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Abstract. Velocity measurements of wind blowing near the North Sea border
of Northern Germany and velocity measurements under local isotropic conditions
of a turbulent wake behind a cylinder are compared. It is shown that wind gusts
– measured by means of velocity increments – do show similar statistics to the
laboratory data, if they are conditioned on an averaged wind speed value.
Clear differences between the laboratory data and the atmospheric wind velocity
measurement are found for the waiting time statistics between successive gusts above
a certain threshold of interest.
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1. Introduction

The wind in the atmospheric boundary layer is known to be distinc-
tively turbulent and instationary. As a consequence the wind speed
varies rather randomly on many different time scales. These time scales
range from long-term variations (years) to very short ones (minutes
down to less than a second). The latter are commonly considered to
correspond to small-scale (microscale) turbulence. These small-scale
fluctuations are superimposed to the mean velocity varying on diur-
nal or even larger scales. This distinction between a mean flow and
superimposed turbulence is justified by the existence of a spectral gap
which means that there is only little wind speed variation on time
scales between about 10 minutes and 10 hours (Hau, 2000). One of the
main challenges in turbulence research is the so-called intermittency

of small-scale turbulence, which corresponds to an unexpected high
probability of large velocity fluctuations. (Note that there are also other
independent definitions of intermittency related to other phenomena.)
For atmospheric winds large velocity fluctuations on small scales corre-
spond to gusts. A more precise statistical description of the occurrences
of gusts is important for many applications.
The aim of this paper is to find a possible relation between laboratory
turbulence and the atmospheric small-scale one. The mechanisms ruling
the atmospheric turbulence are quite complex. Roughly the origins of
atmospheric turbulence can be divided into friction and thermal effects.
The influence of both generally depends on many different factors like
the thermal stability, the topography, the geographical position and
so on (Burton, 2001). In laboratory experiments the situation is less
complicated and easier to control. Here turbulence may be generated
only by flow disturbances, speed and direction of the mean flow can be
kept constant and no buoyancy effects have to be considered. Despite
all these differences between different types of turbulence it is a com-
mon concept (Frisch, 1995) that cascade-like processes lead to universal
statistical features of small-scale turbulence.
In this work we analyze two data sets, (a) one from a wake flow behind
a cylinder recorded in a wind tunnel and (b) data from atmospheric
wind.
(a) The velocity of the laboratory data was measured in the plane of the
cylinder at a great distance (100 times the diameter D of the cylinder,
D = 0.02 m) to it (Lueck et al, 1999). At these distances the periodical
flow patterns (Karman-street) arising directly beyond the cylinder are
vanished and the turbulent wake flow can be considered to be rather
isotropic and fully developed. The Reynolds number is Re ≈ 30000.
(b) The atmospheric data set we use was recorded near the German
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coastline of the North Sea in Emden (Hohlen & Liersch, 1998). The
velocity was measured by means of an ultrasonic anemometer at 20 m
height. The sampling frequency was 4 Hz. The measuring period took
about one year (1997-1998). The distance to the sea is between some
kilometers and a few tens of kilometers - depending on the direction.
After careful investigation of the quality of the data we examine a rep-
resentative 275-hour-excerpt of October 1997 and focus on the velocity
component in direction of the mean wind (Boettcher et al., 2001). Dur-
ing this period the velocity was recorded continously without significant
breaks. It is clear that over such a long period meteorological conditions
are changing.
In the first part of this paper the statistics of atmospheric wind gusts
as a small-scale turbulence phenomenon are examined using the statis-
tics of the horizontal velocity increments. The results are compared
to the velocity increments of the laboratory data. In the second part
we examine the waiting time distributions of successive wind gusts
to resolve their temporal structure. We find evidence that wind gusts
are connected to the instationarity of the wind but can be reduced to
stationary laboratory turbulence if a proper condition on a constant
mean velocity is done.

2. Probabilistic description of wind gusts

Due to the large size of atmospheric flow dimensions the atmospheric
wind is distinctively turbulent leading to very large Reynolds number
Re. Although a characteristic length scale L for atmospheric turbulent
flow structures depends on parameters like the surface roughness z0 or
the height z above ground, L may be of the order of about 100 m (Bur-
ton, 2001). With wind velocities of U ≈ 10 ms−1 and more Reynolds
numbers of larger than 108 are obtained.
Turbulent velocity time series are commonly decomposed into a mean
speed value u(t) and random fluctuations (turbulence) around it u(t):

U = u + u . (1)

In wind energy research an averaging period of ten minutes is commonly
used, even though the smallest possible averaging period is in general
time-dependent (Treviño & Andreas, 2000). In this paper we are inter-
ested in the small-scale fluctuations, thus we only need a lower bound
of such an averaging time. The presented analysis was performed with
different averaging times ranging from one minute up to ten minutes.
No significant changes in our results were observed. Thus we proceed
with an averaging period of ten minutes.
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Figure 1. The picture shows an arbitrary excerpt of the horizontal wind speed time
series including a strong wind gust.

The larger the fluctuation values u the more turbulent the wind field
becomes. In wind energy research this is often expressed by means of
the turbulence intensity I which is defined as the standard deviation σ
in relation to the mean velocity ū (Burton, 2001):

I =
σ

u
. (2)

Nevertheless the value of I does not contain any dynamical or time-
resolved information about the fluctuation field itself. To achieve a
deeper understanding of wind gusts we investigate how far wind gusts
are related to the well known features of small-scale turbulence.
As a natural and simple measure of wind gusts we use the statistics of
velocity increments δuτ :

δuτ = u(t + τ)− u(t) , (3)

commonly used for intermittency analysis of small-scale turbulence in
laboratory data (Lueck et al, 1999). The increments directly measure
the velocity difference after a characteristic time τ as illustrated in
Fig.1. So a large increment exceeding a certain threshold S (δuτ > S)
can be defined as a gust.
For a statistical analysis we are interested in how frequent a certain in-
crement value occurs and whether this frequency depends on τ . There-
fore we first calculate the probability density functions (pdfs) P (δuτ ) of
the increments of the atmospheric velocity fluctuations. In Fig. 2 the
pdfs for 5 different values of τ are shown. These distributions are all
characterized by marked fat tails and a peak around the mean value.
Such pdfs are called intermittent and differ extremely from a Gaussian
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Figure 2. The pdfs of the increments of the atmospheric velocity fluctuations (nor-
malized with σ) for τ being 0.25 s, 1.0 s, 6.8 s, 32 s and 2074 s (full symbols from
the top to the bottom) are drawn in. They are shifted in vertical direction against
each other for a clearer presentation and the corresponding fits according to eq. (5)
are shown as solid curves. P (δuτ · σ

−1) is given in arbitrary units (a.u.).
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Figure 3. The distribution of the increments for τ = 4s is represented by the
squares, a Gaussian distribution with the same standard deviation σ by the solid
line (parabola due to the semilogarithmic presentation). Both distributions are
normalized with σ = 0.8 ms

−1.

distribution that is commonly considered to be the suitable distribution
for continuous random processes.
A Gaussian or normal distribution is uniquely defined by its mean
value µ and its standard deviation σ. Thus every distribution can be
compared to a Gaussian distribution in a quantitative way. In Fig. 3 we
compare one of the measured pdfs (τ = 4 s) with a normal distribution
with the same σ. In this presentation the different behaviour of the tails
of both distributions becomes evident. Note that the large increments –
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located in the tails of the pdfs – correspond to strong gusts. For instance
the value of δuτ = 7 ·σ corresponds to a velocity ascending of 5.6 ms−1

during 4 s. As shown in Fig. 3 (arrow) the measured probability density
of the increments of our wind data is about 106 times higher than for
a corresponding Gaussian distribution! The value 106 – for instance –
means that a certain gust which is observed about five times a day
should be observed just once in 500 years if the distribution were a
Gaussian instead of the observed intermittent one.
But intermittent distributions seem to appear quite often in natural
or economical systems like in earthquake- (Schertzer & Lovejoy, 1994),
foreign exchange market- (Ghashghaie et al., 1996) or even in some
traffic-statistics (Vassilicos, 1995).
What kind of statistics do we get in the case of local isotropic and

stationary laboratory experiments? The typical pdfs in laboratory tur-
bulence – as shown in Fig. 4 a) – change from intermittent ones for small
values of τ to rather Gaussian shaped distributions with increasing τ
(τ ≈ T ), where T is the correlation or integral time:

T =

∞∫

0

R(τ)dτ , (4)

well defined for laboratory data. R(τ) is the autocorrelation function
of the fluctuations. The correlation time is about 6 · 10−3s.
For the atmospheric wind data eq. (4) does not converge properly. To
fix a large time T we take 1800 s as the upper limit of the integral and
thus obtain T = 34 s.
For the pdfs of the atmospheric velocity field this characteristic change
of shape, even for τ -values higher than T = 34 s (as shown in Fig. 2)
is not observed.
As already mentioned a fundamental difference between atmospheric
and laboratory turbulence is that the latter is stationary. In labora-
tory experiments one usually deals with fixed speed and direction of
the mean wind ū, which is obviously never the case for atmospheric
wind fields. Therefore in a second step we calculate the pdfs of the
atmospheric increments only for certain mean velocity intervals. That
means that only those increments are taken into account with ū ranging
in a narrow velocity interval with a width of typically 1 ms−1. These
conditioned pdfs P (δuτ )cond all show a similar qualitative change of
shape like those of the laboratory experiment1. This is illustrated in
Fig. 4 b) for one exemplary mean velocity interval.
To quantify this similarity we use a well established fit by an empirical

1 Only for very small values of ū (u < 1 ms
−1) this change of shape is not

observed.
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Figure 4. In a) the symbols represent the pdfs P (δuτ ) of the laboratory increments
for different values of τ . From the top to the bottom τ takes the values: 0.005 T ,
0.02 T , 0.17 T , 0.67 T and 1.35 T . In b) the conditioned pdfs of the atmospheric data
are presented, here τ is 0.008 T , 0.03 T , 0.2 T , 0.95 T and 1.9 T . The mean wind
interval on which the increments are conditioned is [4.5 ; 5.6] ms

−1. In both cases
the solid lines are the corresponding fits according to eq. (5). The distributions and
their fits are shifted in vertical direction against each other for a clearer presentation.

explicit function for the pdf. This formula was derived in (Castaing et
al., 1990) on the basis of Kolmogorov’s understanding of a turbulent
cascade:

P (δuτ ) =
1

2πλτ

∞∫

0

exp(−
δu2

τ

2s2
) · exp(−

ln2(s/s0)

2λ2
τ

)
d(lns)

s
. (5)

In Fig. 2 and Fig. 4 these functions are represented by the solid lines.
λ2

τ is the fundamental parameter in equation (5) and determines the
shape of the probability distribution. As it can easily be seen equation
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Figure 5. λ
2

τ
as a function of the increment distance τ is shown for the pdfs of the

laboratory measurement (squares) and for the unconditioned (diamonds) as well as
for the conditioned pdfs (circles) of the wind data. The axes both are logarithmic.
For the laboratory data τ = 1 corresponds to 10−5

s and for the wind data to 0.25 s.

(5) reduces to a Gaussian distribution if λ2
τ goes to zero:

lim
λ2

τ
→o

P (δuτ ) =
1

s0

√
2π

exp(−
δu2

τ

2s2
0

) . (6)

On the other hand the more λ2
τ increases the more intermittent the

distributions become. In this way the parameter λ2
τ may serve to com-

pare the pdfs with each other in a more quantitative way. In Fig. 5 the
evolution of this parameter as a function of the increment distance τ
is shown.
Other laboratory measurements (Castaing et al., 1990; Chabaud et al.,
1994) of λ2

τ have shown evidence that it saturates at approximately
0.2. As shown in Fig. 5 λ2

τ of the conditioned wind increments as well
as of the laboratory ones is approximately 0.2 for small τ−values. Fur-
thermore it tends to zero with increasing τ . None of these two features
is observed in the case of the unconditioned increments, λ2

τ is rather
independent from τ with a value of about 0.7. A constant behaviour
of λ2

τ means that the shape of the pdfs remains unchanged, while its
variance may change.
Thus we have shown that the anomalous statistics of wind fluctuations
on discrete time intervals – which are obviously related to wind gusts
– can be reduced to the well known intermittent (anomalous) statis-
tics of local isotropic turbulence. This result deviates from results of
wind data reported in (Ragwitz & Kantz, 2001), where it is claimed
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that their unconditioned wind pdfs behave like those from laboratory
measurements.

3. Waiting time distribution

So far we have shown how the atmospheric turbulence is related to
the laboratory one in a statistical way. This probabilistic approach
describes the frequency with which certain gusts occur but it is not
clear how they are distributed in time. In this sense we now examine
the waiting times between successive wind gusts.
The marked fat tail behaviour of the unconditioned pdfs – as illustrated
in Fig. 2 – points at an interesting effect. In (Schertzer & Lovejoy, 1993)
the equivalence between the divergence of the moments < xq > and
the hyperbolic (intermittent) form of pdfs which leads to a power law
behaviour of the probability distribution is emphasized:

p(x ≥ S) ∝ S−q , S >> 1 . (7)

A famous example of such a natural power law behaviour is the Guten-

berg-Richter-law (Gutenberg & Richter, 1956) that describes the fre-
quency N of earthquakes with a magnitude being greater than a certain
threshold M (magnitude):

log(N(m ≥ M)) = a− bM

⇔ N(m ≥ M) ∝ 10−bM . (8)

But also the waiting time distribution of fore- and after shocks obey a
power-law, what is known as the Omori-law (Omori, 1894).
In this sense we now examine the waiting time distribution of wind
gusts. Therefore we refer to the gust illustrated in Fig. 1 choosing
different thresholds S and different increment distances τ (see eq. (3)).
Always when the condition δuτ > S is fulfilled a gust event is registered.
To avoid that one event is counted several times we use the condition
that the temporal distance between two successive events ∆T is at least
τ .
The waiting time distributions P (∆T ) for S = 4.0 ms−1 and τ = 10 s
and for S = 1.5 ms−1 and τ = 65 s are shown in Fig. 6 a) and 6
b), respectively. Due to the double-logarithmic presentation the dis-
tributions in Fig. 6 a) and 6 b) both follow a power law but with
different exponents. The exponents depend on S and τ . This power
law behaviour of the waiting time distributions is only observed for the
atmospheric wind data and not for the stationary laboratory one.
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Figure 6. The filled symbols illustrate the waiting time distributions P (∆T ) – given
in arbitrary units – between successive gusts. Additionally two power-law functions
are drawn in (solid lines). a) and b) refer to two different combinations of τ and S.
The corresponding exponents are −0.8 and −1.8 respectively.

4. Discussion and summary

On the basis of well defined velocity increments an analogous analy-
sis of measured wind data and measured data from a turbulent wake
was performed. The statistics of velocity increments, as related to the
occurrence frequency of wind gusts, showed that they are highly inter-
mittent. These anomalous (not Gaussian distributed) statistics explain
an increased high probability of finding strong gusts. This could be set
in analogy with turbulence measurements of an idealized, local isotropic
laboratory flow if a proper condition on a mean wind speed was per-
formed. This result is rather astonishing, insofar as solely the condition
on the mean velocity leads to a good agreement between the pdfs of
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the wind velocity increments and those of the laboratory wake flow.
At least for our data it seems to be not necessary to introduce further
conditions which take special meteorological situations into account.
A possible explanation is the proposed universality of small-scale tur-
bulence which means that the statistics of the small-scale fluctuations
become independent of the driving large scale structures.
As a further statistical feature of wind gusts we have investigated the
waiting times between successive gusts exceeding a certain strength.
Here we find power-law-statistics (fractal statistics) – similar to earth-
quake statistics – that can not be reproduced in laboratory measure-
ments.
To conclude we have shown two important aspects of wind gusts. The
overall occurrence statistics could be set into analogy to the anomalous
statistics of velocity increments in local isotropic turbulence. The time
structure of successive gust events displays fractal behaviour. We think
that these results may be helpful for a better characterization and
understanding of gust events.
Of course we have to note that these results are obtained from one
single wind data set. It should be very interesting to explore not only
the effect of conditioning on a mean wind velocity but also on differ-
ent flow situations or different boundary layer or other environmental
conditions.
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