
Local  propert ies  of  sea waves  der ived from a wave  
record 

ELZBIETA M. BITNER-GREGERSEN and SVERRE GRAN 

Det  norske Veritas, H~vik, Norway  

It is demonstrated that for linear deep sea waves with small directional scattering the particle motion 
at the sea surface and energy transmission may be retrieved from a wave record by means of  the 
Hilbert transform. A physical interpretation of  the envelope of the two-dimensional deep sea waves as 
well as a new method for wave group analysis is presented. 
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INTRODUCTION 

In 1961 Phillips I derived a number of expressions for 
properties of  the three dimensional random motion in 
terms of  quantities measured on the free surface at a fixed 
horizontal location. As an illustration of  the use of these 
expressions in finding lowest-order approximations he 
related the mean energy-flux vector to the spectrum of 
surface displacements. 

Some expressions derived in this paper are of a type 
somewhat similar to those obtained by Phillips. The objec- 
tive of this study is however to show that in the first 
approximation properties of  the deep sea waves with small 
directional scattering can be derived directly from a wave 
record by means of  the Hilbert transform without calcu- 
lating the power spectrum. By a complex representation of  
the wave field, which has been adopted from the communi- 
cation theory, 2 and by means of  the Hilbert transform a 
physical interpretation is related to the envelope of  the 
two-dimensional deep sea waves. The analysis shows that 
for the two-dimensional and narrow-band motion the local 
kinetic energy fluctuates in time as a sea surface envelope 
squared multiplied by a constant factor and can be obtained 
directly from a wave record. It is demonstrated that the 
local fluctuations of  the potential energy for the two- 
dimensional motion as well as the local fluctuations of  the 
total energy for the two-dimensional and narrow band 
motion can be separated into a slowly varying part and a 
more rapid oscillating part. Both parts can be evaluated by 
means of the Hilbert transform. 

The paper shows that the Hilbert transform may also be 
used to analyse wave groupiness. 

The derived formulae are illustrated by Wave Wider 
Bouy data from the Norwegian Continental Shelf. 

ASSUMPTIONS 

The analysis carried out in this paper is limited to a linear 
statistical model of the sea waves 2 and to deep water. It is 
also assumed that the deep sea waves are characterized by 
small directional scattering so they can be described by the 
two-dimensional motion. According to the linear statistical 
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model, which treats the sea surface oscillations as a random 
process stationary in time and homogeneous in space, the 
sea surface displacement can be represented by an ordinary 
sum of  finite number of  waves 

N 
~ ' (x , t )=  ~ a n C O S ( k n x - - o n t + e n )  (1) 

n = I  

where a n = amplitude, k n = horizontal wave number, x = 
horizontal Cartesian co-ordinate, o n = frequency, e = phase. 

For deep water o n is related to k n by 
2__ 

On - gkn  (2) 

Corresponding to the free surface elevation (1) is a velocity 
potential 

N anon 
(~(X,Z, t) = ~ - -  e x p ( k n z )  s in(knX -- On t + en) (3) 

n=l kn 

where z = vertical co-ordinate. 

COMPLEX REPRESENTATION OF THE SEA SURFACE 

Within the first approximation most wave recorders of  the 
bouy and staff type register the vertical motion of  the sea 
surface. For the two-dimensional motion the output signal 
is the vertical displacement (1). 

Knowing the vertical displacement (1) we can find the 
envelope of  the sea surface (as defined by Longuet-Higgins 3) 
by a complex representation of  the wave field called an 
analytical signal. This complex representation of  real poly- 
chromatic fields, which was introduced in 1946 by Gabor, 
is used frequently in communication theory and is described 
for example by Born and Wolf. 4 

If we have the local vertical sea surface displacement 
~(x, t) (x is treated as a parameter), then we can uniquely 
specify a conjugate signal ~ ( x , t )  being obtained from 
~'(x, t) by shifting the phase of  each elementary harmonic 
of ~'(x, t) by n/2. The ~'(x, t) and ~(x, t) may be shown to 
be Hilbert transform of each other 

l ; ~-(x, r) 
~ ( x , t ) = - P  J - - d r  (4) 

7r T - - t  
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c o  

1 f /j(x, T) ~'(X, t) = - P  . . . .  dT (5) 
7r T - -  t 

- - o o  

where P denotes the Cauchy principal value at r = t. 
Numerically this corresponds to a convolution with a linear 
filter with the time response function s as shown in Fig. 1. 

With ~'(x, t) we may associate the complex function 

z ( x ,  t) = ~(x, t) + i f ( x ,  t)  (6) 

Complex functions may generally be expressed on polar 
form and the phase function may formally be written as 

(x, t) -- Oo t, where Oo is quite arbitrary frequency. Hence 

z ( x , t ) = A ( x , t ) e x p { i [ ~ k ( x , t ) - - o o t ] }  (7) 

where the envelope 

A ( x , t ) = ~ / f ( x , t ) + ~ 2 ( x , t ) = l z ( x , t ) l  (8) 

and the associated phase 

~ ( x , t )  
~ ( x ,  t)  = Oot + Arctg - -  (9) 

g(x, t) 

Conversely 

f ( x , t ) = A ( x , t ) c o s ( ~ b ( x , t ) - O o t )  (10) 

~ ( x , t ) = A ( x , t ) s i n ( ~ ( x , t ) - o o t )  (11) 

Applying then the Hilbert transform to the sea surface 
(1) and treating x as a parameter one obtains 

~'2(x, t) = ~ ~ area n c o s ( k m x  -- Omt + em) 
m n 

x cos (knx  --  Ont + en) (12) 
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Figure 1. Signal con/ugation by the Hilbert transform 
(Wave Rider record) 

~2(x, t )=  ~ ~ aman s i n ( k m x - - O m t + e m )  
m n 

x s in (knx  -- ant + 6n) 

According to (8) 

(13) 

A2(x, t) = ~ ~ area n cos [(k n --  kin) x 
m n 

+ (O n - -  Orn ) t + (e n -- em) ] (14) 

A2(x, t) propagates with an average of velocities 

O n - -  O m 

Cnm = (15) 
I kn -- km 1 

weighted with ana m. 

SEA SURFACE PARTICLE MOTION 

We can easily note that for the two-dimensional wave 
motion ~(x, t) represents a horizontal displacement of the 
surface particle 

X ( x ,  t) = ~(x, t) = -- ~ a n s in (knx  - an t + en) (16) 
, 

The vertical velocity of the sea surface particle is thus 

~(x,t)  = ~ ano n s i n ( k n x - - O n t + e n )  (17) 
n 

and the horizontal velocity 

X ( x , t ) =  Y' ano n c o s ( k n x - - O n X + e n )  (18) 
n 

We are free to transform surface motion from Cartesian 
coordinates to polar coordinates. The squared radial dis- 
placement R 2 is hence obtained from (16) and (1) 

R2(X, t) = X2(x, t) + ~'2(x, t) 

= ~ ~ area n c o s [ ( k  n - k m )  x + ( o  n - o m )  t 
m n 

+ (e n -- em) ] (19) 

The expression (19) is identical with the envelope squared 
(14) for two-dimensional motion and it propagates with the 
same velocity as A2(t) .  

Similarly we may find the absolute particle velocity 
squared 

U2(x, t) = f (Z(x ,  t) + ~'2(x, t) 

= Z Z OmOnaman c°s[(kn--km)X 
m n 

+ (o n -- ore) t + (en -- em)] (20) 

Comparing with (19) shows that the squared absolute 
velocity propagates with the same speed and in the same 
phase as the radial particle displacement squared. 

At any time at a fixed point x there will exist a local 
mean frequency 

62(x, t)  = U2(x, t ) /R2(x ,  t) (21) 

where U2(x, t) as in (20), and a local mean period 

T(t)  = 21riO(x, t) (22) 

Thus the squared radial displacement R 2 and the local 
frequency 6 may to some extent be used as alternative 
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Figure 2. Local two-dimensional motion o f  the sea-surface 
(Wave Rider Buoy data) 

The first term Y(x ,  t) has zero mean value. It propagates 
with an average of  velocities 

(o n + Om)/(k n + kin) : g(o  n + Om)/(O2n + 02 )  (24) 

weighted with ana m, The expression (24) is of order equal 
to the phase velocity. 

The last term in (23) is one half of  the square radial 
displacement/the squared envelope and it is varying more 
slowly than the first one. 

Similarly the horizontal squared displacement (16) may 
be rewritten to 

X2(x ,  t) = -- Y(x ,  t) + 1R2(x, t) (25) 

The pulse train Y may numerically be evaluated as 

Y(x ,  t) = ~ [~'2(x, t) - - x Z ( x ,  t)] (26) 

The expression (23) can be used to analyse wave groupi- 
ness and it can be compared with the Funke and Mansard 
method.  6 Funke and Mansard have used the Naess 7 expan- 
sion of  ~'2(t) in four terms in which the last one is identical 
with the second t__erm of (23). To evaluate it they have, 
after subtracting ~.2, used the Bartlett filtering. The Bartlett 
filtering allows to eliminate the oscillations caused by the 
sum frequencies but in this process the exact zero level of  
the envelope is usually lost. The present method seems to 
be more convenient and it does not require the narrow-band 
spectrum assumption. The disadvantage of this method is 
however the assumption that the motion is two-dimesional. 
The method can be easily extended to three-dimensional 
motion but a physical interpretation of the more 
slowly varying part must then be revised. 

LOCAL FLUCTUATIONS OF SEA WAVE ENERGY 

The potential energy per unit area at a fixed point x fluctu- 
ates rapidly in time according to a function 

 p(x, t) = ½oW(x,  t) : ½og area. 
tn n 

X cos(k m x -- ant + em) cos(kn x -- ant + en) (27) 

coordinates for the description of  the orbital motion of the 
sea surface. 

Simultaneous plots of  (1), (16), (17), (18), (19), (20), 
(21) and (22) are shown in Fig. 2. The radial displacement 
squared as well as the absolute velocity squared have been 
finally filtered to remove minor oscillations due to the 
individual waves. 

PULSE AND GROUP TRAINS 

We can now introduce a wave group concept which is 
independent of  the width of the spectrum. The squared 
vertical displacement (12) may be formally rewritten 6 

1 
~'2(X'I) = 2  ~ ~n a m a n C ° S [ ( k m  -{'-kn) X-(Om+On)t 

1 
-[-(em+en)] +2 Z Z aman  COS [(k n - k m )  X 

m n 

- -  (O n - -  Om) t + (e n - -  em) l  

= Y(x ,  t) + ½RZ(x, t) (23) 

(see equation (19)). 

Following (23) this may be rewritten 

Ep(x,  t) = ½pgY(x, t) + ~pgnZ(x, t) (28) 

The second term of (28) is always positive while the first 
has zero mean value. 

The local kinetic energy per unit area is 

0 

Ek(x, t) = f (u) 2 dz (29) 

where u = u(u, w) - two-dimensional velocity vector 

u(x ,  z, t) = -~x = ~ anon exp(knz)  cos(kn x -  ant + en) 
n=l 

(30) 

N 
W(X, z,  t) = a~ = ~. anon exp(knz)  s in(knx _ ant + en) 

32 n=l 
(31) 
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Thus 

Eg(x, t) = ½P Z Z 
. . m  n 

TOTAL ENERGY FLUX 

Om tin 2ooo 

area" - -  cos [(kn--km) x ~ ,000 
km+ kn . . . . . . . . .  ~ a  A ~  

. . . .  , . . . .  r , • • , . . . .  i - 

+ (On -- tim) t + (en -- era)] (32) 

For the narrow-band process 

tl m • O n 

k m q- k n 

and 

~ ~g (33) 

Eg(X, t) ~- ~ogA2(x, t) ( 3 4 )  

(see equation (14)). The kinetic energy propagates then, for 
the narrow-band and two-dimensional motion, with the 
same velocity as the envelope squared/the radial displace- 
ment squared and is equal to the convective part of the 
potential energy. For the two-dimensional motion the dif- 
ference between Eg(x, t) and A2(x, t) depends on the width 
of the spectrum. The local kinetic energy will however 
always fluctuates more slowly than the potential one. 

The total local energy per unit area for the narrow-band 
and two-dimensional motion 

E(x, t )=Ep(x , t )+Ek(x , t )=½pgY(x , t )+½pgA2(x , t )  (35) 

E(x, t) may thus be separated in a rapid varying part 
which we may call a pulse term (the term which describes 
local pulsation of energy) and a more slowly oscillating part 
which we may call a group term (the term which describes 
the energy packets transported across the considered area). 
Both terms can be derived by means of the Hilbert trans- 
form from a wave record. 

The fluctuations of sea wave energy are illustrated in 
Fig. 3. The minor oscillations in the group term has been 
finally filtered the same as in Fig. 2. 
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Fig. 3 Local sea wave energy fluctuations for the two- 
dimensional and narrow-band motion (Wave Rider Buoy 
data j. 

If  om ~ On = o(narrow-band process), then 

F ~  g • 2Ep = ½c" 2Ep (37) 
20 

where c = phase velocity related to the peak frequency. 
As was done for the potential energy the expression (37) 

may be separated in two terms by (23). Introducing addi- 
tionally in (37) the local mean frequency (21) we can 
derive the energy flux directly from a wave record without 
calculating the energy spectrum 

F(x , t )  ~ l  Og----~2 Y(x,t)+Iog-~O R2(x, t)  (38) 
2 0  4 o  

Figure 4 illustrates the formula (38). The first term of (38) 
may be called an energy flux pulsation. It has zero mean. 
The second term of (38) may be called an energy group 
transport (net transport). 

CONCLUSION 

The carried out analysis has shown that by applying the 
Hilbert transform to the sea waves and assuming the two- 
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dimens iona l  m o t i o n  we can derive a n u m b e r  of  local sea 
wave p roper t i e s  w i t h o u t  ca lcula t ing  the  power  spec t rum.  
This  can  be c o n v e n i e n t  in m a n y  engineer ing  appl ica t ions  
specially where  the  i n s t a n t a n e o u s  p roper t i e s  are more  
i m p o r t a n t  t h a n  the  m e a n  ones.  We avoid also error  due to 
ca lcu la t ion  o f  the  spec t rum.  

By means  o f  the  Hi lber t  t r a n s f o r m  wave groupiness  can 
be analysed.  The m e t h o d  descr ibed  in th is  pape r  seems to 
be more  c o n v e n i e n t  t h a n  the  one  p r e sen t ed  b y  F u n k e  and  
Mansard.  
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The Boundary Element Method has 
become an accepted and powerful 
numerical method for the solution of 
many engineering problems. The main 
advantages of the technique which is a 
combination of classical integral 
equations and finite elements are its 
generality with respect to geometry, 
the simplicity of the input data 
required, and its numerical accuracy. 
The boundary element method is 
ideally suited to many 2 and 3-D 
problems and those with infinite 
domains for which finite elements, 
a l though popular are inefficient. 

This conference, as the previous ones, 
is a means to exchange ideas on recent 
advances in boundary element 
techniques. 

Special  Objectives of this conference 
are to bring practicing and industrial 
users of BEM into contact with 
researchers working in the latest 
developments.  

Past conferences have been held in 
Southampton (1978, 1980 and 1982), 
California (1981) and in Japan (1983). 
The conference will take place on the 
QE II as it sails from Southampton to 
New York. 

The Queen Elizabeth lI provides an 
ideal environment  for an international 
meeting and one that is equally 
convenient  for USA and European 
researchers. The QE [I has excellent 
conference facilities and offers an 
environment  propitious to the 
interchange of ideas and close contact 
between participants. 

• Numerical Techniques and 
Mathematical Principles 

• Linear/Nonlinear Structural 
Mechanics 

• Fluid Flow Problems 
• Mass and Heat Transfer Problems 
• Geomechanics 
• Electric/Magnetic Field Problems 
• Coupling of Boundary Element/ 

Finite Element Methods 
• Time Dependent  Problems 
• Industrial Applications 

• Computer  Programs including Pre 
and Post Processors 

Papers are invited on the topics 
outlined aboveand other topics within 
the general scope of the conference. 
Abstracts of no more than 300 words 
should be submitted to the Conference 
Director by December 1st, 1983. 
Abstracts should clearly state the 
purpose, results and conclusions of the 
work to be described in the final paper 
Authors will be notified of the 
preliminary acceptance by January 
1st 1984. Final acceptance will be based 
upon review of the full length paper, 
which must  be received by March 1st 
1984. Papers presented at the meeting 
will be published in the conference 
proceedings. 

All correspondence should be 
addressed to: 

Dr. C. Brebbia 
B. E. M.6 Conference Director 
University of Southampton 
Southampton SO9 5NH 
Tel: 042 129 3223 
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