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A B S T R A C T

Salinity observing satellites have the potential to monitor river fresh-water plumes mesoscale spatio-temporal
variations better than any other observing system. In the case of the Soil Moisture and Ocean Salinity (SMOS)
satellite mission, this capacity was hampered due to the contamination of SMOS data processing by strong land-
sea emissivity contrasts. Kolodziejczyk et al. (2016) (hereafter K2016) developed a methodology to mitigate
SMOS systematic errors in the vicinity of continents, that greatly improved the quality of the SMOS Sea Surface
Salinity (SSS). Here, we find that SSS variability, however, often remained underestimated, such as near major
river mouths. We revise the K2016 methodology with: a) a less stringent filtering of measurements in regions
with high SSS natural variability (inferred from SMOS measurements) and b) a correction for seasonally-varying
latitudinal systematic errors. With this new mitigation, SMOS SSS becomes more consistent with the in-
dependent SMAP SSS close to land, for instance capturing consistent spatio-temporal variations of low salinity
waters in the Bay of Bengal and Gulf of Mexico. The standard deviation of the differences between SMOS and
SMAP weekly SSS is< 0.3 pss in most of the open ocean. The standard deviation of the differences between 18-
day SMOS SSS and 100-km averaged ship SSS is 0.20 pss (0.24 pss before correction) in the open ocean. Even if
this standard deviation of the differences increases closer to land, the larger SSS variability yields a more fa-
vorable signal-to-noise ratio, with r2 between SMOS and SMAP SSS larger than 0.8. The correction also reduces
systematic biases associated with man-made Radio Frequency Interferences (RFI), although SMOS SSS remains
more impacted by RFI than SMAP SSS. This newly-processed dataset will allow the analysis of SSS variability
over a larger than 8 years period in regions previously heavily influenced by land-sea contamination, such as the
Bay of Bengal or the Gulf of Mexico.

1. Introduction

With 8 years and counting, the Soil Moisture and Ocean Salinity
(SMOS) European mission (Kerr et al., 2010; Font et al., 2010) provides
the longest record for Sea Surface Salinity (SSSa) monitored from space
over the global ocean (2010-present). The pioneered SMOS (2010-) and
Aquarius (2011–2015) (Lagerloef et al., 2008) satellite missions have
demonstrated the capability of L-band radiometry for monitoring SSS
from space (e.g. Reul et al., 2014a; Lagerloef, 2012).

Salinity is a key ocean variable that plays a fundamental role in the
density-driven global ocean circulation, the water cycle, and climate
(Siedler et al., 2001). Salinity controls the density of sea water, together

with temperature. At the ocean surface, in cold waters (T=2 °C), a SSS
change of ~0.1 pssb is equivalent, in terms of density, to a sea surface
temperature (SST) change of 1 °C. SSS variations therefore greatly
constrain the global thermohaline circulation as salinity drives the high
latitude convective overturning. In warmer regions (T=28 °C), a
0.44 pss change is equivalent to a 1 °C change in terms of density.
Salinity stratification within a near isothermal layer (known as the
barrier layer, e.g. Lukas and Lindstrom, 1991) can furthermore inhibit
the vertical mixing of heat and momentum, and play a role in major
phenomena such as the El Niño Southern Oscillation (e.g. Vialard and
Delecluse, 1998), the southwest monsoon rain distribution (e.g. Shenoi
and Shankar, 2002) or the oceanic productivity (e.g. Picaut et al.,
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2001). Finally, SSS is considered as a passive tracer of the hydrological
cycle, recording for instance its intensification in response to anthro-
pogenic climate change (e.g. Durack et al., 2012). For all these reasons,
SSS has been designated as an ECV (Essential Climate Variable) by the
Global Climate Observing System (GCOS).

SMOS data has enabled the study of salinity changes associated with
two El Niño events (Hasson et al., 2018) and a La Niña event (Hasson
et al., 2014), climate variability in the equatorial Indian Ocean (Durand
et al., 2013), decadal salinity changes in the subtropical Pacific Ocean
(Hasson et al., 2013) or North Atlantic Ocean (Grodsky et al., 2017).
The spatial resolution and spatio-temporal coverage of the SMOS mis-
sion (50 km resolution; global coverage every 3 to 5 days) also allow the
unprecedented detection of SSS mesoscale features associated with the
transport across frontal regions (e.g. Reul et al., 2014b; Kolodziejczyk
et al., 2015b), very hardly accessible from Aquarius measurement
(100–150 km resolution; global coverage every 8 days).

SMOS demonstrated performance in monitoring open-ocean salinity
variations has been impressive so far. SMOS results have, however,
been disappointing close to land, for instance in the Bay of Bengal,
where Aquarius and more recently the Soil Moisture Active Passive
(SMAP; 2015-) mission perform better (Akhil et al., 2016 and Fournier
et al., 2017).

SMOS is an Earth Explorer mission. It carries an L-band Microwave
Interferometric Radiometer with Aperture Synthesis (MIRAS), which is
the first interferometer and the first L-band radiometer observing Earth
from space. L-band (1.4 GHz) is a passive protected frequency band but
many SMOS measurements are corrupted by unexpected man-made
Radio Frequency Interferences (RFI) (Oliva et al., 2012). SMOS SSS is
also affected by the presence of nearby landmasses up to several hun-
dreds of kilometers into the ocean, likely an effect of imperfect syn-
thetic aperture image reconstruction in the present SMOS data pro-
cessing (more on limitations in the present SMOS image reconstruction
is presented in Anterrieu et al., 2015).

Other two satellite missions measuring SSS from space, Aquarius
(Lagerloef et al., 2008) (2011–2015) and SMAP (Piepmeier et al., 2017)
(2015-present), are equipped with classical L-band radiometers. Hence,
they are expected to suffer less land-sea contamination than SMOS.
Aquarius and SMAP were launched subsequently to SMOS and have
benefited from a better RFI-protected onboard processing.

The unique length of SMOS record and its high spatio-temporal
resolution (comparable to the more recent SMAP mission) are strong
motivations for improving its processing in order to mitigate RFI and
land-sea contaminations on the retrieved SSS. The validation of satellite
SSS using in situ SSS measurements is, however, very challenging in
coastal areas where contaminations are strong, in situ data are very
sparse and variability is high, such as in river plumes (Delcroix et al.,
2005; Boutin et al., 2016). Hence, in addition to using in situ SSS, we
take advantage of SMAP SSS to assess corrections to the SMOS SSS.

Kolodziejczyk et al. (2016) (K2016 hereafter) have developed a
Bayesian methodology to mitigate SSS systematic errors due to land-sea
contamination. The method is described in detail in Section 3.3 of the
present paper. It brings a clear improvement in most areas, with a 32%
decrease of the RMSD globally with respect to ship measurements.
Some examples below, however, indicate much lower SSS values in
SMAP than in K2016 SMOS retrievals, in particular near river mouths.
In the Bay of Bengal, for instance, fresh water originating from the
Ganges-Brahmaputra (GB) is transported southward by the East India
Coastal Current (EICC) after the monsoon, forming a ~200 km fresh
water tongue along the Indian coast, up to 10 pss fresher than in the
central Bay of Bengal (Chaittanya et al., 2014). Fournier et al. (2017)
demonstrated the SMAP capacity to monitor the modulation of this
freshwater tongue extent by climate variability and mesoscale eddies
stirring the freshwater plume away from the coast. This peculiar pattern
is> 3 pss fresher in SMAP SSS than SMOS K2016 SSS (Fig. 1a and c).
Fournier et al. (2016) similarly used SMAP data to study an unusual
freshening associated with anomalous advection of the Mississippi

River plume in the Gulf of Mexico. While this freshening is also detected
by SMOS K2016 (Fig. 1d), it is saltier than in SMAP SSS (Fig. 1f). Such
overestimation of SSS by SMOS K2016 relative to SMAP in the low
salinity regime also occurs in the eastern tropical Atlantic (Fig. 1g, i,
Congo and Niger river mouths, Reul et al., 2014a) and western tropical
Atlantic (Amazon and Orinoco, Fig. 1j, l). SMOS K2016 default in re-
trieving the freshest SSS of the major river plumes illustrates the need of
an improved processing in variable, low-salinity regions near land.

The purpose of this paper is to present a revised version of the
K2016 methodology. The main changes aim at taking the SSS natural
variability into consideration in the land-sea contamination correction
and at adding a correction for the seasonally-varying latitudinal biases.

Ancillary datasets are detailed in Section 2. An overview of the
SMOS SSS retrieval, of the K2016 SMOS processing and a description of
the revised methodology are given in Section 3. Comparisons with
ancillary data sets are presented in Sections 4 and 5. They are sum-
marized and discussed in Section 6.

2. Data

Three types of ancillary data are used in this study. The In situ
Analysis System (ISAS) SSS is used both to set the long term mean re-
ference of our correction and to qualitatively indicate the most trustable
SMOS SSS data in our correction process as described in Section 3. It is
also used to check the SMOS SSS variability. SMAP and ship SSS are
used for independent assessment.

2.1. In situ analyzed SSS

Monthly gridded fields of salinity derived from in situ measure-
ments are obtained from the ISAS (In Situ Analysis System) v6 algo-
rithm, an optimal interpolation (Bretherton et al., 1976) tool developed
for the synthesis of the Argo global dataset (Gaillard et al., 2016). We
use the fields reconstructed at 5m depth on a half degree horizontal
grid. The ISAS near real time (NRT) products are available since 2010.
In addition, over the 2002–2012 period, ISAS13 (Gaillard, 2015) fields
have been produced after a refined quality check of the Argo profiles.
Data are preprocessed for ISAS13 using a climatological test and fol-
lowed by a visual control of suspicious profiles. The interpolation is
based on delayed mode Argo floats, TAO-TRITON-PIRATA-RAMA
moorings and MEMO (Marine Mammals) data.

The ISAS-NRT fields (2010-present) are used by the correction
method whereas ISAS13 (till 2012) and ISAS-NRT (from 2013 to 2016)
fields are used for the assessment presented Section 4.

2.2. SMAP SSS

The SMAP mission (Piepmeier et al., 2017) provides L-band radio-
metric observations since April 2015. While its main objective is the
observation of soil moisture, the observed brightness temperatures (Tb)
are also used to retrieve SSS (Fore et al., 2016a). SMAP SSS char-
acteristics are quite close to those of SMOS in terms of spatio-temporal
coverage and spatial resolution (~50 km). In approximately 3 days,
SMAP achieves global coverage and it has an exact orbit repeat cycle of
8 days. The SMAP L-band microwave radiometer, however, uses a
conical scanning antenna instead of a synthetic aperture imaging an-
tenna. As stated in the introduction, a particular attention was put on
filtering the RFI (Mohammed et al., 2016) and their impact is expected
to be limited compared to SMOS. SMAP also suffers from land-sea
contamination but, given that SMAP carries a real aperture antenna, the
contamination is not expected to be as spatially variable as with SMOS.
We use level 3 SMAP SSS produced at the Jet Propulsion Laboratory
using the Combined Active Passive (CAP version 3) algorithm (Fore
et al., 2016b). A complete description of the CAP v3 algorithm can be
found in Fore et al. (2016a), but a brief description follows. The CAP
algorithm is only applied to passive measurement as the radar failed a
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few months after launch. It includes specific Tb corrections for land and
galactic noise contaminations, and a global Tb bias adjustment (latitude
and time-dependent). After correction, the rms difference of SMAP re-
trieved SSS with respect to Hycom SSS in the vicinity to land is< 1.5
pss. Level 2 SSS is retrieved from SMAP Tb measurements using a
constrained objective function minimization. Data are mapped on a
0.25° grid using a Gaussian weighting with a search radius of approx-
imatively 45 km and a half-power radius of 30 km. They are aggregated
in level 3 maps produced daily with an 8-day running-average time
window. CAPv3 SMAP SSS agrees well with in situ SSS. Tang et al.
(2017) found a rms difference of 0.26 pss between weekly SMAP SSS
and buoy SSS. They also show that SMAP and SMOS SSS depict salinity
fluctuations very close to in situ SSS.

2.3. Ship SSS

Salinity data provided by thermosalinographs (TSG) installed on
voluntary merchant ships are used as ground truth. A full description of
the data can be found in Alory et al. (2015). They provide SSS estimates
with an ~2.5 km resolution along the ship track and are independent
from the ISAS analyses. Samples are taken at a few meters depth. Noise
on individual ship SSS is estimated to be on the order of 0.08 pss (Alory
et al., 2015). In the presence of strong vertical stratification, TSG and

satellite SSS are expected to differ as the L-band radiometer skin depth
is about 1 cm (Boutin et al. 2016). This may occur under heavy rain
conditions or in river plumes. Because of their singular spatio-temporal
resolution, ship measurements, however, provide invaluable informa-
tion on the spatial variability of SSS unresolved by Argo.

3. SMOS data and processing methodology

The SMOS mission (Kerr et al., 2010) provides SSS measurements
from space since January 2010. The SMOS satellite is on a sun-syn-
chronous circular orbit with a local equator-crossing time at 6 AM on
the ascending node and with a repeat sub-cycle of 18 days. It carries a 2-
D interferometric radiometer, the MIRAS instrument. This ground-
breaking technology was chosen as it involves much lighter antennas
than real aperture antennas, and while getting ground spatial resolution
on the order of 50 km at L-band frequency requires a huge antenna. The
synthetic aperture antenna approach involves the reconstruction of an
image using spatial Fourier components as derived from the correla-
tions between numerous antenna elements (69 in case of SMOS). The
SMOS bi-dimensional multi-angular images of Tb are reconstructed
with a spatial resolution in the field of view ranging between about
35 km and 100 km (50 km on average). In this paper, we use the SSS
retrieved within the center part of the field of view that extends at±

Fig. 1. Satellite SSS: SMOS SSS corrected according to (a, d, g, j) K2016 methodology, (b, e, h, k) the method described in this paper (CEC); (c, f, i, l) SMAP SSS. 4 case
study areas: (a, b, c): Bay of Bengal - August 21st 2015; (d, e, f): Gulf of Mexico – August 18th 2015; (g, h, i): Eastern Tropical Atlantic Freshwater Pools – April 14th
2016; (j, k, l): Amazon plume – October 21st 2015. SMOS and SMAP SSS is averaged over a SMOS repetitive orbit sub-cycle (18 days) and two SMAP repetitive orbit
cycles (16 days) respectively. Striking fresh SSS features in better agreement with SMOS (new version) and SMAP are indicated with black arrows.
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400 km away from the center of the satellite swath. Global ocean
coverage is then achieved after about 5 days. Individual Tbs are very
noisy (1.6–3.2 K) and lead to a typical noise on SSS of the order of
0.6 pss in tropical and subtropical regions on pixel-wise SSS retrievals
(Hernandez et al., 2014; Supply et al., 2017). However, owing to the
very good spatio-temporal coverage of SMOS, averaging SMOS SSS over
typically one month and 100×100 km2 results in an accuracy close to
0.2 pss in the open ocean, after removing a climatological mean of
SMOS systematic errors (Boutin et al., 2016).

In the following, before describing the new SSS correction metho-
dology developed in the present paper, we recall in Section 3.1, the
principle of the along track (level 2, L2) SMOS SSS retrieval from Tb
measurements, and, in Section 3.2, the basis for the K2016 correction
method applied to L2 SSS.

3.1. SMOS SSS level 2 retrieval

The SMOS L2 SSS is retrieved from Level 1 (L1) Tb through a
maximum-likelihood Bayesian approach in which Tb measured in the
antenna reference frame, Tbmeas, are compared with Tb simulated using
a forward radiative transfer model, Tbmod (see a general description of
the retrieval algorithm in Zine et al. (2008)). The retrieved parameters,
Pi, and their associated theoretical error, are estimated through the
minimization of the χ2 cost function:
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where N is the number of measurements available for retrievals in
vertical and horizontal polarizations at different incidence angles θn. N
is typically 120 to 240 within±400 km from the center of the track.
σTbn is taken equal to the SMOS brightness temperature noise (between
1.6 and 3.2 K depending on the location within the field of view) plus a
small term that takes into account an error originating from the ra-
diative transfer model error (see Zine et al., 2008 for more details). M is
the number of physical parameters, Pi (SSS, wind, sea surface tem-
perature and ionospheric total electronic content) that are adjusted by
the retrieval; Pi0 and σPi0 are a priori values for Pi and their associated
errors respectively.

In the present study, we use SSS produced at the Data Production
Center (CPDC) of the Centre Aval de Traitement des Données SMOS
(CATDS) in its RE05 version (Vergely and Boutin, 2017). Daily SSS
fields are provided on a 25-km resolution EASE 2 (Equal-Area Scalable
Earth 2) grid (Brodzik et al., 2012) for ascending and descending orbits
separately (CATDS, 2017a). L1 Tbs, radiative transfer models (rough-
ness model 1) and retrieval scheme used in CATDS CPDC RE05 are
identical to the ones used in the European Space Agency level 2 ocean
salinity processor version 622 (ESA L2OS v622) (see a description in
SMOS-Ocean Expert Support Laboratories (2014)). The main difference
between the CATDS RE05 and the ESA v622 processing involves the Tb
outlier filtering. No Tb outlier filtering is applied when retrieving SSS
with ESA L2OS V622. The absence of Tb outlier filtering enables an
easier detection of RFI-polluted SSS through a larger χ2 value (Eq. (1)).
This, however, removes pixels that are systematically contaminated by
the presence of nearby land, which could be mitigated by our correc-
tion. K2016 correction method was indeed developed using ESA v5
processing in which an outlier filtering of Tbmeas was performed and it
was able to mitigate part of the RFI biases. In the CATDS RE05 pro-
cessing, a 3 σTbn filtering is applied to (Tbmeas− Tbmod) before per-
forming the SSS retrieval. Some tests (not shown) performed on SSS
retrieved from filtered and from non-filtered Tb datasets confirm that
the correction presented in this paper is more efficient when used in
conjunction with a Tb filtering.

3.2. K2016 land-sea contamination correction

In this section, we briefly review the K2016 methodology. The
K2016 correction aims at mitigating systematic errors constant with
time and was shown to efficiently correct land-sea contamination in
many regions. Given the 18-day sub-cycle of SMOS, a given location
over the ocean is observed with the same SMOS measurement geometry
every ~18 days; within 18 days, it is sampled by several SMOS SSS
measurements which are located at various locations across the swath,
xswath. The K2016 methodology considers that the long term
(2010–2014) SSS variability observed by SMOS has to be rather similar
whatever xswath and the orbit orientation xorb. Relative biases, bland,
with respect to a reference SSS, SSSref, are derived from SMOS SSS
through a least square minimization approach, and through a series of
iterations that will be described below. A consistent set of SMOS SSS,
SSSK2016, is obtained as:

= −SSS (t, ϕ, λ, x , x ) SSS (t, ϕ, λ) b (ϕ, λ, x , x )K2016 swath orb ref land swath orb (2)

where t is the time of the measurement, ϕ, and, λ, are respectively the
latitude and the longitude of the considered location over the ocean.
xswath is sampled within 25 km wide bins.

bland and SSSref are derived as follows. Defining p= (SSSref, bland)T,
p0 the a priori values of p, y0 the SMOS SSS, the estimated values of p,
pest, are derived as:

= + + −−p p C ·G ·(G·C ·G R) ·[y f(p )]est 0 p
T

p
T 1

0 0 (3)

where G is the matrix of derivatives of observations with respect to the
parameters (also called observational operator), R is the covariance
matrix for the observation error, Cp is the covariance matrix for the a
priori error on the parameters p. Cp is parametrized as a function of an
acceptable standard deviation of SSS, σSSSref, over a correlation time-
scale τ.

The minimization is repeated four times, twice with τ=16 days
(corresponding to a 18-day Gaussian smoothing window), then twice
with τ=8days (corresponding to a 9-day Gaussian smoothing
window). At each iteration, a new set of a priori values for p and for
σSSSref are computed. During the first iteration, the a priori values of
SSSref, SSSref0, are taken as the median of SMOS SSS at the center of its
swath over the 2010–2014 period, the a priori value of bland is equal to
0, σSSSref is taken equal to 0.3 pss, and the observation errors are taken
equal to the theoretical error associated with the L2 SMOS SSS retrieval,
ESSS_L2. SSSref1 and bland1 are computed from the p and σSSSref solutions
of the first iteration. During the second iteration, SSS outliers, linked
primarily to RFI contamination, are detected using a 3-sigma outlier
detection: if the difference between the L2 SMOS SSS and
(SSSref1− bland1) is larger than 3 times ESSS_L2, the error on the mea-
surement indicated in the matrix R is artificially increased. SSSref2 and
bland2, estimated at the end of step 2, are used to produce the 18 day
SSSK2016 fields. The third and fourth iterations aims at optimizing SSSref
and bland at 9 day resolution. During the third iteration, SSSref2 and
bland2 are taken as a priori parameters, τ is reduced to 8 days and σSSSref
is increased to 0.5 pss resulting in SSSref3 and bland3. The fourth step
leading to SSSref4 and bland4 is similar to the second one using the same
a priori values as in step 3. At the end, an additional term is added to
the estimated bias, to ensure that the 4-year (2010–2014) median
average of SSSK2016 equals the 4-year median average of ISAS SSS for
each latitude and longitude:

=

− −

b (ϕ, λ, x , x ) b (ϕ, λ, x , x )

(med(SSS (t, ϕ, λ)) med(SSS (t, ϕ, λ)))
land swath orb landx swath orb

ref ISAS

(4)

with blandx equals to bland2 in the case of 18-day corrected field esti-
mates, or to bland4 in the case of 9-day corrected fields. Note that the last
term of Eq. (4) is the only external information used in the entire cor-
rection process and does not modify the temporal variability of the
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observed fields.
The K2016 methodology was developed based on SMOS SSS pro-

cessed with ESA L2OS version 550. In order to provide consistent
comparison of the K2016 corrected SSS (SSSK2016) and the newly cor-
rected dataset presented in this paper (SSSJ2018), SSSK2016 was re-
computed using the L2 SMOS SSS version used for SSSJ2018 i.e. CATDS
RE05.

3.3. New correction

In the present paper, we add a correction for seasonally-varying
latitudinal biases, blat, and we update the land-sea contamination cor-
rection, bland, with respect to K2016. blat and bland are assumed to be
additive, so that the corrected SSS, SSSJ2018, is expressed as:

= −

−

SSS (t, ϕ, λ, x , x ) SSS (t, ϕ, λ) b (ϕ, λ, x , x )

b (ϕ, x , x , m)
J2018 swath orb ref land swath orb

lat swath orb (5)

where m is the month of the SMOS pass. In a last step, similar to K2016
(Eq. (4)), the 7-year (2010–2016) median average of the corrected SSS
is adjusted, for each latitude and longitude, to the 7-year median
average of ISAS SSS. The latter is the only quantitative information
external to SMOS data used in the correction process and does not
modify the temporal variability to the observed fields.

3.3.1. Observed seasonally-varying latitudinal biases
Further than 1000 km from the coastline, land-sea contamination is

not detectable but seasonally-varying latitudinal biases are observed.
They mostly depend on xswath, xorb, and the month of the year. The two
examples on Fig. 2 illustrate the behavior for two extreme cases. In
November (Fig. 2a–c), in the center of the swath, SMOS SSS latitudinal
variations are very close to ISAS SSS latitudinal variations on ascending
orbits but not on descending orbits. In January (Fig. 2b–d), descending
orbits at the edge of the swath display strong biases with respect to ISAS
while ascending orbits do not. The systematic errors are quite stable
from year to year, as indicated by the standard deviation of the 2011 to
2016 monthly latitudinal SMOS minus ISAS SSS difference (Fig. 2c and
d). It is not true at high latitudes where, in most cases, both the mean
and standard deviation of the differences are high. This is likely asso-
ciated with an effect of ice contamination. Systematic errors observed
over other ocean basins are similar (see Appendix A1). These systematic
errors could originate from imperfect estimates of the sun or galactic
noise contributions (Yin et al., 2013).

3.3.2. Correction for seasonally-varying latitudinal biases
blat is determined separately for ascending and descending orbits, on

a monthly basis, and is assumed to be independent of the longitude and
of the year. We neglect interannual variations that could result from
variation in sun activity, as they appear to be an order of magnitude
smaller than the seasonal biases (see Section 3.3.1). The correction is
estimated from Pacific Ocean orbits further than 1200 km from con-
tinental coasts, in order to avoid land-sea contamination (bland in Eq.
(4) vanishes in this case) and because the northern latitudes in the
Pacific Ocean are less affected by RFI than in the Atlantic Ocean. For
xswath locations and seasons not very affected by RFI at high latitudes,
we checked that biases are similar in the Pacific and Atlantic Ocean (see
Appendix A1). For each xswath and xorb, twelve sets of monthly latitu-
dinal corrections are estimated by comparing SMOS SSS on con-
taminated and non-contaminated xswath intervals. The first step is to
choose a set of non-contaminated xswath for each month and for each
xorb that is used as reference in our correction methodology. The non-
contaminated xswath locations are identified from comparisons between
6-year averaged (2011–2016) monthly latitudinal SSS profile at 0.25°
resolution derived for each SMOS xswath location and from ISAS as de-
scribed in Appendix A1. The 2010 year is not considered for the cor-
rection estimate as the calibration of the MIRAS instrument was not
very stable during the SMOS commissioning period (January to June
2010). The latitudinal profiles of the unbiased SMOS SSS at reference
xswath locations determined for a given month, are averaged together to
provide a reference SSS latitudinal profile. The latitudinal correction is
then estimated as the median difference, per 5° latitude, over the EASE2
grid latitudinal sampling, between the latitudinal profiles of the SMOS
SSS at contaminated xswath and the reference SSS latitudinal profile. The
SMOS SSS latitudinal profiles differ from the ones based on ISAS SSS at
high latitudes (Fig. 2). This difference may be explained by remaining
RFI contamination in the northern latitudes but also by sea-ice con-
tamination extending equatorward to about 1000 km from the ice edge.
On ascending and on most descending latitudinal profiles, large dif-
ferences between SMOS and ISAS SSS are indeed found poleward of
47°N (see two examples on Fig. 2). Some degradation also occurs be-
tween 40° and 47°N (see a worse case on Fig. 2d). It concerns only a few
xswath and months on descending orbits and is therefore rather limited.
In the Southern Ocean, in Spring and Summer (Fig. 2a–b), large dif-
ferences only appear way south of 47°S. However, in Winter, especially
in the Atlantic Ocean where the ice edge can be as north as 55°S, large
differences can reach 47°S. As a compromise, in the following, the

Fig. 2. Two examples of 2011–2016 latitudinal profiles of mean SSS (a; b) and of the standard deviation of the 2011–2016 monthly differences between SMOS SSS
and ISAS SSS (c; d). The latitudinal means and standard deviations are computed over the Pacific Ocean further than 1200 km from any coast: green: ISAS, blue:
SMOS ascending orbits; red: SMOS descending orbits: a; c) November; middle of the swath (0–50 km from the center of the swath); b; d) January; edge of the swath
(350–400 km from the center of the swath). Dashed vertical lines indicate 47°N and 47°S. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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correction is applied only to latitudes within 47°S–47°N and results will
be limited to this latitudinal range.

3.3.3. Updated land-sea contamination correction
Before estimating the land-sea contamination correction, we apply

seasonally-varying latitudinal corrections determined as described in
the previous section. Actually, an imperfect correction of sun and ga-
lactic noise effects is expected to generate systematic seasonal biases
whatever the distance to the coast.

With respect to K2016, we make the following changes:

• In K2016, the covariance matrix of observation error, R, was filled
with ESSS_L2 times the Identity matrix. With this approach, the ob-
servation errors depend only on the Jacobian of the modelled Tbs
with respect to the retrieved parameters, on the a priori error on
SMOS Tbs (equal to the SMOS radiometric noise) and on the a priori
errors on auxiliary parameters. It does not take into account the
actual differences between SMOS observed and modelled Tbs. In
most cases, this difference is very close to the radiometric noise (e.g.
Yin et al., 2012) and the associated χ (Eq. (1)) normalized by the
root mean square of N, χN, is close to 1. However, in case of polluted
areas (e.g. RFI), χN becomes larger than 1. In the updated method,
the errors specified in R are set to (ESSS_L2·χN) in order to take ob-
served mismatches between SMOS measured and modelled Tbs into
account. In case χN is> 3, the particular SMOS SSS retrieval is not
used in the correction estimate.

• In K2016, σSSSref was a fixed value (0.3 pss for τ=16 days; 0.5 pss
for τ=8days). σSSSref now uses an estimate of the SSS natural
variability standard deviation, σSSSnat, as derived from SMOS mea-
surements themselves. We derive σSSSnat using a two-step iterative
procedure, in which we first compute debiased SSS using
σSSSref = 0.3 pss for each grid point over the whole period as before,
then we recompute debiased SSS using σSSSref equal to the standard
deviation of the debiased SSS from step 1. σSSSnat is taken as the
standard deviation of the debiased SSS obtained in step 2. In the
open ocean σSSSnat is very close to the value we used in the previous
version (0.3 pss) (Fig. 3a), but it is much larger in regions char-
acterized by large inputs of freshwater, such as river plumes (e.g.
Amazon plume, Bay of Bengal, Gulf of Mexico), rainy areas (e.g.
Intertropical Convergence Zone, eastern and western tropical Pacific
fresh pools) and areas characterized by numerous mesoscale fea-
tures (e.g. Gulf Stream, south east of the Arabian Sea). With this
variable σSSSref we allow SSSref to vary more temporally in high
variability regions through Eq. (3).

• The biases are derived from 7 years (2010–2016) of SMOS data in-
stead of 4 years in K2016.

3.4. Mapping methods

All SMOS level 3 maps shown in this paper include only SSS re-
trieved under moderate wind speed (3–12m s−1) and within± 400 km
from the center of the swath.

The non-bias corrected SMOS SSS is taken from the CATDS CPDC
RE05 default processing. Daily SMOS SSS retrieved over ascending and
descending orbits are combined to produce level 3 fields (L3P) (CATDS,
2017b). L3P fields over a 25× 25 km2 EASE 2 grid are obtained from
SMOS SSS weighted by ESSSL2 and averaged within monthly and
~10 days 25× 25 km2 bins. Measurements are filtered based on SSS
retrieval quality flags and avoiding regions suffering from major con-
taminations on Tb (e.g. galactic noise). A full description of the pro-
cedure is available in Vergely and Boutin (2017).

Two sets of level 3 bias-corrected SMOS SSS fields are considered in
this paper. The same biases are applied (Eq. (5)) but the filtering and
mapping methods are different, partly due to operational constraints in
CATDS CPDC processing. One set, named L3Q, is processed in near real
time by the CATDS CPDC operational chain using a mapping procedure

similar to the one applied to L3P products. The other set, named CEC, is
processed in delayed time by the LOCEAN expertise center (CEC) of
CATDS with a filtering and mapping procedure similar to K2016.
Hence, in the following sections, changes brought by our new correc-
tion with respect to non-corrected SSS will be evaluated by studying
L3P and L3Q fields. Changes with respect to K2016 methodology will be
evaluated by studying K2016 and CEC fields. The main characteristics
of the L3P, K2016, CEC and L3Q processing are summarized in Table 1.

We now describe in detail the mapping and filtering procedures for
generating L3P and CEC fields:

• At the CATDS CEC LOCEAN, SSS gridded fields at 25× 25 km2 re-
solution, named CEC SSS in the rest of the paper, are built from the
combination of debiased SSS which have been filtered from outliers
in the course of the biases estimates (see description of steps 2 and 4
in K2016 methodology (Section 3.2)). Debiased SSS are temporally
averaged using a convolution with a Gaussian kernel with a full
width of either 9 or 18 days at half maximum. In addition, a median
filtering over nearest neighbors is applied to reduce remaining
noise. CEC fields are built every 4 days over the 2010–2016 period
(Boutin et al., 2017). From the 18-day CEC SSS fields over the
2010–2016 period, a minimum (SSSmin) and maximum (SSSmax)
SSS is estimated at each grid point (Fig. 3b and c) and is used to
filter the operational CATDS CPDC products (see below).

• The CATDS CPDC operational chain provides near-real time data, at
the expense of a less-refined data filtering. Biases are estimated as
described previously and are applied (Eq. (4)) to daily L3P SSS. For
each orbit orientation, we define upper and lower acceptable
bounds for daily SSS, based on acceptable absolute values and on
SSS natural variability. The upper bound is the minimum value
between 40 pss and SSSmax+ 2.(ESSS_L2·χN); the lower bound is the
maximum value between 5 pss and SSSmin− 2.(ESSS_L2·χN). SSS
with (ESSS_L2·χN) larger than 3 pss are filtered out. Level 3 SSS fields,
named L3Q in the rest of the paper, are then obtained using a simple
average of the SSS weighted by (ESSS_L2·χN) over one month or ~10-
day. A full description of the procedure is available in Vergely and
Boutin (2017). Corrected fields are produced in near-real time at
various spatial resolution (CATDS, 2017c). In this paper we use the
25 km resolution products.

4. Comparison to ISAS

Before assessing the new CEC and L3Q SSS fields with products
which are not used in the correction method, we compare the corrected
and non-corrected SMOS SSS fields with ISAS SSS fields. The compar-
ison is restricted to L3P and L3Q SMOS SSS fields because these two
fields are mapped using the same methodology.

Even if ISAS SSS is used as a guide to choose the reference xswath in
the latitudinal correction, we recall that the only quantitative ISAS
information entering our method is the 7-year median average of the
ISAS SSS fields. The amplitude of temporal variability is independent of
ISAS SSS variability. It is thus informative to compare the SSS temporal
variability detected by SMOS and ISAS.

By construction, the 7-year mean SMOS minus ISAS SSS difference is
expected to be small. It is nevertheless non-zero everywhere as we
apply a more stringent filtering in the course of the correction estimate
than in the L3Q bin average computation. At< 800 km from coasts, the
mean difference between SMOS SSS and ISAS SSS is reduced from
−0.5 pss to −0.07 pss (Table 2). The remaining −0.07 pss difference is
likely due to the lack of in situ measurement in very fresh areas in the
vicinity of land (< 2000m depth) and to non-Gaussian short-scale SSS
variability smoothed out by ISAS objective mapping. In addition, SMOS
samples the very near surface measurement (~1 cm) while most in situ
measurements used in ISAS analysis are performed close to 5m depth
(Boutin et al. 2016). The standard deviation of the differences (Fig. 4a &
b) is much reduced in the vicinity of continents, except in river plumes
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areas but there, it could be an effect of ISAS smoothing.
In order to more precisely quantify the improvements between the

L3Q and L3P SMOS SSS, we detect the number of months, N, between
July 2010 and December2016, for which the absolute value of the
difference between the L3Q and the L3P SSS is larger than a threshold,
T equal to 0.2 pss (Fig. 4).

As expected, the number of months affected by the correction in a
given pixel is higher in the vicinity of continents. In a next step we
evaluate how frequently the changes correspond to improvements. For
these months significantly affected by the correction, we thus compute
the number of months with L3Q SSS closer to SSSisas than to L3P SSS.
In most areas, the correction brings monthly SMOS SSS closer to

Fig. 3. a) SSS variability (σSSSnat) derived from 7 years of SMOS filtered and corrected SSS (after debiasing and filtering): large values are observed in river plumes
and in rainy areas (ITCZ, SPCZ. b) Minimum and c) maximum of the SSS as derived from 18-day CEC LOCEAN that are used in the mapping of debiased near-real time
products (see Section 3.4).
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monthly ISAS SSS in 60% to 100% of the cases (Fig. 4d). This is not true
in the Gulf Stream region close to 40°N, probably because ISAS is not
able to reproduce SSS mesoscale variability recorded by SMOS (Reul
et al., 2014b), nor close to 10°S in the western Pacific Ocean and in the
middle Indian Ocean, two regions strongly affected by RFI. It is
nevertheless remarkable that other regions affected by RFI such as the
north-western Pacific Ocean are improved most of the time, suggesting
that the RFI disturbances there are sufficiently stable in time to be
partly mitigated by our correction.

5. Assessment of the corrected fields

5.1. Comparison to SMAP SSS

SMAP CAP SSS has a similar spatial resolution as SMOS CEC SSS,
SMAP passes are at 6 AM and 6 PM local time like SMOS, so that the
spatio-temporal sampling of SMOS and SMAP are really comparable.
SMAP SSS are much better filtered from RFI, hence providing an un-
precedented monitoring of main river plumes in the vicinity of con-
tinents. On the other hand, SMAP Tb calibration is more challenging
than for AQUARIUS (Fore et al., 2016a), so that the absolute value of
SMAP SSS may remain imprecise to about 0.2 pss in low to mid-lati-
tudes of the open ocean, but biases up to 0.45 pss, which origin remains
unclear, have also been reported during certain periods in the Bay of
Bengal (Tang et al., 2017, their Figures 5 and 12 respectively). It is out

of the scope of this paper to study SMAP CAP SSS biases. We focus the
investigation on the SSS variability measured by both sensors.

The various SMOS SSS fields are compared with SMAP SSS fields
over the period between April 2015 and December 2016. Two ranges of
temporal resolutions are considered, one close to one week, another one
close to 18 days. The choices of the average durations are guided by the
satellite repetitive orbit cycle and sub-cycle in order to get, for each
instrument, the most even spatial coverage. In the following, for sim-
plicity, 10-day L3P, L3Q and 9-day CEC SMOS SSS fields compared with
8-day SMAP SSS fields are referred to as ‘weekly’ comparisons.
Comparisons between 18-day SMOS SSS fields from K2016 and CEC
processing with 16-day SMAP SSS are referred to as ‘bi-weekly’ com-
parisons. We always compare fields centered on the same time (at±
12 h), in order to minimize the effect of the different durations.

At global scale and ‘weekly’ resolution (Fig. 5), standard deviations
of the SMOS minus SMAP SSS differences are reduced in the vicinity of
large continents and of RFI sources (e.g. Fiji island, Hawaï island, south
of Madagascar) from>0.6 pss before correction (L3P, Fig. 5b) to<
0.4 pss after correction (L3Q, Fig. 5e; CEC, Fig. 5h) becoming com-
parable to open ocean values. In addition, the number of valid pixels is
increased, especially in the vicinity of large continents (Fig. 5c, f and i).
The improvement is better with CEC fields than with L3Q fields due to
the improved filtering. The square of the Pearson correlation coeffi-
cient, r2, is as good or better when considering L3Q instead of L3P SSS
(Fig. 5d and a). r2 indicates the proportion of variance contained in
SMAP SSS that is explained by SMOS SSS. Hence, if the natural SSS
variability is low relatively to the satellite SSS noise, r2 is expected to
remain small whereas if the natural variability is large compared to the
satellite SSS noise, r2 is expected to increase. This is what is observed. r2

is in particular increased from<0.5 to>0.5 in the north of the Gulf of
Mexico, in the Gulf of Guinea, in the Bay of Bengal (no valid mea-
surements exist there in the L3P processing) and to the north of the
Amazon plume. The improvement is even larger when considering CEC
SSS (Fig. 5i) instead of L3Q SSS due to the different filtering and
mapping procedures: then, r2 in the above-identified regions becomes
higher than 0.8. These large values of r2 correspond to regions of large
natural SSS variability, much larger than the SSS noise, as will be shown
below. On the other hand, in most regions of the open ocean where SSS
variability is on the same order or smaller than SSS noise, r2 remains
small. If instead of considering all the available SMOS SSS pixels
(Fig. 5), the comparison is made using only SSS pixels available in every

Table 1
Summary of the main characteristics of the CATDS products and methods.

Original K2016 L3P K2016 in this paper CEC L3Q

References
CATDS name CEC LOCEAN debias_v0 CPDC L3P – CEC LOCEAN debias_v2 CPDC L3Q
Dataset reference – CATDS (2017b) – Boutin et al. (2017) CATDS (2017c)

Input data processing
Level 1 data ESA v5 ESA v6 ESA v6 ESA v6 ESA v6
Level 2 data ESA v550 CATDS RE05

L2P
CATDS RE05 L2P CATDS RE05 L2P CATDS RE05 L2P

Tb outlier sorting Yes Yes Yes Yes Yes

Correction methodology
Land-sea contamination

correction
Yes No Yes Yes Yes

Latitudinal bias correction No No No Yes Yes
Reference period 2010–2014 – 2010–2014 2010–2016 2010–2016
σSSSref0 (18-day) 0.3 pss – 0.3 pss σSSSnat σSSSnat
Errors in R matrix ESSS_L2 – ESSS_L2 ESSS_L2·χN ESSS_L2·χN

L3 fields
Gridding method Smoothing over

R=50 km
Bin average
(25 km grid)

Median nearest neighbors
(25 km grid)

Median nearest neighbors (25 km
grid)

Bin average (25 km grid)

Filtering SSSref ± 3·ESSS_L2 L2 flags SSSref ± 3·ESSS_L2 SSSref ± 3·ESSS_L2·χN SSSmax+2.(ESSS_L2·χN) &
SSSmin− 2.(ESSS_L2·χN)

NB: The K2016 processing shown in the present paper has been recomputed from CATDS RE05 processing and using the same filtering as in CEC product.

Table 2
Statistics of monthly SMOS SSS (only pixels with>8 SMOS SSS retrievals in
ascending and descending orbits are considered) minus ISAS SSS; 2010–2016.

Number of
pixels

Mean bias
(SMOS – ISAS)

std(SMOS-
ISAS)

45°S–45°N distance to coast < 800 km
SMOS without correction

(L3P)
1,542,456 −0.53 0.63

SMOS with correction
(L3Q)

1,917,346 −0.07 0.49

45°S–45°N distance to coast > 800 km
SMOS without correction

(L3P)
5,316,809 −0.10 0.26

SMOS with correction
(L3Q)

5,429,659 −0.02 0.20
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SSS products (Appendix A2), the standard deviations of the differences
are comparable or slightly lower in regions polluted by RFI but this is at
the expense of many measurements which contain meaningful varia-
bility as indicated by high r2 on Fig. 5.

Fig. 5 indicates a clear improvement of L3Q and CEC fields with
respect to L3P fields. In comparison with K2016 (not shown), standard

deviations of the SMOS CEC 18-day SSS minus SMAP SSS differences
are very similar (within± 0.05 pss) in major parts of the ocean, but in
the regions identified above where r2 became larger than 0.8, they are
locally improved by>0.5 pss; these regions are further studied below.
We observe some degradation (standard deviations of the SMOS minus
SMAP SSS differences increase by up to 0.3 pss) in some regions (the

Fig. 4. Monthly SMOS SSS compared to monthly ISAS SSS from July 2010 to December 2016. Standard deviation of the differences for a) L3P SMOS SSS; b) L3Q
SMOS SSS. c) Number of months with differences between L3P and L3Q SMOS SSS> 0.2 pss. d) Frequency with which corrections identified on figure c) correspond
to decreased bias with respect to ISAS (i.e. L3Q SMOS SSS closer to ISAS SSS than L3P SMOS SSS): red color means that the correction improves most of the time; blue
color means that the correction degrades most of the time. Blank colors in figures c) and d) mean no change above the 0.2 pss threshold or no data in the L3P version
(the comparison is done only for valid L3P SSS).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Comparison of SMOS and SMAP ‘weekly’ SSS: (a, d, g) r2, (b, e, h) standard deviation of the differences, (c, f, i) number of pixels used in the comparisons. (a, b,
c) 10-Day L3P SMOS SSS, (d, e, f) 10-day L3Q SMOS SSS, (g, h, i) 9-day CEC SMOS SSS. Same indicators but when considering only the pixels available in the four
products are presented in Appendix A2.
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Mediterranean Sea, the Arabian Sea, the north-western part of the Pa-
cific Ocean) strongly affected by RFI and for which L3P fields do not
provide valid measurements. In these regions, however, r2 obtained
with both CEC and K2016 versions remain<0.2.

We now detail more quantitatively the comparisons between SMAP
and SMOS K2016/CEC SSS in four regions with very variable salinities
(Bay of Bengal; Gulf of Mexico; Eastern Tropical Atlantic Freshwater
Pools; Amazon plume), identified on Fig. 5 as having a high r2 after
correction and already presented in the introduction. Contamination by
RFI is very strong in the Bay of Bengal and in the Eastern Tropical
Atlantic Freshwater Pools (see very small number of valid L3P mea-
surements (Fig. 5c)) and moderate in the two other regions. The coast
geometry is very different in these 4 regions: the Bay of Bengal and Gulf
of Mexico are semi-enclosed ocean areas so that land-sea contamination

of an ocean pixel is expected to come from>290° of different direc-
tions, while the other two regions are surrounded in>180° around the
points by the ocean.

As shown on the maps of Fig. 1 and on the corresponding scatter
plots (Fig. 6, two left columns), the new SMOS CEC SSS captures fresh
SSS patterns much closer to the ones in SMAP SSS and remains close to
SMAP SSS in other SSS ranges. For instance, in the Bay of Bengal
(Fig. 1a–c), the comma-shaped fresh SSS around 85°E and 17°N corre-
sponds to fresh water originating from the Ganges-Brahmaputra
trapped in an eddy (Fournier et al., 2017) and the one near 15°N, 95°E,
to the Irrawady discharge. In the Gulf of Mexico (Fig. 1d–f), the
horseshoe-shaped fresh SSS coming from Texas flooding and trans-
ported by ocean currents (Fournier et al., 2016) is better captured, as
well as the Eastern Tropical Atlantic Freshwater Pools (Fig. 1g–i) and

Fig. 6. Scatter plots of SMOS corrected fields versus SMAP SSS on the 4 regions and fresh events periods illustrated on Fig. 1: first line: Bay of Bengal; 2nd line: Gulf of
Mexico; 3rd line: Eastern Tropical Atlantic Freshwater Pools; 4th line: Amazon plume. First column: SMOS 18-day K2016 SSS; second column: SMOS 18-day CEC SSS;
last column: SMOS 9-day CEC SSS.
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the Amazon and Orinoco plumes (Fig. 1j–l). The statistics of the SMOS
SSS minus SMAP SSS differences are reported in Table 3. The median of
the differences between SMOS and SMAP SSS and std(SMOS-SMAP) are
decreased in all regions. The L1 norm estimator std1 (equal to median
(abs(x-median (x)))/0.67, and that is less affected by the outliers than
std), and r2 are clearly improved in the Bay of Bengal; the improvement
is less in other regions because of the larger proportion of higher SSS
values, and less stringent noise filtering at moderate SSS. For SSS less
than 25 pss in the Amazon plume and in the Bay of Bengal, SMOS SSS
remains in some cases higher than SMAP SSS.

The time series of the indicators reported in Table 3 are plotted for
each case study region on Figs. 7 to 10. ‘Bi-weekly’ indicators confirm
that during periods with large SSS variability detected by SMAP (black
line on top right figures) and low SSS (black line on top left figures), r2

(bottom left figures) and std(SMOS-SMAP) (bottom right figures) are

systematically improved for CEC with respect to K2016: r2 becomes
larger than 0.9 except in the Amazon plume (~0.8). This is not sys-
tematically the case during periods with low SSS variability and salty
SSS when sometimes K2016 performs slightly better in term of r2 and
std(SMOS-SMAP): this is likely because our method neglects seasonal
variation of σSSSnat. Nevertheless, the worse r2 obtained with CEC SSS
relative to K2016 SSS correspond in reality to weak degradations of the
corrected SSS, given the noise in both SMOS and SMAP SSS and the low
SSS variability; on the contrary, the improved r2 correspond to very
significant improvements in the detection of fresh SSS in highly variable
regions.

std1 (dashed lines on bottom right figures) is on the order of 0.3 pss,
which is consistent with a noise on each ‘bi-weekly’ satellite SSS pro-
duct on the order of 0.2 pss. Tang et al. (2017) found a standard de-
viation of 0.17 pss between monthly SMAP and moorings SSS over the

Table 3
Statistics of (SMOS SSS – SMAP SSS) corresponding to scatter plots of Fig. 6.

K2016 (18d) – SMAP (16d) CEC (18d) - SMAP (16d) CEC (9d) - SMAP (8d)

Median std std1 r2 Median std std1 r2 Median std std1 r2

Bay of Bengal
0.10 2.00 0.56 0.85 0.02 0.77 0.38 0.95 −0.03 0.81 0.41 0.95

Gulf of Mexico
−0.02 0.50 0.29 0.90 −0.06 0.39 0.30 0.94 −0.06 0.45 0.37 0.93

Eastern Tropical Atlantic Freshwater Pools
0.04 0.42 0.23 0.92 0.01 0.39 0.23 0.91 0.05 0.44 0.29 0.90

Amazon Plume
−0.14 1.00 0.20 0.83 −0.13 0.82 0.20 0.85 −0.11 0.87 0.25 0.80

Fig. 7. Time series of statistical parameters computed over the Bay of Bengal case study area, April 2015 to December 2016: a) mean SSS; b) SSS standard deviation;
c) square of the Pearson correlation coefficient (r2) between SMOS and SMAP SSS; d) Standard deviation of the SMOS minus SMAP SSS differences (plain line) using
L1 norm (dotted line). ‘Weekly’ SMOS CEC (blue), ‘bi-weekly’ SMOS CEC (green), ‘bi-weekly’ SMOS K2016 (red), ‘weekly’ SMAP (black). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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open ocean, a value comparable to the one we find with monthly-
100 km SMOS-ship comparisons that will be described in Section 5.2.

The standard deviations of the SSS (SSS std (top right figures)) ob-
tained with CEC products are much closer to the SSS std of the ‘weekly’
SMAP products than the ones obtained with the ‘bi-weekly’ K2016
products during highly variable periods; during periods with low
variability all SSS std are very close to each other. Nevertheless, except
in the Gulf of Mexico, SSS std are slightly larger for SMAP SSS than for
CEC SSS. This possibly indicates that our method still underestimates
SSS natural variability in some cases. This may also be due to the ad-
justment to the 7-year median of ISAS SSS: for instance, the fresh water
along the Brazil coast at 50°W–5°N is observed as a continuous tongue
in the SMAP SSS map (Fig. 1l), and as a discontinuous one in the SMOS
SSS maps (Fig. 1j–k) which is due to a discontinuity in the 7-year
median of ISAS SSS (not shown). Further validation with external
ground truth of SMOS and SMAP SSS would be necessary to confirm the
origin of this discrepancy.

It is also instructive to consider the statistics obtained with ‘weekly’
products (Fig. 6, right column and Figs. 7 to 10, blue lines) as SSS
during periods with large freshwater discharges can be very variable at
short time scales. In most cases, r2 and std(SMOS-SMAP) obtained with
‘weekly’ products are slightly worse than the ones obtained with ‘bi-
weekly’ products, because the noise is higher in the ‘weekly’ products
but it nevertheless remains small relative to the natural variability. It is
only in Fall, in the Bay of Bengal, when the SSS std is larger than
2.5 pss, that the r2 and std(SMOS-SMAP) with the ‘weekly’ CEC product
are comparable to the r2 and std(SMOS-SMAP) with ‘bi-weekly’ CEC
product, the noise becoming negligible relative to the SSS natural
variability. Hence, in very variable regions, the ‘weekly’ CEC maps
could improve the monitoring of fresh spatial structures varying within
18 days.

5.2. Comparison to ship SSS

Merchant ship transects are used to get ground-truth measurements
at various distances from the coast. With respect to SMAP SSS, ship SSS
is less uncertain but its spatio-temporal sampling and resolution is very
different from SMOS SSS.

In a first step, we consider the scales of SSS variability captured by
the various SMOS SSS versions and by the ship SSS far from coast. We
focus on the subtropical region (50°W–20°W; 15°N–40°N) of the north
Atlantic in 2013. This region is chosen because it is very well covered
by regular ship tracks spaced by approximately one month, it is strongly
impacted by the seasonally-varying latitudinal biases, it is characterized
by mesoscale variability that is not resolved by the ISAS analysis
(Kolodziejczyk et al., 2015a; Sommer et al., 2015), and it is not used for
choosing the reference dwell lines of the seasonal latitudinal correction.
We analyze below the density spectra (Fig. 11, top) and the squared
coherence (Fig. 11, bottom) of ISAS, of 10-day L3P and L3Q, of 18-day
CEC with ship SSS. Our analysis focuses on wavelengths between
1400 km and 150 km, in order to minimize the influence of the limited
length of the selected ship tracks (about 2800 km) and of scales re-
solved by SMOS (50 km). We recall here that coherence quantifies the
correlation between two quantities for a given wavenumber band.
While at 1400 km wavelength ISAS and ship SSS are very coherent, due
to the subsampling of Argo measurements (1 profile per 10 days per
3°×3°) and to the horizontal scales of the optimal interpolation
(~300 km), the ISAS spectrum (Fig. 11, top, green line) dramatically
drops as well as its squared coherence (Fig. 11, bottom) for shorter
wavelengths.

Whatever the wavelength, the density spectra (Fig. 11 top) of the
18-day CEC SSS is closer to the one of the ship SSS than the 10-day L3P
and L3Q. The density spectrum of the 9-day CEC SSS is very similar to

Fig. 8. Time series of statistical parameters computed over the Gulf of Mexico case study area, April 2015 to December 2016: a) mean SSS; b) SSS standard deviation;
c) square of the Pearson correlation coefficient (r2) between SMOS and SMAP SSS; d) Standard deviation of the SMOS minus SMAP SSS differences (plain line) using
L1 norm (dotted line). ‘Weekly’ SMOS CEC (blue), ‘bi-weekly’ SMOS CEC (green), ‘bi-weekly’ SMOS K2016 (red), ‘weekly’ SMAP (black). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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the one of the 10-day L3Q for spatial wavelengths between 150 and
330 km. For longer wavelengths, the density spectrum of 9-day CEC SSS
is intermediate between the 18-day CEC and the 10-day L3Q, indicating
that at large scale, where the temporal variability between 9 days and
18 days is expected to be small, the different filtering and Gaussian
mapping applied to CEC products is more effective at reducing the
SMOS SSS noise than the min/max filtering and bin average mapping
applied to L3Q products. Up to 150 km, the density spectra of the 18-
day CEC and ship SSS are in remarkable agreement. This is in fact quite
surprising because the MIRAS and TSG instrumental noises are not
expected to lead to the same SSS errors and because the temporal
sampling of SMOS (about 8 passes over 18 days) and of ship (~one
transect per month) are very different. Given the expected noise in level
2 SMOS retrieved SSS (0.6 pss), the median filtering over nearest
neighbor pixels at 25 km distance in the SMOS CEC product, and the
SMOS temporal sampling, the noise on the 18-day CEC SSS is expected
to be on the order of 0.15 pss. Noise on individual ship SSS is estimated
to be less, on the order of 0.08 pss (Alory et al., 2015) but the temporal
sampling is worse. Hence, the similarity in the two density spectra
suggests that the SSS error due to instrumental noise that is larger in
SMOS than in ship SSS, is compensated, over 18 days, by the better
temporal sampling in SMOS than in the ship data.

The squared coherence (Fig. 11 bottom) of the 18-day CEC SSS is
almost at the same level (above 0.7) as the squared coherence of ISAS
SSS at a 1400 km wavelength, and is always at a higher and significant
level for wavelengths up to 300 km. The 18-day CEC squared coherence
decreases with decreasing spatial wavelengths. This can be due to in-
strumental noise, to the different temporal sampling of SMOS and ship
and to spatially moving structures within 18 days. The 18-day CEC
squared coherence becomes not significant at 95% for wavelengths
smaller than 300 km. Considering that at least 3 samples are necessary

to resolve a 300 km wavelength signal, this result indicates that 18-day
CEC and ship SSS capture similar scales of variability up to about
100 km. This is rather consistent with the spatial integration of SMOS
measurement (50 km) in addition to the median filtering over nearest
neighbor pixels at 25 km applied on CEC products.

The level of coherence is much less both with the 10-day L3P and
L3Q products, due to a lower signal to noise ratio.

We will now investigate global statistics for the difference between
SMOS and ship SSS. Consistent with the weak coherence observed be-
tween the ship SSS and the 10-day L3P and L3Q SSS, 9-day CEC and 10-
day L3P or L3Q are of worse quality than the 18-day CEC and monthly
L3P and L3Q fields. Hence, in the following comparisons, we only
consider monthly L3P, L3Q and 18-day CEC fields. Ships provide within
a few hours numerous measurements within a satellite pixel. In the
following, the SSS variability sampled by each ship and by SMOS is
smoothed over± 50 km. This smoothing cannot be identical for the two
platforms because of their different spatio-temporal sampling. SMOS
observes a surface (two dimensions) whereas ship measurements are
taken along a route (one dimension). However, this method is expected
to reduce the misfit between in situ and SMOS observations coming
from the spatial subsampling of SSS variability within a satellite pixel
by point measurements (Boutin et al. 2016). Mean differences and
standard deviation of the differences between SMOS SSS and ship SSS,
named Std(SMOS-Ship) in the following, are shown in Fig. 12, as a
function of the distance from the coast. Two sets of comparisons are
presented, involving either only SMOS pixels common to L3P fields (i.e.
the ones the less affected by RFI pollution) (Fig. 12, left) or all valid
pixels for each product (Fig. 12, right). The number of valid pixels is
increased by nearly a factor 2 when approaching the coast with L3Q
and CEC fields with respect to L3P fields (Fig. 12, bottom right). The
mean differences (Fig. 12, top) obtained with monthly L3P are less than

Fig. 9. Time series of statistical parameters computed over the Eastern Tropical Atlantic Freshwater Pools case study area, April 2015 to December 2016: a) mean
SSS; b) SSS standard deviation; c) square of the Pearson correlation coefficient (r2) between SMOS and SMAP SSS; d) Standard deviation of the SMOS minus SMAP
SSS differences (plain line) using L1 norm (dotted line). ‘Weekly’ SMOS CEC (blue), ‘bi-weekly’ SMOS CEC (green), ‘bi-weekly’ SMOS K2016 (red), ‘weekly’ SMAP
(black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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−0.5 pss up to 600 km from the coast. The mean differences with CEC
fields are systematically< 0.05 pss (in absolute value), further than
100 km from the coast, a very clear improvement with respect to L3P.
Similar improvement is observed with monthly L3Q when considering
only pixels common to L3P (Fig. 12, left); the mean differences are,
however, slightly more negative when considering all valid pixels, in-
dicating that the filtering is more efficient at removing SSS outliers in
CEC than in L3Q processing. At< 100 km from the coast, the mean
difference with CEC product reaches 0.15 pss, a value close to the mean
difference between ISAS and ship SSS, consistent with local over-
estimate of the long term SSS mean by ISAS, as suggested by SMOS and
SMAP SSS comparisons in the Amazon plume along the coast (Fig. 1
and Section 5.1). However, the scatter plot (not shown) between CEC
and ship SSS in the region of the Amazon plume is very scattered at low
SSS and it was not possible to identify a systematic bias.

Std(SMOS-Ship) is clearly improved whatever the distance to the
coast. Further than 1000 km from the coast, it is equal to 0.20 pss with
CEC, 0.21 pss with L3Q while it is 0.24 pss with L3P. It increases when
approaching the coast: in the 100–200 km class and when considering
all valid pixels, it equals to 0.64 pss with CEC, 0.69 pss with L3Q,
0.78 pss with L3P. When approaching the coast, the ship SSS variability
is increased too (black lines on Fig. 12, middle right) and it is likely that
part of the Std(SMOS-Ship) induced by the different temporal sampling
of SMOS and ships increases when approaching the coast. Conse-
quently, while Std(SMOS-Ship) is increased by a factor 3 between
100–200 km and further than 1000 km from the coast, the signal to
noise ratio is increased by only a factor 1.5 between these two classes.
Similarly, Std(SMOS-Ship) and ship SSS std. are lower when con-
sidering only L3P pixels than when considering all valid pixels, so that
the signal to noise ratio in both cases remains similar. When con-
sidering all valid pixels (Fig. 12, middle right), the std. difference

Fig. 10. Time series of statistical parameters over the Amazon plume case study area, April 2015 to December 2016: a) mean SSS; b) SSS standard deviation; c)
square of the Pearson correlation coefficient (r2) between SMOS and SMAP SSS; d) Standard deviation of the SMOS minus SMAP SSS differences (plain line) using L1
norm (dotted line). ‘Weekly’ SMOS CEC (blue), ‘bi-weekly’ SMOS CEC (green), ‘bi-weekly’ SMOS K2016 (red), ‘weekly’ SMAP (black). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Fig. 11. Top: density spectra; bottom: coherence between ship SSS and SMOS
or ISAS SSS. The spatial frequency (1/wavelength (km)) is indicated below the
bottom plot, whereas the corresponding wavelengths (km) are indicated above
the top plot. Vertical dashed lines correspond to spatial frequencies regularly
spaced in logarithmic coordinates. Northern subtropical Atlantic (see box on
the color map) in 2013. Ship SSS measured on regular merchant ships transects
(14 regular transects in 2013) (black), ISAS SSS (green), 10-day SMOS L3P
(blue line), 10-day SMOS L3Q (dashed blue line), 18-day SMOS CEC (red line),
9-day SMOS CEC (red dashed line). (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

J. Boutin et al. Remote Sensing of Environment 214 (2018) 115–134

128



obtained with ISAS remains slightly less than the ones obtained with
CEC and L3Q SSS in all the classes considered except for the range from
500 to 900 km (Fig. 12, middle right). On the contrary, when con-
sidering only pixels common to L3P, (Fig. 12, middle left), CEC SSS
better captures SSS variability than ISAS in all the classes up to 900 km
from a coast. Two typical ship comparisons illustrate these features. On
Fig. 13 (left), a transect in the South Pacific is quite well sampled by
L3P, except between the equator and 4°N where the L3Q and CEC SSS is
closer to ship SSS. ISAS SSS appears to be smoother than SMOS SSS, as
expected from the optimal interpolation. On Fig. 13 (right) a ship
transect crosses the North Atlantic Ocean in September 2013, a period
of moderate RFI. The L3P SSS is very discontinuous due to RFI dis-
turbances in the north and to land-sea contamination south of the

equator. The L3Q and CEC SSS are more numerous and closer to ship
SSS than L3P SSS, even though the L3Q SSS appears to be more affected
by RFI than the 18-day CEC SSS north of 40°N.

6. Discussion and perspectives

Retrieving accurate SSS from SMOS measurements in the vicinity of
continents is very challenging. The land-sea brightness temperature
contrasts induce a contamination of the retrieved SSS signal, up to
about 1000 km from the coast. This contamination is very variable
across the SMOS swath. The origin of this pollution is very complex. It is
likely related to an imprecise characterization of the 69 individual
antenna patterns constituting the SMOS synthetic antenna, preventing a

Fig. 12. Statistics of ship comparisons (May 2010–August 2016) binned as a function of the distance from the nearest coast: top) mean difference; middle) standard
deviation of the differences; the black line indicates the standard deviation of ship SSS in each class; bottom) number of pixels used in the comparisons. Left:
considering only the SMOS pixels common to all versions; right: considering all pixels available in each version. Ship and SMOS SSS are integrated over 100 km.
Orange: monthly SMOS L3P; pink: monthly SMOS L3Q; blue: 18-day SMOS CEC; green: ISAS. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. Examples of comparisons between ship SSS (black star line) and SMOS SSS: orange: non corrected (L3P), purple: monthly L3Q corrected, blue: 18-day CEC
corrected; green: ISAS. Left) from 2014-08-21 to 2014-09-03, Matisse ship. Right) from 2013-08-21 to 2013-09-03, Santa Cruz ship. All SSS products have been
smoothed over± 50 km. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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reliable theoretical modelling of the correction in the current SMOS
image reconstruction process. The land-sea contamination has thus to
be mitigated empirically. When doing so, the main difficulty is to dis-
tinguish the SMOS signal resulting from natural SSS variability from
ones contaminated by RFI, whose sources are often located near coasts.
To make matters worse, the typical RFI signature yields low SSS, and
the largest SSS natural variability often occurs in low SSS regions, e.g.
from river plumes or high rain regime. The K2016 methodology de-
veloped for correcting SSS affected by land-sea contamination was very
efficient in many areas, but not in those characterized by strong natural
variability, as it implicitly assumed that natural SSS variability was
negligible relative to SMOS SSS noise. The revised correction metho-
dology presented in this paper includes information on the amplitude of
natural SSS variability inferred from SMOS measurements. We further
add a seasonally- and latitudinally-dependent bias correction.

The SMOS corrected SSS is much more consistent to the in-
dependent SMAP SSS than K2016, both in terms of SSS patterns and
amplitude (Table 3). The SMOS SSS is, however, slightly noisier than
SMAP: in the open ocean (Pacific ITCZ region), Supply et al. (2017)
found an error of 0.6 pss on L2 SMOS SSS and of 0.5 pss on L2 SMAP
SSS. This difference is explained by the radiometric accuracy of the
respective instruments and by the SMAP flight hardware that allows
efficient detection and filtering of most RFI (Mohammed et al., 2016)
unlike SMOS. Nevertheless, both satellite missions record very similar
SSS variability at weekly time scale that is not resolved by mapped Argo
data (Fig. 14). On average over 47°N–47°S, the standard deviation of
the difference between SMOS CEC and ISAS SSS (Fig. 14a) is 0.33 pss
while the standard deviation of the difference between SMAP and ISAS
SSS (Fig. 14b) is 0.31 pss. The geographical distribution of this varia-
bility is very consistent with the small-scale variability of SSS observed
by ship measurements (see Fig. 6 of Boutin et al. 2016) with minima in
the subtropics and maxima in coastal areas, in the vicinity of river
plumes or in regions characterized by strong mesoscale fronts, such as
the Gulf Stream.

The only quantitative external information entered in the correction
algorithm is the 7-year median of ISAS SSS that fixes the absolute ca-
libration of the SMOS SSS in each pixel but does not influence its
variability. In seasonally-varying latitudinal biases correction, ISAS SSS
serves only in a qualitative way for choosing the SMOS cross-swath
locations used as reference. The implemented correction removes most
of the systematic errors and brings clear improvement when compared
with in situ ground truths measurement or with SMAP SSS.
Nevertheless, some refinements could still be envisioned. The absolute
calibration based on ISAS median SSS leads to some inaccuracies in
very near coastal pixels. This issue could probably be improved in the
future by analyzing to what extent the absolute calibration is sensitive
to the time period under consideration for computing the median and
by merging information coming from ISAS SSS with other SSS fields. A
further step could be taken by merging SMOS and SMAP information in
order to build a level 4 product taking advantage of synoptic spatio-
temporal coverage of satellite data for monitoring SSS variability and

using in situ SSS for the absolute calibration of SSS fields. Future studies
should also pay more attention to the bias seasonal and interannual
variability as a function of sun activity and of land Tb variability which
have been neglected in our study.

Our method corrects SMOS SSS retrieved with a Bayesian approach
at level 2, as described in Zine et al. (2008) and as implemented in ESA
and CATDS operational processors. Such a retrieval method takes ad-
vantage of the expected consistency between the various Tbs measured
at various incidence angles at a given distance across the swath and
takes the radiometric accuracy of each Tb into account. The land-sea
contamination is expected to add variability and biases on the SMOS
Tbs at a given distance across the swath, so that the quality of the
Bayesian retrieval is downgraded. In order to cope with this caveat, a
systematic correction at Tb level has been implemented in ESA L2 OS
processor v662, before the retrieval of SSS. The biases in the vicinity of
land and the standard deviation of the difference with respect to ISAS
are much reduced (Spurgeon and SMOS-Ocean Expert Support
Laboratories, 2017), but flagged SSS (poor quality retrieval) remain in
many coastal areas. Thus, the accuracy of the retrieved SSS is in general
not as good as the one obtained with our correction at the SSS level
(Level-3). The better performance of our methodology is likely due to
the fact that we account for SSS variability. Given all the non-SSS
geophysical effects affecting Tbs (roughness effect, galactic noise
etc…), it is very difficult to account for SSS variability when dealing
with Tbs measured at different angles within the field of view. Never-
theless, future work should explore a two-step correction, first per-
formed at Tb level to improve the Bayesian L2 retrieval and second
performed at SSS level.

An alternative debiasing method from a non-Bayesian approach has
also been proposed by Olmedo et al. (2017). Contrary to our approach,
Olmedo et al. (2017) retrieve SSS from single angular Tb measure-
ments, they filter SSS outliers using statistical indicators of the 3-year
SSS histogram per incidence angle classes. They adjust the absolute
value of SMOS SSS by adding the World Ocean Atlas climatology. An
analysis (not shown) of the 9-day De-biased non-Bayesian SMOS SSS
fields available from the Barcelona Expertise Center which have been
obtained with an objective analysis in the regions and periods shown in
Fig. 1 indicates that the striking fresh features are captured at a similar
level as what was obtained with K2016 methodology, consistent with
the fact that the statistical indicators used to filter outliers do not de-
pend on the SSS natural variability.

While SMAP SSS is expected to be much less affected by RFI, some
disturbances remain in some regions (Mohammed et al., 2016) and the
calibration of SMAP data is also challenging (Fore et al., 2016b;
Meissner and Wentz, 2016). Hence, when dealing with a local scientific
study, dedicated comparisons with in situ ground truth are highly re-
commended in order to precisely estimate the validity of satellite SSS in
a given region and period with respect to the natural variability that is
considered. This should be facilitated in the future with the develop-
ment of the SMOS PIlot Mission Exploitation Platform (PI-MEP).

The CATDS/CPDC L3Q SSS is currently limited to 47°S–47°N as we

Fig. 14. Standard deviation of ‘weekly’ satellite SSS minus ISAS SSS between 47°N and 47°S, over the year 2016. a) SMOS CEC, b) SMAP CAP.
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could not define unbiased SMOS reference dwell lines poleward of this
latitude. This is likely because of imperfect correction for surface
roughness and ice contamination which can extend up to 1000 km from
the ice edge and which is much more difficult to mitigate than land-sea
contamination as the ice edge is moving. Future studies should focus at
correcting the ice contamination and improving roughness correction.
In addition, in regions contaminated with highly variable RFI over the
7-year period, such as the northernmost parts of the Atlantic and Pacific
Oceans, the land-sea contamination correction becomes very tricky. In
our study, RFI affected Tbs are filtered out using a three-sigma filtering
applied on SMOS Tbs before retrieving SSS and using a Chi filtering
applied on L2 SSS. Future studies should look at improving this fil-
tering.
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Appendix A1. Selection of the region and of the reference xswath to be used for the seasonal latitudinal correction

Given the high RFI contamination in the northern latitudes of the Atlantic Ocean and given the relatively small area further than 1000 km from
the continents in the Atlantic Ocean, we choose to estimate the seasonally-varying latitudinal biases from Pacific Ocean orbits only. Nevertheless,
before doing this choice, we checked, on xswath and periods not very affected by RFI at high latitudes, that biases are similar in the Pacific and
Atlantic Ocean. We observe that the differences between ocean basins are on the same order of magnitude as the interannual variability of the biases
as illustrated with a few examples on Fig. 15 and on Fig. 16.

Over the 2011–2016 period, for each xswath, each month and each xorb, reference xswath are chosen as the ones having relatively weak and stable
(from one year to another) SMOS minus ISAS SSS differences (DIFF) over the 45°S–45°N latitudinal range. We did not define a quantitative criterion
for this selection because the patterns of DIFF strongly vary from one month to another, from ascending to descending orbits and as a function of
latitude (not shown). During most months, reference xswath are located on ascending orbits only. We illustrate the location of the reference xswath with
respect to the median of SMOS minus ISAS SSS absolute differences for the months of January, May and September (Fig. 17). The locations of all the
selected reference xswath are reported in Table 4.

Fig. 15. SSS latitudinal profiles in December
2011 (top left), 2012 (top right), 2013 (bottom
left), 2014 (bottom right) in the Atlantic Ocean
(1200 km from continents)- SMOS ascending
orbits (blue), descending orbits (red), ISAS
(green). (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 16. SSS latitudinal profiles in December
2011 (top left), 2012 (top right), 2013 (bottom
left), 2014 (bottom right) in the Pacific Ocean
(1200 km from continents)- SMOS ascending
orbits (blue), descending orbits (red), ISAS
(green). (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 17. Median of SMOS minus ISAS SSS absolute differences as a function of dwell line location and year, for the month of January (left), May (middle) and
September (right), for ascending (top) and descending (bottom) orbits. The black lines indicate the range of selected xswath.

Table 4
Reference xswath locations.

Ascending orbits Descending orbits

January [−150 −50] km –
February [−250 −100] km –
March [−250 −100] km –
April [0 100] km [150 200] km
May [0 100] km [200 250] km
June [50 100] km [50 100] km
July [−150 50] km [50 100] km
August [−250 250] km [−50 100] km
September [−150 100] km –
October [−50 100] km –
November [−250 −100] km –
December [−100 −50] km –
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Appendix A2. SMOS-SMAP SSS comparison considering only pixels common to all SSS fields

(See Fig. 18.)
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