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ABSTRACT

In this study, it is shown (i) that, as a result of the nonlinearity of the seawater equation of state, unre-
solved scales represent a major source of uncertainties in the computation of the large-scale horizontal
density gradient from the large-scale temperature and salinity fields, and (ii) that the effect of these
uncertainties can be simulated using random processes to represent unresolved temperature and salinity
fluctuations. The results of experiments performed with a low resolution global ocean model show that
this parameterization has a considerable effect on the average large-scale circulation of the ocean, espe-
cially in the regions of intense mesoscale activity. The large-scale flow is less geostrophic, with more
intense associated vertical velocities, and the average geographical position of the main temperature
and salinity fronts is more consistent with observations. In particular, the simulations suggest that the
stochastic effect of the unresolved temperature and salinity fluctuations on the large-scale density field
may be sufficient to explain why the Gulf Stream pathway systematically overshoots in non-stochastic
low resolution ocean models.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most salient feature of today’s state-of-the-art ocean
models is that they are essentially deterministic models, in the
sense that they do not involve random numbers to represent uncer-
tainties in the model equations, parameters and forcing, or to sim-
ulate the effect of unresolved processes. Yet, this deterministic
model dynamics is known to become chaotic as soon as mesoscale
eddies are resolved by the model, so that the simulated mesoscale
flow can only be viewed as one random realization sampled from a
large set of possibilities. It is thus only in a statistical sense that the
mesoscale can be compared to the real world, and it is only as a
stochastic process that the effect of the mesoscale in the model
can be analysed. Mesoscale fluctuations indeed produce a consid-
erable effect on the general circulation of the ocean (Zhai et al.,
2004; Penduff et al., 2010), with prominent contributions to
momentum, heat and salt fluxes, which cannot be easily parame-
terized in low resolution models.

As a general rule, the effect of uncertainties or unresolved pro-
cesses (even if unbiased) does not average to zero in a nonlinear
model. For instance, if the wind is fluctuating or if it is uncertain,
then neglecting the fluctuations or the uncertainties systematically
underestimates the air-sea momentum flux (proportional to the
square of the wind speed). In the same way, the average effect of
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the mesoscale fluctuations does not vanish in the two nonlinear
terms of the primitive equations: the advection term and the equa-
tion of state. Concerning the advection term, this effect was origi-
nally parameterized in ocean models using empirically specified
horizontal diffusion (Bryan et al., 1979), and afterwards using more
and more sophisticated advection/diffusion operators (see Griffies
et al., 2000 for a review). Concerning the equation of state, the ef-
fect of the mesoscale temperature and salinity fluctuations on the
large-scale density field is generally ignored, maybe because it can-
not be easily parameterized using a deterministic formulation.
However, it can easily be argued (see Section 3.1), that, in low res-
olution ocean models, the resulting approximation in the large-
scale density is a major source of uncertainties in the horizontal
pressure gradient, and thus in the horizontal momentum balance
equation.

A different point of view can also be adopted to deal with model
uncertainties. Rather than parameterizing their mean effect in the
model, they can be explicitly simulated by including a random
forcing in the model equations. This can be done to produce
ensemble forecasts (Buizza et al., 1999; Palmer et al., 2005) or to
simulate model error in ensemble data assimilation methods
(Evensen, 1994). In such applications, the random forcing is not
only responsible for the dispersion of the ensemble; it can also pro-
duce a significant mean effect in the simulations (Berner et al., in
press; Williams, 2012; Palmer, 2012). In this study, the same kind
of approach is used to simulate the uncertainties that unresolved
mesoscale temperature and salinity fluctuations produce on the
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large-scale horizontal density field. The objective is to propose a
simple (empirically specified) stochastic parameterization of these
uncertainties (in Section 3), and to evaluate the impact that this
parameterization may have on the ocean circulation (in Section 4),
as simulated by a low resolution global model configuration (de-
scribed in Section 2).

2. A low resolution global ocean model

The purpose of this section is to present the NEMO primitive
equation model and to describe the ORCA2 low resolution global
ocean configuration.

2.1. The NEMO primitive equation model

The ocean general circulation model that is used in this study is
the NEMO model (Nucleus for European Modelling of the Ocean),
as described in Madec (2008). The model approximates the ocean
circulation by the primitive equations:

e the momentum balance equation:

ou, 1o 1
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where t is time; K, the local upward unit vector; U, the velocity vec-
tor (Uy, is the horizontal component, orthogonal to k, and w, the ver-
tical velocity); p is pressure; p,, a reference density; and f = 2Q x k,
the Coriolis acceleration (where Q is the Earth angular velocity);

o the hydrostatic equilibrium equation:

op
0z
where z is the vertical coordinate (in the direction of k); p is in situ

density; and g, gravitational acceleration;
o the incompressibility equation:

—pg 2)

v-Uu=0 (3)
o the heat and salt conservation equations:

%:N-(TUHDWFT (4)

g—f:—v.(SU)+DS+F5 (5)

where T is potential temperature and S, salinity;
o the equation of state:

p = pIT,S,po(2)] (6)
where p,(z) = p,gz is the reference pressure as a function of depth.

In these equations, DV, D™ and D° represent the parameterization of
small-scale physics for momentum, temperature and salinity, and
FUF" and F® are surface forcing terms.

These equations are complemented by boundary conditions,
which are applied at the ocean bottom and at the interface with
the atmosphere. Kinematic conditions consist in a ‘no flow’ condi-
tion across the ocean bottom:

w=—-U; - V,H (7)

where H is ocean depth, and a prognostic equation for the sea sur-
face height #:

%:—V~[(H+17)ﬁh]+P—E (8)

where Uy, is the vertical average of horizontal velocity; P, precipita-
tion; and E, evaporation. Dynamic boundary conditions parameter-
ize the exchange of momentum and heat across the bottom and
surface boundaries. Since they depend on the parameterization
used for DY and D", they will be described later in Section 2.2.

From Eqs. (2) and (8), it results that the horizontal pressure gra-
dient V;p in Eq. (1) is given by:

¢=l

0
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where p; = p,gn is the surface pressure gradient, and p, is surface
density. Thus the horizontal pressure gradient depends on the ther-
mobhaline structure of the ocean (T and S) through the equation of
state in Eq. (6). In realistic applications of NEMO, the equation of
state is the standard empirical equation defined by the Joint Panel
on Oceanographic Tables and Standards (UNESCO, 1983), in a ver-
sion that has been reformulated by Jackett and McDougall (1995)
(by a modification of the coefficients of the K polynomial in the
equation below), to allow direct computation of in situ density from
potential temperature (rather than in situ temperature):

p(T,S,0)
1-p/K(T,S,p)

where p(T,S,0) is a 15-term polynomial in T and S; and K(T,S,p), a
26-term polynomial in T, S and p. One of the main characteristics of
the seawater equation of state is thus to be quite nonlinear (see
Fig. 1). In addition, it must be remembered that, in principle, it is
only valid for a fluid parcel in thermodynamic equilibrium.

p(T,S,p) = (10)

2.2. The ORCA2 configuration

The NEMO configuration used in this study is the ORCA2 config-
uration, as described in Madec and Imbard (1996). It is a low res-
olution configuration, which is provided with the model code
(<http://www.nemo-ocean.eu/>), and which is used here exactly
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Fig. 1. Sea water equation of state (thick solid line) for joint temperature and
salinity variations between 2 °C and 24 °C (bottom axis) and 32 and 37.5 (top axis)
respectively. A typical distribution of unresolved temperature and salinity fluctu-
ations is represented by the grey histogram, which superposes two Gaussian
distributions with means at T=8°C, S=33.5 and T=16 °C, S = 35.5, and identical
standard deviations: or = 2.5 °C, o5 = 0.625. The density at point A is computed by
applying the equation of state to the mean of the distribution: T=12°C and
S =345, whereas the density at point B takes into account the distribution of
unresolved temperature and salinity fluctuations. Points B1 and B2 show that the
same density can be obtained as the mean of two densities obtained from opposite
temperature and salinity fluctuations.
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as distributed in the version 3.3 of NEMO (except that full steps are
used instead of partial steps to discretize bottom topography, see
below). See Table 1 for a summary of the main model parameters.

ORCA2 numerics. In this configuration, the NEMO model Egs.
(1) to (6) are discretized using an ORCA type horizontal grid, with
a horizontal resolution of 2° x 2° (reduced to a meridional grid
spacing of 1/2° in tropical regions), and 31 z-coordinate levels
along the vertical (from 10 m resolution in the first 120 m to
500 m resolution for the last levels). The bottom boundary is dis-
cretized using full steps of the vertical grid, so that the discretiza-
tion of Eq. (9) for the horizontal pressure gradient remains
straightforward down to the bottom, without vertical re-interpola-
tion of T and S in the partial step to obtain the last level density gra-
dient (see Barnier et al., 2006 for more details about partial steps).
On the other hand, the time derivatives in Egs. (1), (4), (5) and (8)
are discretized using a leap-frog scheme, with a time step
At = 5760s (15 time steps per day).

ORCA2 physics. This discretization of the equations is designed
to resolve the large-scale component of the ocean circulation,
while the effect of small-scale physics is parameterized in Eqgs.
(1), (4) and (5) by diffusion operators in DY, D" and D®. Lateral dif-
fusion of momentum and tracers is obtained by an iso-neutral
Laplacian operator, with specified viscosities and diffusivities (see
Table 1), which is complemented at the lateral boundaries by a
condition of no heat and salt fluxes for Egs. (4) and (5) and by a
condition of no slip for Eq. (1). Vertical diffusion of momentum
and tracers is obtained by a turbulent closure scheme based on a
prognostic equation for turbulent kinetic energy and a closure
assumption for turbulent length scales, see Blanke and Delecluse,
1993, which is complemented, at the bottom boundary, by a
parameterization of bottom friction (momentum flux) and geo-
thermal heating (heat flux), and at the surface boundary, by a
parameterization of air-sea fluxes. In addition to this subgrid scale

Table 1
Main model parameters for the ORCA2 configuration (see Madec, 2008 for more
details about the formulation of the numerical schemes).

ORCA2 numerics

Horizontal resolution
Vertical resolution

2° x 2°, reduced to 2° x 1/2° in tropical regions
31 z-levels (from 10 m to 500 m vertical resolution)

Bathymetry Full steps approximation
discretization

Momentum Vector form, energy and enstrophy conserving
advection

Tracer advection

Time stepping
scheme

Time step

ORCA2 physics

Total variance dissipation (TVD) scheme
Leap frog, with Asselin filter (y = 0.1)

At = 5760s (for internal and external modes, see text)

v = 40,000 m?/s (horizontal), smaller in the tropics
2 = 2000 m?[s (iso-neutral), smaller in the tropics
Diffusive parameterization, with /,p = 1000 m?/s

Lateral viscosity

Lateral diffusivity

Bottom boundary
layer

TKE As in Madec and Imbard (1996)
parameterization

Additional mixing
options

Double diffusive and tidal mixing parameterizations

ORCA2 initial and boundary conditions

Initial condition
Bottom friction
Geothermal heating
Atmospheric forcing
formulation
Atmospheric data

January climatology from the World Ocean Database
Linear friction, with coefficient r = 4 x 1074

As in Emile-Geay and Madec (2009)

CORE bulk formulas (Large and Yeager, 2009)

10 m wind, air temperature and humidity (6-hourly)
incoming short wave and long wave radiation (daily)
total precipitation (monthly)

Surface salinity To Levitus climatology (with y; = —166.67 mm/day).
restoring

River runoffs Monthly climatology, from the CORE database.

parameterization, an additional term is introduced in the momen-
tum balance Eq. (1) to damp the fast external gravity waves (see
Roullet and Madec, 2000 for more details). This parameterization
can be interpreted as a diffusion of the vertically integrated volume
flux divergence (first term in the right hand side of Eq. 8), which is
designed in such a way that the faster external gravity waves no
longer propagate (so that the above time step is also sufficient to
resolve the external mode).

ORCA2 initial condition and forcing. The two model simula-
tions described in this paper are started from rest (U= 0,7 = 0),
and from climatological temperature and salinity fields corre-
sponding to the January climatology from the World Ocean Data-
base, Levitus et al., 1998. The atmospheric forcing is computed
using the CORE bulk parameterization (Large and Yeager, 2009)
and climatological atmospheric data (see Table 1 for more details).
The same atmospheric conditions are thus applied from year to
year in a perpetual way.

3. Uncertainties in the horizontal density gradient

As mentioned in Section 2.2, in a low resolution ocean model,
the primitive Egs. (1)-(6) are used to describe the large-scale com-
ponent of the ocean circulation. In the averaging of the equations
to extract the large scales, the effect of unresolved scales does
not cancel out in the nonlinear terms of the equations, which are
(i) the advection terms (first term in the right hand side of Egs.
(1), (4) and (5)), and (ii) the equation of state (Eq. (6), with the for-
mulation given by Eq. (10)). In the advection terms, unresolved
scales are assumed to produce an additional diffusion, which is
parameterized by DY, D" and D° (see Section 2.2). In the equation
of state, the effect of unresolved scales is generally neglected,
which means that the large-scale density p is computed from the
large-scale potential temperature T and salinity S using the equilib-
rium formulation of the equation of state given by Eq. (10).
Through the thermal wind Eq. (9), this approximation generates
uncertainties in the relation between the large-scale thermohaline
structure of the ocean (as obtained from Eq. (4) and (5)) and the
large-scale horizontal pressure gradient, which is known to be
one of the dominant terms in the momentum balance equation
(Eq. (1)). The remaining of this paper is dedicated (i) to quantifying
the importance of this approximation (in Section 3.1), (ii) to pro-
posing a parameterization of the resulting uncertainty in the
large-scale density (in Section (3.2), and (iii) to evaluating the im-
pact of this uncertainty on the model circulation (in Section 4).

3.1. Effect of the unresolved scales on the large-scale density

The effect that unresolved mesoscale fluctuations produce in
the computation of the large-scale density gradient has already
been discussed in Appendix B of two papers by McDougall and
McIntosh (1996), McDougall and McIntosh (2001). In the first
one, the authors estimate that the error produced by unresolved
temperature fluctuations of 1 °C can be 3% of the typical mean den-
sity gradient. Furthermore, they also show that this error is propor-
tional to the mean square of unresolved temperature fluctuations
(Eq. (B3) in McDougall and McIntosh (1996) or Eq. (19) below).
This means that the effect is 100 times larger for unresolved tem-
perature fluctuations of 10°C (more typical of the Gulf Stream
front). In addition, as will be shown below, the effect is also signif-
icantly amplified if there is a density maximum close to the middle
of the front, which can happen if temperature and salinity varia-
tions across the front have an opposite effect on density (as in
the Gulf Stream front). This can be related to the cabbeling process
(e.g. Klocker and McDougall, 2010), by which denser water is pro-
duced by mixing two types of water of equal density but with dif-
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ferent temperature and salinity (and which leads to the sinking of
the resulting denser water). In a similar way, if density is computed
from average (large-scale) temperature and salinity (as in all stan-
dard ocean models), then it is quite systematically larger than the
(correct) average density (which should be used in the large-scale
thermal wind Eq. (9)). This is like a spurious ‘artificial cabbelling’
that should be avoided to write consistent equations for the
large-scale flow. To quantify the magnitude of this effect, the first
thing to do is thus to introduce a mathematical description of the
averaging (or filtering) operator extracting the large-scale compo-
nent of the ocean circulation, and then to compute the density mis-
fit that is produced if this filtering operator is applied after rather
than before the equation of state.

(a) Impact of averaging temperature and salinity on density. If (X, X')
denotes the averaging operator (where x and x’ are spatial coordi-
nates), and if T'(x), S'(x) are the unresolved fluctuations of potential
temperature and salinity, then the large-scale density p(x) can be
written:

P00 = [ pITEX) + T06),S0¢) + S ). po(@ bk x)dx (1)

This corresponds to replacing the assumption that the large-scale
fluid parcel is in equilibrium (which is made in Eq. (6) by applying
the equation of state to the large scale) by the assumption of local
equilibrium (by applying the equation of state locally). This is
clearly still an assumption, but it is the standard assumption that
is made to apply equilibrium thermodynamics to fluid mechanics.
Furthermore, it must be noted that the two assumptions would pro-
duce the same result if the equation of state was linear, since by
definition of the averaging operator:

/ [T(X) + T'(x)]y(x,x)dx = T(x) and

/ [S(X) + S'(xX)]y(x,X)dx' = S(X) (12)

The spatial integral in Eq. (11) can be transformed into an inte-
gral on temperature and salinity fluctuations (considered as ran-
dom variables: 6T and §S):

p(X) :/p[T(x)+5T,S(x)+55,p0(z)]¢(5T, 0S;X) doT doS (13)

where ¢(dT, 6S;x) is the distribution of temperature and salinity
fluctuations (due to unresolved scales) corresponding to location x:

(ST, 6S;X) = / S[T'(X') — 6T, S'(X') — &S]y (x,x') dx’ (14)

With the Dirac delta function 6, this last expression cumulates all
temperature and salinity fluctuations (T'(x’) and S'(x') in the neigh-
bourhood of x) that are equal to 6T and éS. To each of them, it gives
the weight (x,x’) depending on its spatial location with respect to
X, so that the distribution ¢(JT, 6S; X) integrates to 1 for every spec-
ified x [just as the averaging operator y(x,x’)]. Furthermore, as a di-
rect consequence of Eq. (12), the mean of the distribution is 6T = 0
and 6S = 0.

To illustrate the effect that the distribution ¢(dT, 5S;Xx) of unre-
solved temperature and salinity fluctuations may have on the
large-scale density, Fig. 1 shows the example of a temperature
and salinity distribution typical of the Gulf Stream front (grey his-
togram along the T-axis in abcsissa). Along the front, two kinds of
surface waters are assumed simultaneously present in the unre-
solved scales: cold and fresh waters on the one hand (with a mean
at T = 8 °C, S = 33.5), and warm and salty waters on the other hand
(with a mean at T = 16 °C, S = 35.5), both assumed with Gaussian
temperature and salinity fluctuations. The thick solid curve shows
the equilibrium equation of state (at the ocean surface: z = 0), as
given by Eq. (10), which produces a maximum density close to

T=12°C and S = 34.5. The density at point A is computed by
applying the equation of state to the large-scale temperature (i.e.
the mean of the distribution: T =12 °C and S = 34.5) as in Eq.
(6): p* =1026.20 kg/m>, and the density at point B is computed
by taking into account the distribution of unresolved temperature
and salinity fluctuations (given by ¢(dT,dS;Xx)) using Eq. (13):
p? =1026.08 kg/m>. In realistic conditions, the curvature of the
equation of state is most often negative, in which case the differ-
ence Ap = pf — p? is systematically negative, and can only ap-
proach zero if the equation of state is close to linear in the range
of the fluctuations. In this example case, the difference
Ap = —0.12 kg/m? is far from negligible, but it is certainly impor-
tant to get a better idea of the importance of this effect in the real
ocean.

(b) Estimation of Ap from reanalysis data. For that purpose, it is nec-
essary to use a gridded ocean data set with both temperature and
salinity at sufficient horizontal resolution. One possible product is
the GLORYS global ocean reanalysis dataset (Ferry et al., 2010),
which is produced by Mercator-Ocean by assimilating all available
ocean observations (such as satellite altimetric data, sea surface
temperature, ARGO floats,. ..) in a 1/4° resolution global configura-
tion of the NEMO model (the ORCA025 configuration, as developed
by The DRAKKAR Group (2007)). Thus the smaller wavelength that
can be represented by the ORCA2 grid corresponds to about 16 grid
points in the GLORYS reanalysis, which can be expected to contain
a significant part of the signal that is not resolved by the ORCA2
configuration. A lower bound for |Ap| can thus be obtained by com-
puting p? from the 16 x 16 block-mean potential temperature and
salinity, and p® as the 16 x 16 block-mean density. In the above
formalism, this corresponds to using the block-mean operator as
a proxy for the averaging operator in Eq. (11), which means iden-
tifying the unresolved scales to all wavelengths below two ORCA2
grid points that are present in the GLORYS reanalysis.

Fig. 2 shows the resulting estimate of Ap that is obtained (a) for
the surface model layer on January 1, 2009 (top panel), (b) for the
vertical profile at 47.5°W 42.6°N for the same date (bottom left pa-
nel), and (c) for the 2009 surface time series at the same horizontal
location (bottom right panel). What can be observed in this figure
is first that the effect of unresolved scales on the large-scale den-
sity is mainly concentrated in the Western boundary currents
and in the Antarctic circumpolar current, because it is in these re-
gions that the mesoscale activity is the most intense. The effect is
especially strong along the Northern edge of the Gulf Stream front,
because in addition to the intense mesoscale activity and the sharp
temperature and salinity gradients, the equation of state produces
a maximum density close to the middle of the current (as illus-
trated in Fig. 1). Second, as a result of the vertical coherence of
the mesoscale temperature and salinity fluctuations, Ap is only
smoothly varying with depth, first in the mixed layer (down to
200 m depth in the winter example of Fig. 2), and then slowly
decreasing in the deep thermocline (down to about 1000 m depth).
In the Gulf Stream region, the vertical average of Ap over the first
1000 m can typically reach 0.1 kg/m3 (corresponding to a pressure
difference of about 0.1 m), which is thus far from being negligible.
Third, as illustrated by the time series in Fig. 2, Ap is fluctuating in
time in relation to the modification of the pattern of the unresolved
scales (which mainly results, in Fig. 2, from the movement of
mesoscale eddies). In the horizontal map (top panel of Fig. 2), these
fluctuations look smooth on the horizontal because Ap is shown at
the 1/4° resolution of the GLORYS reanalysis (using a boxcar filter).
If the resolution is degraded to the ORCA2 resolution, it can be ob-
served, on the contrary, that these high-frequency fluctuations are
mostly decorrelated from one ORCA2 grid point to the next. In
addition, the time series shows a seasonal cycle: |Ap| is smaller
during summer because temperature is higher, so that the nonlin-
earity of the equation of state does not produce the same effect.



68 J.-M. Brankart/Ocean Modelling 66 (2013) 64-76

-200 °
]
8
-
E 00 $
£n. -]
o -600 =
° ]
]
00| o
0.3
-1000 . p D35

density differsics

50 100 150 200 250 300 350

time (days)

Fig. 2. Estimate of Ap computed from the GLORYS ocean reanalysis (a) for the surface model layer on January 1, 2009 (top panel), (b) for the vertical profile at 47.5°W 42.6°N
(the position of the black dot in the top panel) for the same date (bottom left panel), and (c) for the 2009 surface time series at the same horizontal location (bottom right

panel).

This summarizes the typical behaviour that can be expected for
the effect of unresolved scales on the large-scale density field. The
next step is to propose a parameterization that can reproduce the
same kind of behaviour in a low resolution ocean model.

3.2. Stochastic equation of state

To parameterize Eq. (13), a first simplification is to replace the
integral by the summation:

] p
p= EZ{P[H AT, S+ AS;, po(2)] + p[T — AT;,S — AS;, po(2)]}

i=1

(15)

where AT, AS;, i=1,...,p is a set of temperature and salinity fluc-
tuations simulating the effect of the distribution ¢ in Eq. (13). The
first thing to observe in this equation is that, whatever the fluctua-
tions AT; and AS;, they will never affect density if the equation of
state is linear (consistently with Egs. (11) and (13)). It is very impor-
tant that this basic property is embedded in the parameterization
from the very beginning. The second thing to observe about Eq.
(15) is that it contains no approximation: providing that the equa-
tion of state is convex, there is always a set of fluctuations
AT, AS;, i=1,...,p (whatever p > 1) such that the summation in
Eq. (15) is equal to the integral in Eq. (13). For instance, for p =1,
Fig. 1 shows the temperature and salinity fluctuations required to
produce the same effect as the temperature and salinity distribu-
tion. The only reason for using p > 1 in Eq. (15) is to simplify the
construction of a realistic model for the space and time dependence
between the fluctuations. (AT; and AS; are indeed functions of x and
t, even if this dependence was omitted in Eq. (15) for simplicity.)

The last step is then to provide a parameterization for the fluc-
tuations AT; and AS; in Eq. (15). Since the unresolved scales are un-
known by definition, and produce fluctuating uncertainties on the
large-scale density (as observed in Fig. 2), a natural means of rep-
resenting their effect in the low resolution model is to parameter-
ize AT; and AS; as stochastic processes. To produce fluctuations AT;
and AS; consistent with local dynamics, a simple solution is to use
the temperature and salinity difference with respect to random
walks ¢; around the current grid point. Moreover, if the random
walks ¢; are designed to be small enough (typically a few model
grid points), then the fluctuations can be computed simply by
using the local gradient:

ATi=¢&-VT and AS =¢&-VS (16)

In this way, Eq. (15) can be interpreted as the mean density over 2p
random walks surrounding each model grid point (with central
symmetry of the 2p temperature and salinity fluctuations).

(a) Stochastic processes. To parameterize the random walks
&, i=1,...,p in Eq. (16), the most simple (non-degenerate) solu-
tion is to assume that the three components ¢&;, &, and ¢;, of every
&; are independent first-order autoregressive processes (or Langevin
processes), which can be obtained iteratively (from timestep t;_; to
timestep t;) by the equation:

Cix(ti) Eixl(te) Wix
éi.y(tk) = Q; éi‘y(tk—l) + \ 1- (P,2 Wiy (17)
fz}z (tk) Cji.z (tk—l ) Wi,

where the parameter ¢; < 1 is related to the decorrelation time-
scale 7; (in timesteps) of each random walk by:
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;= exp(~1/1) (18)
and where w;, w;, and w;, are here assumed to be Gaussian white
noises, with zero mean and respective standard deviation ¢y, (i
and /.. In this way, &, &, and ¢;, remain Gaussian at any future
time (since Eq. (17) is linear), with asymptotic standard deviations
also equal to /iy, 4y and ¢;, respectively. Fig. 3 shows for instance 2
independent random walks as obtained using Eq. (17), with
lix =ty = 2; grid points and 7; = 180; time steps. From a mathe-
matical point of view, it is interesting to note that, in this stochastic
parameterization, there can be no ambiguity between Itd and Stra-
tonovich interpretations of delta-correlated random processes (see
Van Kampen, 2007 chapter 9), except in the limit case of a zero cor-
relation time scale [¢; = 0] in Eq. (17): (i) in the equations for the
random walks (17), the two formulations are equivalent since the
delta-correlated (white) Gaussian noises w;x, w;y, Wi, appears as
an additive noise, not as a multiplicative noise; (ii) in all other equa-
tions becoming stochastic (equation of state (15), thermal wind Egs.
(9), momentum balance Egs. (1) and then Egs. (3)-(5) as well), Itd’s
formulation cannot apply since the random processes are no more
delta-correlated (except if ¢; = 0).

This idea that stochastic processes can represent mesoscale ed-
dies is not new in the ocean literature (e.g. Berloff, 2005). The usual
approach is to start from statistical mechanics considerations, and
to derive a simplified statistical description of the mesoscale fluc-
tuations. This has been done to obtain a variety of deterministic (as
in Kazantsev et al. (1998)) or stochastic (as in Zidikheri and Fred-
eriksen (2010)) parameterizations of mesoscale turbulence (see
Frederiksen et al., 2012 for a review). These studies are useful to
improve the statistics of the fluctuations, but they are mostly the-
oretical (using an idealized model setup), and they are all dedi-
cated to simulating the effect that unresolved scales produce in
the advection term, not in the equation of state. Yet, the problem
is much more simple with the equation of state, since there is no
modification in the advection/diffusion formulation, and thus no
modification in the basic conservation properties of the model.
The only exception is that, because of the stochastic fluctuations
of Ap, there is a continual exchange of potential energy between
the large scale flow and the unresolved scales (as described by
the stochastic process, see discussion is Section 4.1). From a
numerical point of view, this can produce some more numerical
instability and using a smaller timestep can sometimes be re-
quired; but this has not been necessary in the experiments de-
scribed below. The only important issue is thus to produce a
density correction Ap with realistic statistics.

(b) Impact of temperature and salinity fluctuations on density. With
the parameterization in Eq. (16), what is expected in the first place

is that, by making the fluctuations AT; and AS; proportional to the
gradient, they will automatically adjust to be large in the main
frontal regions of the ocean, where the mesoscale activity is the
most intense. Second, by sampling temperature and salinity to-
gether at the same set of neighbouring points (defined by
&, i=1,...,p), there is no need to explicitly specify the depen-
dence between AT; and AS;; they will automatically move together
as the local variations of temperature and salinity. Third, the same
automatic effect of the random walk can be used to simulate a rea-
sonable vertical structure for AT; and AS;, which is crucially impor-
tant to reflect the vertical coherence of the mesoscale fluctuations
(as observed in Fig. 2). This is why the same set of random walks
&, i=1,...,pwill be used for all grid points of the same water col-
umn, so that the vertical variations of AT; and AS; in Eq. (16) will
only result from the vertical variations of the large-scale gradients
(VT and VS). This must be understood as a first simple assump-
tion, neglecting for instance vertical variations in unresolved lat-
eral stirring and mixing.

On the contrary, the random walks will be generated indepen-
dently for every water column, to reflect the decorrelation of the
unresolved mesoscale fluctuations from one ORCA2 grid point to
the next (as observed in the results of Fig. 2). It must be noted,
however, that this could be easily generalized to a specified or
flow-dependent horizontal correlation structure, by applying an
appropriate horizontal filtering operator to the random walks:
& = F|&] or by solving an elliptic equation: L[&] = & (together
with the adequate amplification factor to restore the original stan-
dard deviation), Such refinements of the model will not be consid-
ered in this preliminary study.

However, what is certainly important to tune correctly in the
statistical model is the shape of the probability distribution for
Ap, which results from the superposition of several Gaussian prob-
ability distributions for AT; and AS;. For that purpose, it is easier to
use the first-order approximation of Eq. (15), which can be written:

Pp (1 &, . Pp (1L

i=1
Ppl1&, o
+=L (52 A
os? <2p; l

From this equation, it is indeed immediately clear that the density
correction Ap is the sum of the square of Gaussian random variables
(after diagonalisation to remove the cross-products). Furthermore,
if these Gaussian variables are identically distributed (i.e. if all ran-
dom walks have the same statistics: (ix = by, liy =4y, 0, = {5,

Yi=1,...,p, so that AT? =AT?, ATAS; = ATAS, AS?=AS?,

(19)

4L ]

Fig. 3. Horizontal components of two random walks, as simulated during 20 days using Eq. (17), with ¢, = ¢, = 2; grid points and T = 180; time steps.The axes are labelled in

number of grid points.
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Table 2

Statistical parameters defining the random walks in Eq. (17). A dependence with
latitude (2) is introduced to avoid unrealistic effects and numerical instability in
tropical regions.

Number of random walks p=6
Horizontal standard deviation (i=1,...,p) Uy =ty = 4.2|sin 4| grid points
Vertical standard deviation (i=1,...,p) ¢, = |sin 4| grid points

Correlation timescale (i=1,... ﬁp') 7 = 180 time steps

Vi=1,...,p), then Ap is distributed like a chi-square distribution
with p degrees of freedom (with a negative multiplicative factor,
containing the factor 1/p). And the main characteristics of the Ap
distribution are:

o the mean: Ap =1 [%ﬁ+ 220 ATAS +‘;’:T’2’F]

o the standard deviation: 6,, = \/%|A_p\

othemode:K/\):Oforp<2and//\):”’%2 pforp =2

Thus the mean density difference Ap does not depend on the
number of degrees of freedom p in the temperature and salinity
fluctuations, and the main effect of increasing p is to reduce the
dispersion of Ap around the mean (since the standard deviation
04, decreases as 1/,/p). Moreover, for p < 2, the mode of the distri-
bution is Ap = 0, which means that small Ap remain very probable,
and would appear quite often in the time series (inconsistently
with Fig. 2). On the contrary, as the number of degrees of freedom
in the fluctuations increases, the probability that they are all close
to zero (which is necessary for the mean square Ap to be close to

zero) becomes smaller and smaller, and the peak ZF gets closer
to the mean Ap. (For p — oo, the distribution even becomes asymp-
totically Gaussian, with mean Ap and standard deviation 0ap-) This
corresponds to what happens in the real ocean: the more degrees
of freedom in the unresolved scales (for every ORCA2 grid point),
the less probable it is that the effect of the fluctuations can almost
totally disappear (i.e. Ap becoming close to zero). Hence, in the
parameterization of the stochastic processes, p is the parameter
to tune to obtain the right dispersion of Ap around the mean Ap
(as observed in Fig. 2).

(c) Density modification Ap in the model. Table 2 summarizes the
statistical parameters that have been used to define the stochastic
equation of state using Egs. (15) to (18), and Fig. 4 shows the
resulting density difference Ap that it produces in the ORCA2 sim-
ulation (computed as the difference between Egs. (15) and (6)). The
three panels of Fig. 4 show the same three kinds of results that
were obtained in Fig. 2 from the GLORYS reanalysis: (a) Ap in
the surface model layer for January (corresponding to the 25th year
of the perpetual ORCA2 simulation), (b) Ap for the vertical profile
at 47.5°W 42.6°N for the same date, and (c) Ap for the time series
corresponding to the same location and to the same year. What we
can conclude from the comparison between Figs. 2 and 4 is that the
stochastic parameterization of the equation of state is qualitatively
able to reproduce (i) the right horizontal pattern for Ap, mainly
concentrated in the Western boundary currents and in the Antarc-
tic circumpolar current (but the values are about two times larger),
(ii) a reasonable vertical structure for Ap (varying quite smoothly
with depth, but with a sharper gradient between 200 and 500 m
depth), and (iii) a fluctuating time series (with a similar annual cy-
cle but much larger high frequency fluctuations). Because of the
simplicity of the statistical model (in Table 2) and because of the

.05
200 g
8 .01
E -0 g
E r :E 0.15
£n. o
& so0l 2 0.2
© -
£ -0.25
500/ o
0.3
-1000 . _ p 035

dt'anslty.‘ dlfft;renc;e

b0 i 0 )4 D 00 320

time (days)

Fig. 4. Density difference Ap produced by the stochastic parameterization (a) for the surface model layer on January 1, year 5 (top panel), (b) for the vertical profile at 48°W
43.2°N (the position of the black dot in the top panel) for the same date (bottom left panel), and (c) for the surface time series (corresponding to the 25th year of the perpetual

simulation) at the same horizontal location (bottom right panel).
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inaccuracy of the reference data (in Fig. 2), the adequation between
the simulated and observed Ap can only be rather approximate. On
the one hand, the amplitude and pattern of Ap in Fig. 4 are very
sensitive to the amplitude of the stochastic fluctuations (i.e. the
length scales of the random walks). If the amplitude of Ap is made
similar to the values obtained from the reanalysis data (in Fig. 2) by
reducing the length scales listed in Table 2, then the mean flow is
already strongly modified, but not quite sufficiently to make the
pattern of Ap similar to Fig. 2 (especially in the Gulf Stream re-
gion). On the other hand, it must be emphasized that the reanalysis
data do not provide the right Ap, but only a lower bound. At a 1/4°
resolution, the reanalysis still misses a large part of the mesoscale
fluctuations. Without high resolution observations of both temper-
ature and salinity (in 3D), it is difficult to compute a better esti-

mate of Ap. However, by comparing high resolution observations
of sea surface temperature to the 1/4° reanalysis, one can easily
get convinced that a 40% overhead for AT and AS (so that Ap is
about twice larger) to account for the missing part of the spectrum
is not particularly large. These difficulties explain why a concise
qualitative comparison of typical behaviours has been preferred
to a detailed quantitative comparison of the statistics of Ap. The
improvement of the statistical model using more accurate refer-
ence data is thus left for further studies.

What is important to realize is that the Ap space and time pat-
terns illustrated in Fig. 4 have been produced, in a fully autono-
mous way, by the ORCA2 model simulation, without any other
additional information than that included in Egs. (15) to (18) and
in Table 2. Furthermore, to produce the effect that is displayed in
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Fig. 5. Mean sea surface height (in m), as obtained (i) with the standard ORCA2 configuration (top panel), and (ii) with the stochastic parameterization of the equation of state
(middle panel). The bottom panel shows the difference produced by the stochastic parameterization.
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Fig. 4, the stochastic model (Egs. (15)-(18)) and the dynamical
model (Eqgs. (1)-(5)) are coupled in two ways. On the one hand,
the stochastic parameterization of the equation of state depends
on the ocean circulation that is simulated by the model, through
the temperature and salinity gradient in Eq. (16). On the other
hand, the model circulation is directly influenced by the effect of
the stochastic equation of state on the horizontal pressure gradi-
ent. This will be discussed in the next section.

4. Impact on the model simulation

The purpose of this section is to provide an overview of the ef-
fect that the stochastic parameterization described in Section 3
produces in the low resolution global ocean model described in
Section 2. For that purpose, two model simulations will be com-
pared: the reference simulation is performed using the standard
NEMO primitive equation model, as described by Eqs. (1)-(10);
and the stochastic simulation is performed by replacing the deter-
ministic equation of state in Eq. (6) by the stochastic equation of
state given by Egs. (15)-(18).

However, it is important to remark that the stochastic simula-
tion is essentially different from the reference simulation, in the
sense that it is only one possible realization, randomly sampled
from a large set of possibilities. In principle, an ensemble of simu-
lations is thus needed to properly describe the probability distribu-
tion of the model results (reflecting the uncertainties that
unresolved scales produce in the large-scale density gradient). In
this study, however, one stochastic simulation will be sufficient,
because only the average response to the stochastic parameteriza-
tion will be considered, and because the ensemble average can be
replaced by a time average. It is exactly for the same reason that it

can be meaningful to look at just one eddy-resolving model simu-
lation despite the non-deterministic nature of the eddy flow.

In the rest of the paper, all figures will represent averages over
the last 10 years of the model simulations (between years 16 and
25). These averages have the same meaning in the two simulations
and can thus be compared.

4.1. Global circulation

Fig. 5 shows the mean sea surface height () that is produced by
the two simulations, and the difference between them. Although
the general pattern is quite similar, substantial differences are pro-
duced by the stochastic parameterization, especially in the geo-
graphical locations of the main frontal zones, where the
unresolved mesoscale activity is the most intense. The subtropical
gyres are higher in the Atlantic and slightly lower in the Pacific,
and, except in the South Atlantic, their latitudinal extension is sys-
tematically reduced. The Kuroshio (North Pacific) and the Gulf
Stream (North Atlantic) pathways are moved southward (except
the North West corner in the Gulf Stream extension, which is
moved in the opposite direction), whereas the South Pacific and
South Indian currents are moved northward. In the South Atlantic,
the structure of the confluence zone is modified, with increased sea
surface height at the approximate position of the Zapiola anticy-
clone, and the Agulhas current is extending further East towards
the South Atlantic ocean. As a consequence, the subtropical gyre
extends further south in the South Atlantic, and the Antarctic cir-
cumpolar front is thinner there in comparison to the reference sim-
ulation. All these modifications go towards correcting known
biases in the sea surface height that is simulated by low resolution

[ [

0 3e-05

6e-05 9e-05

Fig. 6. Root mean square vertical velocity (in m/s, at 100 m depth), as obtained (i) with the standard ORCA2 configuration (top panel), and (ii) with the stochastic

parameterization of the equation of state (bottom panel).
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global ocean models, with respect to the observed dynamic height
(as obtained from various sources, see Rio and Hernandez, 2004).

However, if the above results clearly show that the stochastic
parameterization described in Section 3 produces a very significant
impact on the model general circulation, it is certainly prematurate
(and out of the scope of this study) to try validating the results
against observations, mainly because the stochastic simulation is
very sensitive to the statistical parameters listed in Table 2. It is
too sensitive indeed to consider that the statistical model is fully
validated by the simple comparison between Figs. 2 and 4. First,
according to Eq. (19), the density difference Ap is proportional to
the square of the temperature and salinity fluctuations, and thus
to the square of the length scales ¢, ¢;,¢,; of the random walks.
Hence, these length scales do not need to be very different to sub-
stantially modify Ap and the resulting model general circulation.
Second, the stochastic fluctuations of Ap (governed by the number
p of random walks and by the timescales ;) also produce a decisive
impact on the mean circulation. Without fluctuations of Ap
(p — oo or T — oo), mimicking the stochastic forcing of the unre-
solved scales on the large-scale density, the pathway of the main
current cannot be modified in the same way, which leaves little
hope of reproducing the same kind of mean behaviour with a
non-stochastic parameterization of Ap. Here, the underlying phe-
nomenon (presumably largely underestimated in the GLORYS data
in Fig. 2) is that, because of the nonlinearity of the equation of
state, the unresolved scales produce high frequency fluctuations
of the large scale density, which need to be simulated in the low
resolution model. For these reasons, it is of key importance that
the statistics of Ap can be further validated using either real world
observations or high resolution ocean models.

At this stage, it is nonetheless useful to study the consequences
of the fluctuations of Ap in the model simulation. Because of the
nonlinearity of the equation of state, the unresolved scales produce
unknown fluctuations of the large scale density, which corre-
sponds to a continual exchange of potential energy between the
unresolved scales and the large scales. In the real ocean, the poten-
tial energy of the large-scale flow is thus constantly re-structured
by a flux of information from the smaller scales. In the stochastic
parameterization, the missing information is provided by the ran-
dom numbers in Eq. (17), which produce (through Eq. (16), and
then Eq. (15)) a continual re-organization of the large-scale density
field. Because of this, the large-scale flow is constantly further
away from geostrophic equilibrium (compared to the reference
simulation), so that the instationary and advection terms play a
larger role in Eq. (1). Moreover, this continual and never ending
adjustment of the model to geostrophy generates much higher
associated vertical velocities, as illustrated in Fig. 6. In the figure,
it can be seen that high vertical velocities (up to ~ 107 m/s
RMS) are generated in the regions where the density fluctuations
are greatest (as shown in Fig. 4). Such high vertical velocities (asso-
ciated with the large scales) in the mid-latitudes were totally ab-
sent in the reference simulation, and their magnitude is
obviously also very sensitive to the stochastic parameterization
of the density fluctuations. Since the amplitude of these fluctua-
tions is difficult to evaluate accurately with available data, the
magnitude of these additional vertical velocities should also be
considered with care.

This means that uncertainties in the stochastic parameteriza-
tion of uncertainties can directly produce uncertainties in the mod-
el itself (here in the vertical advection). Hence, an approximation
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Fig. 7. Mean sea surface temperature difference (in degree Celsius, top panel), and sea surface salinity difference (bottom panel) produced by the stochastic parameterization

of the equation of state.
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must be found to close the parameterization somewhere (here a
simple closure is defined by the parameters in Table 2). On the
other hand, as a perspective, the diagnostic of the vertical veloci-
ties could in turn be used to design a stochastic parameterization
of the hydrostatic approximation in Eq. (2). However, it is clear that
this modelling effort cannot be continued indefinitely, and that an
appropriate approximation must be found to obtain the right mod-
el complexity, including all relevant processes and uncertainties,
and providing a bulk parameterization for all remaining
uncertainties.

4.2. Air-sea interactions

One of the most important effect of the change in the average
model circulation is to strongly modify the distribution of heat

and salt in the ocean, and thus to modify the interaction with the
atmosphere. Fig. 7 shows for instance the mean sea surface tem-
perature and salinity difference between the stochastic and the ref-
erence simulations. As can be expected from the modification in
the mean surface circulation illustrated in Fig. 5, the main differ-
ences occur along the fronts separating the subtropical and subpo-
lar gyres. The largest mean difference occurs in the Gulf Stream
region, where it can reach about 5 °C and 1 psu. Again, these mod-
ifications go towards correcting the largest known temperature
and salinity biases in low resolution ocean models, as compared
to observations.

In addition, this change in the redistribution of heat in the ocean
has a considerable effect in the interaction with the atmosphere. In
forced ocean models, with prescribed atmospheric conditions (see
Table 1), a strong bias in the sea surface temperature is inconsis-
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Fig. 8. Mean net air-sea heat flux (in W/m?), as obtained (i) with the standard ORCA2 configuration (top panel), and (ii) with the stochastic parameterization of the equation
of state (bottom panel). The bottom panel shows the difference produced by the stochastic parameterization.
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tent with the atmosphere, which is realistic, and the forcing formu-
lation reacts by producing a spurious heat flux, which can be extre-
mely unrealistic. For instance, in the Gulf Stream region, if warm
waters are advected too far north by a bias in the circulation, they
will meet a very cold atmosphere, and a very strongly negative
heat flux will result (down to about —250 W/m? in average). This
effect on the average net heat flux is illustrated in Fig. 8, showing
that it is particularly important in the Gulf Stream and Kuroshio re-
gions in the reference simulation, whereas it is very strongly re-
duced in the stochastic simulation. Zonal patterns of negative
flux in the Southern Ocean can also be observed in the reference
simulation (South East of New-Zealand and South East of South-
Africa). The absence of these patterns in the stochastic simulation
is a clear indication that the position of the fronts has been im-
proved, since it is in better agreement with the atmospheric data.
In coupled models, such as climate models, which are currently
constructed with a low resolution ocean component, the situation
is not better, since the bias in the ocean circulation propagates to
the atmosphere. As a result, the uncertainties in the large-scale
density associated to the nonlinearity of the equation of state for
sea water can have a significant impact on the simulated earth’s
climate. This particular effect is thus also a good example or the
importance of faithfully simulating model uncertainties in climate
studies (as already pointed out for instance in the works of Berner
et al. (in press), Williams (2012)).

5. Conclusions

In this study, it has been shown (i) that, as a result of the non-
linearity of the seawater equation of state, unresolved scales repre-
sent a major source of uncertainties in the computation of the
large-scale horizontal density gradient from the large-scale tem-
perature and salinity fields, and (ii) that the effect of these uncer-
tainties can be simulated using random processes to represent
unresolved temperature and salinity fluctuations. However, the
stochastic parameterization of the uncertainties still suffers from
several shortcomings and approximations, as for instance the use
of random walks with zonally uniform statistical properties, uncor-
related on the horizontal and fully correlated along the vertical.
This is why further improvement and validation of the statistical
model are certainly needed to better quantify the magnitude of
this effect.

The results of experiments performed with a low resolution glo-
bal ocean model show that this parameterization produces a con-
siderable effect on the average large-scale circulation of the ocean,
especially in the regions of intense mesoscale activity (like the
Western boundary current and the Antarctic circumpolar current).
The large-scale flow is less geostrophic, with more intense associ-
ated vertical velocities, and the average geographical position of
the main temperature and salinity fronts is more consistent with
the observations. In particular, the simulations suggest that the
stochastic effect of the unresolved temperature and salinity fluctu-
ations on the large-scale density may be sufficient to explain why
the Gulf Stream pathway systematically overshoots in non-sto-
chastic low resolution ocean models.

More generally, this study supports the idea that the explicit
simulation of uncertainties by stochastic parameterizations is
needed to eliminate biases in ocean models (Palmer, 2012). This
is singularly important in climate applications, for which it is more
important for the model to be unbiased than accurate (i.e. to pro-
duce the right attractor rather than accurate instantaneous tenden-
cies). This is also the natural way of producing the probabilistic
forecasts that are required to objectively validate model results
against observations (or to solve inverse problems). Hence, because
the cost of simulations is always a constraint to the modeller, an

appropriate tradeoff should always be sought between resolving
more phenomena and more scales (hopefully increasing model
accuracy), and explicitly simulating uncertainty using a large
ensemble forecast (hopefully reducing simulation biases and
increasing the statistical significance of the results).

6. Acknowledgements

This work was conducted as a contribution to the SANGOMA
project funded by the E.U. (grant FP7-SPACE-2011-1-CT-283580-
SANGOMA), with additional support from CNES. I wish to thank
Jacques Verron and Pierre Brasseur for their support to this study
and for their encouragements to publish this work; and I am also
grateful to the anonymous reviewers for their useful comments
and suggestions. The calculations were performed using HPC re-
sources from GENCI-IDRIS (Grant 2011-011279).

References

Barnier, B., Madec, G., Penduff, T., Molines, ]., Tréguier, A., Beckmann, A., Biastoch, A.,
Boning, C., Dengg, J., Gulev, S., Le Sommer, ]., Rémy, E., Talandier, C., Theetten, S.,
Maltrud, M., Mc Lean, J., 2006. Impact of partial steps and momentum advection
schemes in a global ocean circulation model at eddy permitting resolution.
Ocean Dyn. 56 (5-6), 543-567.

Berloff, P.S., 2005. On rectification of randomly forced flows. J. Marine Res. 63 (3),
497-527.

Berner, ]., Jung, T., Palmer, N., in press. Systematic model error: the impact of
increased horizontal resolution versus improved stochastic and deterministic
parameterizations, J. Climate. http://dx.doi.org/10.1175/JCLI-D-11-00297.1.

Blanke, B., Delecluse, P., 1993. Low frequency variability of the tropical atlantic
ocean simulated by a general circulation model with mixed layer physics. J.
Phys. Oceanograph. 23, 1363-1388.

Bryan, K., Lewis, J., 1979. A water mass model of the global ocean. J. Geophys. Res.
84 (C5), 2503-2517.

Buizza, R., Miller, M., Palmer, T.N., 1999. Stochastic representation of model
uncertainties in the ECMWF ensemble prediction system. Quater. ]J. Royal
Meteorol. Soc. 125, 2887-2908.

Emile-Geay, J., Madec, G., 2009. Geothermal heating, diapycnal mixing and the
abyssal circulation. Ocean Sci. 5, 281-325.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99
(C5), 10143-10162.

Ferry, N., Parent, L., Garric, G., Barnier, B., Jourdain, N., 2010. The Mercator ocean
team, Mercator global eddy permitting ocean reanalysis GLORYS1V1:
description and results. Mercator Ocean Newslett. 36, 15-27.

Frederiksen, J., O’Kane, T., Zidikheri, M., 2012. Stochastic subgrid parameterizations
for atmospheric and oceanic flows. Phys. Scripta 85, 068202. http://dx.doi.org/
10.1088/0031-8949/85/06/068202.

Griffies, S.M., Boning, C., Bryan, F., Chassignet, E.P., Gerdes, R., Hasumi, H., Hirst, A.,
Treguier, A.-M., Webb, D., 2000. Developments in ocean climate modelling.
Ocean Modell. 2 (3-4), 123-192.

Jackett, D.R., McDougall, T.J., 1995. Minimal adjustment of hydrographic data to
achieve static stability. J. Atmos. Oceanic Technol. 12, 381-389.

Kazantsev, E., Sommeria, J., Verron, J., 1998. Subgrid-scale eddy parameterization by
statistical mechanics in a barotropic ocean model. ]. Phys. Oceanograph. 28,
1017-1042.

Klocker, A., McDougall, T.J., 2010. Influence of the nonlinear equation of state on
global estimates of dianeutral advection and diffusion. ]. Phys. Oceanograph. 40,
1690-1709.

Large, W., Yeager, S., 2009. The global climatology of an interannually varying air-
sea flux data set. Climate Dyn. 33, 341-364.

Levitus, S. et al., 1998. World ocean database 1998, Atlas NESDIS 18, NOAA.

Madec, G., 2008. The NEMO team, NEMO ocean engine, Note du Pdle de
modélisation 27. Institut Pierre-Simon Laplace (IPSL), France, ISSN 1288-1619.

Madec, G., Imbard, M., 1996. A global ocean mesh to overcome the north pole
singularity. Climate Dyn. 12, 381-388.

McDougall, TJ., McIntosh, P.C., 1996. The temporal-residual-mean velocity. Part I:
Derivation and the scalar conservation equations. ]. Phys. Oceanograph. 26,
2653-2665.

McDougall, T.J., McIntosh, P.C., 2001. The temporal-residual-mean velocity. Part II:
Isopycnal interpretation and the tracer and momentum equations. ]. Phys.
Oceanograph. 31, 1222-1246.

Palmer, T., 2012. Towards the probabilistic Earth-system simulator: a vision for the
future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138, 841-861.

Palmer, T., Shutts, G., Hagedorn, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., 2005.
Representing model uncertainty in weather and climate prediction. Annu. Rev.
Earth Planet. Sci. 33, 163-193.

Penduff, T., Juza, M., Brodeau, L., Smith, G., Barnier, B., Molines, T.A.-M., Madec, J.-M.,
G., 2010. Impact of global ocean model resolution on sea-level variability with
emphasis on interannual time scales. Ocean Sci. 6, 269-284.


https://domicile.ifremer.fr/10.1175/,DanaInfo=dx.doi.org+JCLI-D-11-00297.1
https://domicile.ifremer.fr/10.1088/0031-8949/85/06/,DanaInfo=dx.doi.org+068202

76 J.-M. Brankart/Ocean Modelling 66 (2013) 64-76

Rio, M., Hernandez, F., 2004. A mean dynamic topography computed over the world
ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res.
109, C12032. http://dx.doi.org/10.1029/2003JC002226.

Roullet, G., Madec, G., 2000. Salt conservation, free surface, and varying levels: a
new formulation for ocean general circulation models. ]J. Geophys. Res. 105,
23927-23942.

The DRAKKAR Group, 2007. Eddy-permitting ocean circulation hindcasts of past
decades. CLIVAR Exchang. 42 12 (3), 8-10.

UNESCO, 1983. Algorithms for computation of fundamental property of sea water,
Techn. Paper Mar. Sci. 44 UNESCO.

Van Kampen, N.G., 2007. Stochastic Processes in Physics and Chemistry. Elsevier, p.
463..

Williams, P.D., 2012. Climatic impacts of stochastic fluctuations in air-sea fluxes.
Geophys. Res. Lett. 39, L10705. http://dx.doi.org/10.1029/2012GL051813.

Zhai, X., Greatbatch, RJ., Sheng, J., 2004. Diagnosing the role of eddies in driving the
circulation of the northwest Atlantic Ocean. Geophys. Res. Lett. 31, 1-4.

Zidikheri, M., Frederiksen, J., 2010. Stochastic modelling of unresolved eddy fluxes.
Geophys. Astrophys. Fluid Dyn. 104, 323-348.


https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2003JC002226
https://domicile.ifremer.fr/10.1029/,DanaInfo=dx.doi.org+2012GL051813

	Impact of uncertainties in the horizontal density gradient upon low resolution  global ocean modelling
	1 Introduction
	2 A low resolution global ocean model
	2.1 The NEMO primitive equation model
	2.2 The ORCA2 configuration

	3 Uncertainties in the horizontal density gradient
	3.1 Effect of the unresolved scales on the large-scale density
	3.2 Stochastic equation of state

	4 Impact on the model simulation
	4.1 Global circulation
	4.2 Air–sea interactions

	5 Conclusions
	6 Acknowledgements
	References


