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Abstract Significant wave height and zero-crossing wave
period are used for validation of wave models, wave climate
studies, and calculations of extremes for weather forecasting
purposes. They represent also important parameters for design
and operations of ships and offshore structures. They can be
evaluated using 20 or 30-min long wave recordings directly or
using the wave spectrum. Spectral methods often reduce the
20 min to about 17 min. Due to the limited duration of wave
records, estimates of significant wave height and zero-
crossing wave period are affected by sampling variability,
the statistical uncertainty due to limited number of observa-
tions. The study provides estimates of sampling variability
associated with significant wave height and zero-crossing
wave period based on measurements from the Ekofisk field
in central North Sea. Further, it demonstrates the impact of
intrinsic and sampling variability has on short-term and long-
term description of ocean waves as well as validation of wave
spectral models.
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1 Introduction

Description of ocean waves approximating the nature in the
most accurate way has always been of concern of the ocean-
ographic community. The shipping and offshore industry, on
the other hand, needs accurate wave data and models for
design and operational purposes. To describe waves, not only
wave data and models are required but also associated uncer-
tainties are needed to be specified. Uncertainties of wave data
and models have been a subject of research in many years but
got increasing attention in the last decades. There is still
limited literature addressing systematic quantification of un-
certainties related to wave description.

Generally, uncertainty related to wave description may be
divided into two groups: aleatory (inherent) uncertainty and
epistemic (knowledge based) uncertainty. Aleatory uncertain-
ty represents a natural randomness of a quantity, also known
as intrinsic or inherent uncertainty, e.g., the variability in wave
height over time. Aleatory uncertainty cannot be reduced or
eliminated. Epistemic uncertainty represents errors which can
be reduced by collecting more information about a considered
quantity and improving the methods of measuring it. Follow-
ing Bitner-Gregersen and Hagen (1990), this uncertainty may
be classified into data uncertainty, statistical uncertainty (sam-
pling variability), model uncertainty, and climatic uncertainty
(regarded often as model uncertainty).

The present study is limited to discussion of intrinsic and
sampling variability associated with significant wave height
and zero-crossing wave period, one of the most important
parameters for loads and response calculations of marine struc-
tures. Significant wave height and zero-crossing wave period
are used for validation of wave models, wave climate studies,
and calculations of extremes for weather forecasting purposes.

Significant wave height is defined as the average of the one-
third largest waves in a wave time series (H1/3) and is often
evaluated using 20 or 30-min long recordings. It can also be
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calculated from a wave spectrum (Hm0). The average zero-
crossing wave period Tz is defined as the average of zero-
crossing wave periods in a 20–30-min wave records and simi-
larly to significant wave height can also be estimated from a
wave spectrum (Tm02).

Spectral methods often reduce the 20 min to about 17 min.
This is because a sampling frequency of 2 Hz is widely used.
Slow CPUs in the 1970s and 1980s required the spectral
analysis to be done with Fast Fourier Transform. A record
including twice 1,024 (2,048) samples at 2 Hz is 17.07 min
long. It seems that the length of the record has been chosen
differently in different parts of the world. In Norway, as the oil
and gas industry developed in the North Sea, a record length
of 20 min was determined by the needs of frequent updates by
marine operators in charge of sensitive operations. Buoys that
were deployed along the coasts of US and Canada and around
Great Britain seem to be trigged to measure once or twice an
hour and have a 30-min record length. Record length may also
have been 20 (or 17) min in the early start of recording.

The limited duration of wave time series has allowed
adopting an assumption of stationarity on which most of wave
models are based today. Estimates of significant wave height
and zero-crossing wave period derived from the limited length
of wave records are affected by sampling variability, the
statistical uncertainty due to limited number of observations.
The shorter the time series is, the higher the variability of
significant wave height and wave period are.

Sampling variability is an epistemic uncertainty which can
be reduced opposite to the aleatory (intrinsic) uncertainty of sea
surface elevation, which is inherent and cannot be eliminated; it
is always present. The aleatory uncertainty of surface elevation
and the associated wave parameters is due to randomness of
nature; thus, for given meteorological conditions, sea surface
will oscillate and these oscillations can be described by a
distribution function (or the standard deviation). For stationary
meteorological conditions, due to randomness of sea surface,
wave parameters derived from a wave record will depend on
which part of a wave record is used in an analysis as well as on
the length of a wave record. An error introduced by the limited
length of a wave record is an epistemic uncertainty and can be
reduced by increasing duration of wave measurements/
numerical simulations. Ideally, a wave record should be infinite
to eliminate sampling variability. Numerical simulations of
water surface represent a good support to field data as they
allow reducing sampling variability by increasing duration of
simulations when wave input is kept constant and intrinsic
variability accounted for. This is more difficult in nature where
stationarity of sea states is an issue.

The importance of sampling variability on calculations of
extreme values was pointed out by Longuet-Higgins (1952)
who showed theoretically, under the assumption that the sea
surface is Gaussian and narrow banded in frequency, that ex-
tremewave heights are affected by the duration of a wave record.

This uncertainty was also addressed later by Lipa et al. (1981),
Donelan and Pierson (1983), Young (1986), Monaldo (1988),
Bitner-Gregersen and Hagen (1990), Tucker (1992), and
Forristall et al. (1996), among others. Lipa et al. (1981), consid-
ering over 5,000 HF radar data samples, reported the standard
deviation of significant wave height and the dominant wave
period to be 5 % and 0.5 s, respectively. Donelan and Pierson
(1983), investigating laboratory and field data, obtained 8 %
variability for significant wave height. For very narrow spectra,
the sampling variability was even higher. Monaldo (1988)
showed for two buoys situated 100 m apart a 7 % RMS (root
mean squared) error for significant wave height.

Theoretical formulas for sampling variability of Hm0 and
Tm02 have been derived by Bitner-Gregersen and Hagen
(1990) and applied to the Pierson-Moskowitz and JONSWAP
spectrum; the obtained values confirm the earlier findings based
on field and laboratory data. Closed form expressions for COV
(coefficient of variation) of significant wave height for the
Pierson-Moskowitz and JONSWAP spectrum as functions of
the peak frequency and the wave record length were proposed
later by Tucker (1992). For the Pierson-Moskowitz spectrum
with the peak frequency of 0.1 Hz and a length of 1,024 s, the
COV calculated according to Tucker (1992) (taken from
Forristall et al. 1996) is 5 %, approximately the same as the
one obtained by Bitner-Gregersen and Hagen (1990).

Forristall et al. (1996) proposed a distribution of significant
wave height (Hs) where sampling variability of Hs could be
included. The derivation presented by the authors was based
on the assumption that sea surface is linear (Gaussian). Using
the Tucker (1992) expression for the COV(Hs) for the
JONSWAP spectrum, good agreement between the field data
in 10-min samples from Auk Platform and the theoretical
distribution was obtained.

Estimation of sampling variability from wave measure-
ments is more challenging than frommodel tests (or numerical
simulations) because of requirement of stationarity of seas
states; therefore, theoretical formulas could be of support in
some cases. We validate herein the formulas of Bitner-
Gregersen and Hagen (1990) using measurements collected
at the Ekofisk field and discuss the impact of the measuring
length on validation of wave models, climate studies, and
simulations of wave surface elevation, supporting it by exam-
ples. Attention is given to extreme values being a necessary
input for marine structure design and operations.

The paper is organized as follows. Section 2 is dedicated to
the theoretical description of sampling variability associated
with significant wave height and zero-crossing wave period
estimates, as formulated in Bitner-Gregersen and Hagen
(1990); some comparison to the Tucker (1992) expressions
is also given. Sections 3, 4, and 5 are addressing the analysis
of intrinsic and sampling variability in wave measurements
from a waverider in the central North Sea. Section 6 shows
examples of impact of sampling variability on wave
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description. The paper closes with conclusions, recommenda-
tions, and references.

2 Theoretical sampling variability of wave records

Statistical uncertainty also called as sampling variability is due
to a limited number of observations of a quantity. Below
sampling variability associated with significant wave height
and zero-crossing wave period presented by Bitner-Gregersen
and Hagen (1990) is discussed.

Sea surface oscillations are commonly recorded by 20 or
30 min, and a wave record usually includes 100–300 waves.
They can also be simulated by numerical wave models or
generated in a model basin. Both numerical simulations and
model tests generate commonly a single wave record which
corresponds to a 17–30-min wave record in full scale. Sea
states characteristics and distributions derived from the 17–
30-min wave records will be affected by sampling variability
due to limit number of observations.

The theoretical formulas for sampling variability of Hm0 and
Tz were derived by Bitner-Gregersen and Hagen (1990), assum-
ing that sea surface is a Gaussian narrow-banded process.

The n-th spectral momentMn of a time series Xt is defined as

Mn ¼
Z∞

0

ωnS ωð Þdω ð1Þ

where ω is the angular frequency.
For a time series of N observations {Xt}, t=Δt,…, N+Δt,

an estimator bMn of the n-th moment is

bMn ¼ 2

Z∞

0

θnI�N θð Þdθ ð2Þ

where the periodogram IN
* (θ)

I�N ¼ � 1

2πN

X
t¼1

N

X ie
−iθ⋅t

�����
�����
2

ð3Þ

The periodogram (3) can be easily calculated from the
observations by the fast Fourier transform (FFT). The integral
(2) can be replaced by a finite sum. For a Gaussian process,
the asymptotic results for the mean value, variance, and coef-
ficient of variation of the spectral moments may be established
(Priestley 1981; Krogstad 1982).

lim
N→∞

E bMn

h i
¼ Mn ð4Þ

lim
N→∞

NvarE bMn

h i
¼ 2π f s

Zπ f s

0

ω2nS2 ωð Þdω ð5Þ

lim
N→∞

Ncov bMn; bMm

h i
¼ 2π f s

Zπ f s

0

ωnþmS2 ωð Þdω ð6Þ

where fs=1/Δt is the sampling frequency. bMn is a consistent
estimator by expressions (4) and (5).

Assuming that a given sea state (Hs, Tz) represents a
narrow-banded Gaussian process (Rayleigh-distributed wave
heights), the estimators of significant wave height and zero-
crossing wave period may be derived from the spectral mo-
ments (see Longuet-Higgins 1952; Cartwright and Longuet-
Higgins 1956; also Thorton and Guza 1983).

Hs ¼ Hm0 ¼ 4
ffiffiffiffiffiffiffi
M0

p
ð7Þ

Tz ¼ Tm02 ¼ 2π M 0=M 2ð Þ1=2 ð8Þ

Note that significant wave height and zero-crossing periods
calculated from spectral moments (Eqs. 7 and 8) are approx-
imations of the time series estimators as they are valid only for
the Gaussian and narrow-banded sea surface. The discrepancy
between the significant wave height and zero-crossing wave
period estimators derived directly from a wave record, and the
ones calculated from a wave spectrum is usually rather small.
However, when rogue waves are present, the bias may not be
negligible, see Bitner-Gregersen andMagnusson (2004). Both
estimators will be affected by sampling variability due to
limited duration of wave records.

As shown by Bitner-Gregersen and Hagen (1990), the

second-moment properties of the estimators bHm0 and bTm02

become
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� �
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where var ¼ bMn

� �
, var ¼ bM 2

� �
, and COV ¼ bM 0; bM 2

� �
for a given wave spectrum derived from Eqs. (5) and (6).

The standard deviations derived from Eqs. (9) and (10) and
expressing sampling variability of significant wave height and
zero-crossing wave period were calculated by Bitner-Gregersen
and Hagen (1990) for a North Sea scatter diagram and a
JONSWAP spectrum with the gamma parameter γ=3.3. The
obtained sampling variability standard deviations in (%) are
shown in Tables 1 and 2 in Appendix A. As expected, sampling
variability standard deviation for Tm02 is lower than for Hm0.
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Bitner-Gregersen and Hagen (1990) also present results for
the Pierson-Moskowitz spectrum but not in a form of Tables 1
and 2. The authors have shown that sampling variability of
significant wave height and zero-crossing wave period is
lower for the Pierson-Moskowitz spectrum than for the
JONSWAP spectrum. The dependence of sampling variability
on the shape of wave spectrum was already pointed out by
Tucker (1992) who proposed a formula for COV(Hs) for the
Pierson-Moskowitz and JONSWAP spectrum being a func-
tion of peak frequency fm and the length of the wave record L
(in seconds). For the Pierson-Moskowitz spectrum

COV Hsð Þ≈0:48
. ffiffiffiffiffiffiffiffiffi

f mL
p

ð12Þ

and for the JONSWAP spectrum with the standard shape
parameters

COV Hsð Þ≈0:61
. ffiffiffiffiffiffiffiffiffi

f mL
p

ð13Þ

For the JONSWAP spectrum with the gamma parameter
equal 3.3 and a record length 1,024 s COV(Hs) according to
the Eq. (13), sampling variability of Hs is higher than the one
derived from the formula proposed by Bitner-Gregersen and
Hagen (1990). The difference is larger for smaller fm. e.g., for
fm=0.10, COV=0.060 according to Tucker (1992) and 0.054
following Bitner-Gregersen and Hagen (1990) while for fm=
0.07, Eq. (13) gives COV=0.072 and Eq. (9) gives
COV=0.062.

Equation (13) does not include dependency on Hs. Thus,
for a given fm and L, all classes ofHswill have the same COV.
We will show that this is not confirmed by measurements;

increase of COV is observed with increase of Hs as in a wave
record with a given duration the number of waves is normally
decreasing with increase of Hs. This finding is supporting the
formula (9).

3 Wave measurements

MET Norway is forecasting marine weather for different oil
and gas fields in the North, Norwegian, and Barents Sea.
Special attention to high waves is given at Ekofisk (56.5° N,
3.2° E), a platform complex operated by ConocoPhillips. The
platforms are more or less subject to subsidence of the sea
floor (Hjorteland et al. 1999). The field has an increased
interest in precise wave height forecasts to be able to start risk
reducing actions at the right time. Several wave sensors have
been deployed through the last 20–30 years to assure good
forecasts and validation data; a waverider buoy (Datawell) has
beenmeasuring since the start (first records started to be stored
in 1980). In addition, several downlooking radars measuring
the height to water at 2 Hz sampling frequency have been
deployed through the years at different locations. Experience
has shown that this has been with more or less success with
regard to avoiding lee effects. A WAMOS directional wave
sensor (based on a marine radar system) was deployed in early
1990s. A LASAR, consisting of an array of four Optech lasers
was mounted on one bridge to measure sea surface variations
at 5 Hz sampling frequency. The configuration is used to
evaluate directionality in the waves as well.

Table 1 The sampling variability standard deviation σHm0
(in %) of Hm0 for the JONSWAP spectrum (Bitner-Gregersen and Hagen 1990)

The sampling variability is recommended to be modeled as a normally distributed variable.

Hm0 Tm02 (sec)

(m) 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 Average

0–1 3.3 3.8 4.1 4.4 4.8 5.1 5.5 5.6 5.9 6.2 6.5 6.7 5.2

1–2 4.5 3.7 4.1 4.4 4.8 5.1 5.5 5.6 5.9 6.2 6.5 6.7 5.3

2–3 5.1 4.5 4.4 4.8 5.1 5.5 5.6 5.9 6.2 6.5 6.7 5.5

3–4 5.3 4.7 4.8 5.1 5.5 5.6 5.9 6.2 6.5 6.7 5.6

4–5 5.5 5.7 5.0 5.1 5.5 5.6 5.9 6.2 6.4 5.7

5–6 6.1 5.6 5.2 5.5 5.6 5.9 6.2 6.4 5.8

6–7 6.3 6.4 5.6 5.5 5.6 5.9 6.2 6.4 6.0

7–8 6.7 6.3 5.6 5.6 5.9 6.2 6.4 6.1

8–9 6.8 6.0 5.7 5.9 6.2 6.4 6.2

9–10 6.8 6.1 5.9 6.2 6.4 6.3

10–11 7.0 6.5 6.0 6.2 6.4 6.4

11–12 7.0 6.3 6.2 6.4 6.5

12–13 7.4 6.8 6.3 6.4 6.7

13–14 7.8 7.2 6.6 6.4 7.0

14–15 7.9 7.5 6.9 6.5 7.2

Average 3.9 4.2 4.7 5.1 5.4 5.5 5.8 6.2 6.2 6.2 6.4 6.7
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Observations are made available in real time to the fore-
casters. This special surveillance showed that wave parame-
ters from the different sensors had a large variability, and a
question is posed on what to validate the forecast against. The
different sensors could show different values and different
tendencies (one increasing while the others decrease). There
are also different ways to evaluate significant wave height.
This leads to the question “What is true sea state?”, a question
posed in Magnusson (2011). Possible lee effects were
searched for to explain the differences, but lee effects alone
could not explain the differences. Figure 2 (from Magnusson
2011) shows an example of the spread in significant wave
height (Hs) during a storm reaching 11.5 m with the sensors at
Ekofisk. The spread between the sensors may be due to a
certain extent to lee effects on some of the sensors, but the
figure demonstrates how variable one time series of Hs

through a storm may be. Although the instrumental errors
associated with the sensors are different, sampling variability
will be approximately the same for all sensors for a given sea
state and wave record length (see Eqs. 12 and 13; Tucker
1992) if the shape of a measured spectrum is not changed
significantly due to instrumental errors. The spread shown in
Fig. 2 needs to be accounted for when validating wave model
and forecasting extreme waves, but it should not be mixed
with sampling variability (Fig. 1).

An example of a time series in Fig. 3 shows that individual
waves can be moderate for quite a while, like 5–10 min, then
“explode” in a series of waves that are suddenly twice as high.

A basic assumption adopted in numerical short-term wave
models and probabilistic description of waves is stationarity of

sea surface (a sea state considered). A stationary process,
called either strictly or strongly stationary, is a stochastic
process whose joint probability distribution does not change
when shifted in time or space. Consequently, parameters such
as the mean and variance also do not change over time or
position. As a result, the mean and the variance of the process
do not follow trends. Aweaker form of stationarity commonly
employed in signal processing is known as weak-sense sta-
tionarity, wide-sense stationarity (WSS) or covariance station-
arity. WSS random processes only require that first moment
and covariance do not vary with respect to time. Any strictly

Fig. 1 Location of the Ekofisk platform complex in central North Sea
(56.5° N, 3.2° E), operated by ConocoPhillips. Indent is a picture of the
complex taken towards north from 2009. New platforms are being built
while older ones are decommissioned

Table 2 The sampling variability standard deviation σTm0
(in %) of Tm02 for the JONSWAP spectrum (Bitner-Gregersen and Hagen 1990)

The sampling variability is recommended to be modeled as a normally distributed variable.

Hm0 Tm02 (sec)

(m) 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 14–15 Average

0–1 1.5 1.7 1.9 2.0 2.2 2.4 2.5 2.6 2.7 2.9 3.0 3.1 2.4

1–2 1.5 1.7 1.9 2.0 2.2 2.4 2.5 2.6 2.7 2.9 3.0 3.1 2.4

2–3 1.7 1.9 2.0 2.2 2.4 2.5 2.6 2.7 2.9 3.0 3.1 2.5

3–4 1.9 2.1 2.2 2.4 2.5 2.6 2.7 2.9 3.0 3.1 2.5

4–5 1.9 2.1 2.2 2.4 2.5 2.6 2.7 2.9 3.0 2.5

5–6 2.1 2.3 2.4 2.5 2.6 2.7 2.9 3.0 2.6

6–7 2.2 2.3 2.4 2.5 2.6 2.7 2.9 3.0 2.6

7–8 2.3 2.5 2.5 2.6 2.7 2.9 3.0 2.6

8–9 2.5 2.6 2.6 2.7 2.9 3.0 2.7

9–10 2.6 2.7 2.7 2.9 3.0 2.8

10–11 2.7 2.8 2.8 2.9 3.0 2.8

11–12 2.8 2.8 2.9 3.0 2.9

12–13 2.8 2.9 2.9 3.0 2.9

13–14 2.8 2.9 2.9 3.0 2.9

14–15 2.8 2.9 3.0 3.0 2.9

Average 1.5 1.7 1.9 2.1 2.2 2.4 2.5 2.7 2.8 2.9 3.0 3.1
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stationary process which has a mean and a covariance is also
WSS.

During varying met-ocean conditions, even if we want to
satisfy the stationarity assumption, we must use records lim-
ited in time to calculate wave parameters and derived distri-
butions of sea surface characteristics. Therefore, uncertainty
due to sampling variability will be commonly present in a sea
state description. Note that to account for non-stationary char-
acter of sea surface, a time variable would need to be intro-
duced in description of sea states.

In the next section, we present an approach in wave data
analysis to demonstrate and quantify the sampling variability
of Hs and Tz measurements within an hour.

4 Quantifying variability in wave height and period

The waverider measurements of the wave profile are sampled
at 2 Hz and stored in 20-min files. The files have 2,400
samples each, but that is not always the case. We have chosen

a period with good data return of 1 year (January–December
2007) to perform the analysis presented herein.

To analyze the effect of sampling variability within a record
assumed to have stationary conditions with respect to chang-
ing weather conditions, we have gathered samples in groups
of 60 min, and within each of these 60 min, consecutive
sequences of 17.5 min each are picked, at 1-min interval.
The method is demonstrated in Fig. 4. For clarity of the figure,
the 2-min interval is presented.

The distance between the first red bar (at time=0) to the
first green bar is the length of the first 17.5-min record possi-
ble to extract in this 60-min record. It is 1,050 s long or 2,100
samples. The significant wave height in this first 17.5-min
record is 9.39 m. Note that we here use the formula Hs=
4*std(z(t)), z(t) being the detrended measurements of surface
elevation around the mean level. The second Hs value in
Fig. 4, from the recordings shifted by 2 min (starting from
second red bar and ending at second green bar) is 9.58 m. The
21 possibleHs values taken this way within this hour are noted
in the figure at top. The values vary between 7.47 and 9.58 m.
The variability in these measurements ofHs from short records is

Fig. 2 Significant wave height
through a storm (here ranging
27 h, from 5–11.5 m) at Ekofisk
(56.5° N, 3.2° E), measured by a
waverider (blue line), Miros
Range Finder (black), and an
Optech laser (red)

Fig. 3 Example of a 20-min time
series measured with the Ekofisk
waverider. Hs is 10.1 m
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evaluated as the standard deviation of these values, divided by
the Hs over 60 min, times 100, and this gives 6.93 % (top line
indent in figure). The variability in Tzmeasurements is evaluated
identically, Tz in each record being the record length divided by
number ofwaves in each record. By decreasing the step from2 to
1 min between each start of record, the number of records is
increased from 21–42. The observed spread of the Hs and Tz
estimators is a result of intrinsic variability, but the limited length
of the wave records (limited number of observations) influences
also Hs and Tz estimators significantly, as demonstrated below.

Figures 5 and 6 show waverider significant wave heights
and zero-crossing wave periods calculated from 20–60-min
interval through the Andrea storm on 8–9 November 2007.
The 42 series of 17.5-min length defined at 1-min intervals
within each hour (according to the approach described in
Fig. 4) are shown with black dots, dated at midpoint times
of each series. Values from NORA10 hindcast are also shown
(3-hourly data). We see that the 10-km resolution WAM
model used to develop the NORA10 database validates better
with 60-min records than with 17.5 or 20-min records.

The figures clearly demonstrate the effect of sampling
variability on the estimates of these two parameters. As ex-
pected, the shorter a wave record is, the larger the variability of
Hs and Tz is observed. And we can note that the variability is
higher the higher the hourlyHs is. Same tendency is seen in Tz.
Thus, the variability is changing during the storm history.

5 Comparison of sampling variability derived from field
data with the oretical values

The 1-hour approach described in Section 4 has been adopted
to derive sampling variability of significant wave height and

zero-crossing wave period from the Ekofisk waverider in
2007 (1 January–31 December 2007). Figure 7 shows stan-
dard deviation of the 17.5-min estimates of Hs (H1/3) and Tz
relative to the 60-min estimates in % as a function of the 60-
min values. The average values of sampling variability of Hs

and Tz as well as sampling variability of steep sea states (the
left side of the Hm0 and Tm02 scatter diagram) from Tables 1
and 2 are also plotted in Fig. 7.

According to Bitner-Gregersen and Hagen (1990) (see
Appendix A), for Hs equal 2–6 m, the sampling variability is
in the range of 4–6 % while for Hs values, 6–8 m in the range
of 5.5–6.8 %. Thus, sampling variability increases with in-
creasing Hs.

The average observed values seen in Fig. 7 (left) indicate
lower values than the theoretical ones for the lowest range of
Hs. The spread is large, but we may say that the theoretical
values otherwise are in the middle of the observations. An
explanation for the discrepancy for smaller waves is that we
can assume that in this range, we have much more waves for
the same record length, therefore lower sampling variability.

The theoretical evaluation of sampling variability for Tm0
compares well with observed ones (Fig. 7, right) for wave
periods in the range up to about 8 s, while above there is a
tendency for too low values.

It should be noted that the formula of Bitner-Gregersen and
Hagen (1990) are based on wave spectral moments. The
estimators of significant wave height and period derived from
the wave spectral moment are equivalent to the ones obtained
from the time series only under the assumption that sea surface
is Gaussian (linear) and narrow banded (see Longuet-Higgins
1952; Cartwright and Longuet-Higgins 1956; also Thorton
and Guza 1983), as discussed in Section 2. That is obviously
questionable in nature and in particular, in the observations

Fig. 4 Illustration of the
approach used in calculating
sampling variability. Red bars in
figure indicate start points of each
17.5-min records, and green bars
(downwards) indicate the end of
each of them. Hs values from
these records are found indent in
figure, at top of time series. They
range from 7.47–9.58 m. The
hourly value Hs (60 min) is
8.48 m. The average of the 21
short records is 8.56 m
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from Ekofisk. Further, the theoretical values of the sampling
variability were derived for the JONSWAP spectrum with the
gamma parameter γ=3.3 while the measurements include
wave spectra with the varying gamma parameter.

The spread in results presented in Fig. 7 indicates that the
assumption of Gaussian sea surface and narrow-banded wave
spectrum and adoption of the JONSWAP spectrum affect the
estimates ofHs and Tz sampling variability standard deviations;

but both estimates, theoretical and observed, show the same
trend of the variability increase with increasing of Hs and Tz.

A larger wave database may reduce the spread, but effect of
bimodality and non-linearity will influence the spread. Both
the measured and theoretical values of sampling variability
will depend on the shape of a wave spectrum as shown by
Bitner-Gregersen and Hagen (1990), Tucker (1992), and
Forristall et al. (1996). So far, when deriving theoretical values
of sampling variability, the attention has been given to a single
wave spectrum, Pierson-Moskowitz and JONSWAP. The
double-peak spectra (accounting for combined seas) have
not been systematically investigated. Sea states with signifi-
cant wave height in the range 2–8 m will typically be charac-
terized by a two-peak spectrum in the northern North Sea (see
Torsethaugen 1996). At Ekofisk, this is expected be true for
less high waves due to limitations in fetch.

The analyzed 1-year data include variety of sea states: low,
moderated, and high sea states. The degree of non-linearity of
sea surface (deviation from the Gaussian distribution) is also
widely varying. It should be mentioned that within the time
period considered, sea states including rogue waves are also
present, e.g., the Andrea storm (8–9 November 2007), see
Magnusson and Donelan (2013). Herein, we have not grouped
the analyzed sea states according to a degree of non-linearity,
being associated with the wave spectrum shape. Therefore, at
this stage, it is difficult to conclude on sensitivity of theHs and
Tz estimates of sampling variability to the deviation of sea
surface from Gaussianity. Very weak non-linearities of sea
surface are not expected to affect a measured sampling vari-
ability significantly. When the energy spectrum is concentrat-
ed on a narrow range of frequencies and directions,
modulational instability is responsible for generation of rogue
waves in deep and intermediate water depth. As the wave field
evolves, a large fraction of the spectral energy is moved
towards lower wavenumbers (or wave frequencies), generat-
ing the downshift of the spectral peak; the wave field is
becoming less steep. Furthermore, a fraction of the energy is
also transferred across directions (see e.g., Toffoli and Bitner-
Gregersen 2011 and references therein for details). Thus,
changes of the wave spectrum shape can be expected during
and after occurrence of an extreme wave event, and they will
impact sampling variability (see Eqs. 12 and 13); an open
question is to what degree.

The model tests carried out in the MARIN basin (Forristall
2009) with a JONSWAP spectrum with the gamma parameter
3.3 showed that the empirical sampling variability does not
deviate significantly from the values presented by Bitner-
Gregersen and Hagen (1990). It should be noted that
Forristall (2009) derived the estimators of sampling
variability in a different way than proposed herein; the
model tests have been repeated to increase the length of
the wave record keeping wave input unchanged; this is
not possible in nature.

Fig. 5 Time series through one day (8–9 November 2007) of different
values ofHs. Thin blue line Hs(20 min) for consecutive records of 20-min
length, red line Hs(60 min), from consecutive records of 60-min length,
dated with midpoint time, and thick black line with yellow diamond is Hs

from the wave model (NORA10 database). The black dots are all 17.5-
min values within each hour, as described in previous figure

Fig. 6 Time series through one day (8–9 November 2007) of different
values of average wave period Tz (record length/number of waves). Thick
cyan line with yellow diamond is Tz from the wave model (from the
NORA10 database) thin blue line is Tz (20min) for consecutive records of
20-min length, red line Tz (60 min), from consecutive records of 60-min
length evaluated using the full 60 min, dated with midpoint time. The
black dots are all 17.5-min values within each hour, as described in
previous figure
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6 Implications of sampling variability on description
of waves

Sampling variability, even if it is not very large, will have
impact on short-term and long-term description of ocean

waves as well as validation of wave spectral models and
different data sources. We discuss it below supporting the
discussion by selected examples.

Figure 2 shows observed significant wave heights from
three different instruments installed in the Ekofisk field. These

Fig. 7 Relative (with respect to theHs(60min)) standard deviation of the 17.5-min estimates ofHs (left) and Tz (right) in% versus the hourly estimates of
Hs and Tz. Samples cover a period of 1 year

a) 17.5 minutes estimates of Hs

b) 1-hour estimates of Hs

Fig. 8 Comparison of significant
wave height derived from
different wave sensors and time
averaging of 17.5 min (upper
panel) and 1 h (lower panel)
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data are very important during extreme storm forecasting that
is performed by MET Norway for ConocoPhillips. First, they
are important during the storm development (having several
sensors as backup for one another), and they are used to
validate forecasts and actions to be performed for risk reduc-
tion at the field. Secondly, they are important for post-storm
validation and validation of numerical wave models used for
hindcast. Several hindcast databases assimilate satellite data,
which are calibrated against in-situ data. Quality of the in-situ
data is therefore very important; if one sensor is not
performing well, another sensor can replace it. Knowledge
about data uncertainty is also important when sampling vari-
ability is calculated from the measurements; we discuss it
shortly below. Note that assimilation of satellite wave data is
not performed in the WAM model used to develop the
NORA10 database, where much effort instead was used to
model the atmospheric forcing (Reistad et al. 2011).

Figure 8 shows comparison of significant wave height
derived from different wave sensors (Optech laser and MRF)

against the waverider buoy at Ekofisk based on 17.5 min and
1-h wave records. As expected, the longer a wave record is,
the less spread there is between measurements from different
sensors. Consistency of an analysis comparing predictions of
different sensors is therefore of importance.

Figure 9 shows comparison of the 17.5-min and 60-minHs

derived from the waverider measurements at the 3-hourly time
interval with NORA10. Increasing duration of wave records
from 17.5min to 60min does not changemuch correlation (R)
between the measured and NORA10 data; R increases from
0.970–0.974, but spread around 1:1 axis is slightly less for the
60-min Hs. Similar comparison for zero-crossing wave pe-
riods is shown in Fig. 10. Again, only slight increase of
correlation between the measured and NORA10 data is seen
for the 60 min Tz compared to 17.5-min Tz, from 0.929–0.932.
Spread around 1:1 axis is also slightly reduced for the 60 min
Tz. Thus, the 10-km resolution WAM model validates better
with 60-min records than with 17.5-min records, but the
difference is not large.

Fig. 10 Comparison of zero-
crossing wave period derived
from the 17.5-min (left panel) and
1-h (right panel) waverider re-
cords at the 3-hourly time interval
with NORA10 (1 January–31
December 2007)

Fig. 9 Comparison of significant
wave height derived from the
17.5-min (left panel) and 1-h
(right panel) waverider records at
the 3-hourly time interval with
NORA10 (1 January–31 Decem-
ber 2007)
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The effect of sampling variability on hindcast wave heights
was demonstrated already by Forristall et al. (1996) who
showed that this variability leads to positive biases in the
maximum significant wave height in a storm and in design
wave height estimated from extreme value distribution fitted
to the data. The authors recommend correcting of the hindcast
by sampling variability for design purposes.

Randomness of sea surface (intrinsic variability) is com-
monly accounted for in numerical wavemodels describing sea
states by introducing random amplitude and phase, and such
randomization of a numerical wave model is necessary to
reflect properly natural variability of sea surface. To provide
a satisfactory approximation (to reduce the effect of sampling
variability) of the distribution of sea surface elevation and
associated wave parameters, numerical simulations need to
be repeated a sufficient number of times using different ran-
dom seeds for each run. It should be noticed that higher order
statistical moments will be more affected by sampling vari-
ability than significant wave height and zero-crossing wave
period. As demonstrated by Bitner-Gregersen and Hagen
(2003), to obtain a stable estimate of skewness, a 1,024-s
wave record needed to be simulated 250 times.

Bitner-Gregersen and Hagen (2003) showed, using the
second-order wave model with random amplitude and
phase and the Pierson-Moskowitz spectrum, that for a
17-min time series, the coefficient of variation for sig-
nificant wave height for a sample of realizations is in
the range 5–7 %. Olagnon and Magnusson (2004) also
showed Hm0 calculated from simulations varied with up
to 9 %, in the mean 6 %.

Due to presence of intrinsic and sampling variability, a
high value of the maximum wave crest Cmax may occur in
a sea state in which also the simulated significant wave
height (Hs,sim=4*standard deviation) is high. On the other
side, a high crest observed in a 3-h sea state may very
well occur in a part of the sea state where the 17-min
averaged significant wave height is substantially higher
than the 3-h averaged significant wave height Hs,nom (input
wave height to numerical simulations), making the factor
Cmax/Hs,nom low (Bitner-Gregersen and Magnusson 2004).
Figure 11 illustrates the difference between Cmax /Hs,nom

and Cmax/Hs,sim simulated by the second-order wave model
with random amplitude and phase and the Pierson-
Moskowitz (PM) spectrum (see Bitner-Gregersen and
Magnusson 2004 for details). As can be seen, there is a
clear difference between the two factors, and this aspect
should be kept in mind when evaluating freak wave
criteria like Cmax /Hs or Hmax/Hs ratios (Hmax denotes the
maximum wave height within a wave record).

For the same reasons as described above, sampling vari-
ability may be responsible for underestimation or overestima-
tion of sea state wave steepness, what may have significant
consequences for design and operations of marine structures.

Hagen (2007) studied the effect of sampling variability on
the predicted extreme individual wave height and crests height
for long return periods, such as for the 100-year maximum
wave height and 100-year maximum crest height. He showed
that the effect of sampling variability is different for individual
crest or wave height as compared to significant wave height.
Further, he demonstrated that direct application of the
Forristall (2000) crest distributions for 3-h sea state parameters
give long-term extremes that are biased low, and he further
showed how the short-term distributions can bemodified such
that consistent results for 20-min and 3-h sea states are
obtained.

Sampling variability also needs to get attention when car-
rying out model tests. To get stable estimators of measured
quantities, model tests need to be repeated a sufficient number
of times.

Use of 17.5-min or 1-h Hs and Tz (or Tp) estimators will
have not only significant impact on long-term description of
waves (see Forristall et al. 1996; Hagen 2007) but also on the
shape of parametric wave spectra used in design work. We
will illustrate it for the double-peak Torsethaugen (1996)
spectrum. The spectrum allows to divide the wave energy
between wind sea and swell knowing the total Hs and Tp for
a sea state. In the Torsethaugen model, each sea state is
classified as swell-dominated sea or wind-dominated sea ac-
cording to the proposed by Torsethaugen criterion. A sea state
with Hm0=14.55 m and Tp=16.39 s will be regarded by the
Torsethaugen (1996) spectrum as swell-dominated sea. If we
increase significant wave height by 1 m (to Hm0=15.55 m),
corresponding to 7 % sampling variability standard deviation,
then according to the Torsethaugen (1996) spectrum, the sea
state with Hm0=15.55 m and Tp=16.39 s will be regarded as
wind-sea dominated (see Bitner-Gregersen and Toffoli 2009
for details); thus, the physical description of the sea state
provided by the Torsethaugen spectrum will be changed, and
that may have consequences for design. It should be noted that
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Fig. 11 Wave crest factor for nominal and simulated significant wave
height, long-crested sea (2D), PM spectrum (Bitner-Gregersen and
Magnusson 2004)
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the spectrum was derived for the North and Norwegian Sea
and should be used with care for locations outside Norway.

7 Conclusions

The study discusses statistical uncertainty, called sam-
pling variability (the uncertainty due to a limited num-
ber of observations of a quantity), of significant wave
height and zero-crossing wave period. This uncertainty
is a result of presence of intrinsic variability of sea
surface. Ideally, a wave record should be infinite to
eliminate sampling variability.

The intention of the paper is to put again attention to
intrinsic and sampling variability and to remind practitioners
that sampling variability must be taken into account for accu-
rate use of wave measurements. Several aspects related to
sampling variability need still further research and are not
answered fully herein, e.g., how sampling variability is chang-
ing in different sea states and storms.

Estimation of sampling variability from wave measure-
ments is more challenging than from model tests and numer-
ical simulations because weather conditions are changing.
Theoretical expressions for sampling variability can be of
support, in some cases.

The theoretical sampling variability standard devia-
tions of significant wave height and zero-crossing wave
period proposed by Bitner-Gregersen and Hagen (1990)
have been compared with the ones derived from the
waverider measurements collected at the Ekofisk field.
The theoretical values and the field data show the same
trend. The sampling variability is higher in Hs than in
Tz. Both increase with increasing Hs and Tz. The ob-
served sampling variability ranges over a wider scale
than the theoretical results. We anticipate this spread to
depend on the shape of a wave spectrum; the
JONSWAP spectrum gives higher variability than the
Pierson-Moskowitz spectrum (Bitner-Gregersen and Ha-
gen 1990; Tucker 1992). The effect of degree of
peakedness and double-peak spectra (describing com-
bined wave systems) on the sampling variability has
not been investigated and needs further research.

Non-linearities of sea surface (deviations from
Gaussianity) may have impact on the estimators of Hs and
Tz sampling variability due to change of the number of obser-
vations for a given wave record length and change of the
shape of the wave spectrum when steep waves are present.

We conclude that the study shows that the length of a wave
record is critical for evaluating stable parameters as far as
possible in varying sea states. Using some selected examples,
it is demonstrated that sampling variability of Hs may have
significant impact on short-term and long-term description of
ocean waves as well as validation of different data sources and

wave spectral models. This aspect should be kept in mind
when providing short and long-term description of waves as
well as specifying design and operational criteria of ship and
offshore structures
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Appendix A—sampling variability

Tables and include sampling variability standard deviations of
the significant wave height and zero-crossing wave period,
respectively, for the Northern North Sea scatter diagram cal-
culated by Bitner-Gregersen and Hagen (1990). Assuming
Gaussian sea surface and the JONSWAP spectrum with γ=
3.3. The results are valid for any worldwide location under the
adopted assumptions.
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