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ABSTRACT 

Booij, N., 1983. A note on the accuracy of the mild-slope equation. Coastal Eng., 7: 
191--203. 

The mild-slope equation is a vertically integrated refraction-diffraction equation, 
used to predict wave propagation in a region with uneven bottom. As its name indi- 
cates, it is based on the assumption of a mild bot tom slope. The purpose of this paper is 
to examine the accuracy of this equation as a function of the bot tom slope. To this end 
a number of numerical experiments is carried out comparing solutions of the three- 
dimensional wave equation with solutions of the mild-slope equation. 

For waves propagating parallel to the depth contours it turns out that the mild-slope 
equation produces accurate results even if the bottom slope is of order 1. For waves 
propagating normal to the depth contours the mild-slope equation is less accurate. The 
equation can be used for a bot tom inclination up to 1 : 3. 

I.  INTRODUCTION 

The engineer who needs to predict the wave conditions at the coast, has 
at his disposal the widely used refraction or ray method (see Skovgaard et 
al., 1975). According to this method the direction of  the wave propagation 
is influenced by the slope of  the bo t tom (currents are ignored). T1/is method 
is very economical, bu t  it has some disadvantages. Among these are the fol- 
lowing: it does not  consider diffraction effects, and it requires a very small 
bo t tom slope. 

In order to overcome these drawbacks, Berkhoff (1972, 1976) developed 
a combined refraction and diffraction equation, which is now known as the 
mild-slope equation. Like the refraction equation, it is a vertically integrated 
model for periodic wave motion. It also assumes a small bo t tom slope, but  
this restriction is less strict than for the refraction equation. This restriction 
is formulated in qualitative terms; the present paper is concerned with 
a more quantitative determination of  the maximum allowable slope. 

To this end some calculations have been performed, both with the mild- 
slope equation and with the three-dimensional model, of  which it forms 
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a reduction. The three-dimensional model  will accurately predict (apart 
from numerical errors) the wave motion,  also for steep bo t tom slopes. The 
physical situation is chosen such that both refraction and diffraction terms 
come into play, and such that the three-dimensional computat ion can be 
carried out  with reasonable computat ional  effort.  The selected situation 
involves periodic waves propagating over a prismatic slope connecting two 
regions of  constant  depth. The incident wave has a direction making a given 
angle with the depth contours.  In this class of problems the dimensionality 
of the problem is reduced considerably. Time disappears as a result of the 
periodicity of  the waves, and the spatial coordinate parallel to the depth 
contours disappears because it is assumed that  the wave system is indepen- 
dent  of  this coordinate.  The remaining coordinates a r e z ,  the vertical co- 
ordinate, and x, the coordinate perpendicular to the depth contours. In the 
mild-slope equation, the coordinate z is eliminated, since it is a vertically 
integrated model. 

Section 2 of  this note deals with the equations used in the computat ion;  
it can be skipped by those who are interested mainly in the results. Section 3 
presents the numerical experiments and section 4 the conclusions. 

2. THE EQUATIONS FOR THE WAVE PROPAGATION 

Three-dimensional equations 

The refraction-diffraction model is derived from the three-dimensional 
equations for irrotational linear wave motion (Berkhoff,  1972, 1976). 
Berkhoff 's  equation will be compared with this equation. Since the mot ion 
is assumed irr~at ional ,  a velocity potential ~ exists. A derivation of the 
equations used in the sequel is found in Lamb (1963). The fluid is 
considered incompressible, so that  the divergence of  the velocity field 
vanishes. It follows that  the potential obeys the Laplace equation: 

a2~ ~2~ a2~ 
+ " + - -  : 0 (1) 

~X 2 ~y2 ~z 2 

The bot tom,  which is defined by z=-h(x,y), is assumed rigid and imper- 
meable. The velocity component  normal to the bo t tom surface vanishes, 
and thus the normal derivative of  ~ vanishes on the bot tom:  

n ' V ~  = 0 on z = -h (x ,y )  (2) 

n being the outward normal to the b o t t o m  surface. 
Furthermore,  the model  is restricted to linear approximations. On the 

mean free surface, located at z=O, the following boundary condition holds: 

+ g - - =  0 on z = 0 (3) 
at  ~ i~z 
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For the equations mentioned above, a solution exists which is purely 
harmonic in time. This is expressed by: 

-- Re [ e - i ~ t ~ ( x , y , z ) ]  (4) 

For the (complex) function ~ the condition at the surface transforms into: 

-~o2~+g- -~  = 0 onz  = 0 (5) 
az 

The equation for the interior of the fluid (eq. 1), and the boundary condi- 
tion on the bottom (eq. 2) are not affected by the transition to the complex 
potential ~. 

Vertically in tegrated equa t ions  

The vertically integrated model is derived from the equations for ~. 
It is assumed that the vertical distribution of the wave potential is as if the 
bottom were entirely horizontal. This is expressed by: 

cosh (k (h +z)) 
= (6) 

cosh (kh)  

Berkhoff's procedure consists of the following steps: eq. 6 is substituted into 
the equations for ~. This expression is multiplied by an appropriate 
weighting function. This product is integrated over the depth to obtain the 
mild-slope equation. Due to the use of eq. 6 the resulting equation will be 
only approximately valid if the bottom is not horizontal. The function ¢ 
depends only on x and y. It obeys the following partial differential equation, 
which is known as the mild-slope equation: 

+ + k2Gcb = 0 ox (7) 

The conditions at the bottom and at the surface are incorporated into this 
equation. Frequency and depth enter the equation through the coefficient 
k, which is equal to the wave number, and G, the product of phase velocity 
and group velocity, k and G axe calculated by means of the following rela- 
tions: 

w 2 = g k  tanh(kh) (8) 
1 1 

sinh (2kh) +¥  k h  

G = g k {cosh(kh)) 2 (9) 

It is noted that the vertical displacement of the free surface can be obtained 
from the wave potential at z= 0 by: 
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Z ( x , y , t )  = P~e e ~o(x,y,O) 

R e d u c t i o n  to parallel d e p t h  con tours  

In the special case for which the numerical computations will be carried 
out, the depth is dependent  on only one coordinate, so that  h = h ( x ) .  In the 
other direction y, which is parallel to the depth contours, the wave system 
is assumed periodic, so that:  

= e irny P ( x , z )  (10) 

for the three-dimensional model. For the vertically integrated model: 

= e imy Q ( x )  (11) 

From eq. 1 the following partial differential equation for the function P(x,z) 
results: 

~2p a2p 
+ ~ - m ~ P  = 0 (12) 

ax 2 az 2 

with boundary conditions on bot tom and surface as eqs. 2 and 5. The equa- 
tion for Q (x) follows from the mild-slope equation: 

d ( G d Q )  k 2 - ~  ~ - m 2 G Q  + G Q  = 0 (13) 

In addition, boundary conditions are needed to account for the incident 
wave and the waves radiated away. At this moment  it is necessary to distin- 
guish between the case of waves propagating parallel to the depth contours, 
and waves incident under some angle with these contours. 

Obl ique  or  normal  incidence 

The geometry of the model used in this section is shown in Fig. 1. It con- 
sists of two regions of constant depth, both extending to infinity, separated 
by a prismatic transition zone. Both boundaries of the computational model 
x = 0 and x = W are located in regions with constant depth. The incident wave 
is coming from the constant  depth region x~<0. The value of m is determined 
by the angle of incidence, which is equal to arcs in (m/k ) ,  where k is the wave 
number in the region x~<0. 

In the regions of constant depth the wave motion consists of a progressive 
wave to the right and one to the left. For each progressive wave the wave 
number is found from eq. 8. The y-component  of the vectorial wave number 
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Fig. 1. Sketch of the wave system in the case of oblique incidence. 

is k n o w n ,  equal  to  m.  T h e  x - c o m p o n e n t ,  which is called l, is f o u n d  f r o m :  

l 2 + m 2 = k 2 (14) 

I t  is a s sumed  t h a t  in the  c o n s t a n t - d e p t h  region x~> W there  is no  re f lec ted  
wave.  So the re  exists  on ly  a wave  p r o p a g a t i n g  in posi t ive  d i rec t ion,  which  
obeys :  

aP  
= l ip  at  x = W ( 1 5 )  

ax  

The  same  b o u n d a r y  cond i t i on  is used  fo r  the  func t i on  Q. 
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At x=O there is an incoming wave as well as a reflected wave. The 
incoming wave is assumed to have amplitude 1, wi thout  loss of generality 
due to the linearity of  the equations. Since the boundary is located in a 
region with horizontal bot tom the potential of the incident wave reads: 

Pi = eilX cosh(k (z+h)} 
cosh (kh) 

The function P is the sum of the potentials of the incoming and the reflected 
waves. The relation for the reflected wave Pr is similar to eq. 15: 

apt 
= - i /P r  

~x 

Since P=Pi +Pr, the boundary condition for P reads: 

aP 
= - i / P  + 2ilPi at x = 0 (16) 

~x 

For Q the corresponding boundary condition is: 

dQ 
: = - i l Q  + 2ilQi at x = 0 (17) 
dx 

Waves parallel to depth contours 

In the case of wave propagation parallel to the depth contours, a different 
geometry must be assumed. The model is now a prismatic wave channel 
bounded by fully reflecting walls (see Fig. 5). These walls are located at 
x=O and x=W. The boundary conditions for this example are as follows: 

~P 
- -  = 0 at x = 0  and x =W (18) 
0x 

dQ 
= 0 at x = 0  and x =W (19) 

dx 

This time the number m cannot be determined beforehand. It is an un- 
known quanti ty that  follows from the computation.  Mathematically the set 
of equations forms an eigenvalue problem, with rn as eigenvalue. 

In the case of a channel with constant depth the main eigenvalue would 
be equal to k, the wave number associated with the depth in the channel. 
If the depth is not  constant  in lateral direction, m cannot be determined so 
easily. Its physical meaning is illustrated by the property that  the computed 
wave pattern propagates (without  deformation) through the channel with 
velocity ¢o/m. 
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3. THE NUMERICAL EXPERIMENTS 

A number  of  numerical experiments are carried out  in order to check the 
mild-slope equation against the three-dimensional model. The differential 
equations eqs. 12 and 13 are discretized by means of  the Finite Element 
Method (see e.g. Zienkiewicz, 1977, or Connor and Brebbia, 1977), because 
of  its flexibility regarding the representation of  curved boundaries. Triangles 
are chosen as finite elements in the (x,z)-domain with shape functions linear 
over these elements. Figure 2 shows an example of  this finite-element 
distribution. For  the mild-slope equation the elements are intervals of  the 
x-axis, but  otherwise the method employed is the same. 

In the case of  propagation normal to the slope, the set of  equations can 
also be solved by means of a boundary element method (see e.g. Salmon et 
al., 1980), which is more efficient as far as computat ional  effort  is 
concerned. This method is not  as easily applicable to the case of  oblique or 
normal incidence, due to the presence of  the term m2P (see eq. 12). Since 
finding a computat ional ly efficient method for three-dimensional wave 
motion is not  the primary aim of this study, the finite element method is 
considered adequate. 

The numerical accuracy of  both models was determined by varying the 
mesh size. In the case of the three-dimensional model it was also verified, by  
means of  a variation of  the location of  the boundaries x=O and x = W, 
whether the boundaries were chosen sufficiently far away from the slope. 
The numerical accuracy of  the mild-slope equation was the best of  the two. 
Due to its lower number  of  dimensions, a smaller mesh size could be used, 
leading to an accuracy about  10 times as high as in the three-dimensional 
model. The accuracy of  the latter was about  0.5%. As far as the displacement 
of  the free surface was concerned, this was satisfactory. For the reflection 
coefficients, calculated from the displacement, it meant  a rather large error. 
Reflection coefficients of  2% or lower were unreliable. 

The length measures in the model are all multiplied by the wave number  
in deep water ko=co2]g, in order to obtain non-dimensional quantities. 
In the test cases presented, the depths are chosen such that there is a transi- 
tion from almost shallow to almost deep water, viz. from koh=0.2 to 
koh=0.6 (see Fig. 2). 

I: x W 

Fig. 2. F in i t e - e l ement  d is tr ibut ion  ujed  in a c u e  o f  normal  wave  inc idence .  
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Fig. 3. Free-surface elevation computed by the mild-slope equation (broken line) and by 
the three-dimensional equation (solid line). P, =Re(P), P2flrn(P), three-dimensional 
model; Ql =Re(Q), Q2 •Im(Q), mild-slope equation. 

In the first series of tests, waves propagating normal to the depth contours 
(re=O) are considered. As an example, Fig. 3 shows the surface displacement 
for a l :3-s lope steepness. It is noted that  the surface displacement is propor- 
tional to the potential. The quantities shown are the real and imaginary parts 
of  the complex expression for the displacement. These can be interpreted as 
positions of the free surface at two times, a quarter of  a period apart. The full 
line indicates the three-dimensional model and the dashed line the vertically 
integrated model. Both the amplitude and the phase differ slightly. 

An important  quantity related with the surface displacement is the reflec- 
tion coefficient. Figure 4 shows how the reflection depends on the length of 
the slope, Ws, both with the mild-slope equation (full line) and with the 
three-dimensional model (crosses). It appears that the reflection coefficients 
calculated by both models are in good agreement for slopes with t ans  < 1/3. 
Furthermore,  the mild-slope equation predicts a reflection coefficient of  the 
right order of magnitude, even for nearly vertical slopes. A third conclusion 
is that  the refraction method,  which would predict zero reflection, can only 
be used for very mild slopes. Figure 4 gives an indication of what slopes are 
acceptable when using the refraction method.  

The second series of experiments pertains to wave propagation along the 
axis of a channel with uneven bot tom. The depth contours are parallel to 
the channel axis. The depths at both sides of  the transition are again 
koh=0.6 and k0h=0.2,  and the width of the channel is koW=2 in all cases 
(see Fig. 5). Results for different transition lengths koWs are shown. This 
t ime the value of rn is unknown,  so that  it can be used as a means to 
compare both models (see Table I). The number displayed in the table is 
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Fig. 4. Reflection coefficient as function of bottom inclination (normal incidence). The 
cross-section is shown in the upper part of the figure. Curve: refraction-diffraction model.  
Crosses: three-dimensional model.  

m/ko, a non-dimensional quanti ty which is equal to the reciprocal of  the 
non-dimensionalized propagation velocity. 

Figures 6, 7 and 8 show the elevation of  the free surface for the same set 
of  examples. It is curious to note that  the correspondence of  the three- 
dimensional model  and the mild-slope equation is slightly better  for the 
steeper slope, also with respect to the eigenvalue m. An explanation for this 
phenomenon was no t  found. In Figs. 6 to 8 no vertical scale is given. This is 
a consequence of  the linearity of  the wave equations used. 
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Fig. 5. Cross-sections of three wave channels, on non<listorted scale. Measures are non- 
dimensional. 

TABLE I 

(Non-dimensional) eigenvalue as function of  lateral slope 

Slope Eigenvalue m/k o 

Vertical integrated Three-dimensional 
model model 

0.2 1.785 1.777 
0.4 1.906 1.894 
0.8 1.959 1.955 
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3-dim m:1.777 

vert. int,  m=1.785 

I 

0 1.0 2.0 

Fig. 6. Wave system in channel with maximum bottom steepness 0.2 (see cross-section (a) 
in Fig. 5). 

3-dim, m= 1.89/. 

vert. int.; m= 1.906 

1 I 
0 0.5 1.5 2.0 

x 

Fig. 7. Wave system in channel with maximum bot tom steepness 0.4 (see cross-section (b) 
in Fig. 5). 
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3 - d i m . ;  m= 1.955 

vert.  int. ; rn : 1.959 

0.75 1.25 2.0 

Fig. 8. Wave system in channel with maximum bottom steepness 0.8 (see cross-section (c) 
in Fig. 5). 

4. CONCLUSIONS 

A number of numerical experiments have been carried out  to investigate 
the range of  slopes for which the mild-slope equation can be used. One series 
of experiments is related to waves perpendicular to an undersea slope, the 
other to waves parallel to a slope. It is concluded from these experiments, 
that  the mild-slope equation gives good results for slopes up to 1: 3. In this 
respect the mild-slope equation is clearly superior to the refraction method,  
which would predict zero reflection in the first series of examples, and which 
cannot produce at all a solution of the type presented in the wave channel 
problem. The refraction method can only be used for very mild slopes. 

Another point in favour of the mild-slope equation is that  even for slopes 
steeper than 1:3 it gives a qualitatively correct representation of the wave 
field. 
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