andZ
Sðx0Þ þ S0ðx0Þ
� �

wðx;x0Þdx0 ¼ SðxÞ ð12Þ

The spatial integral in Eq. (11) can be transformed into an inte- 
gral on temperature and salinity fluctuations (considered as ran- 
dom variables: dT and dS):

qðxÞ ¼
Z

q TðxÞ þ dT; SðxÞ þ dS;p0ðzÞ½ �/ðdT; dS; xÞddT ddS ð13Þ

where /ðdT; dS; xÞ is the distribution of temperatu re and salinity 
fluctuations (due to unresolved scales) corresp onding to location x:

/ðdT; dS; xÞ ¼
Z

d T 0ðx0Þ � dT; S0ðx0Þ � dS
� �

wðx;x0Þdx0 ð14Þ

With the Dirac delta function d, this last expression cumulates all 
temperatu re and salinity fluctuations (T 0ðx0Þ and S0ðx0Þ in the neigh- 
bourhood of x) that are equal to dT and dS. To each of them, it gives 
the weight wðx;x0Þ depending on its spatial location with respect to
x, so that the distribution /ðdT; dS; xÞ integr ates to 1 for every spec- 
ified x [just as the averagin g operator wðx; x0Þ]. Furtherm ore, as a di- 
rect conseque nce of Eq. (12), the mean of the distrib ution is dT ¼ 0
and dS ¼ 0.

To illustrate the effect that the distribution /ðdT; dS; xÞ of unre- 
solved temperature and salinity fluctuations may have on the 
large-scale density, Fig. 1 shows the example of a temperature 
and salinity distribution typical of the Gulf Stream front (grey his- 
togram along the T-axis in abcsissa). Along the front, two kinds of
surface waters are assumed simultaneou sly present in the unre- 
solved scales: cold and fresh waters on the one hand (with a mean 
at T ¼ 8 �C, S ¼ 33:5), and warm and salty waters on the other hand 
(with a mean at T ¼ 16 �C, S ¼ 35:5), both assumed with Gaussian 
temperature and salinity fluctuations. The thick solid curve shows 
the equilibrium equation of state (at the ocean surface: z ¼ 0), as
given by Eq. (10), which produces a maximum density close to
T ¼ 12 �C and S ¼ 34:5. The density at point A is computed by
applying the equation of state to the large-scale temperature (i.e.
the mean of the distribution: T ¼ 12 �C and S ¼ 34:5) as in Eq.
(6): qA ¼ 1026:20 kg/m 3, and the density at point B is computed 
by taking into account the distribution of unresolved temperature 
and salinity fluctuations (given by /ðdT; dS; xÞ) using Eq. (13):
qB ¼ 1026:08 kg/m 3. In realistic conditions, the curvature of the 
equation of state is most often negative, in which case the differ- 
ence Dq ¼ qB � qA is systematically negative, and can only ap- 
proach zero if the equation of state is close to linear in the range 
of the fluctuations. In this example case, the difference 
Dq ¼ �0:12 kg/m 3 is far from negligible, but it is certainly impor- 
tant to get a better idea of the importance of this effect in the real 
ocean.
(b) Estimation of Dq from reanalysis data. For that purpose, it is nec- 
essary to use a gridded ocean data set with both temperat ure and 
salinity at sufficient horizontal resolution. One possible product is
the GLORYS global ocean reanalysis dataset (Ferry et al., 2010 ),
which is produced by Mercator-O cean by assimilating all available 
ocean observations (such as satellite altimetri c data, sea surface 
temperat ure, ARGO floats,. . .) in a 1=4� resolution global configura-
tion of the NEMO model (the ORCA025 configuration, as developed 
by The DRAKKAR Group (2007)). Thus the smaller wavelength that 
can be represented by the ORCA2 grid corresponds to about 16 grid 
points in the GLORYS reanalysis, which can be expected to contain 
a significant part of the signal that is not resolved by the ORCA2 
configuration. A lower bound for jDqj can thus be obtained by com- 
puting qA from the 16� 16 block-mean potential temperature and 
salinity, and qB as the 16� 16 block-mean density. In the above 
formalism, this corresponds to using the block-mean operator as
a proxy for the averaging operator in Eq. (11), which means iden- 
tifying the unresolv ed scales to all waveleng ths below two ORCA2 
grid points that are present in the GLORYS reanalysi s.

Fig. 2 shows the resulting estimate of Dq that is obtained (a) for 
the surface model layer on January 1, 2009 (top panel), (b) for the 
vertical profile at 47:5�W 42:6�N for the same date (bottom left pa- 
nel), and (c) for the 2009 surface time series at the same horizontal 
location (bottom right panel). What can be observed in this figure
is first that the effect of unresolved scales on the large-scale den- 
sity is mainly concentrated in the Western boundary currents 
and in the Antarctic circumpol ar current, because it is in these re- 
gions that the mesoscale activity is the most intense. The effect is
especiall y strong along the Northern edge of the Gulf Stream front,
because in addition to the intense mesoscale activity and the sharp 
temperat ure and salinity gradients, the equation of state produces 
a maximum density close to the middle of the current (as illus- 
trated in Fig. 1). Second, as a result of the vertical coherence of
the mesoscale temperature and salinity fluctuations, Dq is only 
smoothly varying with depth, first in the mixed layer (down to
200 m depth in the winter example of Fig. 2), and then slowly 
decreasing in the deep thermocline (down to about 1000 m depth).
In the Gulf Stream region, the vertical average of Dq over the first
1000 m can typically reach 0.1 kg/m 3 (corresponding to a pressure 
differenc e of about 0.1 m), which is thus far from being negligible.
Third, as illustrated by the time series in Fig. 2, Dq is fluctuating in
time in relation to the modification of the pattern of the unresolved 
scales (which mainly results, in Fig. 2, from the movement of
mesoscale eddies). In the horizontal map (top panel of Fig. 2), these 
fluctuations look smooth on the horizontal because Dq is shown at
the 1=4� resolution of the GLORYS reanalysis (using a boxcar filter).
If the resolution is degraded to the ORCA2 resolution, it can be ob- 
served, on the contrary, that these high-frequency fluctuations are 
mostly decorrelated from one ORCA2 grid point to the next. In
addition, the time series shows a seasonal cycle: jDqj is smaller 
during summer because temperature is higher, so that the nonlin- 
earity of the equation of state does not produce the same effect.



Fig. 2. Estimate of Dq computed from the GLORYS ocean reanalysis (a) for the surface model layer on January 1, 2009 (top panel), (b) for the vertical profile at 47:5�W 42:6�N
(the position of the black dot in the top panel) for the same date (bottom left panel), and (c) for the 2009 surface time series at the same horizontal location (bottom right 
panel).
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This summarizes the typical behaviou r that can be expected for 
the effect of unresolved scales on the large-scal e density field. The 
next step is to propose a parameterization that can reproduce the 
same kind of behaviour in a low resolution ocean model.
3.2. Stochastic equation of state 

To paramete rize Eq. (13), a first simplification is to replace the 
integral by the summation :

q ¼ 1
2p

Xp

i¼1

q T þ DTi; Sþ DSi;p0ðzÞ½ � þ q T � DTi; S� DSi;p0ðzÞ½ �f g

ð15Þ

where DTi;DSi; i ¼ 1; . . . ;p is a set of temperat ure and salinity fluc-
tuations simulati ng the effect of the distribution / in Eq. (13). The 
first thing to observe in this equation is that, whatever the fluctua-
tions DTi and DSi, they will never affect density if the equation of
state is linear (consistently with Eqs. (11) and (13)). It is very impor- 
tant that this basic property is embedd ed in the paramete rization 
from the very beginnin g. The second thing to observe about Eq.
(15) is that it contains no approximat ion: providing that the equa- 
tion of state is convex, there is always a set of fluctuations
DTi;DSi; i ¼ 1; . . . ;p (whatever p P 1) such that the summati on in
Eq. (15) is equal to the integral in Eq. (13). For instance, for p ¼ 1,
Fig. 1 shows the temperat ure and salinity fluctuations required to
produce the same effect as the temperat ure and salinity distrib u-
tion. The only reason for using p > 1 in Eq. (15) is to simplify the 
construc tion of a realistic model for the space and time dependenc e
between the fluctuations. (DTi and DSi are indeed functions of x and
t, even if this dependenc e was omitted in Eq. (15) for simplic ity.)
The last step is then to provide a parameterization for the fluc-
tuations DTi and DSi in Eq. (15). Since the unresolv ed scales are un- 
known by definition, and produce fluctuating uncertainties on the 
large-scal e density (as observed in Fig. 2), a natural means of rep- 
resenting their effect in the low resolution model is to parameter- 
ize DTi and DSi as stochasti c processes. To produce fluctuations DTi

and DSi consistent with local dynamics , a simple solution is to use 
the temperature and salinity differenc e with respect to random 
walks ni around the current grid point. Moreover, if the random 
walks ni are designed to be small enough (typically a few model 
grid points), then the fluctuations can be computed simply by
using the local gradient:

DTi ¼ ni � rT and DSi ¼ ni � rS ð16Þ

In this way, Eq. (15) can be interpreted as the mean density over 2p
random walks surrou nding each model grid point (with central 
symme try of the 2p temperatu re and salinity fluctuations).
(a) Stochastic processe s. To parameter ize the random walks 
ni; i ¼ 1; . . . ;p in Eq. (16), the most simple (non-degenerate) solu- 
tion is to assume that the three component s ni;x; ni;y and ni;z of every 
ni are independen t first-order autoregr essive processes (or Langevin 
proces ses), which can be obtained iteratively (from timestep tk�1 to
timestep tk) by the equation:

ni;xðtkÞ
ni;yðtkÞ
ni;zðtkÞ

264
375 ¼ ui

ni;xðtk�1Þ
ni;yðtk�1Þ
ni;zðtk�1Þ

264
375þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u2
i

q wi;x

wi;y

wi;z

264
375 ð17Þ

where the parameter ui 6 1 is related to the decorrelat ion time- 
scale si (in timestep s) of each random walk by:
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ui ¼ expð�1=siÞ ð18Þ

and where wi;x;wi;y and wi;z are here assumed to be Gaussian white
noises, with zero mean and respective standard deviatio n ‘i;x; ‘i;y

and ‘i;z. In this way, ni;x; ni;y and ni;z remain Gaussian at any future 
time (since Eq. (17) is linear), with asymptotic standard deviations 
also equal to ‘i;x; ‘i;y and ‘i;z, respective ly. Fig. 3 shows for instance 2
indepen dent random walks as obtained using Eq. (17), with 
‘i;x ¼ ‘i;y ¼ 2; grid points and si ¼ 180; time steps. From a mathe- 
matical point of view, it is interesting to note that, in this stocha stic 
paramete rization, there can be no ambiguity between Itô and Stra- 
tonovich interpretation s of delta-corre lated random processes (see
Van Kampen, 2007 chapter 9), except in the limit case of a zero cor- 
relation time scale [ui ¼ 0] in Eq. (17): (i) in the equations for the 
random walks (17), the two formulation s are equivalent since the 
delta-co rrelated (white) Gaussian noises wi;x;wi;y;wi;z appears as
an additive noise, not as a multiplicative noise; (ii) in all other equa- 
tions becoming stochastic (equation of state (15), thermal wind Eqs.
(9), momentu m balance Eqs. (1) and then Eqs. (3)–(5) as well), Itô’s
formulation cannot apply since the random processe s are no more 
delta-co rrelated (except if ui ¼ 0).

This idea that stochasti c processes can represent mesoscale ed- 
dies is not new in the ocean literature (e.g. Berloff, 2005 ). The usual 
approach is to start from statistical mechanics considerations , and 
to derive a simplified statistical description of the mesoscale fluc-
tuations. This has been done to obtain a variety of determinist ic (as
in Kazantsev et al. (1998)) or stochasti c (as in Zidikheri and Fred- 
eriksen (2010)) parameterizati ons of mesoscale turbulence (see
Frederiksen et al., 2012 for a review). These studies are useful to
improve the statistics of the fluctuations, but they are mostly the- 
oretical (using an idealized model setup), and they are all dedi- 
cated to simulating the effect that unresolved scales produce in
the advection term, not in the equation of state. Yet, the problem 
is much more simple with the equation of state, since there is no
modification in the advection/di ffusion formulation , and thus no
modification in the basic conservation properties of the model.
The only exception is that, because of the stochastic fluctuations
of Dq, there is a continual exchange of potential energy between 
the large scale flow and the unresolved scales (as described by
the stochastic process, see discussion is Section 4.1). From a
numerical point of view, this can produce some more numerical 
instability and using a smaller timestep can sometimes be re- 
quired; but this has not been necessary in the experiments de- 
scribed below. The only important issue is thus to produce a
density correction Dq with realistic statistics.
(b) Impact of temperature and salinity fluctuations on density . With 
the parameterization in Eq. (16), what is expected in the first place 
Fig. 3. Horizontal components of two random walks, as simulated during 20 days using E
number of grid points.
is that, by making the fluctuations DTi and DSi proportional to the 
gradient, they will automatically adjust to be large in the main 
frontal regions of the ocean, where the mesoscale activity is the 
most intense. Second, by sampling temperature and salinity to- 
gether at the same set of neighbouring points (defined by
ni; i ¼ 1; . . . ; p), there is no need to explicitly specify the depen- 
dence between DTi and DSi; they will automatical ly move together 
as the local variations of temperature and salinity. Third, the same 
automatic effect of the random walk can be used to simulate a rea- 
sonable vertical structure for DTi and DSi, which is crucially impor- 
tant to reflect the vertical coherence of the mesoscale fluctuations
(as observed in Fig. 2). This is why the same set of random walks 
ni; i ¼ 1; . . . ; p will be used for all grid points of the same water col- 
umn, so that the vertical variations of DTi and DSi in Eq. (16) will
only result from the vertical variation s of the large-scale gradients 
(rT and rS). This must be understood as a first simple assump- 
tion, neglecting for instance vertical variation s in unresolved lat- 
eral stirring and mixing.

On the contrary, the random walks will be generated indepen- 
dently for every water column, to reflect the decorrelation of the 
unresolv ed mesoscale fluctuations from one ORCA2 grid point to
the next (as observed in the results of Fig. 2). It must be noted,
however , that this could be easily generalized to a specified or
flow-dependent horizontal correlation structure, by applying an
appropriate horizontal filtering operator to the random walks:
~ni ¼ F ½ni� or by solving an elliptic equation : L½~ni� ¼ ni (together
with the adequate amplification factor to restore the original stan- 
dard deviation), Such refinements of the model will not be consid- 
ered in this preliminary study.

However , what is certainly important to tune correctly in the 
statistical model is the shape of the probability distribut ion for 
Dq, which results from the superposition of several Gaussian prob- 
ability distributions for DTi and DSi. For that purpose, it is easier to
use the first-order approximat ion of Eq. (15), which can be written:

Dq ¼ @
2q
@T2

1
2p

Xp

i¼1

DT2
i

 !
þ 2

@2q
@T@S

1
2p

Xp

i¼1

DTiDSi

 !

þ @
2q
@S2

1
2p

Xp

i¼1

DS2
i

 !
ð19Þ

From this equation, it is indeed immediat ely clear that the density 
correction Dq is the sum of the square of Gauss ian random variable s
(after diagonalis ation to remove the cross-prod ucts). Furthermor e,
if these Gaussian variables are identica lly distributed (i.e. if all ran- 
dom walks have the same statistics : ‘i;x ¼ ‘x; ‘i;y ¼ ‘y; ‘i;z ¼ ‘z,
8i ¼ 1; . . . ;p, so that DT2

i ¼ DT2, DTiDSi ¼ DTDS, DS2
i ¼ DS2;
q. (17), with ‘x ¼ ‘y ¼ 2; grid points and s ¼ 180; time steps.The axes are labelled in



Table 2
Statistical parameters defining the random walks in Eq. (17). A dependence with 
latitude (k) is introduced to avoid unrealistic effects and numerical instability in
tropical regions.

Number of random walks p ¼ 6
Horizontal standard deviation (i ¼ 1; . . . ;p) ‘x ¼ ‘y ¼ 4:2j sin kj grid points 
Vertical standard deviation (i ¼ 1; . . . ; p) ‘z ¼ j sin kj grid points 
Correlation timescale (i ¼ 1; . . . ; p) s ¼ 180 time steps 
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8i ¼ 1; . . . ; p), then Dq is distributed like a chi-squar e distribution 
with p degrees of freedom (with a negative multiplica tive factor,
containing the factor 1=p). And the main charac teristics of the Dq
distribution are:

� the mean: Dq ¼ 1
2

@2q
@T2 DT2 þ 2 @2q

@T@S DTDSþ @2q
@S2 DS2

h i
� the standard deviation: rDq ¼

ffiffi
2
p

q
jDqj

� the mode: dDq ¼ 0 for p 6 2 and dDq ¼ p�2
p Dq for p P 2

Thus the mean density difference Dq does not depend on the 
number of degrees of freedom p in the temperature and salinity 
fluctuations, and the main effect of increasing p is to reduce the 
dispersion of Dq around the mean (since the standard deviation 
rDq decrease s as 1=

ffiffiffi
p
p

). Moreover, for p 6 2, the mode of the distri- 
bution is Dq ¼ 0, which means that small Dq remain very probable ,
and would appear quite often in the time series (inconsistently 
with Fig. 2). On the contrary, as the number of degrees of freedom 
in the fluctuations increases, the probabili ty that they are all close 
to zero (which is necessary for the mean square Dq to be close to
Fig. 4. Density difference Dq produced by the stochastic parameterization (a) for the sur
43:2�N (the position of the black dot in the top panel) for the same date (bottom left pane
simulation) at the same horizontal location (bottom right panel).
zero) becomes smaller and smaller, and the peak dDq gets closer 
to the mean Dq. (For p!1, the distribut ion even becomes asymp- 
totically Gaussian, with mean Dq and standard deviation rDq.) This 
correspond s to what happens in the real ocean: the more degrees 
of freedom in the unresolved scales (for every ORCA2 grid point),
the less probable it is that the effect of the fluctuations can almost 
totally disappear (i.e. Dq becoming close to zero). Hence, in the 
paramete rization of the stochastic processes, p is the parameter 
to tune to obtain the right dispersio n of Dq around the mean Dq
(as observed in Fig. 2).

(c) Density modification Dq in the model. Table 2 summari zes the 
statistical paramete rs that have been used to define the stochastic 
equation of state using Eqs. (15) to (18), and Fig. 4 shows the 
resulting density difference Dq that it produces in the ORCA2 sim- 
ulation (computed as the difference between Eqs. (15) and (6)). The 
three panels of Fig. 4 show the same three kinds of results that 
were obtained in Fig. 2 from the GLORYS reanalysis: (a) Dq in
the surface model layer for January (corresponding to the 25th year 
of the perpetua l ORCA2 simulation), (b) Dq for the vertical profile
at 47:5�W 42:6�N for the same date, and (c) Dq for the time series 
correspond ing to the same location and to the same year. What we
can conclude from the comparison between Figs. 2 and 4 is that the 
stochasti c parameterizati on of the equation of state is qualitatively 
able to reproduce (i) the right horizontal pattern for Dq, mainly 
concentr ated in the Western boundary currents and in the Antarc- 
tic circumpolar current (but the values are about two times larger),
(ii) a reasonable vertical structure for Dq (varying quite smoothly 
with depth, but with a sharper gradient between 200 and 500 m
depth), and (iii) a fluctuating time series (with a similar annual cy- 
cle but much larger high frequenc y fluctuations). Because of the 
simplicit y of the statistical model (in Table 2) and because of the 
face model layer on January 1, year 5 (top panel), (b) for the vertical profile at 48�W
l), and (c) for the surface time series (corresponding to the 25th year of the perpetual 
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inaccuracy of the reference data (in Fig. 2), the adequation between 
the simulated and observed Dq can only be rather approximate. On
the one hand, the amplitude and pattern of Dq in Fig. 4 are very 
sensitive to the amplitude of the stochastic fluctuations (i.e. the 
length scales of the random walks). If the amplitud e of Dq is made 
similar to the values obtained from the reanalysis data (in Fig. 2) by
reducing the length scales listed in Table 2, then the mean flow is
already strongly modified, but not quite sufficiently to make the 
pattern of Dq similar to Fig. 2 (especially in the Gulf Stream re- 
gion). On the other hand, it must be emphasized that the reanalysis 
data do not provide the right Dq, but only a lower bound. At a 1=4�

resolution, the reanalysis still misses a large part of the mesoscale 
fluctuations. Without high resolution observations of both temper- 
ature and salinity (in 3D), it is difficult to compute a better esti- 
Fig. 5. Mean sea surface height (in m), as obtained (i) with the standard ORCA2 configurat
(middle panel). The bottom panel shows the difference produced by the stochastic para
mate of Dq. However , by comparing high resolution observati ons 
of sea surface temperature to the 1=4� reanalysis, one can easily 
get convinced that a 40% overhead for DT and DS (so that Dq is
about twice larger) to account for the missing part of the spectrum 
is not particularly large. These difficulties explain why a concise 
qualitativ e comparis on of typical behaviours has been preferred 
to a detailed quantitat ive comparison of the statistics of Dq. The 
improvem ent of the statistical model using more accurate refer- 
ence data is thus left for further studies.

What is important to realize is that the Dq space and time pat- 
terns illustrated in Fig. 4 have been produced, in a fully autono- 
mous way, by the ORCA2 model simulatio n, without any other 
additional information than that included in Eqs. (15) to (18) and
in Table 2. Furthermore, to produce the effect that is displayed in
ion (top panel), and (ii) with the stochastic parameterization of the equation of state 
meterization.
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Fig. 4, the stochastic model (Eqs. (15)–(18)) and the dynamical 
model (Eqs. (1)–(5)) are coupled in two ways. On the one hand,
the stochastic parameterization of the equation of state depends 
on the ocean circulation that is simulated by the model, through 
the temperature and salinity gradient in Eq. (16). On the other 
hand, the model circulation is directly influenced by the effect of
the stochastic equation of state on the horizontal pressure gradi- 
ent. This will be discussed in the next section.
4. Impact on the model simulation 

The purpose of this section is to provide an overview of the ef- 
fect that the stochasti c paramete rization described in Section 3
produces in the low resolution global ocean model described in
Section 2. For that purpose, two model simulations will be com- 
pared: the reference simulation is performed using the standard 
NEMO primitive equation model, as described by Eqs. (1)–(10);
and the stochastic simulation is performed by replacing the deter- 
ministic equation of state in Eq. (6) by the stochastic equation of
state given by Eqs. (15)–(18).

However, it is important to remark that the stochastic simula- 
tion is essentially different from the reference simulation, in the 
sense that it is only one possible realization, randomly sampled 
from a large set of possibilities. In principle, an ensemble of simu- 
lations is thus needed to properly describe the probability distribu- 
tion of the model results (reflecting the uncertainties that 
unresolved scales produce in the large-scale density gradient). In
this study, however, one stochastic simulation will be sufficient,
because only the average response to the stochastic parameteriza- 
tion will be considered, and because the ensemble average can be
replaced by a time average. It is exactly for the same reason that it
Fig. 6. Root mean square vertical velocity (in m/s, at 100 m depth), as obtained (i)
parameterization of the equation of state (bottom panel).
can be meaningful to look at just one eddy-resolvi ng model simu- 
lation despite the non-deter ministic nature of the eddy flow.

In the rest of the paper, all figures will represent averages over 
the last 10 years of the model simulations (between years 16 and 
25). These averages have the same meaning in the two simulatio ns
and can thus be compared.
4.1. Global circulation 

Fig. 5 shows the mean sea surface height hgi that is produced by
the two simulations, and the difference between them. Although 
the general pattern is quite similar, substantial differences are pro- 
duced by the stochastic parameterizati on, especially in the geo- 
graphica l locations of the main frontal zones, where the 
unresolv ed mesoscale activity is the most intense. The subtropical 
gyres are higher in the Atlantic and slightly lower in the Pacific,
and, except in the South Atlantic, their latitudinal extension is sys- 
tematical ly reduced. The Kuroshio (North Pacific) and the Gulf 
Stream (North Atlantic) pathways are moved southwa rd (except
the North West corner in the Gulf Stream extension, which is
moved in the opposite direction), whereas the South Pacific and 
South Indian currents are moved northward. In the South Atlantic,
the structure of the confluence zone is modified, with increased sea 
surface height at the approximat e position of the Zapiola anticy- 
clone, and the Agulhas current is extending further East towards 
the South Atlantic ocean. As a consequence, the subtropical gyre 
extends further south in the South Atlantic, and the Antarctic cir- 
cumpola r front is thinner there in comparison to the reference sim- 
ulation. All these modifications go towards correcting known 
biases in the sea surface height that is simulated by low resolution 
with the standard ORCA2 configuration (top panel), and (ii) with the stochastic 
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global ocean models, with respect to the observed dynamic height 
(as obtained from various sources, see Rio and Hernandez, 2004 ).

However, if the above results clearly show that the stochasti c
parameterizati on described in Section 3 produces a very significant
impact on the model general circulation, it is certainly prematurate 
(and out of the scope of this study) to try validating the results 
against observati ons, mainly because the stochastic simulation is
very sensitive to the statistical parameters listed in Table 2. It is
too sensitive indeed to consider that the statistical model is fully 
validated by the simple comparison between Figs. 2 and 4. First,
according to Eq. (19), the density difference Dq is proportional to
the square of the temperature and salinity fluctuations, and thus 
to the square of the length scales ‘x;i; ‘y;i; ‘z;i of the random walks.
Hence, these length scales do not need to be very different to sub- 
stantially modify Dq and the resulting model general circulation.
Second, the stochastic fluctuations of Dq (governed by the number 
p of random walks and by the timescales si) also produce a decisive 
impact on the mean circulation. Without fluctuations of Dq
(p!1 or s!1), mimicking the stochasti c forcing of the unre- 
solved scales on the large-scale density, the pathway of the main 
current cannot be modified in the same way, which leaves little 
hope of reproduci ng the same kind of mean behaviour with a
non-stochasti c paramete rization of Dq. Here, the underlying phe- 
nomenon (presumably largely underestimate d in the GLORYS data 
in Fig. 2) is that, because of the nonlinearity of the equation of
state, the unresolv ed scales produce high frequency fluctuations
of the large scale density, which need to be simulated in the low 
resolution model. For these reasons, it is of key importance that 
the statistics of Dq can be further validated using either real world 
observations or high resolution ocean models.
Fig. 7. Mean sea surface temperature difference (in degree Celsius, top panel), and sea su
of the equation of state.
At this stage, it is nonetheless useful to study the conseque nces 
of the fluctuations of Dq in the model simulation. Because of the 
nonlinear ity of the equation of state, the unresolved scales produce 
unknown fluctuations of the large scale density, which corre- 
sponds to a continua l exchange of potential energy between the 
unresolv ed scales and the large scales. In the real ocean, the poten- 
tial energy of the large-scale flow is thus constant ly re-structur ed
by a flux of information from the smaller scales. In the stochastic 
paramete rization, the missing information is provided by the ran- 
dom numbers in Eq. (17), which produce (through Eq. (16), and 
then Eq. (15)) a continual re-organ ization of the large-scale density 
field. Because of this, the large-scale flow is constant ly further 
away from geostrop hic equilibrium (compared to the reference 
simulatio n), so that the instation ary and advection terms play a
larger role in Eq. (1). Moreover, this continual and never ending 
adjustment of the model to geostrophy generates much higher 
associate d vertical velocities, as illustrated in Fig. 6. In the figure,
it can be seen that high vertical velocities (up to � 10�4 m/s
RMS) are generated in the regions where the density fluctuations
are greatest (as shown in Fig. 4). Such high vertical velocities (asso-
ciated with the large scales) in the mid-latitudes were totally ab- 
sent in the reference simulation, and their magnitude is
obviously also very sensitive to the stochastic paramete rization 
of the density fluctuations. Since the amplitude of these fluctua-
tions is difficult to evaluate accurately with available data, the 
magnitud e of these additional vertical velocities should also be
considered with care.

This means that uncertainties in the stochasti c paramete riza- 
tion of uncertainties can directly produce uncertainties in the mod- 
el itself (here in the vertical advection). Hence, an approximat ion 
rface salinity difference (bottom panel) produced by the stochastic parameterization 
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must be found to close the parameterization somewher e (here a
simple closure is defined by the parameters in Table 2). On the 
other hand, as a perspective, the diagnostic of the vertical veloci- 
ties could in turn be used to design a stochastic paramete rization 
of the hydrostatic approximation in Eq. (2). However, it is clear that 
this modelling effort cannot be continued indefinitely, and that an
appropriate approximation must be found to obtain the right mod- 
el complexi ty, including all relevant processes and uncertainti es,
and providing a bulk parameterizati on for all remaining 
uncertainties .
4.2. Air–sea interactions 

One of the most important effect of the change in the average 
model circulation is to strongly modify the distribution of heat 
Fig. 8. Mean net air–sea heat flux (in W/m 2), as obtained (i) with the standard ORCA2 co
of state (bottom panel). The bottom panel shows the difference produced by the stocha
and salt in the ocean, and thus to modify the interaction with the 
atmosph ere. Fig. 7 shows for instance the mean sea surface tem- 
perature and salinity difference between the stochastic and the ref- 
erence simulations . As can be expected from the modification in
the mean surface circulation illustrated in Fig. 5, the main differ- 
ences occur along the fronts separating the subtropical and subpo- 
lar gyres. The largest mean difference occurs in the Gulf Stream 
region, where it can reach about 5 �C and 1 psu. Again, these mod- 
ifications go towards correcting the largest known temperature 
and salinity biases in low resolution ocean models, as compare d
to observati ons.

In addition, this change in the redistribution of heat in the ocean 
has a considerabl e effect in the interaction with the atmosphere . In
forced ocean models, with prescribed atmospheric conditions (see
Table 1), a strong bias in the sea surface temperature is inconsis- 
nfiguration (top panel), and (ii) with the stochastic parameterization of the equation 
stic parameterization.
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tent with the atmosph ere, which is realistic, and the forcing formu- 
lation reacts by producing a spurious heat flux, which can be extre- 
mely unrealistic. For instance, in the Gulf Stream region, if warm 
waters are advected too far north by a bias in the circulation, they 
will meet a very cold atmosphere, and a very strongly negative 
heat flux will result (down to about �250 W/m 2 in average). This 
effect on the average net heat flux is illustrate d in Fig. 8, showing 
that it is particular ly important in the Gulf Stream and Kuroshio re- 
gions in the reference simulation, whereas it is very strongly re- 
duced in the stochastic simulatio n. Zonal patterns of negative 
flux in the Southern Ocean can also be observed in the reference 
simulation (South East of New-Zealand and South East of South- 
Africa). The absence of these patterns in the stochastic simulatio n
is a clear indication that the position of the fronts has been im- 
proved, since it is in better agreement with the atmospheric data.
In coupled models, such as climate models, which are currently 
constructed with a low resolution ocean component, the situation 
is not better, since the bias in the ocean circulation propagat es to
the atmosphere. As a result, the uncertainties in the large-scale 
density associate d to the nonlinearity of the equation of state for 
sea water can have a significant impact on the simulated earth’s 
climate. This particular effect is thus also a good example or the 
importance of faithfully simulating model uncertainti es in climate 
studies (as already pointed out for instance in the works of Berner
et al. (in press), Williams (2012)).
5. Conclusions 

In this study, it has been shown (i) that, as a result of the non- 
linearity of the seawater equation of state, unresolv ed scales repre- 
sent a major source of uncertainties in the computation of the 
large-scale horizontal density gradient from the large-scale tem- 
perature and salinity fields, and (ii) that the effect of these uncer- 
tainties can be simulated using random processes to represent 
unresolved temperature and salinity fluctuations. However, the 
stochastic parameterizati on of the uncertainti es still suffers from 
several shortcomin gs and approximation s, as for instance the use 
of random walks with zonally uniform statistical properties, uncor- 
related on the horizontal and fully correlated along the vertical.
This is why further improvement and validation of the statistical 
model are certainly needed to better quantify the magnitude of
this effect.

The results of experiments performed with a low resolution glo- 
bal ocean model show that this parameterization produces a con- 
siderable effect on the average large-scal e circulation of the ocean,
especially in the regions of intense mesoscale activity (like the 
Western boundary current and the Antarctic circumpol ar current).
The large-scale flow is less geostrophic, with more intense associ- 
ated vertical velocities, and the average geographi cal position of
the main temperature and salinity fronts is more consistent with 
the observations . In particular, the simulatio ns suggest that the 
stochastic effect of the unresolv ed temperature and salinity fluctu-
ations on the large-scale density may be sufficient to explain why 
the Gulf Stream pathway systemati cally overshoots in non-sto- 
chastic low resolution ocean models.

More generally, this study supports the idea that the explicit 
simulation of uncertainties by stochastic paramete rizations is
needed to eliminate biases in ocean models (Palmer, 2012 ). This 
is singularly important in climate applications , for which it is more 
important for the model to be unbiased than accurate (i.e. to pro- 
duce the right attractor rather than accurate instantaneous tenden- 
cies). This is also the natural way of producing the probabilistic 
forecasts that are required to objectively validate model results 
against observations (or to solve inverse problems). Hence, because 
the cost of simulations is always a constraint to the modeller , an
appropriate tradeoff should always be sought between resolving 
more phenomena and more scales (hopefully increasing model 
accuracy), and explicitly simulating uncertainty using a large 
ensemble forecast (hopefully reducing simulation biases and 
increasing the statistical significance of the results).
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