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The steady streaming induced by a sea wave shoaling on a sloping beach and partly
reflected at the coastline is determined in the region seaward of the breaker line.
Shallow waters and waves of small amplitude are considered. Moreover, the Reynolds
number is assumed to be large but still within the laminar regime and the flow domain
is split into a bottom boundary layer and a core region. For an incoming wave which
is fully absorbed at the coast the solution shows that close to the bottom the steady
streaming is onshore directed even though the depth-averaged value represents an
offshore directed flow. Moreover, the vertical velocity distribution depends on the
ratio between the wave amplitude a∗ and the thickness δ∗ of the bottom boundary
layer. For a fully reflected wave, steady recirculation cells are induced, the form
and strength of which depend on the ratio a∗/δ∗. A complex flow is generated for
reflection coefficients falling between 0 and 1.
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1. Introduction

When approaching the coast, sea waves propagate on decreasing water depths, their
profile steepens and they eventually break. Then the shore is reached and waves
exhaust themselves in the form of thin sheets of water rushing up and down the
beach face. Although the main water motion is to and fro, because of nonlinear
effects the waves themselves induce a steady streaming and a net flux of water. For a
discussion of the physical mechanism by which an oscillatory flow generates a steady
streaming, the interested reader is referred to the recent review paper by Riley (2001).
In the surf zone this steady drift can be very strong, since wave amplitudes attain
large values and nonlinear effects are quite relevant. Offshore of the breaker line the
steady-velocity components are often weak when compared with the fluctuating ones.
Nevertheless, the former still play a significant role in many transport phenomena
and, in particular, they have a strong influence on sediment transport because of
their persistence. While steady currents induced by waves in the surf region have been
studied by many researchers (see the contributions of Dally & Dean (1984), Svendsen
(1984), Stive & Wind (1986), Svendsen et al . (1987), Deigaard et al . (1991), Stive
& De Vriend (1994), Cox et al . (1995) and the references cited therein), much less is
known about the structure of the steady streaming offshore of the breaker line. The
existence of a steady drift associated with the propagation of a sea wave was first
pointed out by Stokes (1847), who treated the problem by using the classical potential
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wave theory. Then Longuet-Higgins (1953) tackled the problem of wave propagation
and current generation in waters of constant depth with due consideration of fluid
viscosity. For large Reynolds numbers, both surface and bottom boundary layers
should be introduced.

Inside the bottom boundary layer, which has a thickness δ∗ of order
√

2ν∗/ω∗

(ν∗ being the kinematic viscosity of the fluid and ω∗ the angular frequency of the
surface gravity wave), the steady-velocity component is forced by the time-averaged
Reynolds stresses resulting from the wave field (Phillips 1977; Craik 1982; Mei 1989).
In particular, the steady-velocity component tends to a constant value at the edge of
this bottom boundary layer. Near the surface, a thin boundary layer is present which
is best studied by using curvilinear coordinates which fit the wavy surface. Within
this layer, vorticity is much smaller than that present in the bottom boundary layer
and has weaker effects on the mean mass transport.

The evaluation of the steady streaming outside the bottom and surface boundary
layers deserves special attention. If attenuation of the wave amplitude in the direction
of propagation is ignored, the induced streaming is strictly horizontal and indepen-
dent of the horizontal coordinate. Hence, the vertical distribution of the velocity
profile is provided by the ‘creeping-flow approximation’. Indeed inertia terms iden-
tically vanish and the phenomenon is controlled by viscous diffusion. However, the
wave amplitude a∗ decays in the direction of wave propagation at a rate which is
of order a∗δ∗/(L∗)2, L∗ being the length of the wave. In this case, viscous terms
are much larger than inertia terms only when δ∗ � (a∗/L∗)a∗. However, for field
conditions δ∗ is much smaller than (a∗/L∗)a∗ and viscous terms are negligible except
within a second layer close to the bottom, the thickness of which turns out to be of
order L∗√δ∗L∗/(a∗)2. The existence of a second thicker layer, in which convective
inertia and viscous diffusion are equally important, was first pointed out by Stu-
art (1966) when analysing the oscillatory flow around a circular cylinder, while the
phenomenon in the case of free-surface waves was investigated by Dore (1976) and
Haddon & Riley (1983). These analyses as well as most of the subsequent investiga-
tions of the problem—until the recent and interesting investigations of Iskandarani
& Liu (1991a, b) and Wen & Liu (1994)—have been carried out considering constant
water depths. A further common assumption is that of wave propagation over an
impermeable bottom even though studies exist of the phenomenon over a permeable
bed (e.g. Liu 1977).

Quite often the seabed is covered with bed forms of different size. The steady-
velocity components over a rippled bed have been investigated by many authors
(Lyne 1971; Sleath 1976; Vittori 1989; Hara & Mei 1989; Blondeaux 1990), who,
however, focused their attention on the velocity components which are spatially
periodic with a wavelength equal to that of the ripples. In this case the existence of a
second layer, in which convective inertia is as large as diffusion, was revealed by Hara
& Mei (1989), who considered two asymptotic conditions. In the first case, weak fluid
oscillations were considered, while in the second case ripples were assumed to be of
small amplitude. The mechanism generating a steady streaming independent of the
longitudinal coordinate was studied by Vittori & Blondeaux (1996), who, however,
did not consider the flow far from the bottom boundary layer. The flow over bedforms
characterized by wavelengths of the same order of magnitude of the length of sea
waves and by large amplitudes was investigated by Riley (1984) with the aim of
studying the interaction of sand waves and multiple bars (see, for example, Komar
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(1998) for a description of these morphological patterns) with propagating waves.
The same topic has been recently investigated by Yu & Mei (2000), who showed that
periodic patterns of longshore bars are not generated by an instability mechanism
but they are a forced phenomenon due to the non-uniformity of the wave amplitude
envelope generated by a propagating wave which is partly reflected at the coast.
Although the local slope differs from zero, because of the presence of the bedforms,
the average water depth is constant and the analyses do not provide information on
the steady streaming induced by waves which propagate over a sloping bottom.

A general formula to evaluate the steady streaming induced by nonlinear effects
within the bottom boundary layer of a three-dimensional wave of small amplitude
propagating over an arbitrary bottom profile was provided by Hunt & Johns (1963),
who, however, did not consider the flow far from the bottom. Carter et al . (1973)
applied these results to compute the velocity field at the bottom of a sea wave
which approaches the coastline and is partly reflected at the beach. To evaluate the
irrotational velocity components and, in particular, the beach reflectivity, Carter et
al . (1973) used empirical data. The same problem, with the aim of investigating the
mechanism leading to the appearance of a series of sand bars parallel to the shoreline
was tackled by Lau & Travis (1973), who considered beaches characterized by very
gentle constant slopes such that the wavefield could be locally described in terms
of a linear Stokes wave over a constant depth. As clearly discussed in the book by
Mei (1989, pp. 59–66), the perturbation approach used by Lau & Travis (1973) is
strictly valid when the ratio βL∗/h∗

0 is much smaller than one. Herein β denotes
the beach slope and h∗

0 is a characteristic value of the water depth. For intermediate
depths, the assumption βL∗/h∗

0 � 1 is not particularly restrictive, since actual values
of the beach slope are small. However, close to the beach, where the water depth
turns out to be much smaller than the wavelength of the wavefield, in order to apply
the approach of Lau & Travis (1973), it is necessary to consider very small values
of β. Indeed, from the assumption βL∗/h∗

0 � 1, it follows that β � h∗
0/L∗. Since

h∗
0/L∗ � 1, it turns out that close to the beach, the approach of Lau & Travis (1973)

can only be applied for rather small values of β.
In this paper an attempt is made to predict the shoaling process of a wave propa-

gating on a gently sloping bottom and partly reflected at the coastline. In particular,
attention is focused on the study of the steady-velocity components. Since we con-
sider the region close to the coast, the water depth is assumed to be much smaller
than the length of the waves and the shallow-water approximation is used. For the
consistency of the analysis, the beach slope β is assumed to be of order h∗

0/L∗,
i.e. β = β0h

∗
0/L∗ with β0 of order one. Moreover, waves of small amplitudes with

respect to the local depth are considered. The Reynolds number is assumed to be
large and the flow regime in the bottom boundary layer to be laminar. Close to the
bottom the results by Longuet-Higgins (1953) and Hunt & Johns (1963) are recov-
ered. Far from the bottom, in the so-called ‘core’ region, our approach allows us to
predict the local wave amplitude and the steady-velocity components. To compute
them, an advection–diffusion equation for the vorticity field is solved. As discussed
by Longuet-Higgins (1953), the solution depends on the ratio a∗/δ∗ between the wave
amplitude and the thickness of the bottom boundary layer. When this ratio is much
smaller than one, the creeping-flow approximation can be used and the solution can
be easily worked out by analytical means. For values of a∗/δ∗ of order one or much
larger than one, convection of vorticity is of the same order of magnitude or even
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larger than vorticity diffusion. In the latter case, large normal gradients of vorticity
develop near to the bottom to balance the governing equations and compensate for
the smallness of δ∗ with respect to a∗. The steady vorticity then remains confined
within an outer boundary layer often referred to as the ‘Stuart layer’, which is close
to the Stokes layer and may leave the bottom for highly reflected waves. In these
cases a numerical approach should be used to solve the vorticity equation.

The knowledge of the steady currents generated far from the bottom by wave
propagation is particularly relevant for morphodynamics models. Indeed, it is gener-
ally accepted (cf. Fredsøe & Deigaard 1992) that waves propagating over an erodible
fine-sand bed generate a sediment suspension with large concentration in the near-
bed region. When currents (in this case wave-generated currents) are present, addi-
tional mixing over the water depth occurs, resulting in an increase in the sediment
concentration in the upper layers. Measurements in wave flumes show in particu-
lar the presence of sediments up to the water surface (Van Rijn 1990, 1993). The
basic mechanism of sediment transport in combined currents and waves is thus the
entrainment of particles by the stirring action of waves and their transport by the
current. The present analysis assumes a laminar regime. The extension to the tur-
bulent regime does not imply additional problems once an appropriate turbulence
model is chosen. A first attempt to take into account turbulent effects has been done
by Blondeaux et al . (1999), who compared the theoretical results with available field
data and obtained a fair agreement even though some discrepancies were also found.
To obtain a more accurate description of field conditions, more refined turbulence
models than that of Blondeaux et al . (1999) should be used and the analysis should
be extended to describe irregular waves. It is likely that the presence of many wave
components leads to weaker steady streaming and a partial disappearance of the
regular recirculating cells which are found for highly reflective beaches.

We conclude this introduction by pointing out that the recent experimental and
theoretical investigations of Matsunaga et al . (1988, 1994) and Li & Dalrymple (1998)
have shown that the undertow may be unstable and gives rise to seaward-migrating
vortices with shorter length-scales and longer time-scales than the wavefield. How-
ever, this aspect of the phenomenon is not presently considered.

The procedure used in the rest of the paper is as follows. In the next section
we formulate the problem. In § 3 the oscillatory part of the solution describing a
monochromatic gravity wave propagating on a sloping bottom is obtained both in
the outer region and in the bottom boundary layer. The steady-velocity components
are determined in § 4. The results are described in § 5, while § 6 is devoted to the
main conclusions of the work.

2. Formulation of the problem

Let us consider a coastal region uniform in the longshore direction and characterized
by a constant sloping bottom (see figure 1). The flow is supposed to be forced by
a monochromatic sea wave of angular frequency ω∗ which normally approaches the
coast and is partly reflected at the beach (hereafter a star denotes a dimensional
quantity).

We introduce a Cartesian coordinate system with the x∗- and z∗-axes lying on the
still-water level and pointing in the offshore and longshore directions, respectively,
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Figure 1. Sketch of the adopted coordinates and length-scales.

such that the x∗ = 0 is a cross-shore location just offshore of the breaker line (see
figure 1).

The local water depth h∗, which increases in the seaward direction at a constant
rate β starting from a finite value h∗

0 at x∗ = 0, is described by the relationship

h∗ = h∗
0 + βx∗. (2.1)

By assuming that the wavefield forced by the incoming wave is uniform in the long-
shore direction, the problem of studying the velocity field is posed in terms of the
continuity equation along with momentum equations in both the cross-shore and
vertical directions.

The problem is then closed by the no-slip condition at the bottom, which forces
the vanishing of the velocity, and by the kinematic and dynamic conditions at the
free surface, which is assumed to be described by

y∗ = η∗(x∗, t∗). (2.2)

With the assumption that the horizontal length-scale of the problem

L∗ =
√

g∗h∗
0/ω∗

is much larger than the local depth, continuity and momentum equations along with
boundary conditions can be simplified. Let us introduce the following dimensionless
variables,

x =
x∗

L∗ , y =
y∗

h∗
0
, t = ω∗t∗, (2.3)

u =
u∗

a∗ω∗L∗/h∗
0
, v =

v∗

a∗ω∗ , p =
p∗

ρ∗g∗a∗ , η =
η∗

a∗ , (2.4)

where t∗ is the time, u∗ and v∗ denote the velocity components along the x∗- and
y∗-axes, respectively, and p∗ is the pressure. Moreover, ρ∗ denotes the density of the
sea water and µ∗ = ν∗ρ∗ its dynamic viscosity, and a∗ is a measure of the wave
amplitude which is specified in the following.

Then, if the ratio h∗
0/L∗ is assumed to be much smaller than one (strictly infinites-

imal) and the dynamic pressure P is introduced,

P = p +
(

y

a
− η

)
, (2.5)
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the problem is posed by equations

∂u

∂x
+

∂v

∂y
= 0, (2.6)

∂u

∂t
+ a

[
u

∂u

∂x
+ v

∂u

∂y

]
= −∂η

∂x
− ∂P

∂x
+ 1

2δ2 ∂2u

∂y2 , (2.7)

∂P

∂y
= 0, (2.8)

along with the boundary conditions

u = 0, β0u + v = 0 at y = −h, (2.9)
∂η

∂t
+ au

∂η

∂x
− v = 0 at y = aη, (2.10)

P = 0 at y = aη, (2.11)
∂u

∂y
= 0 at y = aη. (2.12)

The main steps which are necessary to derive equations (2.5)–(2.8) are outlined, for
example, in Peregrine (1967). For convenience, the vanishing of the velocity at the
bottom is enforced by stating that both the normal and the tangential velocity com-
ponents must vanish. Use of (2.9) allows for an easy forcing of the no-slip condition
when studying the flow in the bottom boundary layer, where use is made of the
velocity components normal and tangential to the bottom. The boundary condition
(2.10) is obtained by assuming the free surface to be a material surface. Finally,
conditions (2.11) and (2.12) come from the continuity of the pressure and of the
shear stress through the free surface when both surface tension and wind stresses are
negligible.

The problem is characterized by three parameters, namely

a =
a∗

h∗
0
, δ =

√
2ν∗/ω∗

h∗
0

and β0, (2.13)

where ν∗ is the kinematic viscosity of the sea water. The first parameter, which is
related to the ratio between the wave amplitude and the water depth, measures the
relevance of nonlinear effects. Offshore of the breaker line, a turns out to be small
and nonlinear effects are weak. The parameter δ, which is the ratio between the
thickness of the viscous bottom boundary layer and the water depth, measures the
importance of viscous effects. In the field, δ is very small and viscous stresses are
negligible apart from a region close to the bottom. Finally, the geometric parameter
β0 is related to the slope β of the sea bottom which should be of order h∗

0/L∗ to
make shallow-water approximation valid for x of order one:

β =
(

h∗
0

L∗

)
β0, (2.14)

β0 being of order one.
Equation (2.8), along with boundary condition (2.11), simply states that P identi-

cally vanishes. Hence, in the following we look for the solution of (2.6), (2.7) forced by
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an incoming wave which is partly reflected at the beach and subject to (2.9), (2.10),
(2.12). In particular, as pointed out in § 1, we determine the steady-velocity compo-
nents which are necessary to evaluate the mass transport induced by the incoming
wave. As discussed in the literature (e.g. Mei 1989, pp. 504–512), the validity of
(2.6)–(2.12) simply implies h∗

0/L∗ � 1.

3. The wavefield

In order to determine the wavefield, we consider amplitudes of the incoming wave
much smaller than the local depth, such that the parameter a is much smaller than
one. It is thus possible to expand the solution in the form

(u, v, η) = (u0, v0, η0) + a(u1, v1, η1) + O(a2). (3.1)

Since we retain terms of order a = a∗/h∗
0 in the expansion (3.1), while we drop terms

of order h∗
0/L∗, at this stage the analysis requires that h∗

0/L∗ � a∗/h∗
0. However,

later on (see § 4) it is required that h∗
0/L∗ be much smaller than (a∗/h∗

0)
2; hence the

analysis holds when the ratio Ur = a∗(L∗)2/(h∗
0)

3, also known as the Ursell number,
is much larger than one.

When (3.1) is substituted into (2.6)–(2.12), we readily find that the following equa-
tions and boundary conditions should be satisfied at the leading order of approxi-
mation:

∂u0

∂x
+

∂v0

∂y
= 0, (3.2)

∂u0

∂t
= −∂η0

∂x
+ 1

2δ2 ∂2u0

∂y2 , (3.3)

u0 = 0, β0u0 + v0 = 0 at y = −h, (3.4)
∂η0

∂t
− v0 = 0 at y = 0, (3.5)

∂u0

∂y
= 0 at y = 0. (3.6)

The problem for (u0, v0, η0) contains the parameter δ, which field data show to be
much smaller than one. Hence, it is possible to assume

(u0, v0, η0) = (u00, v00, η00) + O(δ). (3.7)

Since the perturbation parameter δ multiplies the highest-order derivative, it is nec-
essary to split the y-domain into two parts: a boundary layer close to the bottom, the
thickness of which is of order δ; and a core region in which y assumes values of order
one. In the former region viscous effects are relevant, while they are negligible in the
core region as the oscillatory character of the flow keeps vorticity confined within the
bottom boundary layer and the fluid in the core region behaves as an inviscid fluid.
These balances between viscous effects and local inertia take place at the leading
order of approximation in the parameter a. In § 4 it is shown that at the following
order of approximation (O(a)), viscosity can play a significant role even in the core
region depending on the ratio between a∗ and δ∗. This is a well-known phenomenon
discussed in detail in the literature (see, for example, Mei 1989, pp. 439–443).
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If a monochromatic wave approaches the coast, the linearity of (3.2)–(3.6) suggests
that we assume that

(u00, v00, η00) = (û00(x, y), v̂00(x, y), η̂00(x, y))eit + c.c. (3.8)

Then equation (3.3), without the negligible viscous term, implies

û00 = i
dη̂00

dx
, (3.9)

while (3.2), along with (3.5) and (3.9), leads to

v̂00 = −iy
d2η̂00

dx2 + iη̂00. (3.10)

Finally, substitution of (3.9) and (3.10) into (3.4) leads to an ordinary differential
equation for η̂00 which can be easily solved if the variable X = 1+β0x is introduced:

η̂00 = 1
2H

(1)
0

(
2
√

X

β0

)
+ K̂ 1

2H
(2)
0

(
2
√

X

β0

)
. (3.11)

In (3.11) H
(1)
0 , H

(2)
0 are the Hankel functions (Abramowitz & Stegun 1964). The

complex reflection coefficient K̂ of the beach is introduced to also model waves
partly reflected at the coastline. The modulus of K̂ is related to the ratio between
the amplitude of the reflected wave and that of the incident wave. The phase of K̂
is related to the relative phase of the incoming and outgoing waves. The range of
validity of (3.11) is discussed in Friedricks (1948) for vanishing values of h∗

0 and a
fully reflected wave. In this case, if we consider a beach geometry characterized by β
of order 10−2 a comparison of (3.11) with the solution of the full three-dimensional
problem (Stoker 1957) shows that (3.11) is valid within a nearshore region the width
of which is about seven wavelengths. Values of β of order 10−2 have been chosen on
the basis of the analysis of a large number of beach profiles surveyed at the Field
Research Facility, Duck, NC. Although different values of β can be found all around
the world and larger values of β imply a decrease in the range of validity of (3.11),
it can be stated that (3.11) provides reasonable results even for field conditions. It
is interesting to point out that in (3.11) the wave amplitude changes only because
of the varying water depth. Indeed the viscous damping of the wave amplitude is
present only when terms of order δ are included in (3.7) and induces a significant
change of the wave amplitude only on a spatial scale much larger than L∗. Since the
present analysis considers a coastal region of order L∗, it is not necessary to include
O(δ) terms in (3.11).

At this stage it is possible to introduce a more precise definition of a∗. Because
of (3.11) and of the dimensionless variable η defined by (2.4), a∗ is the amplitude of
the incoming wave at x∗ = 0 divided by |H(1)

0 (2/β0)|.
Of course, functions û00 and v̂00 do not satisfy the boundary conditions at the

bottom, because they have been obtained by neglecting viscous term in (3.3). As
previously pointed out, in order to satisfy the no-slip condition at the bottom, it is
necessary to introduce a boundary layer, the thickness of which is of O(δ). Hence,
in order to determine the flow inside the bottom boundary layer it is convenient to
rescale the vertical coordinate by introducing a variable ξ such that

ξ =
y + h(x)

δ
, (3.12)
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and to define Û00, V̂00 such that

Û00 = û00, V̂00 =
1
δ
(v̂00 + β0û00). (3.13)

The solution of the problem inside the boundary layer gives

Û00 = i
dη̂00

dx
[1 − e−(1+i)ξ], (3.14)

V̂00 = −i
d2η̂00

dx2

[
ξ +

1
(1 + i)

(e−(1+i)ξ − 1)
]
. (3.15)

The function Û00 for ξ tending to infinity exactly matches the function û00 for y
tending to −h. Moreover, making use of relationships obtained for the flow in the
core region, it can be shown that the first term on the right-hand side of (3.15)
matches v̂00 for y tending to −h. For ξ tending to infinity, the second term on
the right-hand side of (3.15) is not balanced by any terms in (3.10) but produces a
forcing in the problem at order δ. This problem can be solved only when a solvability
condition is satisfied. As discussed in Vittori & Blondeaux (1996), this solvability
condition requires that the amplitudes of both the incoming and the reflected waves
depend on a slow coordinate, i.e. the dimensional amplitudes change on a spatial
scale L∗h∗

0/δ∗ much larger than the length of the incoming wave. Since we focus our
attention on a region near to the shore, the cross-shore width of which scales with
L∗, the slow variations of the amplitudes can be neglected and the details of the
O(δ)-problem are not given here.

4. The steady currents

The solution obtained so far describes a long wave propagating on slowly varying
depths.

In order to determine the steady-velocity components, it is necessary to move to
the following order of approximation, i.e. to O(a). Because of nonlinear effects, the
O(a) terms in (3.1) should contain both a part proportional to e2it and a steady part:

u1 = û1e2it + ū1 + c.c., (4.1)

v1 = v̂1e2it + v̄1 + c.c., (4.2)

η1 = η̂1e2it + η̄1 + c.c. (4.3)

Since our aim is to predict the mass-transport velocity, we focus our attention on
the latter contribution.

Continuity and momentum equations for the flow in the core region are

∂ū1

∂x
+

∂v̄1

∂y
= 0, (4.4)

∂η̄1

∂x
= − ∂

∂x
(1
2u2

00), (4.5)
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subject to the boundary conditions

β0ū1 + v̄1 = 0 at y = −(1 + β0x), (4.6)

v̄1 = u00
∂η00

∂x
− η00

∂v00

∂y
at y = 0, (4.7)

∂ū1

∂y
= 0 at y = 0, (4.8)

and to the matching condition with the solution valid in the bottom boundary layer.
Equations (4.4), (4.5) and boundary conditions (4.6)–(4.8) are obtained by substitut-
ing (3.1) and (4.1)–(4.3) into (2.5)–(2.12), considering terms of O(a) and performing
a time average over the wave period which hereinafter is indicated by an overbar.

The assumptions previously introduced allow us to conclude that at O(a) viscous
terms in the momentum equation are negligible in the core region. Indeed the term

1
2δ2 ∂2ū1

∂y2

is much smaller than any of the terms appearing in (4.5) and the term

1
2δ2 ∂2u0

∂y2 ,

which might appear at O(a), depending on the value of the ratio a/δ2, identically
vanishes. Notwithstanding that viscous terms do not appear in (4.5), viscosity may
affect the velocity field (ū1, v̄1) in the core region. In fact in the following it is shown
that, depending on the ratio a/δ, viscosity may control the spatial distribution of
the steady vorticity component in the whole water column and hence also the values
of (ū1, v̄1), which cannot be determined only by means of (4.4), (4.5) (see Longuet-
Higgins 1953).

Inside the bottom boundary layer, it is convenient to introduce the quantities

Ū1 = ū1, V̄1 =
1
δ
(v̄1 + β0ū1), (4.9)

which should satisfy the following equations,

∂Ū1

∂x
+

∂V̄1

∂ξ
= 0, (4.10)

∂2Ū1

∂ξ2 = 2
[
∂η̄1

∂x
+ U00

∂U00

∂x
+ V00

∂U00

∂ξ

]
, (4.11)

along with the boundary conditions

Ū1 = 0, V̄1 = 0 for ξ = 0, (4.12)

and the matching condition with the solution in the core region.
The values of Ū1 and V̄1 can be easily derived, if (4.5) is used. In particular,

Ū1 =
dη̂00

dx

(
d2η̂00

dx2

)†
{[(1+3i)− (1− i)ξ]e−(1+i)ξ − ie−(1−i)ξ + 1

2(1− i)e−2ξ − 3
2(1+ i)},

(4.13)
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which is the result of interest here. In (4.13) the symbol ()† denotes the complex
conjugate of a complex quantity.

As already pointed out, the evaluation of the steady cross-shore velocity component
in the core region cannot be performed by simply considering (4.4), which is the only
available equation for the two unknowns ū1 and v̄1. As also discussed by Longuet-
Higgins (1953) one further relationship must be given by considering the behaviour
of the vorticity Ω∗, which is defined by

Ω∗ =
∂v∗

∂x∗ − ∂u∗

∂y∗ . (4.14)

Vorticity dynamics is controlled by the vorticity equation, which in dimensionless
form reads

∂Ω

∂t
+ a

[
u

∂Ω

∂x
+ v

∂Ω

∂y

]
= 1

2δ2 ∂2Ω

∂y2 . (4.15)

Cross-shore diffusion is neglected in (4.15) because of the shallow-water approxima-
tion, which leads us also to state that

Ω ∼= −∂u

∂y
. (4.16)

Since the parameter a is small, it is appropriate to expand Ω in terms of a. Moreover,
the interaction of the different temporal components gives rise to the following form
of Ω:

Ω = Ω0 + aΩ1 + a2Ω2 + O(a3)

= [Ω̂0eit + c.c.] + a[Ω̄1 + Ω̂1e2it + c.c.] + a2[(Ω̂21eit + Ω̂23e3it) + c.c.] + O(a3).
(4.17)

For (4.17) to be meaningful, it is necessary that the O(h∗
0/L∗) term neglected in

(4.16) be much smaller than the smallest term retained in (4.17). Hence, h∗
0/L∗

should be much smaller than (a∗/h∗
0)

2. As already discussed in § 3 this implies that
the Ursell number should be much larger than one.

At the leading order of approximation, in the core region the vorticity vanishes,
i.e. Ω̂0 ≡ 0. By substituting (4.17) into (4.15) and by analysing the vorticity equation
at orders a and a2, it turns out that the oscillating part of Ω1 vanishes (i.e. Ω̂1 = 0)
along with the part of Ω2 proportional to e3it (i.e. Ω̂23 = 0). Moreover, it follows
that

Ω̂21 = i
[
û0

∂Ω̄1

∂x
+ v̂0

∂Ω̄1

∂y

]
. (4.18)

Therefore, the steady part of the vorticity equation reads

1
2δ2a

∂2Ω̄1

∂y2 = a3
{

ū1
∂Ω̄1

∂x
+ v̄1

∂Ω̄1

∂y
+

[
iû†

00
∂

∂x

(
û00

∂Ω̄1

∂x
+ v̂00

∂Ω̄1

∂y

)
+

+ iv̂†
00

∂

∂y

(
û00

∂Ω̄1

∂x
+ v̂00

∂Ω̄1

∂y

)
+ c.c.

]}
+ h.o.t. (4.19)
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(where ‘h.o.t.’ denotes higher-order terms), or, with straightforward algebra,

∂2Ω̄1

∂y2 = 2
(

a

δ

)2{
ū1

∂Ω̄1

∂x
+ v̄1

∂Ω̄1

∂y

+
[
iû†

00
∂û00

∂x

∂Ω̄1

∂x
+ i

(
û†

00
∂v̂00

∂x
+ v̂†

00
∂v̂00

∂y

)
∂Ω̄1

∂y
+ c.c.

]}
+ h.o.t.

(4.20)

As discussed by Dore (1976), the equation for the steady part of the vorticity turns
out to be of convection–diffusion type with further terms given by the interaction of
the first-order oscillatory solution with itself and with the steady vorticity field (see
contributions to (4.20) within square brackets).

The solution of (4.20) depends on the values assumed by the ratio between δ and
a. When the wave amplitude is much smaller than the Stokes layer thickness, the
creeping-flow approximation can be used. While unrealistic in practical situations this
approximation is the easiest to analyse. In fact, from (4.20), it follows that the steady
vorticity component varies linearly with the water depth while the steady velocity is
quadratic. Then, boundary conditions (4.6)–(4.8) allow for ū1 to be determined:

ū1 =
3

2X

dη̂00

dX
β0

{(
y

X

)2[
−3

2X(1 + i)β2
0

(
d2η̂00

dX2

)†
+ i(η̂00)†

]

+ 1
2X(1 + i)β2

0

(
d2η̂00

dX2

)†
− i(η̂00)†

}
. (4.21)

When the ratio δ/a is of order one, all terms of equation (4.20) should be retained.
Therefore, only a numerical procedure can provide the solution. If the wave ampli-
tude is much larger than the thickness of the Stokes layer, viscosity is negligible
except within a bottom layer. Vorticity is expected to be confined within this second
boundary layer, which turns out to be adjacent to the Stokes bottom boundary layer,
and to diminish to zero outside it (Stuart 1966). Since in the second boundary layer,
the solution should be found numerically, the cases a � δ and a ∼ δ are treated
together. To numerically solve equation (4.20), the variables X and Y which map
the flow domain into a rectangle are introduced:

X = 1 + β0x, Y =
y

1 + β0x
. (4.22)

Moreover, the stream function ψ̄1 is introduced such that

ū1 =
∂ψ̄1

∂y
and v̄1 = −∂ψ̄1

∂x
.

It turns out that

∂2Ω̄1

∂Y 2 − 2β0X

(
a

δ

)2{
∂ψ̄1

∂Y

∂Ω̄1

∂X
− ∂ψ̄1

∂X

∂Ω̄1

∂Y

+
[
X

∂Ω̄1

∂X
− Y

∂Ω̄1

∂Y

][
iβ3

0

(
dη̂00

dX

)† d2η̂00

dX2 + c.c.
]

−∂Ω̄1

∂Y

[
i
(

β3
0

(
dη̂00

dX

)† d3η̂00

dX3 Y X + β0(η̂00)† d2η̂00

dX2

)
+ c.c.

]}
= 0, (4.23)
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∂2ψ̄1

∂Y 2 = −X2Ω̄1. (4.24)

With straightforward algebra it can be verified that (4.23) leads to

∂2Ω̄1

∂Y 2 − 2β0X

(
a

δ

)2{
∂ψ̄1

∂Y

∂Ω̄1

∂X
− ∂ψ̄1

∂X

∂Ω̄1

∂Y

+
[
iβ0(η̂00)† dη̂00

dX
+ c.c.

][
∂Ω̄1

∂X
+

1 + Y

X

∂Ω̄1

∂Y

]}
= 0. (4.25)

Then the vertical coordinate Y is stretched by introducing the variable Ŷ , to better
describe the large gradients which are present close to Y = −1 when a becomes much
larger than δ:

Ŷ = ln
(

c + 1 + Y

c

)
. (4.26)

In (4.26) the value of the stretching parameter c should be properly chosen. Finally,
equations (4.24) and (4.25) are solved by means of a finite-difference approach which
uses a second-order centred scheme to approximate the Ŷ -derivatives and a first-order
upwind scheme for the X-derivatives. The solution is found by an iterative procedure
after introducing a fictitious time-derivative term into (4.25) which is used to update
the values of Ω̄1, while (4.24) is used to compute ψ̄1 and hence ū1 and v̄1 (Roache
1972). The vorticity and stream function behaviours described in the following are
obtained by using a number of grid points which depends on the parameters of the
problem and ranges from 100 to 300 and from 100 to 1200 in the horizontal and
vertical directions, respectively. The same cases have been run doubling the number
of grid points both in the horizontal and vertical directions and using different values
of the stretching parameter c appearing in (4.26). The results obtained in this second
set of runs are coincident with those reported in the following. Moreover, different
time-steps have been used but the final solution turns out to be independent of
the time-step employed. These findings ensure both reliability and accuracy of the
numerical procedure and of the obtained results. It is worth pointing out that the
solution of (4.24) and (4.25) can be determined only when appropriate boundary
conditions are specified. At the free surface (Y = 0) the vanishing of the tangential
stress (4.8) forces

Ω̄1 = 0 at Y = 0. (4.27)

Moreover, the kinematic boundary condition (4.7) leads to

ψ̄1 = −iβ0
dη̂00

dX
(η̂00)† + c.c. at Y = 0. (4.28)

It is easy to verify (see § 5) that the boundary condition (4.28) is equivalent to
requiring the vanishing of the time-averaged mass flux at any cross-shore section.

The matching of the flow in the core region with that in the bottom boundary
layer implies

∂ψ̄1

∂Y
= −3

2(i + 1)Xβ3
0
dη̂00

dX

d2(η̂00)†

dX2 + c.c. at Y = −1, (4.29)

ψ̄1 = 0 at Y = −1. (4.30)
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It is worth pointing out that the boundary condition (4.29) has been converted
into a boundary condition for the vorticity Ω̄1 following a procedure similar to that
suggested by Thom (1928) and discussed, for example, in Roache (1972).

Finally, a boundary condition should be given at some cross-shore location. This
raises a difficult question regarding both the type of boundary condition which must
be applied and the location in which it must be forced.

The simplest case is that of a standing wave generated by the full reflection of an
incoming wave at a vertical wall located somewhere between 0 < X � 1. Indeed at
the wall or under the antinodes of the free-surface oscillations, no mass flux should be
present and ū1 should vanish. Moreover, from the definition of the stream function
and of the vorticity, it follows that both ψ̄1 and Ω̄1 should be zero under the anti-
nodes, if the constant appearing in the definition of the stream function is properly
chosen.

For a progressive or a partly reflected wave, since diffusion in the X-direction is
neglected because of the use of the shallow-water approximation, it can only be stated
that a boundary condition should be forced where the flow enters the computational
domain. This physical and mathematical constraint is well modelled by the use of
the upwind finite-difference scheme to approximate the X-derivatives. Indeed this
scheme implies the forcing of a boundary condition only at the upstream boundaries
of the computational domain. However, different boundary conditions can be used.
A discussion of this issue can be found in the book by Roache (1972). The less-
restrictive and convenient condition is that which forces the X-derivative of ψ̄1 to
vanish. This constraint, already used in the 1960s to study the flow around cylinders
or that induced by a backstep in a steady stream (e.g. Fromm 1963; Harlow & Fromm
1964; Thoman & Szewczyk 1966; Katsanis 1967), allows the stream function and the
vorticity along the upstream boundary to develop as part of the computed solution
and couples simplicity with efficiency. For a standing wave, the results obtained
by forcing the vanishing of ∂ψ̄1/∂X have been compared with those derived by
imposing the vanishing of ψ̄1 and good agreement has been found. Further support
for the adopted boundary condition comes from the good agreement which has been
found when the numerical code has been run for small values of a/δ and the results
compared with (4.21). Although the specification of suitable boundary conditions at
open boundaries is still an open question extensively discussed in the literature (see,
for example, the Proceedings of the ‘Open boundary conditions minisymposium’
(Gresho & Sani 1990)), the above findings give us confidence in the suitability of the
adopted boundary conditions.

5. Results

Since the thickness δ∗ =
√

2ν∗/ω∗ of the bottom boundary layer is much smaller
than the length L∗ of the incoming wave, the forms of both the oscillatory and the
steady-velocity components close to the bottom do not differ from those determined
by Longuet-Higgins (1953). Of course, as shown by Hunt & Johns (1963), to recover
the results described by Longuet-Higgins (1953) it is necessary to scale the oscil-
latory velocity component with |û00(x)| = |dη̂00/dx|, which is the amplitude of the
oscillations of the irrotational velocity induced locally close to the bottom by the
propagating waves.
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Figure 2. Influence of β0 on the steady velocity at the top of the boundary layer for a fully
absorbed wave at the coastline: solid line, β0 = 0.05; dashed line, β0 = 0.1; and dotted line,
β0 = 0.2.

On the other hand, equation (4.13) shows that the steady-velocity component
should be scaled with

û00(x)
(

dû00(x)
dx

)†
=

(
dη̂00

dx

)(
d2η̂00

dx2

)†
.

Hence, at the first order of approximation, a Stokes boundary layer is generated
close to the sea bed and the velocity oscillations depend on the strength of the local
wavefield. Then nonlinear effects inside the viscous boundary layer give rise to a
steady streaming, the intensity and direction of which depend on the characteristics
of the propagating waves. When the reflection coefficient of the beach vanishes, i.e. no
energy is reflected back from the beach towards the deep-water region, the steady-
velocity component is shoreward directed whatever cross-shore location is considered
and its strength increases while moving towards the shore. Of course the strength of
the steady streaming also depends on the beach slope.

In figure 2 the constant value assumed by the steady-velocity component for ξ
tending to infinity, i.e. at the top of the boundary layer, is plotted versus the cross-
shore coordinate X for different values of β0. As increasing values of β0 are considered,
the strength of the steady streaming increases more rapidly moving towards the
beach. On the other side, when a fully reflective beach is considered, a standing
wave is generated and the cross-shore steady-velocity component at the top of the
bottom boundary layer is directed from the nodes towards the antinodes of the free-
surface oscillations. Indeed from figure 3, where the value of Ū1 + c.c. for ξ tending
to infinity is plotted versus X, it can be seen that the steady-velocity component
is alternatively negative and positive, i.e. shoreward and seaward directed, and the
velocity is negative close to x = 0 (X = 1), where an antinode is located. It is
worth pointing out that in figure 3 the phase of the reflected wave with respect to
the incoming wave is chosen in such a way that the oscillating velocity component
vanishes at x = 0, where a vertical wall is assumed to be located.
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Figure 3. Influence of β0 on the steady velocity at the top of the boundary layer for a fully
reflected wave at the coastline: solid line, β0 = 0.05; dashed line, β0 = 0.1; and dotted line,
β0 = 0.2.

However, as clearly discussed in the book of Mei (1989, pp. 419–434), the steady-
velocity components close to the bottom reverse their direction and are directed
from the antinodes to the nodes of the free-surface oscillations. Hence, as discussed
by Carter et al . (1973), Lau & Travis (1973) and Yu & Mei (2000), if the sediment
particles are assumed to be small and move mainly by rolling and sliding along the
sea bed (bed load), it follows that in the case of a fully reflected wave there is a net
convergence of sediments under the nodes and a series of sand bars parallel to the
coastline tend to form there. No plot of the vertical profile of Ū1 + c.c. is provided
because the behaviour of such a quantity versus ξ is that found by Longuet-Higgins
and discussed by Carter et al . (1973).

Of course, the behaviour of the velocity close to the bottom can be investigated
also for any value of |K̂| falling in the range (0, 1). An example of the behaviour of
Ū1 + c.c. versus X at the top of the bottom boundary layer is plotted in figure 4 for
|K̂| = 0.02, 0.10, 0.50, and β0 = 0.05. For the smallest value of |K̂| at the top of the
bottom boundary layer the steady streaming is directed towards the coastline and
monotonically increases when X tends to 1, even though small oscillations can be
detected. When |K̂| is equal to 0.1, the effects of the reflected wave are more evident,
although the steady-velocity component is always negative. For |K̂| = 0.5 in a large
part of the beach profile a shoreward-directed current is present, but cross-shore
locations exist where a seaward-directed current is present.

Until now, as in Carter et al . (1973) and Lau & Travis (1973), the flow close to
the sea bed has been discussed. These results are quite relevant to understand the
morphological evolution of a beach profile when the sediment is supposed to move
as bed load only. However, as pointed out in § 1, the combined action of waves and
currents put into suspension a large amount of sediment, and sediment concentration
may be relevant also near the sea surface. Therefore, in order to predict the total
sediment transport, it is necessary to evaluate the steady-velocity components also in
the core region, i.e. from the top of the bottom boundary layer up to the free surface.
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Figure 4. Influence of |K̂| on the patterns of the steady velocity at the top of the bottom
boundary layer for β0 = 0.05: solid line, |K̂| = 0.02; dashed line, |K̂| = 0.1; and dotted line,
|K̂| = 0.5.
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Figure 5. Vertical profiles of the cross-shore velocity for a fully absorbed wave and different
cross-shore locations: solid line, X = 2; dashed line, X = 3; and dotted line, X = 4. Input
parameters: β0 � 0.16, δ � 0.008 and a = 0.002.

When the thickness δ∗ of the bottom boundary layer is much larger than the
wave amplitude a∗, the creeping-flow approximation gives rise to a vertical velocity
distribution which turns out to be parabolic. In figure 5 the cross-shore velocity
component is shown at different cross-shore locations for an incoming wave which
is fully absorbed at the coastline and for β0 � 0.16, δ � 0.008 and a = 0.002. As
already pointed out, the velocity profile turns out to be parabolic and close to the
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sea bottom the cross-shore velocity is shoreward directed. However, because of mass
conservation, the depth-averaged value of ū1 is seaward directed and decreases when
moving offshore because of the increasing water depth. Indeed, at any cross-shore
location the time average of the mass flux should vanish. In dimensionless form this
condition reads

1
2π

∫ t+2π

t

∫ aη

−h

u dy dt = 0. (5.1)

By substituting (3.1) into (5.1) and splitting the integral over the vertical into two
contributions, one from the bottom up to the still-water level and one from y = 0 to
the free surface, it is easy to obtain

1
2π

∫ t+2π

t

[∫ 0

−h

(u0 + au1) dy +
∫ aη0

0
u0 dy

]
dt + 0(a2) = 0. (5.2)

Since the functions û0eit + c.c. and û1e2it + c.c. are periodic with a vanishing time
average, and given that the value of u0 for 0 < y < aη0 can be approximated by
û0(0)eit + c.c. with an error of order a, it turns out that∫ 0

−h

ū1 dy + η̂0û
†
0|y=0 + c.c. = 0. (5.3)

Hence, since the term η̂0û
†
0|y=0 + c.c., which describes the shoreward-directed mass

flux due to the oscillatory flow induced by the incoming wave, is negative, the term∫ 0
−h

ū1 dy must be positive, i.e. it must be seaward directed. Incidentally, it is worth
pointing out that the fulfilment of (5.3) is assured by the kinematic boundary con-
dition (4.28).

The results shown in figure 5 are for β0 � 0.16, δ � 0.008 and a = 0.002. Bearing
in mind a laboratory experiment for an incoming wave characterized by a period of
2 s, the above values of the parameters imply β � 0.05 and h∗

0 � 0.10 m. Moreover,
the amplitude of the incoming wave at the shore turns out to be equal to 5×10−5 m.
Similar unrealistic values of the wave amplitude are obtained whenever the dimen-
sionless parameters are in the creeping-flow regime. These findings suggest the need
for investigation of the phenomenon for larger values of the parameter a. However,
when the ratio a/δ is of order one or much larger than one, the steady currents can
be determined only by the numerical approach briefly sketched in § 4.

When the ratio a/δ is increased to assume large values, the right-hand side of
(4.20) tends to become much larger than the left-hand side. However, viscous effects
are still significant close to the bottom, where a boundary layer appears to allow the
forcing of (4.29)–(4.30).

The unknown order of magnitude of the thickness of the bottom boundary layer
(δ/a)α (in which α is a value to be determined) and the leading-order contribu-
tions in the vorticity equation can be found as follows. First of all, the boundary
condition (4.29) shows that ψ̄1 ∼ O[(δ/a)α], while definition (4.24) of the vorticity
leads to Ω̄1 ∼ O[(δ/a)−α]. Moreover, it can be easily verified that ū1 ∼ O(1) and
v̄1 ∼ O[(δ/a)α]. Using these estimates, equation (4.25) shows that α should be equal
to 1 to make viscous effects as large as convective ones and, therefore, the thickness
of the bottom boundary layer is O[(δ/a)].

This qualitative prediction is supported by the numerical results shown in fig-
ure 6, where the cross-shore velocity component ū1 is plotted versus Y at X = 2 for
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Figure 6. Influence of a/δ on the profiles of the cross-shore velocity for a fully absorbed wave: solid
line, a/δ � 2.5; dashed line, a/δ � 25; and dotted line, a/δ � 250. Computational parameters:
X = 2, β0 � 0.16 and δ � 0.008.
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Figure 7. Influence of a/δ on the profiles of the cross-shore velocity for a fully absorbed wave:
solid line, a/δ � 2.5; dashed line, a/δ � 25; and dotted line, a/δ � 250. Enlargement of figure 6
near the bottom.

β0 � 0.16 and for a/δ � 2.5, 25, 250, respectively. Indeed for the largest value of the
ratio a/δ, the velocity profile is almost flat, except close to the wall where a large
gradient is present (see figure 7).

On the other hand, for a/δ � 2.5 the velocity profile is close to a parabolic distri-
bution. Since the values of β0 and δ considered in figures 6 and 7 are equal to those
of figure 5, for an incoming wave characterized by a period of 2 s, β and h∗

0 are 0.05
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Table 1. Experimental conditions as for Hwung & Lin (1990)

test wave wave steepness in deep
number period (s) water (height/length)

1 1.41 0.0186
2 1.23 0.0313
3 0.96 0.0405
4 0.96 0.0617
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Figure 8. Mass-transport profiles. (a)–(c) Test 1 and (d)–(f) test 4. (a) h∗ = 174 mm;
(b) h∗ = 130 mm; (c) h∗ = 98 mm; (d) h∗ = 174 mm; (e) h∗ = 157 mm; (f) h∗ = 130 mm.
Solid circles represent experimental data, while the solid line represents the solution of (4.24),
(4.25) and (4.16). The theoretical results have been obtained for the following values of the
parameters. Test 1: β0 = 0.150, δ = 6.8 × 10−3, a = 1.68. Test 4: β0 = 0.102, δ = 5.6 × 10−3,
a = 3.15.

and 0.10 m, respectively. Moreover, the wave amplitude turns out to be 5 × 10−4 m,
5× 10−3 m and 5× 10−2 m for a/δ equal to 2.5, 25 and 250, respectively. In particu-
lar, the last value of a/δ turns out to be realistic for waves generated in a laboratory
wave tank.

Before discussing further results, it is worth pointing out that the theoretical find-
ings have been successfully compared with some recent laboratory data obtained by
Hwung & Lin (1990). There are many other sets of data on the steady-velocity com-
ponents generated by a sea wave propagating over a sloping beach. However, such
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Figure 9. Contours of steady vorticity for a standing wave (δ∗/a∗ = 0.14, β0 = 0 and δ � 0.008).
Solid lines are used to represent positive values, while dotted lines pertain to negative values
(contour increase of 5).

data have been mainly obtained inside the surf region or close to the breaker line.
Hwung & Lin (1990) measured the mass-transport profiles outside the surf region
on a constant sloping beach of slope 1:15, for four monochromatic waves of different
characteristics, which led to both plunging (tests 1–3) and spilling (test 4) breaking.
Table 1 summarizes the experimental conditions.

In figure 8 the data measured during tests 1 and 4 are shown at different cross-shore
sections along with the theoretical predictions. Notice that we adopted a definition
of the x-axis (pointing seaward) which differs from that adopted by Hwung & Lin
(1990) (shoreward-pointing x̃-axis). Hence, in order to compare the two sets of data
we just changed the sign of the model results (i.e. x̃ = −x and ˜̄u1 = −ū1).

It is worth pointing out that wave breaking occurred approximately at a water
depth h∗ equal to ca. 8.5 cm for test 1 and ca. 11.0 cm for test 4. From figure 8, it
appears that the model represents well the mass transport independent of the type of
breaking (plunging or spilling) undergone by the incident wave. Some discrepancy,
however, can be observed when considering the data relative to the most inshore
gauges. Indeed a somehow different behaviour characterizes the experimental data
with respect to the theoretical ones. The latter present a very uniform distribution
over the vertical, while the former are characterized by a gradually increasing velocity
profile from the bottom up to the still-water level. We argue that this is caused by
the strong mixing induced by the presence of turbulence which is produced by wave
breaking and convected seaward of the breaker line by the steady streaming. This
being the case, the performance of the model should not surprise us. Indeed in the
analysis the flow is assumed to be turbulence free.

It could be concluded that the analysis provides a good description of the mass
transport if a region offshore of the surf zone but not too close to the breaker line is
considered.

Present predictions have also been compared with the results described in Iskan-
darani & Liu (1991a), who analysed the steady currents generated by a partly
reflected wave propagating over waters of constant depth. For β0 tending to zero
the free-surface displacement (3.11) turns out to be described by a sinusoidal func-
tion of x with an amplitude proportional to

√
β0.

However, for a horizontal bed, it is more appropriate to introduce a new definition
ã∗ of the quantity a∗ simply equal to the amplitude of the incoming wave at x∗ = 0.
With this new definition and the introduction of the parameter ã = ã∗/h∗

0 (which
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substitutes a into (3.1) and (4.17)), the function η̂00 is a sinusoidal function of x and
t with an amplitude which depends on the reflection coefficient K̂ but turns out to
be of order one. Then equations (4.24) and (4.25) can be solved to determine Ω̄1.

In figure 9 the vorticity Ω̄1 is plotted for a fully reflected wave and for δ∗/ã∗ = 0.14,
which is the value considered by Iskandarani & Liu (1991a) in their fig. 3d (notice
the different definitions of the viscous length δ∗). The agreement between present
predictions and the results plotted in fig. 3d of Iskandarani & Liu’s (1991a) paper is
fair, even though differences can be detected. These differences are present because
the results of Iskandarani & Liu (1991a) were obtained for a value of the ratio
between the water depth h∗

0 and the wavelength L̃∗ equal to 0.16, a value too large
to be described by the shallow-water approximation. Since all the results described
by Iskandarani & Liu (1991a) are for h∗

0/L̃∗ equal to 0.16, a detailed quantitative
comparison is not possible.

The predictions of the steady-velocity component for different values of the param-
eters are presented below. To summarize the results, plots of the stream function ψ̄1
in the (x, y)-plane are provided.

In figure 10 the behaviour of ψ̄1 is given for an incoming wave fully absorbed at
the coastline, β0 � 0.16, δ � 0.008 and for different values of a/δ (a/δ = 2.5, 25,
250).

For the lowest value of the ratio a/δ (see figure 10a), the steady flow induced
by wave propagation is characterized by a seaward current which has its maxi-
mum strength close to the free surface and then decreases while moving towards
the sea bed. At about two thirds of the water depth, the steady streaming reverses
its direction and the velocity is shoreward directed. Of course, as shown by (5.3), the
depth-averaged value of ū1 is positive and directed towards the deep-water region
to compensate for the onshore mass transport induced by the wave in the region
between the troughs and the crests. The velocity distribution is similar at different
cross-shore locations: when different values of x are considered the strength of the
steady currents simply decreases or increases depending on the local water depth.
When a larger value of a/δ is considered (see figure 10b), the thickness of the water
column in which the steady streaming is onshore directed decreases and tends to
become infinitesimal if a/δ tends to infinity. Indeed figure 10c shows a distribution
of ψ̄1 such that ū1 is positive over practically the whole water depth. Moreover,
large values of a/δ lead to a flat velocity distribution, i.e. ū1 turns out to be almost
constant, except close to the bottom in the so-called ‘Stuart layer’. In figure 11, the
ratio between the convective term in the vorticity equation (4.20) and the term aris-
ing from the interaction of the first-order wavefield with itself and with the steady
vorticity (i.e. contributions in square brackets in (4.20)) is shown for values of the
parameters equal to those of figure 10. It can be easily appreciated that the two
terms are of the same order of magnitude in all cases and over the whole water
depth, thus indicating the crucial role of the latter contribution in determining the
results here described.

Figure 12 shows the patterns of ψ̄1 for the same values of β0 and δ as in fig-
ure 10 and different values of a/δ but for a wave fully reflected at the coastline,
[K̂ = (1, 0)]. When |K̂| is equal to one, the steady flow is characterized by recircula-
tion cells the size and form of which depend on the parameters of the problem. The
steady streaming is usually upward directed under the antinodes of the free-surface
oscillations, while it is downward directed under the nodes (figure 12b shows the loca-
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Figure 10. Influence of a/δ on the patterns of the stream function ψ̄1 for a fully absorbed wave
at the coastline and for β0 � 0.16 and δ � 0.008. Values of a/δ increase from 2.5 (a) to 25 (b)
to 250 (c). Solid lines are used to represent positive values (contour increase of 0.0010), while
dotted lines pertain to negative values (contour increase of 0.0005).

tions of both nodes and antinodes). For low values of a/δ, vorticity is spread over
the whole water column and four recirculating cells per wavelength are generated
(see figure 12a).

When increasing values of a/δ are considered, vorticity tends to be stronger close
to the bottom and at cross-shore locations where there is an upward-pointing jet of
fluid. Here, vorticity, which is generated at the sea bed, is convected towards the free
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Figure 11. Influence of the term due to the interaction of the first-order wavefield with itself and
with the steady vorticity (i.e. contributions in square brackets in (4.20)). Contours represent
the ratio between convection and such an interaction term. The parameters are those reported
in the caption of figure 10. Solid lines are used to represent positive values (contour increase of
0.15), while dotted lines pertain to negative values (contour increase of 0.075).

surface by the vertical motion of the fluid (see figure 12c). Further increases in the
ratio a/δ lead to the formation of a second boundary layer, adjacent to the bottom
boundary layer (Stokes layer), as for the case of a fully absorbed wave (see figures 6,
7 and 12). However, for a reflected wave, the solution, when a/δ becomes large, is no
longer valid because this second boundary layer leaves the bottom and is convected
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Figure 12. Influence of a/δ on the patterns of the stream function ψ̄1 for a fully reflected wave
at the coastline and for β0 � 0.16 and δ � 0.008. Values of a/δ increase from 2.5 (a) to 12.7 (c).
Solid lines are used to represent positive values, while dotted lines pertain to negative values
(contour increase of 0.002). (b) The range of oscillations of the free surface (scaled with a∗).

in the vertical direction, generating large horizontal gradients of velocity and causing
the failure of the shallow-water approximation.

The presence of vorticity convection in the vertical direction is more evident in
figure 13, which is an enlargement of figure 12c. Indeed at x � 0.6 the streamlines
gather, showing the presence of strong vertical velocities. At this cross-shore location
the vorticity, which is generated at the bottom, leaves the sea bed, tending to form
shear layers.
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Figure 13. Upward convection of vorticity for a fully reflected wave at the coastline (a/δ = 12.7,
β0 � 0.16 and δ � 0.008). (a) Stream function ψ̄1 (contour increase of 0.001). (b) Vorticity Ω̄1

(contour increase of 0.01). Solid lines are used to represent positive values, while dashed lines
pertain to negative values.

It is worth pointing out that a change of the phase of the reflection coefficient
leads to a shoreward or offshore shift of the recirculating cells and, in particular, the
stream function vanishes at x = 0 if the phase of K̂ is chosen in such a way that û00
vanishes at such cross-shore locations.

Until now, results have been presented relative to the extreme cases of both a fully
reflected wave and a wave which breaks at the coast with a complete dissipation
of its energy. Examples of the stream function ψ̄1 for partly reflected waves are
given in figure 14 for realistic values of the reflection coefficient |K̂| and fixed values
β0, δ and a/δ. The fluid domain can be split into two layers. In the upper one, an
offshore-directed current is present which is more intense close to the free surface and
becomes weaker moving towards the bottom. In the lower layer, recirculating cells
are generated. The strength of these cells decreases moving in the offshore direction
and in figure 14 only the three cells closest to the beach appear.

We believe that the results obtained for the extreme conditions of fully absorbed
and reflected waves along with those shown in figure 14 are adequate to illustrate all
the features of the phenomenon and, for the sake of brevity, we have not reported
on results concerning different values of K̂ here.

6. Conclusions

In §§ 3 and 4 we have determined the flow induced by a sea wave propagating on a
gently sloping bottom and partly reflected at the coastline, focusing our attention
in the region offshore of the breaker line. To solve the problem the water depth has
been assumed to be much smaller than the length of the incoming wave and its
amplitude has been assumed to be much smaller than the local depth. Moreover,
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Figure 14. Influence of a/δ on the patterns of the stream function ψ̄1 for a partly reflected wave
at the coastline and for β0 � 0.16, δ � 0.008 and a/δ = 25. Values of |K| increase from 0.1 (a)
to 0.2 (b). Solid lines are used to represent positive values (contour increase of 0.0010), while
dotted lines pertain to negative values (contour increase of 0.0005).

the flow Reynolds number is supposed to be large enough to assume that viscous
effects in the momentum equation are confined within a bottom boundary layer. The
major outcome of the analysis is the determination of the steady currents induced by
nonlinear effects both in the bottom boundary layer and in the whole water column
up to the free surface.

The differences between the present results and those describing the undertow
structure in the surf region are due to the different physical balances which take
place inside and outside the surf zone. Seaward of the breaker line there is a balance
between the gradient of the mean water level and the term due to the nonlinear
self-interaction of the horizontal orbital velocity (see equation (4.5)). Indeed the
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shear-stress term is negligible both when the flow is dominated by viscous effects
(as presently assumed) and when the weak turbulence, which is possibly present
seaward of the breaker line, is taken into account. Under these circumstances the
steady-velocity field cannot be derived directly from (4.5) and information on the
vorticity distribution is needed. On the other hand, in the surf region, the presence
of the strong turbulence induced by wave breaking makes the shear stress term as
large as the other terms and the undertow structure can be derived directly from
the momentum equation, once an appropriate turbulence closure model is adopted,
with no need to study the vorticity distribution.

In order to apply the present analysis to field conditions, improvements are nec-
essary. First, the study of the flow in the bottom boundary layer should be modified
since the flow regime here is often turbulent. Moreover, the presence of weak turbu-
lence should also be considered far from the bottom where it increases any mixing
processes and, in particular, the diffusion of vorticity. Finally, it would be worthwhile
to investigate arbitrary bottom configurations. A first attempt to take into account
the presence of turbulence has been performed by Blondeaux et al . (1999), even
though a more refined turbulence model should be used to obtain more accurate
results.
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