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Abstract

A Boussinesq method is derived that is fully dispersive, in the sense that the error of the approximation is small for all
0 < kh < oo (k the magnitude of the wave number anthe water depth). This is made possible by introducing the generalized
(2D) Hilbert transform, which is evaluated using the fast Fourier transform. Variable depth terms are derived both in mild-slope
form, and in augmented mild-slope form including all terms that are linear in derivative\afpectral solution is used to solve
for highly nonlinear steady waves using the new equations, showing that the fully dispersive behavior carries over to nonlinear
waves. A finite-difference—FFT implementation of the method is also described and applied to more general problems including
Bragg resonant reflection from a rippled bottom, waves passing over a submerged bar, and nonlinear shoaling of a spectrum of
waves from deep to shallow water.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Predicting the nonlinear propagation of dispersive waves over a bathymetry is desirable in many coastal and offshore appli-
cations. Realistic problems require analysis over a complicated geometry on the order of a hundred by a hundred significant
wavelengths, and in relative water depths all the way from practically infinite to zero. Such problems pose a formidable chal-
lenge and are generally treated using potential flow methods. Typically the velocity potential is expanded in a set of basis
functions which individually satisfy the Laplace equation; and the expansion coefficients are determined to satisfy the remain-
ing conditions on the fluid boundary. The number of degrees of freedom (usually a set of values of the potential or its derivatives
on the boundary) is hence significantly smaller than would result from discretizing the entire fluid volume. The basis functions
used are typically polynomials, singular Green’s functions, or Fourier functions; each of which has advantages and disadvan-
tages depending on the phenomena of primary interest. Boundary integral methods are fully dispersive and simple to apply on
complicated geometries, but are relatively computationally demanding since they require discretizing the bottom and lead to full
matrix systems. Calculating the Green ftions is also more expensive than polynomiaFourier coefficients. Grilli et al. [1],

Wang et al. [2], and Kring et al. [3] are recent examples of the application of boundary element techniques to coastal problems.
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The pseudo-spectral methods of Liu and Yue [4], and Smith [5] are examples of techniques which are based on Fourier expan-
sions. (Other examples are Craig and Sulem [6], recently extended to 3D by [7], and Clamond and Grue [8]; although these have
not yet been applied to variable depth problems.) These methods are also fully dispersive and can be made relatively efficient
when combined with a perturbation procedure, but they are more difficult to apply over large depth variations and compli-
cated geometries. Polynomial based methods include Boussinesq methods, many of which are reviewed by [9], Green—Naghdi
theory e.g. [10], and the Local Polynomial Approximation (LPA) method of Kennedy and Fenton [11]. Polynomial methods
are relatively efficient, since they are formulated on the free-surface boundary alone and lead to sparse algebraic systems, but
errors in dispersion eventually become large as the waves become short compared to the water depth. A related approach is the
multiterm-coupling €chnique of [12].

Polynomial methods tend to be preferred for coastal applications as they are relatively easy to implement with good efficiency
over complicated geometries with large variations in depth. The trend in these methods over the past several years has been to
include higher orders of polynomials and/more equations in order to extend ttege of applicability to larger relative
water depths. The high-order Boussinesg method of Madsen, Bingham and Shéffer [13] for example, includes up to fifth-order
derivatives and solves three equations at every computational point to extend the range of applicatiility2b. The LPA
method achieves a similar accuracy using sixth-order polynomials and solving seven equatialsat every horizontal grid
point. These high-order methods involve a substantial increase in complexity relative to low-order Boussinesq methods such
as [14], or [15] for example, making them more difficult to implement withvQ effort (N the number of grid points on the
still water plane), and at least an order of magnitude more expensive.

This paper presents a method which is essentially of Boussinesq type but which includes a Generalized Hilbert transform in
order to remove any limitation with respect to relative water depth. As the Hilbert transform is evaluated via the Fast Fourier
Transform (FFT), this also restricts the computational domain to be a rectangle with periodic (or wall) conditions. At the order
chosen for numerical computations, (including up to sixth derivatives) the complexity of the method is comparable to other
high-order Boussinesq methods [13] or the LPA method [11] with7. In contrast to other polynomial methods however, this
Fourier-Boussinesqg method approximates the dispersion operatét/igntis) by a rational function okh rather thark2h?

(k = |k| the magnitude of the wavenumber ainthe water depth), and can thus be made asymptotically correct in both limits

of kh. The Generalized Hilbert operator is then used to convert the odd powers to even powers suitable for evaluation by local
finite difference methods. This leads to approximations with small errors in dispersion fag @it G< co. Here we concentrate

on applications in one horizontal dimension, and combine the method with a free-surface perturbation procedure. In this case,
a spectral evaluation of the Hilbert operator combined with high-order finite difference evaluation of all derivatives leads to
a relatively simple implementation of reasonable accuracy a@dl@yN) computational effort (per time step). Applying the
method in two horizontal dimensions and/or avoiding the perturbation procedure is straightforward, but in either case an efficient
iterative solver is required to retain the ®log N) computational effort. For iterative solutions, it may also be advantageous to
evaluate all derivatives spectrally.

The remainder of the paper is organized as follows. In Section 2 we review the exact potential flow problem, and the
free-surface perturbation scheme which reduces it to a sequence of linear Laplace problems on a fixed domain bounded by
the still water plane. Section 3 derives the Fourier—Boussinesg method for solving this Laplace problem, and derives several
variants. Section 4 discusses two techniques for solving non-periodic problems on a periodic domain: relaxation zones; and a
decomposition of the potential into periadand non-periodic coponents. This includes the necessary extensions to [16] for
applying the technique on a variable depth. In Section 5, the practical performance of the model in one horizontal dimension is
demonstrated by comparison with analytic and experimental results using both a spectral and a finite-difference—FFT solution.
We close with an application of engineering interest which highlights the need to consider a large range @frtatith

2. Formulation

We adopt a coordinate system with the= O plane at the still water level and theaxis positive upwardsy = (x, y) is a
horizontal vector. The flow is assumed to be irrotational, the fluid incompressible and inviscid, and surface tension is neglected.
The fluid volumeV (x, z, t) is bounded by a free-surfage= n(x, ) and by a bottony = —h(x). Under the above assumptions
the flow can be described by a scalar velocity potegtial z, 1) which satisfies the following boundary-value problem

V2 +¢.,, =0 inV, (1)
¢;+Vep-Vh=0, z=-—h, 2)
e +Vé-Vn—(1+Vn-Vng, =0, 3

11 -2
¢t+§V¢~V¢—§(1+V71'Vﬁ)¢Z+gn=0- 4
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Here,V = (8/0x,d/3y), g is the gravitational acceleration, and partial derivatives are indicated when the independent variables
(X, z, t) appear as subscripts. The free-surface boundary conditiersxaressed in terms of the potential at the free-surface
é = ¢ (X, n(x, 1), ) following [17]. Initial conditions ory and$ must also be given.

It is convenient to adopt the perturbation/Taylor series procedure of Dommermuth and Yue [18] for satisfying the free-
surface boundary conditions, since this leads to a time-conatantV linear system of equations which can be solved using
direct matrix methods. In this case, we approximate the potential by a truncated perturbation series in the nonlinearity parameter
€ = ka < 1, wherea is a measure of the wave amplitude. Thus: 3,7, ™), where¢™ = O(e™). The value ofp™ on
the free surface is then evaluated via a Taylor series expansiorgfrofhgiving

M M-m

- n ail R
=3 Y L Z_gom, 5)

19z
m=1 n=0 oz

whered = ¢ (x, 0, 7). Collecting terms at each order eprovides an explicit sequence for evaluating the potentials:

dO g, (6)
m— 177” n

P == Y L0, m=23 ™
n=1

Expressed in this form, the problem is reduced to compuﬁﬁ'@ from ¢ after which furtherz-derivatives are taken by
applying the negative horizontal Laplacian to these two quantities. Finalky-tregivative of (5) is used to compudie, which
allows the free-surface conditions to be stepped forward, closing the problem.

This perturbation procedure implies an assumption of weak nonlinearity, but no restrictién Bine practical limits of the
procedure, in combination with the Fourier—Boussinesq method, are considered in Sections 5.1.1 and 5.2.1 where the scheme
is shown to converge for nonlinear waves of constant form up to approximately 80% of the stable limiting steepnegsifor any
This limit is essentially the same as that reported by [18], and although they only considered deep water waves in this context,
we have found their method to behave in the same way as ours in shallow water. This is to be expected since our method on a
flat bottom, and with the free-surface perturbation scheme, is an approximation to theirs witthjamiplaced by a rational
approximation. We note that these resaits not surprising in lighof recent work by Nicholls and Reitich [19—-21] who have
shown that such perturbation schemexl{iding that of [6]) suffer from cancelian and ill-conditioningwhich limit their
convergence for large perturbations.

We note that it is conceptually straightforward to avoid the perturbation procedure by consideringy, lzott$ as un-
knowns, as illustrated in Section 3.1. In this case the calculatbB8gction 5.1 suggest that even steeper waves can be treated,
but this has not yet been verified.

3. TheFourier—-Boussinesq method

As posed above, the problem is solved, given a means of dimgpilne vertical component of velocity at the still water
level from the potential at the same level. We derive here a Boussinesq method for this purpose which is asymptotically correct
in both limits of kh. All existing Boussinesq methods satisfy linear dispersion relations, in terms of non-dimensional wave
celerityc?/(gh), which are a rational function ak/)2. This makes them applicable to variable depth problems, since they can
be expressed in terms of local differential operators. TleeElnear dispersion relation is however transcenden%at,gh) =
tanh(kh)/(kh), and tends to A(kh) (an odd power okh) in deep water. Thus, existing Boussinesg methods diverge in this
limit. In order to correct th&kh — oo asymptotics, odd powers @ are introduced into the approximation, along with the
generalized (2D) Hilbert transform operatdrwhich provides a means of evaluating them in physical space. The generalized
Hilbert operator is most conveniently expressed as

HV$ = FHrkF(g}), (8)

whereF represents the standard 20: k) Fourier transform and —1 the inverse transform.
3.1. Solutions on a constant depth

Consider first the solution on a constant depth. The starting point for any Boussinesq method is a Taylor series expansion of
the velocity potential. Choosing= 0 as the expansion point, and invoking the Laplace equation gives

2n+1

0 2n
¢(x,z,t)=Z(—1)"<%V2”¢+mvz"@) 9)
n=0 ’ ’
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wherew = ¢, (x, 0,1). Inserting (9) into the bottm boundary conditio (2) gives

coshV)w +sin(hV) - =0, (10)
wherell = V¢ (x, 0, ), and the sine and cosine Taylor series operators are defined by
sin(hV) = hV iy’ + i +
- 6 120 ’ (11)
n2v2  pivA
V)=1l- —+—
coghV)=1 > + 52

This compact notation is originally due to Rayleigh [22]. Truncating (11) and replacing the continuous gradient operator with
a discrete one gives a Taylor Boussinesq method for computifigm . Enhanced methods can be obtained by operating on
(10) with another differential operator which converts the Taylor coefficients into Padé coefficients, dramatically improving the
performance. Shifting the expansion point down into the fluid as in [13] leads to even more accurate methods, but even these
diverge eventually.

Embedded in (10) is the linear dispersion relation. To see this, note that it can be written

= —tanhV) -0 (12)

with the tangent operator defined as the ratio of the operators in (11). In Fourier space (i.e. for a two-dimensional time-harmonic
linear solution)V = ik, @ = (w?/g)$, andV - 0 = —k24, wherew is the radian wave frequency. Plugging these relations into
(22) giveSw2 = gktanh(kh), the exact linear dispersion relation. Thus the most basic measure of accuracy in dispersion for a
Boussinesq method is how well it approximates the linear dispersion operator

2 _tanh(x)

gh

; (13)

wherex = kh has been introduced for brevity.

Having defined the generalized Hilbert operator as a way of evaluaiimghysical-space (as opposed k9,iwe may now
investigate rational approximations to the linear dispersion operator including both even and odd poweFs ifustrate,
consider the simplest example: the lowest order rational functianvaiich has the correct limiting behavior for bath— 0
(long wave limit) andc — oo (short wave limit) is

czw 1
gh 14k’

(14)

This approximate dispersion relation defines the lowest order Fourier—-Boussinesq method. To express the ms{iazkin
use (14) to approximate the tangent operator in (12), then assocwithizV and« with ~HV. Thus

K hV
tan(hV) =it Ne— = 15
anky) =itanhio) ~ == = 75575 (15)
which gives
[14+hHV]D =—hV -( (16)

as the equation to be solved far. In this form, a fast numerical solution can only be obtained iteratively since the Hilbert
operator appears on the left-hand side of the equation, and it's fast evaluation requires an explicit sequence of numerical oper-
ations (i.e. FFTw}, multiply by &, inverse FFT). It turns out that any Fourier—-Boussinesg method can be expressed in a form
amenable to direct matrix methods tmyltiplying both numerator and deminator by the denominator withreplaced by« .

For example, (15) can be written itah ~ i (1 — x)/(1 — k%) = hV(1 — h'HV)/(1 4+ h?V?2), which removes the Hilbert
operator from the left-hand side and allows for a direct solution to the linear system. Note however, that this example is only
included for illustration purposes as ther@sponding numericahethod is unstable due to theal root of the denominator,

which must be avoided in practice.

Finally, we note that when an iterative solution is to be pursued it may be advantageous to dispense with the free-surface
perturbation procedure. This is most easily done by combining a truncated version of (9) applied)atith the Fourier—
Boussinesq approximation to (12). This system of equations is solved foayetw, after which thez-derivative of (9) is used
to getw. For example, using the lowest order model we truncate (8)=a0 and combine it with (16) to get the system

o+ =9,

R (17)
hV2$ +[1+ hHV]D =0,
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which when solved provide® from & = & — nVZ24.
This lowest order method is only of interest for very long or very short waves, of more interest are higher order approxima-
tions which are developed in the following.

3.1.1. Padé based rational approximations

The idea behind the Fourier—-Boussinesq method is to manipulate the rational approximation to the dispersion operator
(correct thex — oo asymptotics) and obtain a good approximation foxalDne way to do this is to find the Padé, n) ap-
proximation to the function tarth) — 1 at the pointc = 0. Adding one to the result and dividing kygives the corresponding
approximate dispersion operator. As longras n the correct asymptotics are obtained in both limitg oFinally, by associ-
ating« with hHV and«2" with (—ih V)2 (as illustrated above) a methodxrspace is obtained. Two examples are obtained
by using Padé (1,4) and Padé (3,6) approximations in the above procedure to obtain

(15+ 9 + 92 + 43 + kM D = —(15+ I + 42 + k3)hV - 0, (18)
and
(1890+ 630k + 945¢2 + 285¢3 + 75c* + 12¢° + k8% = —(1890+ 630¢ + 3152 + 753 + 12c¢* + k2)AV - (1 (19)

respectively. We refer to these methods as Padé (3,4) and Padé (5,6) methods, due to the final form of the approximate dispersion
operator.

As discussed above, the equations in this form must be implemented iteratively. An iterative solution will be preferred in two
horizontal dimensions, and this work is in progress, but a direct implementation is more straightforward, and in one horizontal
dimension it is more efficient. For these reasons we now consider alternatives to Padé approximation which lead to slightly
different rational approximations, and can be designed for direct matrix methods. We will concentrate on the (5,6) form of the
method, as this represents a reasonable balance between overall accuracy and computational complexity.

3.1.2. Modified rational approximations

In the previous section we applied the Padé approximation in a special way which introduced odd powers into the approxi-
mation of tanlic)/«, correcting thec — oo asymptotics to give a good fit everywhere. Comparing (18) with a direct Padé (5,6)
approximation of the dispersion operator, shows tha have sacrificed accuracy near the expansion peiat @) to obtain a
better overall fit. This is a common theme in the practice of rational approximation, and a number of methods exist for finding
an approximation based on some defimtmf goodness of fit over an interval rathtban on an expansion about a particular
point. Economized rationabg@roximations, rationahterpolations, min-marational approximations,ral least-squares fitting
are some widely used examples.

As an illustration of a more general approach, consider the rational approximaiionq(n) ~ f (x), wherep andg are
polynomials in« of degreen andn respectively. Choosing values farandn with m < n, along withm 4+ n + 1 points in«x at
which to enforce the approximation, gives+ n + 1 equations for the unknown coefficients pfindg. In our case we must
restrict the form of the approximation slightly to ensure the correct asymptotics in both limitaraf take

tanhe 1+ a1k +a2/<2+a3/<3+a4/<4+a5/{5
k1 + b1 + bok2 + b33 + bar? + bsk® + ask®’

Collocating (20) at the Gauss points over the interval © < 6 for example, gives a modified version of (19) with the coef-
ficients labelled as “modified” in Table 1. The corresponding dispersion errors are shown in Fig. 1 which also includes the
errors due to the original Padé based coefficients. It is clear that accuracy has been further sacrificed héaget much
improved overall accuracy. (In this case the maximum errors are(d® Q) for 0 < « < 1). Continuing in this vein, we set
b1 = b3 = bg = 0 to obtain a method which is easy to implement using direct matrix methods. Solving for the remaining coef-
ficients gives those labelled as “direct” in Table 1 and the corresponding errors shown in Fig. 1. In this case we have chosen to
compute the coefficients based on a least-squares fitting strategy @ver07, rather than using simple collocation, although
the two give similar results.

(20)

Table 1

Modified and direct coefficients in (20) sedl by 1890 for comparison with (19). Correspargidispersion errors are shown in Fig. 1
Modified Direct Modified Direct

ag 619336 169577 b1 619326 0

as 344.442 182429 by 974.629 815374

as 87.3517 —0.218759 b3 292925 0

as 16.6195 0946735 by 912142 20566

as 3.08021 460818 bs 165 0
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: : : : Direct

Modified ------

0.004

0.003

0.002

Relative error in czl(gh)

0.001

Fig. 1. Relative error imz/(gh) using the modified and Direct(5,6) coefficients of Eablin (20). Errors using (19) are also shown for reference
with label Padé.

3.2. Solutions on a sloping bottom

When a variation of the depth is retained e tbottom boundary condition, it takes the form
cogh V)W 4 sin(hV) - 0+ Vi - [coghV){ — sin(hV)w] = 0. (21)

l.e. (9) inserted into (2), witth (x). For the case of variable depth, the derivation of the approximate equation is more involved.
Modifying the sine and cosine operators from their original Taylor series form corresponds to operating on the equation with
another differential operator. Sindeandi(x) do not commute, this produces new terms involvirig, (Vh)z, V2h, etc. Itis

common practice to neglect terms that are higher théwiQ, which is a mild-slope approximation. In [23] all the terms which

are linear in the derivatives &f were retained to get an augmented mild-slope equation. These higher derivative terms play an
important role in Bragg resonance and in reflection, so it can be of interest to retain them. In the following sub-sections, we take
two approaches to deriving the slope terms for a Boussinesq method. The first approach is to approximate the bottom locally
by a sloping plane, and rotate the coordinate system in parallel with the bottom. The second approach is to Taylor expand the
bottom boundary conditimabout a flat bottom. By keeping the linear term iis texpansion, all terms which are linear in the
derivatives ofz are retained, giving an augmented mild-slope approximation. This result can also be reduced to a mild-slope
approximation. Only the second approach leads to computationally attractive methods in this context, and the performance of
the resulting Direct(5,6) methodis addressed in Section 5.2.

3.2.1. Coordinate transformation approach
Consider the operator
(h+2)Vp = (h +2)(V = Vhdy), (22)

whereV,, is the Q'Vh) approximation to the gradient along a surface parallel to the bottomjarsdthe derivative in the
direction. The operatov; commutes with: + z, just asV commutes with: on a horizontal bottom. It is easily checked that,
to orderVh, higher powers of this operator can be evaluated through

[(h+2)Vp]" = (h +2)"V" —n(Vh)(h +2)"V" L3, (23)

This expression can be used to write

cos((h +2)Vp) = cos((h +2)V) + (h + 2) sin((h + 2) V)., (24)

sin((h +z)Vp) =sin((h +2)V) — (h +z) cos((h +2) V) d;. (25)
In general, any polynomial of the fora in which the argument is replaced by + z)V},, can be approximated by

A((h+2)Vp) = A((h +2)V) — (h+ ) A’ ((h+ ) V), (26)

where A’ is the derivative ofA with respect to its argument. This expression also holds for operators that correspond to odd
powers ofk, since they can be approximated by polynomialy?nand the Hilbert operator. For example

(h+2%3 = (h+ %3 — (h + 33k>H Vo, @7
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Next, approximate (21) by
cog((h + 2) V) (@ + Vh - 0) + sin((h +2)Vp) - (0 — Vi) = O(V2h, (Vh)?), (28)

which is valid at any levet. This can be checked by direct calculation. It expresses the Boussinesq expansion in a coordinate
system that is parallel to the bottom.

It is now sufficient to replacéV in the expressions that were obtained in the even depth case by the operateyV,,
and use (23). Setting= 0 gives

B + A= Vh(A+ A'hV)® — (B + B'hV)Q, (29)

whereA/ B is a rational approximation to the tangent operator, and use was made of the reélalien¥w andd,w = —V - Q.
To ensure that th@ operator is differential, the following operator is applied to (29)

B_ —Vh(A_ + A_hV), (30)
whereA_ (kh) = A(—kh). Note that the product of two operators can be expanded based on

WYV (R = RTIE (Viypmh 22 L O((Vh)?). (31)
Thus, for two operators; and F

G(hV)F(hV) =G % F(hV) + h(Vh)G' % F'(hV)V + O((Vh)z), (32)
whereG x F is the product of the function§ and F, andG’ and F’ their derivatives. The resulting equation

BB_w+AB_0=Vh(B_A+A_B+ (B_A'"+A_B— B'A"hV)w

—(B-B—A_A+(B_B—AA" + B'BhV)l (33)

has the appropriate form and is equivalent to (29) to ofefdr, (Vh)2.

This approach has a few drawbacks. One is that the shoaling performance depends on the accuracy of the approximation for
first and second derivatives of the dispersion relation with respectThiese are typically less accurate than the approximate
dispersion relation itself, so very high order methods are required. The final form with a purely differential implicit operator
then doubles the order of the method. In additions #pproximation introdces errors which are ©Vh)2, V2h), but have
large numerical coefficients. Thus the equations in this form are not especially well suited to practical implementation.

3.2.2. Perturbation approach

An alternative approach is to introduce a perturbation expansion in the depth deviatigh — hqg)/ho from a local
reference depthg, in the manner used by [23] to study the augmented mild-slope equation. This approach greatly simplifies
the analysis, sinc¥ andhg commute. By keeping only the linear term in the resulting expansion, all terms that are linear in
the derivatives of: are included.

We begin by expanding as

® = Wo + 1 + O(82), (34)
wherewy is the solution to the equation
Buwg+A-0=0, (35)

and A/B represents an approximation to taR). Expanding the exact bottom condition (21) t§sQ) and operating on the
result with se¢igV), we get (cf. [23, Eq. (2.9)])

W + tan(hgV) - 0 = —seqhgV)hoV - (§ seqhgV)a). (36)
Expanding (35) to @) about the local reference depip gives
Boivg + Ag - U+ 8B’ hgVivg + 8A’hgV - O = Bgibg + Ag- U+ 8(A" — B’BglAO)hOV -0=0, (37)

where Bg = B(hgV) and A’, B’ stands for the derivative of the operator with respect to its argurieny, and evaluated
athoV. Operating on this equation wimal gives

Bo=—Bg Ao~ 0 — By ts(A'— B'BytAg)hoV - 0, (38)
and sinceBale is the approximation we use for téryV), w1 is given by

B1 =0 — Wo = — SeqhgV)hoV - §5eahgV)i + By *8(A’ — B'By t Ag)hgV - (. (39)
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0.0025

0.002

0.0015

0.001

0.0005

Relative error in w

-0.0005 i i i i i i
0

Fig. 2. Relative error inv introduced by using the Padé (4,6) approximation of the operatgh8edn Eq. (39). Different curves are for
different bottom slope wave numbér relative to the surface wave numbewhere K = ck, with a bottom variation magnitude 20% of the
local depth.

This is the augmented mild-slope Fourier—Boussinesq method.
To evaluate (39), we use the fact that an expression of the f(figV)3f, whereF is an operator ang a function, can be
evaluated through

h h
F(hoV)éf = F(hOV)h—Of - h—OF(hOV)f- (40)

The model is thus non-locad, is used in the derivation but drops from the final equations. The result is an approximation
to the augmented mild-slope equation including all terms which are linear in the derivatived~of implementation, an
approximation to the sékoV) operator is required. Since this function decayx ascreases, a Pade:, n) approximation

with m < n is appropriate. For the Direct(5,6) method, we use a Padé (4,6) approximation

1—«2/39+ 17c*/65520
1+ 372/78+ 190%*4/65520+ 5% €,/131040

which involves only derivatives (no Hilbert transform). The relative errors in the fotatroduced by this approximation are
shown in Fig. 2. To evaluate the error we have assumed a bottom variation of thé ferhcosK x with d = 0.2 (a very large
value) and chosen several valueskobfelative to the surface wave number
Eqg. (39) can also be conveniently reduced to a mild-slope approximation. Ignoring higher derivative terms simply means

that F (hqV)sf = VhF' (hgV) f + O(V2h), in which case (39) reduces to

B1 = Vh - [-seC(hgV)(1+tan(hgV)hoV) + (By L) (A" — B'By tAg)hgV ] (42)
Since this operator is a smooth function which decays exponentially with increasihg convenient to approximate it by
another operator af2m, 2n) form with m < n, which involves only derivatives. Thus, for the Direct(5,6) method we write

14 aph?V2 4+ agh*vA
. a

1+ Boh2V2 4 Bah4V4 4 BhbVE

and make a least squares fit between the two operators cver € 6. This gives the coefficients in Table 2 and the overall
relative error forw (taking Vi = 1) shown in Fig. 3.

We note that the approach outlined here is valid for any rational approximation to the dispersion operator, and is by no means
restricted to Fourier—Boussinesq methods.

sechix) ~ (41)

w1~ —Vh (43)

4. Lateral boundary conditions

Introducing the FFT requires periodior(symmetric) boundary conditions at theddral boundaries. Thgpical method of
overcoming this limitation is to successively increase the size of the computational domain until the effect of the boundaries
becomes negligible, e.g. [18]. Here we discuss two other approaches for solving non-periodic problems on a periodic compu-
tational domain: relaxation zones, and a decomposition ofdhgion into periodic and noperiodic components. These two
techniques, may be used alone or in combination.
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Table 2
Coefficients appearing in (43), whicpgroximates (42) for the Direct(5,6)
method, to give the errors shown in Fig. 3

o —1.762x 1071 B2 —1.320
o —7.759x 1073 Ba 6.433x 1071
Be —2141x 101

W03 —r—T— 71 1T T T T T 1
0.002

0.001

Relative error in w

0 5 10 15 20 25 30 35 40 45 50

Fig. 3. Relative error irw introduced by approximating the mild-slope correctionrapa of (42) by the purely differential operator of (43)
with the coefficients of Table 2. Shown here féh = 1.

4.1. Relaxation zones

When a computational boundary coides with a physical boundary a physical bouydeondition can be applied, but
to simulate an unbounded physical domain we requiraréficial boundary condition. Weakly-reflecting artificial boundary
conditions have been the subject of considerable attention over the past 30 years or more, and the topic is reviewed by [24,25]
for example. The particular form of tificial boundary condition we apyplhere is to relax the numerical solution towards a
specified analytic solutioover a region near the boundary, an idea whiabftien applied in ocean circulation modelling (see
e.g. [26] who modified the idea proposed by [27]). Sucalaxation zondor simultaneous generation and absorption of waves
is readily achieved by simply defining a relaxation coefficiert § (x) < 1, and an exact desired solutioff, ¢€). After each
stage of the time integration the solution within the relaxation zone is then redefined to be

n(X, 1) =[1—=cr () nX, 1) + ¢ N, 1),

(44)

d(x. 1) =[1—cr(0]p (X, 1) + cr ()PE(X, 1).
Experience has shown that a good choice of coefficieat(s) = (1 — 3/50)8 whereo is a scaled coordinate perpendicular
to the boundary withy = 0 the boundary and = 1 the end of the relaxation zone. The technique is very effective, as is
demonstrated by Fig. 4. This shows the steady-state envelope of a calculation using a linear traveling wave as the desired
solution in a relaxation zone of one wavelength at the left end of the domain. The right hand boundary is a fully-reflective wall,
and the result is a perfect traveling wave at the wave maker, which blends smoothly into a perfect standing wave outside of the
relaxation zone. If waves of very different lengths need to be absorbed, it is best to combine this technique with a decomposition
of the potential which allows non-periodiomditions (e.g. a time-dependent flux) to be applied at the boundaries, as is discussed
in the next section.

4.2. Sfitting the potenti&into periodic and norperiodic components

This section describes a method for introducing generatlitions at the lateral boundarie§ the computational domain.
It is an extension to the method of [16] to include a mild-slope bottom. The computational dvhigienclosed within a
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2
1.5

n/a
[}

Fig. 4. Demonstration of simultaneous wavengeation and absorption from a relaxation zone. A linear incident wave is specified at the left
hand boundary using a relaxation zone of one wagtle The right hand boundary is a wall. The sigatate result is a perfect traveling wave
at the wave-maker, and a perfect standing wave outside of the relaxation zone.

set of control surfaces which are taken to be the vertical planes=20, x =i, y =0, andy =[,. On these control surfaces,
boundary conditions of the following form are applied

N3
Uy = ZC./U./’ (45)

where N3 is the total number of degrees of freedom distributed over the control surfads,the velocity normal to each
control surface, and tth are functions of time and of the horizontal coordinate. U}ecan be chosen to represent a wave
maker/absorber or a matching to another computational domain. In géneraby have a vertical structure, which can be
included in the solution. However, in many applications there is no interest in resolving this structure, which is essentially
responsible for evanescent modes that decay exponentially away from the boundary. For simplicity, we demonstrate the method
for U; that are independent of

The velocity potential is decomposed into a sum of two potentials,

d=¢1+d2 (46)
N3

b2=Y cj$a;. (47)
j=1

The potentialspy; are chosen to satisfy the Laplace equation andbtittom boundary conditions (1) and (2); and a set of
modal distributions of normal velocity on the control surfaces. It is convenient togiake be quadratic iry, corresponding

to “steady” flow fields, in which case the resultant horizontal velocity is independentAsf an example, take,1 to be the
solution for the two dimensional flow with=0 onx =0,y =0, andy =1y; butu = U atx =I,. This is simply a corner
flow, and the solution is

3¢21> U

> = —(x =2z + hy,0, —(z + h + xhy)). (48)

(V¢21, ]
X

This flow satisfies the Laplace equation only at the leading order, with an error whiatV&Q(V#)2). On an even bottom
Vh vanishes and the form given by [16] is recovered. Similar solutions can be used for the rengainicgresponding to
constant flows through the other three vertical control boundarid$.Has spatial structure over the control surface (or if we
wish to have a solution which is accurate to any order in the bottom slgp&gn be pre-solved for a full basis set of lateral
boundary conditions, producing a set of time-independemorese functions (or a single duéunction) which may then be
used in the solution, at each time step.

Having chosen the appropriate form of (45) to ensure the generation and/or absorption of waves for example, the other part of
the potentialg1, represents (mathematically) a flow in a closed basin. The complete potertigh + ¢> must finally satisfy
the remaining boundary conditions the free-surface, (3). Thus we proceed as follows: GWandn ¢ is determined from
the lateral boundary conditiod) using the pre-solved steady flows. This gigesrom whlch¢>1Z is computed using one of
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the above described Fourier-Boussinesq methods. Together with the horizontal gragiemidef, this provides all the terms
appearing in the free-surface boundaonditions, which are finally marched in time to get the new values arfids.

5. Calculations

The linear dispersion and shoaling properties of the method were established in Section 3, here we provide numerical
calculations which establish the nonlinear properties. Calculations are made using the Direct(5,6) method in the two variants
which appear in Section 3.2.2. First, we consider spectral solutions for waves of constant form and compare the Fourier—
Boussinesq approximation with the exact equations. From this we find that the method, when combined with a five-term Taylor
series expansion from= 0 to z = n, achieves high accuracy for waves very near the stable limiting steepness«at\lhgn
the free-surface perturbation scheme is adopted however (allowing direct matrix methods to be used) the model is found to
break down at approximately 80% of the limiting steepness far.dllext, a finite-difference—FFT implementation is discussed
for treating more general problems. This code is appliecetesl test cases including: linear shoaling over a smooth beach;
Bragg reflection from a rippled bottom; harmonic generation by waves passing over a submerged bar; and nonlinear shoaling
of an irregular wave spectrum from deep to shallow water.

5.1. A spectral solution for highly nonlinear steady waves on a flat bottom

As shown by [28], steady solutions to the exact Laplace problem right up to the steepest wave, can be computed with
great accuracy using a spectral method based on the streatiofurttere we apply the same technique to solve the Fourier—
Boussinesq Direct(5,6) approximation, and compare to the exact equations. In order to treat the very long wave limit, an
expansion in terms of Jacobian elliptic functions would be more rapidly convergent as shown by [29], but we avoid approaching
this limit here.

Boussinesq approximations typically begin with a Taylor expansion of the velocity potential however, in two-dimensions
we may just as well use the stream function. Using the notation of Taylor operators, an analogous expression to (9) in a frame
of reference moving at the wave celeritys

o i \%
w(x,z,t)=1Z(h+z)+cos(zV)w+Sm(vZ )12, (49)

whereyr = ¥ (x, 0) (and in two-dimension¥ is justd/dx). Thus, all surface quantities can be expressed in terms afhe
guantities through

- ~ sin(nV)
Y =iu(h+n)+cos(nV)y +

i,
(50)
i =1+ cos(nV)ii +sin(nV)w, w = —sin(nV)i + cos(nV)w,

while iz andw are related via the botto boundary conition (12).

To get a numerical solution, the sine and cosine operatoBirafe truncated, while the tangent operator in (12) is replaced
by a rational approximation. We note that Truncation of the Taylor operators at &fdsrsimilar to usingM steps in the
explicit free-surface perturbation procedure, but performs better for very steep waves as discussed in Section 51k, i, Now,
andw are expanded in Fourier series as

n n n
U= Z % codjkx), di= Z Bj cogjkx), W= Z C; sin(jkx). (51)
Jj=1 j=1 j=1
This reduces the bottom condition to an algebraic relationship between the coeffiCiertdani(jkh) B, where the hyper-
bolic tangent is replaced by the approprigaéional approximation. Usin(50), (12), and (51) in thfree-surface conditions
atn + 1 equally spaced points from wave crest to wave trough gives 2 equations. These equations, together with the
kinematic constraints are then solved using Newton’s method, as in [28].

Table 3 and Fig. 5 show the wave conditions chosen for calculation, along with a rational fit (Eqg. (32) from [30]) to the
experimental data of Williams [31], which provides a convenient reference for the steepest stable wave. (For the theory of the
highest stable wave, see e.g. [32—-35].) Nbt each test condition represents a waivomething closéo 90% of the limiting
steepnessH, L, andh are the wave height, wave length, and water depth respectively.) In all cases exeept@dt, n = 24
modes was enough to ensure tiBat/ By < 10-9 for both the exact and the approximate equations. For the extreme shallow
water case withr = 0.2 (practically a solitary wave) more modes were requiredard40 gaveB,, /By ~ 10~° which was
judged to be sufficiently accurate. As noted by [28] and others, very steep waves require sub-steps in wave height in order to
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Table 3

Steady nonlinear wave conditions chosen for comparison between spetitalrs of the Fourier—Boussinegijrect(5,6) and the exact equa-
tions. H, L, andh are wave height, wave length, and water depth

K 0.2 0.5 1 2 3 5 10 20 25 30 40 50 100

H/L 0.02 0045 Q09 011 012 013 013 013 013 013 013 013 013
H/h 0.65 0565 Q0565 Q036 026 016 008 004 0033 Q027 Q02 0016 Q008

0.8 | I B
Empirical limit 0.14
0.7 Test conditions @ ]
: ' : ' 0.12
0.6
05 0.1
<= 0.08
S 04 S
03 0.06

0 004 | ]

0.02 @-Empirical limit
TestI (:ondlitionsI

0.1

0 0

0 20 40 60 80 100
K LS

Fig. 5. Test matrix from Table 3 relative to empirical data for the steepest stable wave.

avoid multiply peaked solutions. This is especially true in very shallow water where the extremely narrow peak requires many
modes for accurate resolution. Fig. 6 plots the errors in nonlinear dispersion (wave celerity), integrated surface profile, and
integrated surface velocity; as functions«ofor these highly nonlinear waves. The Taylor operators in (50) are truncated at

M =5 for these calculations and the error metrics used are

L 1/2
®—c 2 2
=" eFﬁ(/("e‘") dx) ’
0
1/2

L 1/2 L
__2 /(~e H2dx / _ 2 /(~e )2 dx
u= ifhaxL , o ' = WinaxL 5 v ’

where the superscript e indicates the computed value using the exact equations.

These calculations represent the ideal behavior of a general numerical solution to the method in implicit form, i.e. the
Direct(5,6) approximation combined with a five-term truncated Taylor series expansion and solved iteratively, as illustrated
in Section 3.1. In this case we find that the fully dispersive behavior of the method carries over to steady highly nonlinear
waves on a flat bottom; with errors of the same order of magnitude, and following the same trend as was found for linear
guantities.

(52)

5.1.1. Limitations associated with the free-surface perturbation procedure
In order to apply direct methods for solving the discrete linear system of equations obtained from the model, we replace the
truncated Taylor series expansion of (50) with the free-surface perturbation procedure of (5), (6), and (7). To investigate the

limitations associated with solving in this manner, we consider the steady wave solutions discussed above using the following
procedure:

(1) The spectral solution to the exact equations is used torgegually spaced values gfand¢ from wave crest to wave
trough. This give$D from (6).

(2) a"¢D /9" is computed spectrally by the operatigi 1{k" tanh(x) F{¢D}} for n odd andF (k" F{$D}} for n even.
Using tantix) here represents the original method of [18], while the Direct(5,6) method is obtained by replaciag tanh
with (20) and the coefficients of (19).

(3) @ is computed from (7).
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Fig. 6. Errors in nonlinear dispersion, and integchsurface profile and velocity computed usipgcral solutions of the Fourier—Boussinesq
Direct(5,6) and the exact equations. See (52) for definition of the error metrics.
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Fig. 7. Two examples of convergence withfor the relative error iriv using the Direct(5,6) method combined with the perturbation procedure
of (5)—(7) for nonlinear steady waves approaching the stable limik €).00,¢; = H/L =0.14, (b)x =0.2,¢, = H/h=0.75.H, L, andh
are wave height, wave length, and water depth.

(4) Steps 2 and 3 are repeated to compute the remadifity m = 3, 4, ..., M, and theirz-derivatives.
(5) w is computed from the-derivative of (5).

Fig. 7 shows two examples of the convergence of the scheme at several values of wave steepness approaching the stable
limit for a deep water£ = 100) and a shallow watek (= 0.2) case. In both cases we see that the scheme begins to diverge
for increasingM at a steepness of approximately 80% of the stable limit. This trend is observed for all the vatuespod-
sented in Table 3. For these examples we have use®4 andn = 128 respectively, and while increasing the resolution also
improves the saturation accuracy of thectddtions for conditions below the congence limit, it does not change the trend
that conditions above this limit diverge.

These calculations show that a general etinal solution of the method in directrim is still fully-dispersive, but suggest
that it will break down for waves higher than approximately 80% of the stable limiting steepness. This conclusion is confirmed
by the calculations of Section 5.2.1. We note that even though it might be inferred from Fig. 7 that simplyMixing or
5 would allow even steeper waves to be treated, we find in practice that the solution quickly becomes unstable for waves
significantly above this limit.

5.2. Afinite-difference—FFT solution for variable depth problems

In order to treat more general problems, a finite-difference—FFT solution of the Fourier—-Boussinesq Direct(5,6) method, in
the two variants derived in Section 3.2.2, was developed. The two variants are: the augmented mild-slope form of (34), (35)
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and (39); and the mild-slope version of this form where (39)areed by (43) and the coefficients of Table 2. We provide here
an outline of the solution procedure, and present calculations in one horizontal dimension, while a more detailed description of
the numerical issues involved and calculations in two horizontal dimensions will appear in future publications.

The solution is computed on an evenlyaspd grid of points at the still water lev&lontinuous derivatives up to the sixth
are replaced by centered finite-difference schemes using at least seven points. All derivatives make use of the entire stencil
producing more accuracy for lower derivatives than higher ones, which we have found to be advantageous. No-flux boundary
conditions corresponding to a wall are applied at the horizontal boundaries by reflecting the finite-difference coefficients in a
symmetric way fom andw and an anti-symmetric way fdr. Non-periodic conditions, and/or wave generation and absorption,
are implemented using the methods discussed in Sectiohettime integration of the free-surface conditions is performed
using the fifth-order Cash—Karp—Runge—Kutta method which provides an estimate of the error.

In mild-slope form, the continuous derivatives appearing in (35) and (43) are replaced by finite difference approximations,
and the equations are enforced at the grid points to obtain the two sparse linear systems of equations

Bowg = Ag10 + AgoH VA, (53)
B1wy = A110. (54)

Having solved forwg and w1, the total vertical velocity iSv = wg + wy. These linear systems must be solved once at each
level of nonlinearity in the free-surface perturbation procedure, during every stage of the time integration. The finite-difference
matricesBg, Ag1, Ag2, B1, andAq141 are banded in one horizontal dimension and sparse in two horizontal dimensions. The
number of non-zero elements in each of these matrices is approximately the stencil siz¥ tiffes Hilbert transforn{V
is evaluated using two fast sine transforms (either one or two dimensional) which is appropriate for wall conditions at the
horizontal boundaries. Since the matrices are time-independent, and in one horizontal dimension banded, it is advantageous
to factorBg andB4 once and for all, and then back-substitute for subsequent solutions. For large problems in two horizontal
dimensions however, it may be faster to solve using an iterégichnique. The scheme is generally stable, but high-frequency
oscillations do tend to appear near the peaks of very steep waves, especially near discontinuities in the depth. When this occurs
we apply Savitsky—Golay smoothing at the finite-difference stencil size. The solution effort in one horizontal dimension is thus
of the orderM N log N for every stage of the time integration faf steps in nonlinearity.

In augmented mild-slope form, we writé; = w11 + w12 where

B11=SeqhV)V(5seqhV)V),  W1p= By (8B Vilg+35A'V - Q). (55)

Discretizing the Padé (4,6) approximation of @8¢) in (41), and applying the relation in (40) means solving six linear systems
instead of two at each solution step.

5.2.1. Steep periodic waves of constant form

The calculations in Section 5.1.1 suggest that the Direct(5,6) method discussed above should be able to treat steady, periodic
nonlinear waves up to approximately 80% of the stable limiting steepness, for.aRyis section summarizes a series of
calculations which confirm that this is the case in practice. For this test case we use the semi-analytic solutions discussed
in Section 5.1 as initial and boundary conditions for the nuoa¢nnodel. The wave is generated in a relaxation zone two
wavelengths long at one end of the domain and absorbed by another of the same length at the other end. The wave travels freely
in the domain for five wavelengths, and each simulation is run for ten wave periods after a steady state has been reached. The
final free-surface profile in the free part of the domain is then compared to the analytic result to get a measure of the overall
error due to all sources for realistic applications of the model. The results are summarized in Table 4, where the integrated error
ey is defined in (52), witl® the computed value from stream-function theory. In each case the wavelength was chosen to be
one, so thal =5, while H and/ were varied to produce the conditions shown in the taldler 4 terms were included in the
free-surface perturbation scheme. Each case is at approximately 80% of the limiting steepness for a stable wave at that value
of . For all cases other than= 0.2, 32 points per wavelength and 100 points per wave period were used. Fle2 case,
being essentially a solitary wave &f/h = 0.57, required 128 points per wavelength and 800 points per period to obtain this
level of accuracy. Calculations consistently broke down for waves significantly steeper than 80% of the maximum.

5.2.2. Linear shoaling
We next consider the linear shoaling properties of the model, and verify that the two variants discussed above, converge to
the same result when reflection and higher derivative's afe negligible. (When solving linear problems the nonlinear terms
in the free-surfacéoundary condition are switched off al = 1 is used in the free-surface perturbation procedure.) We use
an infinitely smooth bathymetry defined by

h(X):hO_hO;zhl[l_Ftam—(M)}, _l <x <

1— (2c/1)2 2 ; (56)

N~
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Table 4
Steady nonlinear wave conditions used to evaluate the practical errors incurred
by the Fourier—Boussinesq Direct(5,6) method. The effds defined in (52)

x 0.2 1 2 100

H/L 0.018 Q075 a11 011

H/h 0.566 47 011 00069

Errore, 0.045 Q04 0045 Q03
1.8 , ,

Linear theory
1.6 Augmented form
Mild-slope form

a(x)/a,

-h(x) [m]

-100 -50 0 50 100

Fig. 8. Amplitude envelope of a linear wave shoaling up a smooth beadtul@@bns using the Direct(5,6) method in the augmented mild-slope
form of (39), and the mild-slope form of (43).

with hg =5, h1 = 0.05, and/ = 256 (see Fig. 8). This givels, < 0.04, with each higher derivative an order of magnitude
smaller than the previous. A linear wave bf= 10 is generated at the left end of the domain and allowed to propagate until

a steady state has been reached everyavtihis produces relative conditions finadeep to shallow water, corresponding to

0.07 < kh < mr, or approximately a factor of 50 change in the local valueiof A relaxation zone at the left end of the
computational domain generates the wave, while one at the right end absorbs it, ensuring minimal reflection from that boundary.
The time and space discretizations are refined until conveegenapproximately three significant digits is reached using each
variant of the method. Fig. 8 shows the ampii¢ envelope of the convergsteady-state time signaldpag with that predicted

by energy conservation,

@_( k(x)(1 + 2kgho/sinh(2koho)) )1/2
— \ko(1+ 2k(x)h(x)/sinb(2k (x)h(x)))

ag
The two variants are seen to converge to the analytic value when higher derivativasafeflection are negligible.

(57)

5.2.3. Bragg reflection

As an example where the form of the variable bottom term does matter, we next consider Bragg reflection from a sinusoidal
bottom ripple patch. The conditions of [36] are used, in order to compare with these experiments. The bottom is defined by
h +dsin(kpx); —lg < x < lg, andh elsewhere, wherg andd are constants. The bottom slopekjg! = 0.31 andig/[; = 10
(kp = 27t/ 1p). The incident wave is at the linear resonance conditioh-efk; /2 with a wave steepness bH /2 = 0.05. The
time and space discretizations, as well as the nonlineafigre refined until convergence to approximately 3 significant digits
is reached for the steady-state elevation using each variant of the Direct(5,6) method. For this mildly nonlinéaecase
was sufficient. The local reflection coefficient is then extracted from these time-series using the method of [37] as extended
by [4]. The results appear in Fig. 9 for the two cased 6t = 0.14 andd/h = 0.1, along with the experimental measurements
of [36]. The linear perturbation solution of [38] is also included with the mild-slope calculations. The importance of the higher
derivative terms is quite clear from these figures.

Fig. 10 shows the reflection coefficient computed at a number of points near the linearized resonance condition-ef12
using a wave steepnessiaff /2 = 0.05 and a bottom ripple steepnesspfl = 0.16. We note that these results are very similar
to those obtained by [4] using a high-order spectral method, and they show the characteristic down-shift of the resonant peak
relative to the linear value which is also observed in the experiments.
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Augmented mild-slope form

Mild-slope form

[
d/h=.14

dh=14 @ °
F-B (5,6) F-B (5,6)
038 0.8 = Mei (1985) - - - - -
= A

R(X)
R(xX)

Fig. 9. Bragg reflection from a sinusoidal bottom ripple patch ov8f;, < x < 5/;, with kH /2 = 0.05, andk;d = 0.31. Calculations using the
Direct(5,6) method in the augmented mild-slope form of (39), aredntiid-slope form of (42). Symbols are the measurements of [36]. The
linear perturbation theory of [38] is also shown with the mild-slope results.

1 T T T T I T T
: : : : Measurements [
F-B (5,6) ——E+-
Mei (1985) ------ -

0.8

0.6
o~
0.4
0.2
0
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2k,

Fig. 10. Bragg reflection coefficient near the linearized resonance conditjoi, 2 1, for kH /2 = 0.05, k;d = 0.16. Calculations using the
Direct(5,6) method in augmented mild-slope form (39), are compar#tetmeasurements of [36], and tiveear perturbation theory of [38].

5.2.4. Harmonic generation over a submerged bar

This example considers the transformation of a mildly-nonlinear, monochromatic wave as it travels up and over a submerged
bar. As the wave shoals up the front face of the bar it steepens dramatically, accumulating higher harmonics which are released
on the downslope producing an irregular pattern behind the bar. This phenomenon is often used as a strenuous test case for
nonlinear models of surface wave propagation on a variable bottom. Many authors have considered the problem, both experi-
mentally (e.g. [39] and [40,41]), and numerically (e.g. [42,43], and [9]). The geometry of the experiment can be found in [40],
and is usually scaled by a factor of two, to make it equivalent to [39].

Fig. 11 compares a portion of the time series at four of the experimental measurement points. The left column shows the
long wave [ = 2.01 s) case, and the right column the short walie<(1.01 s) case. Computations for both cases have been
made on both a coarse and a fine grid to ensure convergence. The coarse grid used 1025 grid poifits av800and 2001
time steps for &< /T < 50; while the fine grid used twice as many points in both time and spdce 4 steps in nonlinearity
were taken in both cases. Additional runs were also made Wgirg6, and twice as many time steps, producing insignificant
changes to the results. Only the fine grid results are shown in the figures as the coarse grid calculations are indistinguishable at
this scale. The comparison is reasonably good, and similar to results obtained using other fully (or highly) dispersive methods.

5.2.5. Shoaling irregular waves — an engineering application

We close with an example of an engineering application for which this method is particularly well suited: the deterministic
prediction of wave climate in the near shore region given generic deep water conditions offshore. This is a tool which is of
interest to engineers involved in building coastal wind-power plants for example. Such installations are often put in water
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Fig. 11. Time series of measured and computed surface elevatidasr giositions for waves passing over a bar. The solid line shows the
calculations and the points are the measurements. Left: long wave case frofi B@01 s,a = 0.02 m. Right: short wave case from [41],
T =1.01 s,a =0.0405 m.

depths of around 10 m in countries which border the North Sea. Fig. 12 shows the square root of the spectral density (which is
proportional to wave height) for a typical North Sea JONSWAP spectrum plotted against cyclic frequertoy peak period
is Tp = 12 s and the significant wave heigh = 7.5 m. If the peak wave of this spectrum is placed at the approximate deep
water limit of kh = 7, then the offshore water depth should/qe= 120 m. To include all short wave energy in the analysis
with wave heights larger than 5% of the peak wave height, we get a short wave cut-off frequency of approximately 0.28 which
corresponds t@&maxi2g = 37 at the offshore limit of the domain. This simple example illustrates the need to simultaneously
consider both a large variation inand large variation i and represents a difficult challenge for most nonlinear wave models.

The spectrum discussed above was used to generate a psggidon time series as boundary conditions at the left end of a
7 km long domain where the depth decreases fhgra- 120 m toh1 = 10 m at an average slope of around 2% using (56). The
simulation was run for approximately 55 minutes of real time correspondingttirle steps ai/r = 0.1 s with N = 211 grid
points over the domain and = 3 steps in nonlinearity. This required approximately 18 minutes of CPU time on a 2.26 MHz
Pentium IV machine. Fig. 13 shows a snapshot of the free-surface during a particularly large event near the shallow end of the
domain, along with the bottom bathymetry. An expanded view of the large wave near the shallow end is shown in Fig. 14 where
we can observe its highly nonlinear and asymmetrical features.
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Fig. 12. A typical North Sea JONSWAP spectrum with = 12 s andH; = 7.5 m, indicating the range dfi required to shoal these waves
from deep to shallow water.
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Fig. 13. A snapshot of the free-surface elevation along thighbottom bathymetry for the nonlinear shoaling calculation.
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Fig. 14. Expanded view of Fig. 13 around the large shallow water event.
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The next step will be to validate such calculations against experimental measurements, after which we intend to use them to
help predict the wave loading on near-shore structures.
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