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The GO4 model in near-nadir microwave scattering
from the sea surface

Olivier Boisot, Frédéric Nouguier, Bertrand Chapron and Charles-Antoine Guérin

Abstract—We introduce a practical and accurate model,
referred to as “GO4”, to describe near-nadir microwave
scattering from the sea surface and at the same time we
address the issue of the filtered mean square slope (mss)
conventionally used in the Geometrical Optics model. GO4
is a simple correction of this last model taking into account
the diffraction correction induced by the rough surface
through what we call an effective mean square curvature
(msc). We evaluate the effective msc as a function of the
surface wavenumber spectrum and the radar frequency
and show that GO4 reaches the same accuracy as the
Physical Optics model in a wide range of incidence and
frequency bands with the sole knowledge of the mss and
msc parameters. The key point is that the mss entering
in GO4 is not the filtered but the total slope. We provide
estimation of the effective msc on the basis of classical
sea spectrum models. We also evaluate the effective msc
from near-nadir satellite data in various bands and show
that it is consistent with model predictions. Non-Gaussian
effects are discussed and shown to be incorporated in the
effective msc. We give some applications of the method,
namely the estimation of the total sea surface mss and the
recalibration of relative radar cross-sections.

Index Terms—ocean radar sensing, near-nadir, geomet-
rical optics, slope, curvature

I. INTRODUCTION

In spite of more than one half-century of theoretical
developments in backscattering from the sea surface
(e.g. [1]), the ever increasing capabilities of spaceborne
microwave sensors still triggers the need for accurate,
simple and versatile models for the geophysical interpre-
tation of multi-frequency active and passive microwave
data sets. Starting from the historical asymptotic theories
which have a limited domain of application, many robust
analytical scattering models have been developed in the
last three decades [2]. Some of them have proven to
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(Mediterranean Institute of Oceanography, Université de Toulon,
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be particularly relevant for the ocean surface (e.g. [3],
[4], [5], [6], [7], [8]), with a wide range of validity
in terms of incidence angles, radar frequency and sea
state. Now, virtually all these so-called unified models
rely on the assumed knowledge of the sea surface wave
number spectrum which is difficult to use in operational
conditions, both from a conceptual and technical point
of view. For this reason the most practical method at
low incidence remains the historical Geometrical Optics
(which we abbreviate to “GO2” to distinguish it from
GO4) approach which relates the backscattered power to
the mere probability distribution of surface slopes and
is usually parametrized by the sole mean square slope
(mss). However, as it is well known, this asymptotic
theory is only valid in the optical limit of very short radar
wavelength and can deviate significantly from the actual
backscattering cross section in the microwave regime
where it fails to reproduce the radar sensitivity to radar
wavelength. It is often resorted to a “radar-filtered” mss
([9], [10], [11], [12], [13]) which, as we will see, is an
artificial compensation of the missing diffraction term
in GO2 and accounts for the fact that roughness scales
much shorter than the electromagnetic (EM) wavelength
are not “seen” by the radar. Even through the use of a
filtered mss improves the accuracy of the GO2 model at
nadir it remains very limited in incidence as corrections
to the Gaussian shape of the scattering diagram must be
quickly introduced. This can be partially compensated
[12] by an incidence-dependent cutoff in the definition
of the filtered mss but brings in an additional degree
of arbitrariness. The main purpose of this paper is to
propose an improved and robust version of GO2, termed
GO4. The model now depends on the total instead of
the filtered mss and the radar wavelength dependence
is rendered through a diffraction term involving the
curvature of the surface. As we will show, this makes it
possible to achieve the accuracy of the Physical Optics
(PO) with a very small number of parameters and makes
the model very adapted to near-nadir applications where
the sea surface spectrum is unknown. The GO4 model
is by construction unpolarized and is therefore limited
to the incidence angles where the polarization difference
is negligible. It will this certainly not outperform unified



2

scattering models which have been proven to be accurate
over a wide range of non-grazing incidence angles and,
when combined with classical sea spectra, are in satisfac-
tory overall agreement with experimental measurements
(e.g. [5], [14], [15]). The main improvement brought
by GO4 is to reduce the needed characterization of the
unknown sea surface, including non-Gaussian effects, to
the knowledge of the mere mss and msc parameters. As
a result, the arbitrariness in the choice of a “preferred”
spectral model is avoided. This gain in simplicity is
obtained with quasi no loss in accuracy in the domain
of validity of PO.

The introduction of a curvature correction to GO2
is not new but has followed in the past different ap-
proaches and results. The overall technique is based on
perturbation expansion of the scattering amplitude or
the electric or magnetic surface current ([9], [10], [11],
[16], [17], [18]) with respect to a well-chosen small
parameter combined with higher-order Taylor expansion
or cumulant expansion of the structure function of wave
elevations. Some of these results and their relation to our
findings will be discussed in the core of the paper. More
recently, an elegant mathematical approach was proposed
based on hypothesizing a generalized Student form for
the slope distribution [19]. We did not pursue in this
way and chose a more physical approach even though
the present results have been found consistent with this
last approach.

The GO4 model is introduced in Section II for
isotropic Gaussian surfaces and the evaluation of the
curvature parameter is given in Section III. The general-
ization to anisotropic and non-Gaussian sea surfaces is
provided in Section IV and V, respectively. Section VI
gives some applications of the GO4 model on various
near-nadir data sets.

II. A SIMPLIFIED FORMALISM: THE GO4 MODEL

In the microwave regime where sea surface roughness
is large, the reference model for low-angle backscattering
is the Physical Optics (PO) scalar approximation. It
remains accurate as long as polarization effects remain
negligible, that is in the first, say, 20-25 degrees of inci-
dence away from nadir. We recall hereafter the geometry
of the scattering problem. In the following we use the
notation a for the norm of any vector a. We consider a
rough interface z = η(r) separating air (upper medium)
from water (lower medium) and denote r = (x, y) the
coordinate in the horizontal mean plane. The surface is
illuminated from above by an incident monochromatic,
linearly polarized, plane wave with wave vector K
(corresponding to wavenumber K) at some incidence
angle θ with respect to the vertical direction z. In

backscattering configuration it is convenient to introduce
the Ewald vector Q = −2K together with its horizontal
and vertical projections QH and Qz , respectively. Note
that QH = 2K sin θ and Qz = 2K cos θ. The Normal-
ized Radar Cross Section (NRCS) according to the PO
approximation is expressed by the so-called Kirchhoff
integral:

σ0
PO = K2 sec2(θ) |R|2 1

π

∫
dr eiQH ·re−

1

2
Q2
zS(r).

(II.1)
Here R is the Fresnel coefficient at normal incidence

on the surface at rest and S is the structure function of
elevations:

S(r) = 2(ρ(0)− ρ(r)), (II.2)

which is trivially related to the roughness auto-
correlation function (ρ) or, what amounts to the same,
to the wave number spectrum (Ψ) through an inverse
Fourier Transform:

ρ(r) =

∫
dk eik·rΨ(k). (II.3)

For simplicity we assume in this section isotropicity
of the wave number spectrum, so that the autocorrelation
function and the PO NRCS are given by Bessel trans-
forms:

ρ(r) =

∫ ∞
0

dk 2πkJ0(kr)Ψ(k) (II.4)

and

σ0
PO = K2 sec2(θ) |R|2

∫
dr 2rJ0(QHr)e

− 1

2
Q2
zS(r)

(II.5)
For large Rayleigh parameter Q2

zρ(0), small lags have
a dominant contribution to the integral and we may
approximate the structure function by its asymptotic
behavior about the origin:

S(r) ' 1

2
mss r2, (II.6)

where mss is the total mean square slope:

mss =

∫ ∞
0

dk 2πk k2Γ(k) (II.7)

Insertion of this quadratic approximation of the struc-
ture function in the Kirchhoff integral leads to the
classical GO2 approximation (e.g. [1]:

σ0
GO2 =

|R|2

mss
sec4(θ) exp

(
−tan2 θ

mss

)
(II.8)
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The GO2 model is parametrized solely by the mss
parameter, which is well-defined and whose wind-
dependence is well characterized. It is, however, in
principle only valid in the limit of small wavelengths and
becomes more and more accurate as the EM frequency
is increased. At finite wavelength, a curvature correction
is needed to incorporate the diffraction effects and the
fact that the surface deviates from its tangent plane
over a few EM wavelength. To this aim we push the
Taylor expansion of the structure function at the next
order using a fourth-order Taylor expansion of the Bessel
function in (II.4):

S(r) ' 1

2
mss r2 − 1

32
msc r4, (II.9)

where msc is the total mean square curvature:

msc =

∫ ∞
0

dk 2πk k4Γ(k) (II.10)

In defining this last quantity we assume that the
fourth moment of the spectrum is finite, which implies
a high-frequency cut-off on the spectrum. Again, the
approximation (II.9) is asymptotically valid in the limit
of small lags and can be used to define the msc:

msc = lim
r→0

32
1
2mss r2 − S(r)

r4
(II.11)

At finite lag r > 0 the total value of the msc is not
reached but only a fraction of it, say β(r):

β(r)msc = 32
1
2mssr2 − S(r)

r4
(II.12)

Now the structure function in the Kirchhoff integral
is only involved on a finite effective integration domain,
say [0, re] depending on the EM wavelength. On this
given interval [0, r], there is certainly a constant value
msce = β msc which optimizes in some sense the quartic
approximation of the structure function:

Sβ(r) ' 1

2
mssr2 − 1

32
msce r

4 (II.13)

Note that this quartic approximation of the structure
function at finite lag r does not require the finiteness of
the total msc, that is the existence of a finite limit in
(II.11). We chose to optimize the value of β in order to
obtain the closest agreement with the PO NRCS at nadir
whenever the structure function (II.2) is replaced by its
quartic approximation (II.13). This amounts to equating:

∫ ∞
0

(
e−

1

2
Q2
zS(r) − e−

1

2
Q2
zSβ(r)

)
rdr = 0 (II.14)

Now considering Sβ as a perturbation of S,

S(r) = Sβ(r) + ∆Sβ(r), (II.15)

with Q2
z∆Sβ << 1, we may rewrite:∫ ∞

0
e−

1

2
Q2
zS(r)(e

1

2
Q2
z∆Sβ − 1)rdr = 0 (II.16)

To evaluate this integral we use the fact that the quartic
term in the exponential should be small and can be
linearized, that is:

e
1

2
Q2
z∆Sβ ' e

1

2
Q2
z(S− 1

2
mss r2)(1 +Q2

zmsce
1

64
r4) (II.17)

This leads to the optimal msc:

msce =
64

Q2
z

∫∞
0 e−

1

2
Q2
zS(r)(e

1

2
Q2
z(S− 1

2
mssr2) − 1)rdr∫∞

0 e−
1

4
Q2
zmssr2r5dr

(II.18)
To evaluate the Kirchhoff integral with the modified

structure function (II.13), we again take advantage of the
small magnitude of the quartic term in the exponential
which can thus be linearized. This leads to the following
approximation for the PO integral:

σ0 ' K2 sec2(θ) |R|2 1

π

∫
dr eiQH ·re−mssQ2

z
r2

4

×
(

1 +
1

64
msc r4

)
(II.19)

The evaluation of this integral can be performed
routinely and leads to the following correction to the
GO2 formula:

σ0
GO4 = σ0

GO2×[
1 +

msce
16K2mss2 cos2 θ

(
tan4 θ

mss2
− 4

tan2 θ

mss
+ 2

)]
,

(II.20)

where σ0
GO2 is the GO2 NRCS with total mss.

We refer to this approximation as the “GO4” approx-
imation as opposed to the GO2 model which involves
only a quadratic approximation of the structure function.
We call the modified curvature msce = β msc the
effective mean square curvature of the surface, which
depends on the EM wavelength. This formula and the
GO4 terminology were already introduced in [20] but at
that time only the total and not the effective msc was con-
sidered. Note that formula (II.20) with the total curvature
is equivalent to the diffraction correction developed in
[18] at nadir (X = 0) using a iterated magnetic current
integral equation.
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III. THE EFFECTIVE MEAN SQUARE CURVATURE

The GO4 approximation relies on two parameters
only, namely the total mean square slope mss and
the effective mean square curvature msce. The total
mss is a meaningful quantity because it quantifies the
exchange surface between ocean and atmosphere or, in
mathematical terms, because the decrease of the sea
spectrum ensures the convergence of the second spectral
moment. On the contrary, the notion of total curvature
is ill-defined because it refers to the “sharpness” of
wave which is ever increasing at small scales. In math-
ematical terms, the total msc is the fourth moment of
the surface spectrum (which typically falls-off in k−4)
and is thus dramatically sensitive to the chosen high-
frequency cut-off. This raises the issue of “where the
spectrum should stop” and questions the microscopic
nature of the surface. Hence, it is only the curvature
at a finite scale which is meaningful. However, as it
is well known, the EM scattering process performs a
natural filter at the scales which cannot be “seen” by
the probing EM wavelength. It is therefore clear than
the total msc is not the relevant quantity to consider for
the scattering process. It is more relevant to consider the
effective msc of the rough surface filtered at the given
EM frequency, even though the EM filtering process is
somewhat more complex than a sharp cut-off on spatial
frequencies. Nevertheless, we expect the effective msc
to be of the order of magnitude of the fourth moment of
the surface spectrum truncated at the EM wavenumber.
We therefore define the dimensionless parameter α by:

msce =

αK∫
0

2πk k4Γ(k)dk, (III.21)

which we expect to be close to unity. This parameter
has the advantage over the alternative parameter β that
it does not require the knowledge of the full msc.
We have calculated the parameters α and msce (from
II.18) for three different omnidirectional wave number
spectra, referred to by the name of their first author:
Elfouhaily unified spectrum [21], Bringer remote sensing
spectrum [22] and Kudryavtsev physical spectrum [23],
[24]. Recently, some refined short-wave spectral models
have been proposed, such as a roughness spectrum based
on field measurements including the effect of swell [25]
or an improved directional spectrum based on stereo-
photography [26]. However, in the present study we will
limit ourselves to the simple aforementioned omnidirec-
tional spectra.

Figures 1 and 2 show the evolution of the parameters α
and msce (from II.18) with the EM wavelength and wind

speed. As expected, the effective msc grows importantly
with both EM frequency and wind speed and ranges over
a few decades. Important relative variations (up to 20-
30%) are observed between different spectral models.
The cut-off parameter α, on the contrary, remains quite
stable and increases only slighlty with wind speed and
inverse frequency. Note that α ' 1 in Ka band, α ' 2
in Ku band and α ' 2.5 in C band.
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Fig. 1: Evolution of the cutoff parameter α with wind speed and
EM frequency for three different models of omnidirectional
spectrum: Elfouhaily (blue), Kudryavtsev (red) and Bringer
(magenta). Three frequencies are shown, namely C band
(upper curves), Ku band (middle curves) and Ka band (lower
curves). In Ka band, the value of α is close to 1, meaning that
the effective msc is approximately the total msc truncated at
the EM wavelength.
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Fig. 2: Same as Figure 1 for the effective msc except that C band
is lower curve and Ka band is upper curve.

Figures 3,4 and 5 show the isotropic NRCS according
to GO4 with the predicted value of the cut-off parameter
in the different bands: α = 1.25 in Ka band, α = 1.89
in Ku band and α = 2.64 in C band. The calculation
has been performed with an omnidirectional Elfouhaily
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spectrum at wind speed =10 m/s. A comparison with
GO2 and PO is given. The GO2 with filtered mss is also
given for reference, in which the classical K/3 cut-off
([27]) is employed. Even though it brings a significant
improvement over the GO2 with full mss, it is still about
1 dB away from PO at nadir. At moderate wind speed
(10 m/s), an excellent agreement is found between PO
and GO4 in the first 25 degrees in Ka band, the first 12
degrees in Ku band and the first 10 degrees in C band.
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Fig. 3: Comparison of PO, GO2 and GO4 in Ka band with α = 1.26
for an omnidirectional Elfouhaily spectrum with wind speed
=10 m/s
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Fig. 4: Comparison of PO, GO2 and GO4 in Ku band with α = 1.89
for an omnidirectional Elfouhaily spectrum with wind speed
=10 m/s
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Fig. 5: Comparison of PO, GO2 and GO4 in C band with α = 2.64
for an omnidirectional Elfouhaily spectrum with wind speed
=10 m/s

IV. ANISOTROPIC CASE

We now develop the GO4 model in the general
framework of anisotropic surfaces. Similar calculations
have already been derived by one of this author [28] in
the high-frequency limit of the PO but the distinction
between effective and total msc was not considered. We
recall the expression of the directional GO2:

σ0
GO2(θ, ϕ) =

|R|2
√

mssxmssy
sec4(θ)

× exp

(
−tan2 θ

2

(
cos2 ϕ

mssx
+

sin2 ϕ

mssy

))
,

(IV.22)

with mssx,mssy the directional slopes:

mssx =

∫
k2
xΓ(k)dk, mssy =

∫
k2
yΓ(k)dk. (IV.23)

The fourth-order Taylor expansion of the structure
function is easily found to be:

S(x, y) = mssx x
2 + mssy y

2

− 1

12

(
mscx x

4 + 6mscxy x
2y2 + mscy y

4
)
,

(IV.24)

where mscx,mscy,mscxy are the directional curva-
tures:

mscx =

∫
k4
xΓ(k)dk,

mscy =

∫
k4
yΓ(k)dk,

mscxy =

∫
k2
xk

2
yΓ(k)dk

(IV.25)
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Note that the total mss and msc are given by:

mss =

∫
k2Γ(k)dk = mssx + mssy

msc =

∫
k4Γ(k)dk = mscx + mscy + 2mscxy

(IV.26)

Straightforward calculations very similar to those em-
ployed in the isotropic case lead to the following formula
for the directional GO4 approximation:

σ0
GO4(θ, ϕ) = σ0

GO2(θ, ϕ)

{
1 +

1

96K2 cos2 θ

×
[

6mscxy
mssxmssy

H2(X)H2(Y )

+
mscx
mss2

x

H4(X) +
mscy
mss2

y

H4(Y )

]} (IV.27)

where the variables X,Y are given by:

X =
tan θ cosϕ
√

mssx
, Y =

tan θ sinϕ
√

mssy
, (IV.28)

and Hn are the Hermite polynomials:

Hn(u) = (−1)neu
2/2 d

n

dun
e−u

2/2. (IV.29)

It is interesting to consider the directional GO4 formula
(IV.27) in the particular case of a bi-harmonic spectrum,
such as Elfouhaily unified spectrum:

Γ(k, ϕ) =
1

2πk
Γ0(k)(1 + ∆(k) cos(2ϕ)) (IV.30)

In addition to the total or isotropic mss and msc, it
is then useful to introduce the anisotropic mss and msc,
referred to by a “i” or “a” subscript:

mssi =

∫
k2Γ0(k)dk; mssa =

∫
k2Γ0(k)∆(k)dk

msci =

∫
k4Γ0(k)dk; msca =

∫
k4Γ0(k)∆(k)dk

(IV.31)

We then have the simple relations:

mssx/y =
1

2

(
mssi ±

mssa
2

)
mscx/y =

1

4

(
3

2
msci ±msca

)
6mscxy = mscx + mscy

(IV.32)

This reduces the number of slopes and curvature
parameters from 5 to 4 and allows it to calculate them
through one-dimensional integrals only.

V. NON-GAUSSIAN CORRECTIONS

In the case of a weakly non-Gaussian surface, the
Kirchhoff integral admits corrective terms corresponding
to the cumulant expansion of the two-point characteristic
function:

σ0
PO = K2 sec2(θ) |R|2

× 1

π

∫
dr eiQH ·re−

1

2
Q2
zS(r)+i 1

6
Q3

zS3(r)+ 1

24
Q4

zS4(r),

(V.33)

where S3 and S4 are the skewness and kurtosis func-
tion, respectively:

S3(r) = 〈(η(r)− η(0))3〉
S4(r) = 〈(η(r)− η(0))4〉 − 3(〈(η(r)− η(0))2〉)2

(V.34)

The skewness and kurtosis functions are governed by
the skewness and excess kurtosis of slopes for small
arguments:

S3(x, y) = λ30mss3/2
x x3 + λ03mss3/2

y y3

+ 3λ21mssxmss1/2
y x2y + 3λ12mssymss1/2

x xy2

S4(x, y) = λ40mss2
x x

4 + λ04mss2
y y

4

+ 6λ22mssxmssyx
2y2

(V.35)

where the dimensionless coefficients λmn are defined
by:

λmn =
〈(∂xη)m(∂yη)n〉

〈(∂xη)2〉m/2〈(∂yη)2〉n/2
(V.36)

We do not detail the calculations leading to the GO4
NRCS in the non-Gaussian case, as they are very similar
to those employed in the Gaussian case. The Taylor
expansions of S3 and S4 can be combined with the
fourth-order expansion (IV.24) of the structure function
and injected in the non-Gaussian expression (V.33) of the
PO NRCS. The terms of order 3 and 4 in the exponential
are assumed small and linearized out of the exponential.
This reduces the Kirchhoff integral to a two-dimensional
Fourier Transform of a Gaussian function multiplied by
a bi-variate polynomial of fourth degree. In this way
we obtain the GO4 formula with skewness and kurtosis
correction:
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σ0
GO4 = σ0

GO2×{
1+

1

24Q2
z

[
6

(
mscxy

mssxmssy
+ λ22Q

2
z

)
H2(X)H2(Y )

+

(
mscx
mss2

x

+λ40Q
2
z

)
H4(X) +

(
mscy
mss2

y

+ λ04Q
2
z

)
H4(Y )

]
+

1

6

[
3λ21H2(X)H1(Y ) + 3λ12H1(X)H2(Y )

+ λ30H3(X) + λ03H3(Y )

]}
(V.37)

A resembling formula was proposed in [16] based
on a cumulant expansion of the structure function. This
last result is, however, different in as much as fourth-
order terms in the polynomial expansion stem uniquely
from non-vanishing cumulants (that is the very non-
Gaussian nature) of the slope distribution and not from
the proper geometrical curvature of the surface. An
interesting particular case is the isotropic surface for
which we have:

mssx = mssy =
1

2
mss

mscx = mscy = 3mscxy =
3

8
msce

λ30 = λ03 = λ12 = λ21 = 0

λ40 = λ04 = 3λ22 = λ4

(V.38)

After some calculations we find that the expression
(V.37) can be simplified to:

σ0
GO4 = σ0

GO2

[
1 +

(
msce

4Q2
zmss2

+
λ4

6

)
(

tan4 θ

mss2
− 4

tan2 θ

mss
+ 2

)] (V.39)

Hence we recover the isotropic NRCS of the Gaussian
case by augmenting the effective msc with the contribu-
tion of the excess kurtosis, that is with obvious notations:

msce|NG = msce|G +
2

3
λ4mss2Q2

z (V.40)

Figure 6 shows the respective contributions of the
Gaussian msce and its non-Gaussian correction with the
value λ4 = 0.4 corresponding to the quasi-constant value
found by Cox and Munk [29] in their famous experiment
(we discard directionality with respect to wind vector).
The kurtosis correction becomes important in Ka band
and can increase the effective msc by about 50%.
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Fig. 6: Gaussian (G) and Non-Gaussian (NG) msc for the omnidi-
rectional Elfouhaily spectrum in different bands.

In the introduction of the kurtosis correction to the
effective msc, it is important to keep in mind that the
value 0.4 experimentally reported by Cox and Munk is
not only due to the peakedness of the slope distribution
(very small and very large slopes being more frequent
than predicted by the Gaussian distribution) but also
on the compound nature of sea slope statistics as was
explained in [30]. Hence, fluctuations of statistics across
the different sea patches results in an augmentation of
the effective msc based on a statistically homogeneous
model.

VI. ESTIMATION OF THE MSS AND MSC FROM

EXPERIMENTAL DATA

A. Estimation procedure

The main advantage of the two-parameter GO4 model
is the possibility to estimate directly the total mss, which
is an intrinsic parameter of the sea surface, and not
the “mss seen by the radar” which depends on the
EM wavelength. In addition, it provides an accurate
parametrization of the backscattering cross-section in a
wide angular domain around nadir with the additional
knowledge of the effective msc.

For this illustration of the GO4 concept, we will
restrict the consideration to the omnidirectional NRCS, a
more detailed study being left for further work. We recall
that this quantity is obtained by averaging all possible
azimuthal direction ϕ at the same incidence angle θ:

σ0
omni(θ) =

1

2π

∫ 2π

0
dϕ σ0(θ, ϕ) (VI.41)

The omnidirectional NRCS will be treated with a
isotropic GO4 model, even though this introduce small
bias in the estimation of the mss and msc (see the
discussion further).
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Our analysis will be based on several near-nadir data
sets from the literature. Since the different data sets are
well-documented we will not enter in their description
and simply refer to the main publications. We will use
the Ka-band airborne scanning radar altimeter (SRA)
data of the Southern Ocean Waves Experiment (SOWEX,
[31], [32]), the Ku/C Jason2 altimeter data, data from the
Ku band precipitation radar from the Tropical Rainfall
Measuring Mission [33], [34] and the Ka-band airborne
scatterometer data described in [35].

The difficulty in evaluating the mss and msc parame-
ters from spaceborne or airborne data is the uncertainty
linked to the data calibration. However, whenever a
certain range of incidence angle is available, the joint
estimation of mss and msc can be performed on the
basis of relative values (i.e. non calibrated) of the NRCS.
In that case, the parameter estimation is obtained upon
minimization of the following cost function in a certain
range of incidence:

Φ =
∑

θ<θmax

∣∣σ0
data(θ)− σ0

GO4(mss,msc, θ)
∣∣2 , (VI.42)

where the NRCS are taken in dB and normalized by
their value at nadir. This has been done for the SRA
data in Ka band and the TRMM data in Ku band for
which ranges of incidence of 0− 25 degrees and 0− 18
degrees, respectively, are available. It is important to
note that the accuracy of the parameter estimation is
slightly dependent on the chosen range of incidence. It
should be chosen as large as possible in order to better
separate the quartic behavior (GO4) from the quadratic
behavior (GO2) with respect to the variable tan θ but,
on the other hand, should respect the validity domain of
the GO4 approximation. This sensibility of the estimated
shape parameters to the incidence span has been known
for a long time in the case of the estimation of the
single radar-mss from a GO2 model (this is discussed
in detail in [36]). It requires some a priori knowledge
of the incidence span over which the model is expected
to hold. From the systematic analysis of section III with
synthetic data at various wind speeds (exemplified on
Figures 3, 4 and 5) we have seen that this validity domain
increases with both EM frequency and wind speed. For
altimeter data where only the nadir NRCS is available
we will rely on its absolute level. The effective msc is
then evaluated from Cox and Munk mss [29], which
we abbreviate to “CM-mss” . This has been done with
Jason2 data in C and Ku band as well as the Ka band
airborne measurements from [35].

B. TRMM

Figure 7 shows the total mss inverted from the omni-
directional TRMM NRCS using either the simple GO2
model or the joint inversion of mss and msc with the
GO4 model. A comparison is given with the total CM-
mss and the radar-filtered mss calculated with Elfouhaily
spectral model using the usual frequency cut-off at K/3.
As seen, the mss obtained from the mere GO2 model is
close to the radar-filtered mss while the mss estimated
from GO4 is in excellent agreement with the total
mss. The effective msc estimated with GO4 is shown
on Figure 8 and is found in excellent agreement with
the effective msc derived from the analytical spectra
(in particular Bringer and Kudryavstev models). In the
calculation of the effective msc we have used formula
(II.18) together with the non-Gaussian correction (V.40).
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Fig. 7: Estimation of the mss with the GO2 and GO4 model for the
TRMM Ku data. A comparison is given with the filtered mss
for different spectra.
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Fig. 8: Same as Figure 7 for the msc

The knowledge of the total mss and effective msc
makes it possible to obtain the absolute level of NRCS
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at nadir. From equation II.20 we have:

σ0(0) =
|R|2

mss

(
1 +

msce
8K2mss2

)
(VI.43)

Figure 9 shows the recalibration of the relative TRMM
data at nadir and a comparison with the absolute values.
A discrepancy from 0.5 (small winds) to 1 dB (larger
winds) is observed, suggesting that the absolute values
of the TRMM data might be slightly underestimated.
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Fig. 9: Recalibration of TRMM relative data and comparison with
the absolute values

C. SRA

The sea state conditions encountered during the
SOWEX experiment (South West Tasman Sea) were
found close to infinite fetch [31], [32], which makes
the comparison with other satellite data and CM-mss
meaningful. The relative values (i.e normalized by their
maximum) of the omnidirectional NRCS recorded by the
SRA were fitted in the form ([32]):

ln(σ0
rel)(θ) = −AS2 +BS4, (VI.44)

with S = tan θ and B = 0.567A1.332. The value
of A are not given in the publication but have been
provided by one of the authors (B. Chapron). The wind
speed dependence between 3 and 16 m/s is as follows:
A(3)=2.36, A(4)=46.73 ,A(5)=42.55 ,A(6)= 39.37 ,A(7)=37.18
,A(8)=34.36 ,A(9)=29.67 ,A(10)=27.17 ,A(11)=25.00 ,A(12)=
23.30 ,A(13)=21.80 ,A(14)= 20.48 ,A(15)=19.31 ,A(16)=
18.27. Figure 10 shows the estimation of the mss after
the isotropic GO2 and GO4 models, respectively. As
expected, the estimated mss with GO4 is consistent with
CM-mss while the mss parameter inferred from GO2 is
consistent with a radar-mss in Ka band (calculated here
with help of Elfouhaily spectral model). Note, however,

that the GO4-mss is found 10− 20% smaller than CM-
mss at moderate wind speeds. Possible explanations for
this reduced slope can be hypothesized. A first artifact
is the discarding of directional effects when estimat-
ing the total mss with an isotropic model. Denoting
β = mssy/mssx the ratio of upwind to croswind mss,
it was shown in [30] that the mss estimated from the
shape parameter of the GO2 model is in fact lowered
by a factor 4β/(1 + β)2 with respect to the actual
mss. For anisotropic wind-wave sea states such as those
encountered in Cox and Munk experiment (β ' 0.65)
the reduction factor is negligible (0.95). However, for
more pronounced anisotropy due to young sea states or
the presence of a swell aligned with wind, a stronger
discrepancy can be achieved. Another source of differ-
ence with CM-mss is the presence of swell which is
believed to decrease the spectral density in the short-
wave portion of intermediate-scale waves [25], [37]. This
is consistent with the low mss observed at intermediate
wind speeds (6-10 m/s) for which run days a strong swell
was reported [31].

Figure 11 shows the estimation of the non-Gaussian
effective msc from the GO4 model and a comparison
with the value predicted by the different spectra under
a peakedness correction of λ4 = 0.4. A good agreement
is reached at moderate and large wind speed while the
estimated msc is significantly lower than its predicted
values at small wind speed. Again, we hypothesize that
this discrepancy is due, at least partially, to the influence
of swell on the short-wave spectrum.
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Fig. 10: mss versus wind speed from SOWEX Ka data.
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Fig. 11: msce versus wind speed from SOWEX Ka data.

D. Jason2

The absolute nadir NRCS of Jason 2 in C and Ku band
have been used to estimate the effective msc assuming
the mss is given by Cox and Munk measurements. Figure
12 shows the mss inverted from GO2 at nadir in Ku
and C band and a comparison with the optical mss from
Cox and Munk and the radar mss according to different
spectral models. As expected, the GO2-inverted mss is
consistent with a filtered mss and much smaller than the
total mss: it is found equal to about 50-60 % of the
optical mss in Ku band (consistently with the findings
of [38]) and 35-45 % in C band. The effective msc
is in good agreement with the theoretical predictions
according to the different spectral models.
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Fig. 12: mss versus wind speed from Jason2 C and Ku data.
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Fig. 13: msce versus wind speed from Jason2 C and Ku data.

E. Cox and Munk, slick case

There are no available near-nadir L band data to test
the GO4 model. However, an approximate derivation of
the L band msc can be inferred from Cox and Munk sea
surface slopes measurements. In their experiment, these
authors also measured the “slick” mss corresponding
to the case of oil slickened surface. It is estimated
that the viscous effect of surfactant damps the short-
scale component smaller than about 30-40 cm at the sea
surface. Hence, the slick mss can be seen as a radar-
filtered mss at a cut-off corresponding to the L band
wave number. Assuming the GO2 model with filtered
mss to be close to the actual NRCS at nadir we have
the following relationship with the effective L band msc
which can thus be inverted:

|R|2

mssslick
=

|R|2

mssclean

(
1 +

msce
8K2mss2

clean

)
(VI.45)

The L band effective msc can be extracted easily from
this relation.

F. Vandemark et al.

The airborne experiment described in [35] provides
additional nadir Ka band measurements of the NRCS
in ocean conditions. We have used the absoluted values
of the NRCS reported in this work assuming the total
mss is consistent with Cox and Munk observations to
obtain the Ka band effective msc. The estimation was
not conclusive at small wind speeds where negative
values of the msc occured. This might be due either to
a discrepancy with CM conditions or to a bias in the
absolute NRCS.

Figures 14 and 15 summarize our findings on the
basis of available experimental data sets. They show,
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respectively, the evolution of the effective msc as a
function of wind speed for the different radar bands
and a function of the frequency band at different wind
speeds. The effective msc is augmented by several order
of magnitudes from L to Ka band and by one order of
magnitude from small to large wind speeds. The cross-
over observed between Ku and Ka-band at small wind
speed is probably due to the peculiar sea state of the
SOWEX experiment and the corresponding low msc as
discussed above.
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Fig. 14: Effective msc versus wind speed for the different frequency
bands
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Fig. 15: Effective msc versus radar frequency at different wind
speeds

VII. CONCLUSIONS

The GO4 is a simple scattering model with a reduced
number of parameters (2 in the isotropic case, 5 in the
directional case) which enjoys the same accuracy as
the PO model in a wide range of incidence away from
nadir. It avoids the heuristic choice of a “radar-mss” or
filtered mss used in the classical GO2 model, which is

replaced by the total mss and a diffraction correction
quantified by an effective msc depending on the EM
frequency. While the total msc is an ill-defined quantity
as it dramatically sensitive to scales much smaller than
the radar wavelength and questions the microscopic
nature of the sea surface, the effective msc involves only
scales comparable to the radar wavelength and quantifies
the diffraction process at the given wavelength. On the
contrary, the total mss is a well-defined quantity as the
decrease of the surface spectrum ensure convergence
of its second moment. We have provided a way to
calculate the effective msc from the knowledge of the
surface spectrum and given estimations based on some
classical spectral models as well as experimental data.
Beside an accurate and simple parameterization of the
scattering cross-section at moderate incidence, the GO4
is found useful in estimating the total mss (and not the
radar-mss) as well as recalibrating relative data. Another
interesting feature of the GO4 approach is the capability
to absorb non-Gaussian effects (due to the peakedness
of wave slopes and compound wave statistics) in the
same analytical framework at the simple cost of an
augmented msc. At this stage, the estimation process has
been limited to omnidirectional quantities, the full study
of the directional case being left for further work.
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[7] G. Soriano and C.A. Guérin. A cutoff invariant two-scale model
in electromagnetic scattering from sea surfaces. Geoscience and
Remote Sensing Letters, IEEE, 5(2):199–203, 2008.
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