the turbulent
bensities of the
1ce are nearly
of strain, and
rincipal axes
the ordinary

ing a balance
lisorientating
1in the “equi-
v equilbrium
ciently rapid
Id be on the
¢ turbulence,
ive and it is’
y to isotropy
88, it may be
;5 production
ress is deter-
rain.  While
il, it should
lechanism of
: concept of

ord : Claren-
'8

1949, Proc.
oress).

[ 907 ]

LXXXIIL. The Effect of Hddy Viscosity on Ocean Waves.

By K. F. Bowbgn,
Oceanography Department, University of Liverpool *,

[Received May 22, 1950.]

ABSTRACT.

The effect of turbulence on ocean waves appears to call for an eddy
viscosity which, while being large compared with the molecular viscosity,
is small compared with the eddy viscosity found to apply to currents. A
recent suggestion that the eddy viscosity should be taken as proportional
to A*® where A is the wavelength, seems to the author to be unsatisfactory.,
It is proposed, instead, that the coefficient of eddy viscosity N, applicable
to waves, should be of the form N=Kca, where ¢ is the speed of propa-
gation, @ is the amplitude and K is a constant, This form is indicated on
dimensional grounds and is shown to be in conformity with v. Karman’s
similarity hypothesis for shearing flow. With K of the order of 5% 10-5,
the eddy viscosity would be large enough to account entirely for the
observed rate of decay of ocean swell, while its effect on the attenuation of
waves with depth would still be negligible. In the initial formation of
waves, only the molecular viscosity need be considered. A possible effect
of eddy viscosity on waves in the generating area would be to limit the
steepness of the longer waves to a value less than the breaking steepness,
even when the duration and fetch were unlimited.

§ 1. INTRODUCTION.

WHILE molecular viscosit Y appears to be an important factor in the initial
formation of surface waves on water, its dissipative effect on the long
waves of ocean swell, for example, is negligibly small. Ifan eddy viscosity
of the order of magnitude found to apply to ocean currents, on the other
hand, were operative in the case of waves, their loss of energy would
be much more rapid than is observed. Since it is well recognized in
meteorology and oceanography that the eddy viscosity applicable to a
particular motion depends on its scale; the suggestion has been made that
waves may be affected by turbulence but that s smaller, and probably
variable, eddy viscosity is applicable.

§ 2. TurBULENCE AND EppY Viscosrry.

The first quantitative expression of this idea would appear to be that
made recently by Groen and Dorrestein (1950), who assumed an eddy
viscosity proportional to A, where ) is the wavelength. This form was
based on a result found by v. Weizsiicker (1948) in the theory of locally

* Communicated by the Author,
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isotropic turbulence, and on an empirical law found by Richardson (1926)
from diffusion experiments. V. Weizsicker was considering the transfer
of energy from turbulence on a scale characterized by a linear dimension [
to turbulence of scales smaller than 7. By similarity considerations, he
found the effective eddy viscosity to be proportional to 142 for values of [
within a certain range. Turbulence on a scale so small that dissipation
by molecular viscosity is the dominating factor, or so large that transfer
of energy from the mean motion to the turbulence predominates is exeluded
from the range to which the similarity law applies. In the case of the
dissipation of waves, we are dealing with the loss of energy from the mean
motion (4. e. the wave motion) and it is not clear, therefore, that the eddy
viscosity law deduced by v. Weizsiicker’s theory will appl v to this problem.

Richardson’s result, which was obtained originally for the atmosphere
and has been found by Richardson and Stommel (1948) to apply also to
the ocean in certain conditions, was that the coefficient of diffusion
applicable to the dispersal of a group of particles is proportional to d*?,
where d is the separation of a pair of particles. The process considered
in this case can take place in turbulence which does not necessarily involve
shear in the fluid and it is not apparent that the dissipation of energy in a
problem involving shearing stresses can be deduced from it.

A further difficulty is that, even if we assume an eddy viscosity propor-
tional to I*?, the question arises : what is the characteristic length I for
wave motion :  Groen and Dorrestein have taken it to be A, but one might
expect the amplitude @ also to be a characteristic length for a given set of
waves.

§ 3. WAvE MoTION AS AFFECTED BY MOLECULAR AND EpDY VISCOSITY.

Let us consider two-dimensional surface waves in deep water. Let
rectangular axes be taken, with Oz and Oy in the undisturbed sea surface
and Oz vertically upwards. Let the waves be travelling in the direction
of the negative z-axis, and TJ and W be the horizontal and vertical
components of the particle velocity at any point. Then for irrotational
waves of small amplitude

U= —wae* cos (wt+kx),
W=—wae*? gsin (wi+kx), ieby e zaties it ()

where w=2n/T, T being the period, &k=2m/A, A being the wavelength and
a is the amplitude of the surface elevation. ¢ is the time.
The rate of dissipation of energy by molecular viscosity may be shown
to be (Lamb 1932, p. 623)
DI i B e R (2)

where p is the coefficient of viscosity and c=A/T is the velocity of
propagation. If no external forces arve acting, the amplitude of
the waves will decay at a rate given by the factor exp (—2vkt), where
v—=p/p is the kinematic viscosity, p being the density.




dson (1926)
the transfer
dimension [
arations, he
: values of /
dissipation
1at transfer
vis excluded
case of the
m the mean
at the eddy
1ig problem.
atmosphere
ply also to
f diffusion
»nal to d*?,
considered
rily involve
energy in a

ity propor-
length [ for
t one might
given set of

VIsSCcosITy.

vater. Let
sea surface
1e direction
nd vertical
irrotational

(1)
slength and
y be shown

(2)
velocity of

nplitude of
Wwikt), where

Effect of Eddy Viscosily on Ocean Waves 909

To a first approximation, the components of the particle velocity are
still given by (1), provided that

95?<1..... e S

By inserting numerical values in (3), we find that @ is, in fact, negligibly
small, except for very short waves.

To consider the effect of'eddy viscosity, we note that a wave motion
is specified by the three quantities A, T and . We will agsume, therefore,
that if there exists an eddy viscosity N, applicable to wave motion, it
is a function of A, T and a. If we assume a power law, N=K*«’TY
where K is a non-dimensional constant, then, since the dimensions of
N are L*T-1, we find

a-+pB=2, p=—1.
Taking «=f=1 as the simplest solution including A and «,
Af

N:KT”:Kca. et 10 e

It is suggested that equation (4) gives the appropriate form of eddy
viscosity to apply to wave motion. We need not expect K to he an
abgolute consgtant but rather a non-dimensional parameter which varies
only slowly compared with the other quantities involved. The above
treatment is still useful if we can take K as constant over a limited range
of the quantities A, @ and T.

The rate of dissipation of energy by eddy viscosity, replacing u by pN
in equation (2), becomes,

W= 25l et #all et Sl s sl S

The particle velocity components will still be given to a first approximation

by (1), provided that the eriterion (3) is satisfied with N replacing v, . e.

@E%i:KM«L o Iy e prmtianidny

It will be shown later that, with a value of K large enough for eddy

viscosity to account entirely for the observed rate of decay of ocean
swell, the condition (6) is still satisfied.

§4. V. Karman’s Smminarity Hyproraesis ApPLIED To Wave MoTroN.

An alternative approach to the problem of the dissipation of wave
motion by turbulence may be made by v. Karman’s similarity hypothesis
for shearing flow, which has found successful application to turbulent
flow through pipes and channels. Let w, v and w be the components of
turbulent velocity and let square brackets [ | denote values of functions
of these components. Then if the mean velocity U is a function of z only,
while V=W=0, the rate of dissipation of energy of the mean motion
by turbulence is given by

au

‘I’J_-PW»”-'JW- g S S e RS 1

~1
—
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v. Karman assumed dynamical similarity in the turbulence at various
points in the field of motion and deduced that

aU|dU
L} e o ol I St (8
[uw]=I , 05 | g e el (8)
where i
au a?U
. S 9
IR dz / dz2 ©)

where K, is a non-dimensional constant.

In the case of two-dimensional motion, in the xz-plane, (7) is replaced
by (Lamb, loc. cit., p. 676)

Pl oy oW ou oW
_ 2.9 2] L0 —+—= ). . . (10
p=p {0 5 + 00 5+ bl (34 ) (10)
In applying this equation to wave motion, we assume that mean values
of 9U/0x etc., as well as [u?] etc. are taken over an element of volume of
dimensions small compared with the wavelength and over a time small
compared with the period of the wave motion. If U and W are given by

equations (1),
b= pkwae®{([u2]—[w?]) sin (wi+ka)—2[uw] cos (wt-+kx)}. . . (11)

By analogy with (8), we should expect [uw] to be a function of dW/ox

as well as of 9U/0z. In this case, however, dW/0x=0U/0z so that we may
take

,|0U| U
[uw]=—1 FA
oU ?U| K,
where l4:I{4 -a—z / W —T’
where K, is a constant.
Similarly, we will take
K2|oU|0U
WI=0st 355 | 7
K2|0W joW
and [w?]=C; + /c_; =7 | 77

where K, and K, are constants, introduced in a way similar to
K,. Cyand C; are positive constants, since [«?] and [w?*] are essentially
positive. From (11), we have, for the mean rate of loss of energy per
volume from the wave motion at a given depth z,

1T
dW:Tfoy;dt

= phw?a®e3’={(KZ—K2) | sin (wi- k) | sin® (wt+kx)

+2K3 | cos (wi-+ka) | cos? (wt-kx)}
4
= o plolatest*(Ki— K3+ 2K2),

940
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For the rate of dissipation per unit area of the sea surface,

-0 /

W:J W

9

pw361,3(1§§——].§§+21{i). S M T (D)
Hence S
W=2pKk*?a?

as in equation (5) if

2 D ¢
K= (K3—K3+2K3). . . . . .. . .. (13

The equations of wave motion in the wz-plane, in the presence of
turbulence are (from Lamb, loc. cit., p. 678)

dUH Lidp: “Agh: gk g B
e e s
oWeanLEdpr e do 0
o8 a5 hes il g I 9

where p is the wave pressure. To the first approximation
p=pgae** cos (wi-+kx) .
The condition that equation (1) should still be valid, in the presence of

turbulence, to a first approximation, is that terms such as oluw]/0z
should be small compared with terms such as (1/p)dp/dx.

0 5 10 3 37 5
We have |z [uw]| = Kikw?a®e?** and |- _p] = gkae*?. Since Kj is of
0z p 0x|
the same order of magnitude as K, we may write the condition as
. Kkw?a?e?*? 1
— £
gkaek* <
and since kc2=g, this becomes
Khaeke <!, L o e (14)
Apart from the factor exp kz, condition (14) is the same as that given

by (6).
We may therefore derive the equation for the dissipation of wave

motion by turbulence from v. Karman’s similarity hypothesis without
introducing the concept of eddy viscosity or the analogy with molecular
viscosity.
§ 5. Tae DECAY oF OCEAN SWELL.
5.1. Wawes of a Single Period.

We will consider waves of constant wave velocity ¢, travelling in the
direction Ox and assume a quasi-stationary state, 4. e. the wave energy
varying with distance but constant in time at a given point. Then if &
is the energy per area of the waves, the rate of loss of energy with distance,
due to eddy viscosity, would be given by

c dBE ,
ey e A 15
2 dx (Lo}

==W— " e g
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assuming the energy to be propagated with the group velocity c¢/2.
Since H=1pga® and taking W from equation (5), we have

da 4K g%a?

de— ct
using the relation kc*=¢. The solution is

1 1  4Kg?
- = — oA S e e R (116

where @, is the amplitude at #=0. In terms of the period T, since

gT=2mrc,

1 190 g 64t

o @y iR
Sverdrup and Munk (1947), in their treatment of the growth and decay ;

of waves, assumed that the effect of eddy viscosity was negligible and C:‘ '

attributed the decay of swell to air resistance, the rate of dissipation per :

area being of the form

(17)

Ri— Fspikzcsas S e S S S e (118)
where s is a coefficient and p’ the deasity of the air. If we replace W
by R in equation (15), we are led to a solution
a=a, exp {—(sp'glpc®)2} . . . . . . (19)
or in terms of T
a=ay exp {—(4n2sp’[pgT?)x}. . . . . . . (20)

A comparison of equations (17) and (20) shows the differences to be
expected if the decay is due mainly to eddy viscosity or to air resistance.
Both equations show that the decay is more rapid for waves of shorter
period, the discrimination being greater in the case of eddy viscosity.
In either case, therefore, if a spectrum of periods is present in the swell
at =0, the maximum amplitude occurring for a pericd T,, then at a
distance #, owing to the selective dissipation, the component of maximum
amplitude will occur at a period T where T>T,. An increase of effective !
period with distance usually occurs with ocean swell, but Munk (1947) .
has shown that such an increase may be explained, in some cases at least,
on kinematical grounds without any selective dissipation of energy.

5.2. EHffective Period increasing with distance.

Let us consider the general case of the period T, and thus the velocity c,
increasing with x, without assigning the cause, and follow Sverdrup and
Munk by assuming our dissipation equation to apply to the *“ significant
waves ~’. If ¢ varies with z, equation (15) is replaced by

1/ dE de -

s SN vy 2

2<cd:c+Ed9:> VSR I SR B S (01
Hence da lade 4Kg2a?

=
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Little is known of the way in which ¢ may be expected to increase with ,
but to obtain a solution we will assume that

de
Tio (a constant), so that c=c,+ox.
Then the solution of (22) may be shown to be
: 1 fe 2x 1 1
i : 8Kg2x cLip k), 23)
achZ " aac, M T(e—cg) \cy' 2 2

where a,, ¢, are values at =0 and a, ¢ are values at x. Putting ¢T=2mc,
Tt 12874Kz [ 1 1
G S G e B T B (T ) <rlTo7_2 x Tﬁ)

For dissipation by air resistance, it may be shown that the corresponding
solution is

(24)

aT2—q, T V2 exp {—(4m?sp[pgTyT)}.. ... . . (25)

5.3. Application to Observations of Swell.

The above equations have been applied to the examples of swell given
by Sverdrup and Munk (loc. cit., Table IV.). sand K have been computed
from the recorded values of z, a,, T,, @ and T, and are shown in Table I.
For the examples of swell Nos. 1, 2, 3 and 5, equations (24) and (25)
respectively were used. For Nos. 4 and 6, equations (17) and (20) were
used, since T differs little from T,. The scatter of the values of s and K
is about the same and one cannot decide on these data whether the decay
law for air resistance or eddy viscosity fits the observations better. It
is possible, of course, that ‘both processes operate and are of the same
order of magnitude.

Taking the mean value of K, we would have

N5 @l Omleas o S Ty Ly e (12.6')

As an example, for swell of wave velocity 10 m./sec. and amplitude 2 m.,
N=11-2 cm.?/sec., which does not appear unreasonable. Referring to the
condition given by (6), we see that, with this value of K, the condition is
easily satisfied. Theinfluence of eddy viscosity on the rate of attenuation
of the waves with depth is, therefore, negligible.

§ 6. THE INTTTAL. FORMATION OF WAVES.

Jeffreys (1925) showed that the early stages of the formation of waves
could be explained if a transfer of energy from wind to waves took place
through normal pressures on the wave profile. The rate of transfer of
energy was taken to be of the form

Ai—Ls ot (ha)2 (V=€) 2cin s st s b sl (O
where V>c¢, s being the ‘ sheltering coefficient ” and V the wind speed.
Comparing A with D, the rate of dissipation by molecular viscosity,
.Teffreys showed the existence of g critical value of V, below which waves
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could not be formed. From observations he found V=110 cm./sec.
(approximately), which corresponds to s=0-27. If V>V, this treatment
sets no limit to the height the waves may attain and they would grow,
presumably, until they reached the breaking steepness of 2a/A=1/7.

From wind tunnel measurements on wave models of various ratios
of 2a/A, Motzfeld (1937) deduced that A was of the form

min

Ac=da o (RGP 2P, e o v o x V(28)

TaBLE I.

Decrease in Height of Swell.

1 2 3 4 5 6 7/ 8
Decay | At end of fetch At distance Air Eddy
No. |distance — resist- visco-
% Ampl. | Period | Ampl. | Period | ance s sity K
@, T a T
km. m. sec. m, sec. x10-2 x 10—
1 2,320 34 7-9 0-7 11-5 1-04 4-3
2 1,480 24 81 13 17.:0 |, 0-46 2-2
3 1,950 3:45 87 1-0 17-0 1-39 7-1
4 1,110 2-35 10-5 1-35 11-2 1-20 61
5 1,480 2-55 12-2 15 9-1 1-04 46
6 185 1-25 9-0 1-05 95 1-84 9-3
Mean 1-16 56

The data in columns 1 to 6 are taken from Table IV. of Sverdrup and Munk’s
paper (1947). Column 7 gives the value of s, computed from equation (20)
or (25), assuming the decay to be due to air resistance only. Column 8 gives
the value of K, computed from equation (17) or (24), assuming the decay to
be due to eddy viscosity only.

with s’=0-014. Applying this result to the formation of waves, he found
no critical wind speed in the region of 100 cm./sec. but for any value of V,
ba is a definite function of ¢, which is a maximum when ¢=V /3. For
V <100 em./sec., the maximum ka would be negligibly small, but would
increase rapidly in the region just above 100 cm./sec,
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Neumann (1949), after considering observations of wind stress and
wave steepness for various wind speeds, has proposed an equation for A
of the form

" 7 92
A —Lslolba(Viecl2csin il prie Al si(29)

with §"=0-095. Like Motzfeld, he found ka,,,, to be a definite function
of V and to increase rapidly when V was about 100 cm./sec., but his
values of ka were appreciably higher than Motzfeld’s. '

While differing in detail, therefore, all investigators agree that easily
observable waves should first appear when V=100 cm./sec. approximately,
and have a velocity ¢c=V/3, . e. 33 cm./sec. approximately. If we take
a=0-1 cm., equation (26) would give N=1-85 x 10~* cm.?/sec., 4. e. much
less than the kinematic molecular viscosity v, which is 1:8 x 10-2 cm.?/sec.
We may conclude that eddy viscosity can play no part in the initial
formation of waves and that only dissipation by molecular viscosity need
be considered. :

It seems unlikely that the relation N=Kca would hold down to values
of N comparable with v. 'We might, in fact, define a *“ Reynolds’ number
for wave motion ”” by R,,=ca/v, and expect that turbulence would affect
the wave motion only when R,, was above a certain value.

§ 7. THE GROWTH OF WAVES UNDER THE INFLUENCE OF WIND.

Although Sverdrup and Munk have used an expression for A similar to
Jeffreys’ (equation (27) for the transfer of energy from wind to waves
by normal stresses for V>>6 m./sec., they found it necessary to take a
much lower value of s, i. e. s=0:013. They showed that transfer of energy
may also take place by tangential stresses, according to the equation

IAY— 2 ol(la)2VEcHR S I DS oas JASTE MRS (30)

where 92 is the resistance coefficient and was taken as 2-:6 x 1073, Unlike
A, A’ remains finite when ¢=V. Dissipation by molecular viscosity is
negligible for waves for which ¢ is several m./sec. If eddy viscosity is
also negligible (as assumed by Sverdrup and Munk), the height attainable
by waves under the influence of moderate and strong winds is limited only
by the breaking steepness, provided the duration and fetch are both
sufficiently great. In practice, it is observed that, while the shorter
waves may be continually breaking, waves travelling with speeds
approaching that of the wind seldom reach the breaking steepness, and
usually do not exceed about 1/3 of that steepness. On Sverdrup and
Munk’s theory, the explanation given is that sufficiently large durations
and fetches do not, in fact, occur to enable the long waves to reach a
greater steepness.

If eddy viscosity is the limiting factor, we see that the wave steepress
cannot exceed an equilibrium value given by

A+A'=W,
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Taking A from equation (27) and A’ from equation (30), we find

T [8(14 fg a2l vk w81
pKp
where B=c/V, and has been termed the ©“ wage age . Thus if s and y?
are constant, or are functions of B only, the equilibrium steepness is a
function of the wave age, 8, only. This general result is still true if A is
given by either of the alternative equations (28) and (29).
From equation (31) the equilibrium steepness given by ka,,.. will be
less than the breaking steepness, for which ka=m/7, if

K L Tp'
SA—PP 12y mp
inserting the numerical values of p’ and p. We will consider two

special cases of this condition : C .
(@) If B=4 and 42 is negligible,

K>2-72 %.1073s.

i e, >6-8x 104

With Jeffreys’ value, s=0-27, K>7-3x10"% With Sverdrup and
Munk’s value, s=0-013, K>3-5x 1075, but this is hardly valid, since the
‘ value s=0-013 was derived empirically on the assumption that eddy
! viscosity was negligible.

F (b) If B=1, then

K >1-36 1032

Taking y2=2-6x 103, K>3-5X1075.

Comparing these inequalities with the value of K deduced in §5.3,
it seems possible that eddy viscosity may limit the steepness of waves
travelling with a speed approaching that of the wind, but unlikely that
it will limit the steepness of waves travelling at about one-third of that
speed.

A relation between wave steepness and wave age was, in fact, found
empirically by Sverdrup and Munk. Until we have more data on the ‘A .
rate of transfer of energy from wind to waves, however, we cannot say
whether the steepness of the longer waves is limited only by the duration
and fetch, or by an eddy viscosity of the form we have been considering.

§ 8 Tue ErrecT ON WAVES OF TURBULENCE DUE TO OTHER CAUSES.

It has sometimes been assumed that the turbulence affecting waves
should be attributed to the effects of wind driven or other currents.
Alternatively, it has been suggested that the turbulence affecting currents
is derived from wave motion. Neither assumption is made in the present
treatment, the turbulence being regarded as inherent in the wave motion
itself. The wave motion generates the turbulence and the turbulence
reacts on the wave motion. The question still arises, however, whether,
in the presence of a shearing current, the increased turbulence would not
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greatly increase the effective eddy viscosity for waves. A clue to the
answer may be found in equation (10), from which it is seen that for
dissipation of energy by turbulence to occur, the mean values of terms
such as [uw]oU/9z must be finite. This implies not only a correlation
between w and w, but also a correlation between [uw] and 0U/dz. 1t is
assumed that, in the case of turbulence associated with the waves
themselves, such correlations exist.

If we now consider the turbulence associated with, for example, a
wind-driven current, there will undoubtedly be some components in the
spectrum of turbulence of scale comparable with, or smaller than, the
wavelength of the waves. These components will contribute to [u*]
and [w?] in equation (10) and may possibly have a finite value of [uw].
It is only, however, if the contributions to [u*]—[w*] and [uw] have
components which vary in phase with 9U/0x and 0U/0z respectively, that
they will add anything to the dissipation of the waves. Thereis, therefore,
no real discrepancy between the simultaneous existence of a large degree
of turbulence due to other causes and a comparatively small eddy
viscosity applicable to wave motion.
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