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Abstract

A Boussinesq method is derived that is fully dispersive, in the sense that the error of the approximation is sma
0 � kh < ∞ (k the magnitude of the wave number andh the water depth). This is made possible by introducing the genera
(2D) Hilbert transform, which is evaluated using the fast Fourier transform. Variable depth terms are derived both in mi
form, and in augmented mild-slope form including all terms that are linear in derivatives ofh. A spectral solution is used to solv
for highly nonlinear steady waves using the new equations, showing that the fully dispersive behavior carries over to n
waves. A finite-difference–FFT implementation of the method is also described and applied to more general problems
Bragg resonant reflection from a rippled bottom, waves passing over a submerged bar, and nonlinear shoaling of a sp
waves from deep to shallow water.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Predicting the nonlinear propagation of dispersive waves over a bathymetry is desirable in many coastal and offsh
cations. Realistic problems require analysis over a complicated geometry on the order of a hundred by a hundred s
wavelengths, and in relative water depths all the way from practically infinite to zero. Such problems pose a formida
lenge and are generally treated using potential flow methods. Typically the velocity potential is expanded in a set
functions which individually satisfy the Laplace equation; and the expansion coefficients are determined to satisfy the
ing conditions on the fluid boundary. The number of degrees of freedom (usually a set of values of the potential or its de
on the boundary) is hence significantly smaller than would result from discretizing the entire fluid volume. The basis fu
used are typically polynomials, singular Green’s functions, or Fourier functions; each of which has advantages and d
tages depending on the phenomena of primary interest. Boundary integral methods are fully dispersive and simple to
complicated geometries, but are relatively computationally demanding since they require discretizing the bottom and le
matrix systems. Calculating the Green functions is also more expensive than polynomial or Fourier coefficients. Grilli et al. [1]
Wang et al. [2], and Kring et al. [3] are recent examples of the application of boundary element techniques to coastal p
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The pseudo-spectral methods of Liu and Yue [4], and Smith [5] are examples of techniques which are based on Fourier expan-
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sions. (Other examples are Craig and Sulem [6], recently extended to 3D by [7], and Clamond and Grue [8]; although th
not yet been applied to variable depth problems.) These methods are also fully dispersive and can be made relative
when combined with a perturbation procedure, but they are more difficult to apply over large depth variations and
cated geometries. Polynomial based methods include Boussinesq methods, many of which are reviewed by [9], Gree
theory e.g. [10], and the Local Polynomial Approximation (LPA) method of Kennedy and Fenton [11]. Polynomial m
are relatively efficient, since they are formulated on the free-surface boundary alone and lead to sparse algebraic sy
errors in dispersion eventually become large as the waves become short compared to the water depth. A related appr
multiterm-coupling technique of [12].

Polynomial methods tend to be preferred for coastal applications as they are relatively easy to implement with good e
over complicated geometries with large variations in depth. The trend in these methods over the past several years h
include higher orders of polynomials and/or more equations in order to extend therange of applicability to larger relativ
water depths. The high-order Boussinesq method of Madsen, Bingham and Shäffer [13] for example, includes up to fi
derivatives and solves three equations at every computational point to extend the range of applicability tokh ≈ 25. The LPA
method achieves a similar accuracy using sixth-order polynomials and solving seven equations (r = 7) at every horizontal grid
point. These high-order methods involve a substantial increase in complexity relative to low-order Boussinesq meth
as [14], or [15] for example, making them more difficult to implement with O(N) effort (N the number of grid points on th
still water plane), and at least an order of magnitude more expensive.

This paper presents a method which is essentially of Boussinesq type but which includes a Generalized Hilbert tra
order to remove any limitation with respect to relative water depth. As the Hilbert transform is evaluated via the Fast
Transform (FFT), this also restricts the computational domain to be a rectangle with periodic (or wall) conditions. At th
chosen for numerical computations, (including up to sixth derivatives) the complexity of the method is comparable
high-order Boussinesq methods [13] or the LPA method [11] withr = 7. In contrast to other polynomial methods however, t
Fourier–Boussinesq method approximates the dispersion operator tanh(kh)/(kh) by a rational function ofkh rather thank2h2

(k = |k| the magnitude of the wavenumber andh the water depth), and can thus be made asymptotically correct in both
of kh. The Generalized Hilbert operator is then used to convert the odd powers to even powers suitable for evaluation
finite difference methods. This leads to approximations with small errors in dispersion for all 0� kh < ∞. Here we concentrat
on applications in one horizontal dimension, and combine the method with a free-surface perturbation procedure. In
a spectral evaluation of the Hilbert operator combined with high-order finite difference evaluation of all derivatives l
a relatively simple implementation of reasonable accuracy and O(N logN) computational effort (per time step). Applying th
method in two horizontal dimensions and/or avoiding the perturbation procedure is straightforward, but in either case an
iterative solver is required to retain the O(N logN) computational effort. For iterative solutions, it may also be advantageo
evaluate all derivatives spectrally.

The remainder of the paper is organized as follows. In Section 2 we review the exact potential flow problem,
free-surface perturbation scheme which reduces it to a sequence of linear Laplace problems on a fixed domain bo
the still water plane. Section 3 derives the Fourier–Boussinesq method for solving this Laplace problem, and derive
variants. Section 4 discusses two techniques for solving non-periodic problems on a periodic domain: relaxation zon
decomposition of the potential into periodic and non-periodic components. This includes the necessary extensions to [16
applying the technique on a variable depth. In Section 5, the practical performance of the model in one horizontal dim
demonstrated by comparison with analytic and experimental results using both a spectral and a finite-difference–FFT
We close with an application of engineering interest which highlights the need to consider a large range of bothk andh.

2. Formulation

We adopt a coordinate system with thez = 0 plane at the still water level and thez-axis positive upwards,x = (x, y) is a
horizontal vector. The flow is assumed to be irrotational, the fluid incompressible and inviscid, and surface tension is n
The fluid volumeV(x, z, t) is bounded by a free-surfacez = η(x, t) and by a bottomz = −h(x). Under the above assumption
the flow can be described by a scalar velocity potentialφ(x, z, t) which satisfies the following boundary-value problem

∇2φ + φzz = 0 in V, (1)

φz + ∇φ · ∇h = 0, z = −h, (2)

ηt + ∇φ̃ · ∇η − (1+ ∇η · ∇η)φ̃z = 0, (3)

φ̃t + 1

2
∇φ̃ · ∇φ̃ − 1

2
(1+ ∇η · ∇η)φ̃2

z + gη = 0. (4)
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Here,∇ = (∂/∂x, ∂/∂y), g is the gravitational acceleration, and partial derivatives are indicated when the independent variables
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(x, z, t) appear as subscripts. The free-surface boundary conditions are expressed in terms of the potential at the free-sur
φ̃ = φ(x, η(x, t), t) following [17]. Initial conditions onη andφ̃ must also be given.

It is convenient to adopt the perturbation/Taylor series procedure of Dommermuth and Yue [18] for satisfying th
surface boundary conditions, since this leads to a time-constantN × N linear system of equations which can be solved us
direct matrix methods. In this case, we approximate the potential by a truncated perturbation series in the nonlinearity p
ε = ka � 1, wherea is a measure of the wave amplitude. Thusφ = ∑M

m=1 φ(m), whereφ(m) = O(εm). The value ofφ(m) on
the free surface is then evaluated via a Taylor series expansion fromz = 0 giving

φ̃ =
M∑

m=1

M−m∑
n=0

ηn

n!
∂n

∂zn
φ̂(m), (5)

whereφ̂ = φ(x,0, t). Collecting terms at each order ofε provides an explicit sequence for evaluating the potentials:

φ̂(1) = φ̃, (6)

φ̂(m) = −
m−1∑
n=1

ηn

n!
∂n

∂zn
φ̂(m−n), m = 2,3, . . . ,M. (7)

Expressed in this form, the problem is reduced to computingφ̂
(m)
z from φ̂(m), after which furtherz-derivatives are taken b

applying the negative horizontal Laplacian to these two quantities. Finally thez-derivative of (5) is used to computẽφz, which
allows the free-surface conditions to be stepped forward, closing the problem.

This perturbation procedure implies an assumption of weak nonlinearity, but no restriction onkh. The practical limits of the
procedure, in combination with the Fourier–Boussinesq method, are considered in Sections 5.1.1 and 5.2.1 where th
is shown to converge for nonlinear waves of constant form up to approximately 80% of the stable limiting steepness fokh.
This limit is essentially the same as that reported by [18], and although they only considered deep water waves in this
we have found their method to behave in the same way as ours in shallow water. This is to be expected since our me
flat bottom, and with the free-surface perturbation scheme, is an approximation to theirs with tanh(kh) replaced by a rationa
approximation. We note that these resultsare not surprising in lightof recent work by Nicholls and Reitich [19–21] who ha
shown that such perturbation schemes (including that of [6]) suffer from cancellation and ill-conditioningwhich limit their
convergence for large perturbations.

We note that it is conceptually straightforward to avoid the perturbation procedure by considering bothφ̂z and φ̂ as un-
knowns, as illustrated in Section 3.1. In this case the calculationsof Section 5.1 suggest that even steeper waves can be tre
but this has not yet been verified.

3. The Fourier–Boussinesq method

As posed above, the problem is solved, given a means of computing the vertical component of velocity at the still wat
level from the potential at the same level. We derive here a Boussinesq method for this purpose which is asymptotical
in both limits of kh. All existing Boussinesq methods satisfy linear dispersion relations, in terms of non-dimensiona
celerityc2/(gh), which are a rational function of(kh)2. This makes them applicable to variable depth problems, since the
be expressed in terms of local differential operators. The exact linear dispersion relation is however transcendental,c2/(gh) =
tanh(kh)/(kh), and tends to 1/(kh) (an odd power ofkh) in deep water. Thus, existing Boussinesq methods diverge in
limit. In order to correct thekh → ∞ asymptotics, odd powers ofkh are introduced into the approximation, along with t
generalized (2D) Hilbert transform operatorH which provides a means of evaluating them in physical space. The gener
Hilbert operator is most conveniently expressed as

H∇φ = F−1{
kF{φ}}, (8)

whereF represents the standard 2D(x : k) Fourier transform andF−1 the inverse transform.

3.1. Solutions on a constant depth

Consider first the solution on a constant depth. The starting point for any Boussinesq method is a Taylor series exp
the velocity potential. Choosingz = 0 as the expansion point, and invoking the Laplace equation gives

φ(x, z, t) =
∞∑

n=0

(−1)n
(

z2n

2n! ∇
2nφ̂ + z2n+1

(2n + 1)!∇
2nŵ

)
, (9)
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whereŵ = φz(x,0, t). Inserting (9) into the bottom boundary condition (2) gives

tor with
g on
ing the

ven these

armonic
into
on for a

n

ilbert
rical oper-
a form

t
e is only
r,

e-surface
cos(h∇)ŵ + sin(h∇) · û = 0, (10)

whereû = ∇φ(x,0, t), and the sine and cosine Taylor series operators are defined by

sin(h∇) = h∇ − h3∇3

6
+ h5∇5

120
+ · · · ,

cos(h∇) = 1− h2∇2

2
+ h4∇4

24
+ · · · .

(11)

This compact notation is originally due to Rayleigh [22]. Truncating (11) and replacing the continuous gradient opera
a discrete one gives a Taylor Boussinesq method for computingŵ from û. Enhanced methods can be obtained by operatin
(10) with another differential operator which converts the Taylor coefficients into Padé coefficients, dramatically improv
performance. Shifting the expansion point down into the fluid as in [13] leads to even more accurate methods, but e
diverge eventually.

Embedded in (10) is the linear dispersion relation. To see this, note that it can be written

ŵ = − tan(h∇) · û (12)

with the tangent operator defined as the ratio of the operators in (11). In Fourier space (i.e. for a two-dimensional time-h
linear solution)∇ = ik, ŵ = (ω2/g)φ̂, and∇ · û = −k2φ̂, whereω is the radian wave frequency. Plugging these relations
(12) givesω2 = gk tanh(kh), the exact linear dispersion relation. Thus the most basic measure of accuracy in dispersi
Boussinesq method is how well it approximates the linear dispersion operator

c2

gh
= tanh(κ)

κ
, (13)

whereκ = kh has been introduced for brevity.
Having defined the generalized Hilbert operator as a way of evaluatingk in physical-space (as opposed to ik), we may now

investigate rational approximations to the linear dispersion operator including both even and odd powers ofκ . To illustrate,
consider the simplest example: the lowest order rational function ofκ which has the correct limiting behavior for bothκ → 0
(long wave limit) andκ → ∞ (short wave limit) is

c2

gh
≈ 1

1+ κ
. (14)

This approximate dispersion relation defines the lowest order Fourier–Boussinesq method. To express the method ix-space,
use (14) to approximate the tangent operator in (12), then associate iκ with h∇ andκ with hH∇. Thus

tan(h∇) = i tanh(κ) ≈ iκ

1+ κ
= h∇

1+ hH∇ , (15)

which gives

[1+ hH∇]ŵ = −h∇ · û (16)

as the equation to be solved for̂w. In this form, a fast numerical solution can only be obtained iteratively since the H
operator appears on the left-hand side of the equation, and it’s fast evaluation requires an explicit sequence of nume
ations (i.e. FFT{ŵ}, multiply by k, inverse FFT). It turns out that any Fourier–Boussinesq method can be expressed in
amenable to direct matrix methods bymultiplying both numerator and denominator by the denominator withκ replaced by−κ .
For example, (15) can be written i tanh(κ) ≈ iκ(1 − κ)/(1 − κ2) = h∇(1 − hH∇)/(1 + h2∇2), which removes the Hilber
operator from the left-hand side and allows for a direct solution to the linear system. Note however, that this exampl
included for illustration purposes as the corresponding numericalmethod is unstable due to the real root of the denominato
which must be avoided in practice.

Finally, we note that when an iterative solution is to be pursued it may be advantageous to dispense with the fre
perturbation procedure. This is most easily done by combining a truncated version of (9) applied atz = η with the Fourier–
Boussinesq approximation to (12). This system of equations is solved to getφ̂ andŵ, after which thez-derivative of (9) is used
to getw̃. For example, using the lowest order model we truncate (9) atn = 0 and combine it with (16) to get the system

φ̂ + ηŵ = φ̃,

h∇2φ̂ + [1+ hH∇]ŵ = 0,
(17)
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which when solved provides̃w from w̃ = ŵ − η∇2φ̂.
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This lowest order method is only of interest for very long or very short waves, of more interest are higher order app
tions which are developed in the following.

3.1.1. Padé based rational approximations
The idea behind the Fourier–Boussinesq method is to manipulate the rational approximation to the dispersion

(correct theκ → ∞ asymptotics) and obtain a good approximation for allκ . One way to do this is to find the Padé(m,n) ap-
proximation to the function tanh(κ) − 1 at the pointκ = 0. Adding one to the result and dividing byκ gives the correspondin
approximate dispersion operator. As long asm < n the correct asymptotics are obtained in both limits ofκ . Finally, by associ-
atingκ with hH∇ andκ2n with (−ih∇)2n (as illustrated above) a method inx-space is obtained. Two examples are obtai
by using Padé (1,4) and Padé (3,6) approximations in the above procedure to obtain

(15+ 9κ + 9κ2 + 4κ3 + κ4)ŵ = −(15+ 9κ + 4κ2 + κ3)h∇ · û, (18)

and

(1890+ 630κ + 945κ2 + 285κ3 + 75κ4 + 12κ5 + κ6)ŵ = −(1890+ 630κ + 315κ2 + 75κ3 + 12κ4 + κ5)h∇ · û (19)

respectively. We refer to these methods as Padé (3,4) and Padé (5,6) methods, due to the final form of the approximate
operator.

As discussed above, the equations in this form must be implemented iteratively. An iterative solution will be preferre
horizontal dimensions, and this work is in progress, but a direct implementation is more straightforward, and in one h
dimension it is more efficient. For these reasons we now consider alternatives to Padé approximation which lead t
different rational approximations, and can be designed for direct matrix methods. We will concentrate on the (5,6) for
method, as this represents a reasonable balance between overall accuracy and computational complexity.

3.1.2. Modified rational approximations
In the previous section we applied the Padé approximation in a special way which introduced odd powers into the

mation of tanh(κ)/κ , correcting theκ → ∞ asymptotics to give a good fit everywhere. Comparing (18) with a direct Padé
approximation of the dispersion operator, shows that we have sacrificed accuracy near the expansion point (κ = 0) to obtain a
better overall fit. This is a common theme in the practice of rational approximation, and a number of methods exist fo
an approximation based on some definition of goodness of fit over an interval rather than on an expansion about a particu
point. Economized rational approximations, rational interpolations, min-maxrational approximations, and least-squares fittin
are some widely used examples.

As an illustration of a more general approach, consider the rational approximationp(m)/q(n) ≈ f (κ), wherep andq are
polynomials inκ of degreem andn respectively. Choosing values form andn with m < n, along withm + n + 1 points inκ at
which to enforce the approximation, givesm + n + 1 equations for the unknown coefficients ofp andq. In our case we mus
restrict the form of the approximation slightly to ensure the correct asymptotics in both limits ofκ and take

tanhκ

κ
≈ 1+ a1κ + a2κ2 + a3κ3 + a4κ4 + a5κ5

1+ b1κ + b2κ2 + b3κ3 + b4κ4 + b5κ5 + a5κ6
. (20)

Collocating (20) at the Gauss points over the interval 0� κ � 6 for example, gives a modified version of (19) with the co
ficients labelled as “modified” in Table 1. The corresponding dispersion errors are shown in Fig. 1 which also inclu
errors due to the original Padé based coefficients. It is clear that accuracy has been further sacrificed nearκ = 0 to get much
improved overall accuracy. (In this case the maximum errors are of O(10−7) for 0 � κ � 1). Continuing in this vein, we se
b1 = b3 = b5 = 0 to obtain a method which is easy to implement using direct matrix methods. Solving for the remainin
ficients gives those labelled as “direct” in Table 1 and the corresponding errors shown in Fig. 1. In this case we have c
compute the coefficients based on a least-squares fitting strategy over 0� κ � 7, rather than using simple collocation, althou
the two give similar results.

Table 1
Modified and direct coefficients in (20) scaled by 1890 for comparison with (19). Corresponding dispersion errors are shown in Fig. 1

Modified Direct Modified Direct

a1 619.336 1.69577 b1 619.326 0
a2 344.442 182.429 b2 974.629 815.374
a3 87.3517 −0.218759 b3 292.925 0
a4 16.6195 0.946735 b4 91.2142 20.566
a5 3.08021 4.60818 b5 16.5 0
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Fig. 1. Relative error inc2/(gh) using the modified and Direct(5,6) coefficients of Table 1 in (20). Errors using (19) are also shown for refere
with label Padé.

3.2. Solutions on a sloping bottom

When a variation of the depth is retained in the bottom boundary condition, it takes the form

cos(h∇)ŵ + sin(h∇) · û + ∇h · [cos(h∇)û − sin(h∇)ŵ
] = 0. (21)

I.e. (9) inserted into (2), withh(x). For the case of variable depth, the derivation of the approximate equation is more inv
Modifying the sine and cosine operators from their original Taylor series form corresponds to operating on the equa
another differential operator. Since∇ andh(x) do not commute, this produces new terms involving∇h, (∇h)2,∇2h, etc. It is
common practice to neglect terms that are higher than O(∇h), which is a mild-slope approximation. In [23] all the terms whi
are linear in the derivatives ofh were retained to get an augmented mild-slope equation. These higher derivative terms
important role in Bragg resonance and in reflection, so it can be of interest to retain them. In the following sub-sections
two approaches to deriving the slope terms for a Boussinesq method. The first approach is to approximate the botto
by a sloping plane, and rotate the coordinate system in parallel with the bottom. The second approach is to Taylor e
bottom boundary condition about a flat bottom. By keeping the linear term in this expansion, all terms which are linear in t
derivatives ofh are retained, giving an augmented mild-slope approximation. This result can also be reduced to a m
approximation. Only the second approach leads to computationally attractive methods in this context, and the perfor
the resulting Direct(5,6) methodsis addressed in Section 5.2.

3.2.1. Coordinate transformation approach
Consider the operator

(h + z)∇b = (h + z)(∇ − ∇h∂z), (22)

where∇b is the O(∇h) approximation to the gradient along a surface parallel to the bottom, and∂z is the derivative in thez
direction. The operator∇b commutes withh + z, just as∇ commutes withh on a horizontal bottom. It is easily checked th
to order∇h, higher powers of this operator can be evaluated through[

(h + z)∇b

]n = (h + z)n∇n − n(∇h)(h + z)n∇n−1∂z. (23)

This expression can be used to write

cos
(
(h + z)∇b

) = cos
(
(h + z)∇) + (h + z)sin

(
(h + z)∇)

∂z, (24)

sin
(
(h + z)∇b

) = sin
(
(h + z)∇) − (h + z)cos

(
(h + z)∇)

∂z. (25)

In general, any polynomial of the formA in which the argument is replaced by(h + z)∇b , can be approximated by

A
(
(h + z)∇b

) = A
(
(h + z)∇) − (h + z)A′((h + z)∇)

∂z, (26)

whereA′ is the derivative ofA with respect to its argument. This expression also holds for operators that correspond
powers ofk, since they can be approximated by polynomials in∇2 and the Hilbert operator. For example

(h + z)3k3
b = (h + z)3k3 − (h + z)33k2H∇∂z. (27)
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cos (h + z)∇b (ŵ + ∇h · û) + sin (h + z)∇b · (û − ∇hŵ) = O ∇2h, (∇h)2 , (28)

which is valid at any levelz. This can be checked by direct calculation. It expresses the Boussinesq expansion in a co
system that is parallel to the bottom.

It is now sufficient to replaceh∇ in the expressions that were obtained in the even depth case by the operator(h + z)∇b ,
and use (23). Settingz = 0 gives

Bŵ + Aû = ∇h
(
A + A′h∇)

ŵ − (B + B ′h∇)û, (29)

whereA/B is a rational approximation to the tangent operator, and use was made of the relations∂zû = ∇ŵ and∂zŵ = −∇ · û.
To ensure that thêw operator is differential, the following operator is applied to (29)

B− − ∇h(A− + A′−h∇), (30)

whereA−(kh) = A(−kh). Note that the product of two operators can be expanded based on

hn∇n
(
hm∇m

) = hn+m∇n+m + h(∇h)nmhn+m−2∇n+m−2 + O
(
(∇h)2

)
. (31)

Thus, for two operators,G andF

G(h∇)F(h∇) = G ∗ F(h∇) + h(∇h)G′ ∗ F ′(h∇)∇ + O
(
(∇h)2

)
, (32)

whereG ∗ F is the product of the functionsG andF , andG′ andF ′ their derivatives. The resulting equation

BB−ŵ + AB−û = ∇h
(
B−A + A−B + (B−A′ + A′−B − B ′A′)h∇)

ŵ

− (
B−B − A−A + (B−B − AA′− + B ′B ′)h∇)

û (33)

has the appropriate form and is equivalent to (29) to order∇2h, (∇h)2.
This approach has a few drawbacks. One is that the shoaling performance depends on the accuracy of the approx

first and second derivatives of the dispersion relation with respect toκ . These are typically less accurate than the approxim
dispersion relation itself, so very high order methods are required. The final form with a purely differential implicit op
then doubles the order of the method. In addition, this approximation introduces errors which are O((∇h)2,∇2h), but have
large numerical coefficients. Thus the equations in this form are not especially well suited to practical implementation.

3.2.2. Perturbation approach
An alternative approach is to introduce a perturbation expansion in the depth deviationδ = (h − h0)/h0 from a local

reference depthh0, in the manner used by [23] to study the augmented mild-slope equation. This approach greatly si
the analysis, since∇ andh0 commute. By keeping only the linear term in the resulting expansion, all terms that are lin
the derivatives ofh are included.

We begin by expandinĝw as

ŵ = ŵ0 + ŵ1 + O
(
δ2)

, (34)

whereŵ0 is the solution to the equation

Bŵ0 + A · û = 0, (35)

andA/B represents an approximation to tan(h∇). Expanding the exact bottom condition (21) to O(δ), and operating on th
result with sec(h0∇), we get (cf. [23, Eq. (2.9)])

ŵ + tan(h0∇) · û = −sec(h0∇)h0∇ · (δ sec(h0∇)û
)
. (36)

Expanding (35) to O(δ) about the local reference depthh0 gives

B0ŵ0 + A0 · û + δB ′h0∇ŵ0 + δA′h0∇ · û = B0ŵ0 + A0 · û + δ(A′ − B ′B−1
0 A0)h0∇ · û = 0, (37)

whereB0 = B(h0∇) and A′,B ′ stands for the derivative of the operator with respect to its argument(h∇), and evaluated
at h0∇. Operating on this equation withB−1

0 gives

ŵ0 = −B−1
0 A0 · û − B−1

0 δ(A′ − B ′B−1
0 A0)h0∇ · û, (38)

and sinceB−1
0 A0 is the approximation we use for tan(h0∇), ŵ1 is given by

ŵ1 = ŵ − ŵ0 = −sec(h0∇)h0∇ · δ sec(h0∇)û + B−1
0 δ(A′ − B ′B−1

0 A0)h0∇ · û. (39)
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Fig. 2. Relative error in̂w introduced by using the Padé (4,6) approximation of the operator sec(h∇) in Eq. (39). Different curves are fo
different bottom slope wave numberK relative to the surface wave numberk whereK = ck, with a bottom variation magnitude 20% of th
local depth.

This is the augmented mild-slope Fourier–Boussinesq method.
To evaluate (39), we use the fact that an expression of the formF(h0∇)δf , whereF is an operator andf a function, can be

evaluated through

F(h0∇)δf = F(h0∇)
h

h0
f − h

h0
F(h0∇)f. (40)

The model is thus non-local,δ is used in the derivation but drops from the final equations. The result is an approxim
to the augmented mild-slope equation including all terms which are linear in the derivatives ofh. For implementation, an
approximation to the sec(h0∇) operator is required. Since this function decays asκ increases, a Padé(m,n) approximation
with m < n is appropriate. For the Direct(5,6) method, we use a Padé (4,6) approximation

sech(κ) ≈ 1− κ2/39+ 17κ4/65520

1+ 37κ2/78+ 1907κ4/65520+ 59κ6/131040
, (41)

which involves only derivatives (no Hilbert transform). The relative errors in the totalŵ introduced by this approximation ar
shown in Fig. 2. To evaluate the error we have assumed a bottom variation of the formδ = d cosKx with d = 0.2 (a very large
value) and chosen several values ofK relative to the surface wave numberk.

Eq. (39) can also be conveniently reduced to a mild-slope approximation. Ignoring higher derivative terms simply
thatF(h0∇)δf = ∇hF ′(h0∇)f + O(∇2h), in which case (39) reduces to

ŵ1 = ∇h · [−sec2(h0∇)
(
1+ tan(h0∇)h0∇) + (

B−1
0

)′
(A′ − B ′B−1

0 A0)h0∇
]
û. (42)

Since this operator is a smooth function which decays exponentially with increasingκ , it is convenient to approximate it b
another operator of(2m,2n) form with m < n, which involves only derivatives. Thus, for the Direct(5,6) method we write

ŵ1 ≈ −∇h · 1+ α2h
2∇2 + α4h4∇4

1+ β2h2∇2 + β4h
4∇4 + β6h6∇6

û (43)

and make a least squares fit between the two operators over 0� κ � 6. This gives the coefficients in Table 2 and the ove
relative error for̂w (taking∇h = 1) shown in Fig. 3.

We note that the approach outlined here is valid for any rational approximation to the dispersion operator, and is by n
restricted to Fourier–Boussinesq methods.

4. Lateral boundary conditions

Introducing the FFT requires periodic (or symmetric) boundary conditions at the lateral boundaries. Thetypical method of
overcoming this limitation is to successively increase the size of the computational domain until the effect of the bou
becomes negligible, e.g. [18]. Here we discuss two other approaches for solving non-periodic problems on a periodi
tational domain: relaxation zones, and a decomposition of thesolution into periodic and non-periodic components. These tw
techniques, may be used alone or in combination.
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Table 2
Coefficients appearing in (43), which approximates (42) for the Direct(5,6)
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method, to give the errors shown in Fig. 3

α2 −1.762× 10−1 β2 −1.320
α4 −7.759× 10−3 β4 6.433× 10−1

β6 −2.141× 10−1

Fig. 3. Relative error in̂w introduced by approximating the mild-slope correction operator of (42) by the purely differential operator of (4
with the coefficients of Table 2. Shown here for∇h = 1.

4.1. Relaxation zones

When a computational boundary coincides with a physical boundary a physical boundary condition can be applied, bu
to simulate an unbounded physical domain we require anartificial boundary condition. Weakly-reflecting artificial bounda
conditions have been the subject of considerable attention over the past 30 years or more, and the topic is reviewed
for example. The particular form of artificial boundary condition we apply here is to relax the numerical solution towards
specified analytic solution over a region near the boundary, an idea which isoften applied in ocean circulation modelling (s
e.g. [26] who modified the idea proposed by [27]). Such arelaxation zonefor simultaneous generation and absorption of wa
is readily achieved by simply defining a relaxation coefficient 0� cr (x) � 1, and an exact desired solution(ηe, φe). After each
stage of the time integration the solution within the relaxation zone is then redefined to be

η(x, t) = [
1− cr (x)

]
η(x, t) + cr (x)ηe(x, t),

φ(x, t) = [
1− cr (x)

]
φ(x, t) + cr (x)φe(x, t).

(44)

Experience has shown that a good choice of coefficient iscr (σ ) = (1 − 3/5σ)8 whereσ is a scaled coordinate perpendicu
to the boundary withσ = 0 the boundary andσ = 1 the end of the relaxation zone. The technique is very effective,
demonstrated by Fig. 4. This shows the steady-state envelope of a calculation using a linear traveling wave as th
solution in a relaxation zone of one wavelength at the left end of the domain. The right hand boundary is a fully-reflect
and the result is a perfect traveling wave at the wave maker, which blends smoothly into a perfect standing wave outs
relaxation zone. If waves of very different lengths need to be absorbed, it is best to combine this technique with a decom
of the potential which allows non-periodic conditions (e.g. a time-dependent flux) to be applied at the boundaries, as is dis
in the next section.

4.2. Splitting the potential into periodic and non-periodic components

This section describes a method for introducing general conditions at the lateral boundariesof the computational domain
It is an extension to the method of [16] to include a mild-slope bottom. The computational domainV is enclosed within a
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Fig. 4. Demonstration of simultaneous wave generation and absorption from a relaxation zone. A linear incident wave is specified at th
hand boundary using a relaxation zone of one wavelength. The right hand boundary is a wall. The steady-state result is a perfect traveling wa
at the wave-maker, and a perfect standing wave outside of the relaxation zone.

set of control surfaces which are taken to be the vertical planes atx = 0, x = lx, y = 0, andy = ly . On these control surface
boundary conditions of the following form are applied

un =
N3∑
j=1

cj Uj , (45)

whereN3 is the total number of degrees of freedom distributed over the control surface,un is the velocity normal to eac
control surface, and theUj are functions of time and of the horizontal coordinate. TheUj can be chosen to represent a wa
maker/absorber or a matching to another computational domain. In generalUj may have a vertical structure, which can
included in the solution. However, in many applications there is no interest in resolving this structure, which is ess
responsible for evanescent modes that decay exponentially away from the boundary. For simplicity, we demonstrate th
for Uj that are independent ofz.

The velocity potential is decomposed into a sum of two potentials,

φ = φ1 + φ2 (46)

φ2 =
N3∑
j=1

cj φ2j . (47)

The potentialsφ2j are chosen to satisfy the Laplace equation and thebottom boundary conditions (1) and (2); and a se
modal distributions of normal velocity on the control surfaces. It is convenient to takeφ2 to be quadratic inz, corresponding
to “steady” flow fields, in which case the resultant horizontal velocity is independent ofz. As an example, takeφ21 to be the
solution for the two dimensional flow withu = 0 onx = 0, y = 0, andy = ly; but u = U at x = lx . This is simply a corner
flow, and the solution is(

∇φ21,
∂φ21

∂z

)
= U

lx

(
x − 2(z + h)hx,0,−(z + h + xhx)

)
. (48)

This flow satisfies the Laplace equation only at the leading order, with an error which is O(∇2h, (∇h)2). On an even bottom
∇h vanishes and the form given by [16] is recovered. Similar solutions can be used for the remainingφ2j corresponding to
constant flows through the other three vertical control boundaries. IfU has spatial structure over the control surface (or if
wish to have a solution which is accurate to any order in the bottom slope),φ2 can be pre-solved for a full basis set of late
boundary conditions, producing a set of time-independent response functions (or a single such function) which may then be
used in the solution, at each time step.

Having chosen the appropriate form of (45) to ensure the generation and/or absorption of waves for example, the oth
the potential,φ1, represents (mathematically) a flow in a closed basin. The complete potentialφ = φ1 + φ2 must finally satisfy
the remaining boundary conditionson the free-surface, (3). Thus we proceed as follows: Givenφ̃ andη, φ2 is determined from
the lateral boundary condition (45) using the pre-solved steady flows. This givesφ̃1 from which φ̃1z is computed using one o
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appearing in the free-surface boundaryconditions, which are finally marched in time to get the new values ofφ andη.

5. Calculations

The linear dispersion and shoaling properties of the method were established in Section 3, here we provide n
calculations which establish the nonlinear properties. Calculations are made using the Direct(5,6) method in the two
which appear in Section 3.2.2. First, we consider spectral solutions for waves of constant form and compare the
Boussinesq approximation with the exact equations. From this we find that the method, when combined with a five-ter
series expansion fromz = 0 to z = η, achieves high accuracy for waves very near the stable limiting steepness at anyκ . When
the free-surface perturbation scheme is adopted however (allowing direct matrix methods to be used) the model is
break down at approximately 80% of the limiting steepness for allκ . Next, a finite-difference–FFT implementation is discus
for treating more general problems. This code is applied to several test cases including: linear shoaling over a smooth be
Bragg reflection from a rippled bottom; harmonic generation by waves passing over a submerged bar; and nonlinear
of an irregular wave spectrum from deep to shallow water.

5.1. A spectral solution for highly nonlinear steady waves on a flat bottom

As shown by [28], steady solutions to the exact Laplace problem right up to the steepest wave, can be compu
great accuracy using a spectral method based on the stream function. Here we apply the same technique to solve the Four
Boussinesq Direct(5,6) approximation, and compare to the exact equations. In order to treat the very long wave
expansion in terms of Jacobian elliptic functions would be more rapidly convergent as shown by [29], but we avoid app
this limit here.

Boussinesq approximations typically begin with a Taylor expansion of the velocity potential however, in two-dime
we may just as well use the stream function. Using the notation of Taylor operators, an analogous expression to (9) i
of reference moving at the wave celerityc is

ψ(x, z, t) = ū(h + z) + cos(z∇)ψ̂ + sin(z∇)

∇ û, (49)

whereψ̂ = ψ(x,0) (and in two-dimensions∇ is just∂/∂x). Thus, all surface quantities can be expressed in terms of thez = 0
quantities through

ψ̃ = ū(h + η) + cos(η∇)ψ̂ + sin(η∇)

∇ û,

ũ = ū + cos(η∇)û + sin(η∇)ŵ, w̃ = −sin(η∇)û + cos(η∇)ŵ,

(50)

while û andŵ are related via the bottom boundary condition (12).
To get a numerical solution, the sine and cosine operators in (50) are truncated, while the tangent operator in (12) is repla

by a rational approximation. We note that Truncation of the Taylor operators at orderM is similar to usingM steps in the
explicit free-surface perturbation procedure, but performs better for very steep waves as discussed in Section 5.1.1. Nψ̂ , û,
andŵ are expanded in Fourier series as

ψ̂ =
n∑

j=1

Cj

jk
cos(jkx), û =

n∑
j=1

Bj cos(jkx), ŵ =
n∑

j=1

Cj sin(jkx). (51)

This reduces the bottom condition to an algebraic relationship between the coefficients:Cj = tanh(jkh)Bj , where the hyper
bolic tangent is replaced by the appropriaterational approximation. Using (50), (12), and (51) in the free-surface condition
at n + 1 equally spaced points from wave crest to wave trough gives 2n + 2 equations. These equations, together with
kinematic constraints are then solved using Newton’s method, as in [28].

Table 3 and Fig. 5 show the wave conditions chosen for calculation, along with a rational fit (Eq. (32) from [30])
experimental data of Williams [31], which provides a convenient reference for the steepest stable wave. (For the theo
highest stable wave, see e.g. [32–35].) Notethat each test condition represents a waveof something closeto 90% of the limiting
steepness (H,L, andh are the wave height, wave length, and water depth respectively.) In all cases except forκ = 0.2, n = 24
modes was enough to ensure thatBn/B1 � 10−9 for both the exact and the approximate equations. For the extreme sh
water case withκ = 0.2 (practically a solitary wave) more modes were required andn = 40 gaveBn/B1 ≈ 10−5 which was
judged to be sufficiently accurate. As noted by [28] and others, very steep waves require sub-steps in wave height in
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Table 3
Steady nonlinear wave conditions chosen for comparison between spectral solutions of the Fourier–BoussinesqDirect(5,6) and the exact equa-
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κ 0.2 0.5 1 2 3 5 10 20 25 30 40 50 100

H/L 0.02 0.045 0.09 0.11 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
H/h 0.65 0.565 0.565 0.36 0.26 0.16 0.08 0.04 0.033 0.027 0.02 0.016 0.008

Fig. 5. Test matrix from Table 3 relative to empirical data for the steepest stable wave.

avoid multiply peaked solutions. This is especially true in very shallow water where the extremely narrow peak requir
modes for accurate resolution. Fig. 6 plots the errors in nonlinear dispersion (wave celerity), integrated surface pro
integrated surface velocity; as functions ofκ for these highly nonlinear waves. The Taylor operators in (50) are truncat
M = 5 for these calculations and the error metrics used are

ec = ce − c

ce , eη = 2

HL

( L∫
0

(ηe − η)2 dx

)1/2

,

eu = 2

ũe
maxL

( L∫
0

(ũe − ũ)2 dx

)1/2

, ew = 2

w̃e
maxL

( L∫
0

(w̃e − w̃)2 dx

)1/2

,

(52)

where the superscript e indicates the computed value using the exact equations.
These calculations represent the ideal behavior of a general numerical solution to the method in implicit form,

Direct(5,6) approximation combined with a five-term truncated Taylor series expansion and solved iteratively, as ill
in Section 3.1. In this case we find that the fully dispersive behavior of the method carries over to steady highly n
waves on a flat bottom; with errors of the same order of magnitude, and following the same trend as was found f
quantities.

5.1.1. Limitations associated with the free-surface perturbation procedure
In order to apply direct methods for solving the discrete linear system of equations obtained from the model, we re

truncated Taylor series expansion of (50) with the free-surface perturbation procedure of (5), (6), and (7). To invest
limitations associated with solving in this manner, we consider the steady wave solutions discussed above using the
procedure:

(1) The spectral solution to the exact equations is used to given equally spaced values ofη and φ̃ from wave crest to wave
trough. This giveŝφ(1) from (6).

(2) ∂nφ̂(1)/∂zn is computed spectrally by the operationF−1{kn tanh(κ)F{φ̂(1)}} for n odd andF−1{knF{φ̂(1)}} for n even.
Using tanh(κ) here represents the original method of [18], while the Direct(5,6) method is obtained by replacing t(κ)

with (20) and the coefficients of (19).
(3) φ̂(2) is computed from (7).
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Fig. 6. Errors in nonlinear dispersion, and integrated surface profile and velocity computed using spectral solutions of the Fourier–Boussine
Direct(5,6) and the exact equations. See (52) for definition of the error metrics.

(a) (b)

Fig. 7. Two examples of convergence withM for the relative error iñw using the Direct(5,6) method combined with the perturbation proce
of (5)–(7) for nonlinear steady waves approaching the stable limit. (a)κ = 100,εl = H/L = 0.14, (b)κ = 0.2, εl = H/h = 0.75.H,L, andh

are wave height, wave length, and water depth.

(4) Steps 2 and 3 are repeated to compute the remainingφ̂(m), m = 3,4, . . . ,M , and theirz-derivatives.
(5) w̃ is computed from thez-derivative of (5).

Fig. 7 shows two examples of the convergence of the scheme at several values of wave steepness approaching
limit for a deep water (κ = 100) and a shallow water (κ = 0.2) case. In both cases we see that the scheme begins to d
for increasingM at a steepness of approximately 80% of the stable limit. This trend is observed for all the values ofκ repre-
sented in Table 3. For these examples we have usedn = 64 andn = 128 respectively, and while increasing the resolution a
improves the saturation accuracy of the calculations for conditions below the convergence limit, it does not change the tre
that conditions above this limit diverge.

These calculations show that a general numerical solution of the method in direct form is still fully-dispersive, but sugges
that it will break down for waves higher than approximately 80% of the stable limiting steepness. This conclusion is co
by the calculations of Section 5.2.1. We note that even though it might be inferred from Fig. 7 that simply fixingM = 4 or
5 would allow even steeper waves to be treated, we find in practice that the solution quickly becomes unstable f
significantly above this limit.

5.2. A finite-difference–FFT solution for variable depth problems

In order to treat more general problems, a finite-difference–FFT solution of the Fourier–Boussinesq Direct(5,6) me
the two variants derived in Section 3.2.2, was developed. The two variants are: the augmented mild-slope form of (
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and (39); and the mild-slope version of this form where (39) is replaced by (43) and the coefficients of Table 2. We provide here
ription of

th
ire stencil
boundary
nts in a

tion,
ed

ations,

ach
fference
s. The

s at the
antageous
rizontal
ency
this occurs

is thus

ems

y, periodic
of
iscussed
two
vels freely
ched. The
e overall
ated error
n to be

e
that value

n this

nverge to
rms
use
an outline of the solution procedure, and present calculations in one horizontal dimension, while a more detailed desc
the numerical issues involved and calculations in two horizontal dimensions will appear in future publications.

The solution is computed on an evenly spaced grid of points at the still water level. Continuous derivatives up to the six
are replaced by centered finite-difference schemes using at least seven points. All derivatives make use of the ent
producing more accuracy for lower derivatives than higher ones, which we have found to be advantageous. No-flux
conditions corresponding to a wall are applied at the horizontal boundaries by reflecting the finite-difference coefficie
symmetric way forη andŵ and an anti-symmetric way for̂u. Non-periodic conditions, and/or wave generation and absorp
are implemented using the methods discussed in Section 4. The time integration of the free-surface conditions is perform
using the fifth-order Cash–Karp–Runge–Kutta method which provides an estimate of the error.

In mild-slope form, the continuous derivatives appearing in (35) and (43) are replaced by finite difference approxim
and the equations are enforced at the grid points to obtain the two sparse linear systems of equations

B0ŵ0 = A01û + A02H∇û, (53)

B1ŵ1 = A11û. (54)

Having solved for̂w0 andŵ1, the total vertical velocity iŝw = ŵ0 + ŵ1. These linear systems must be solved once at e
level of nonlinearity in the free-surface perturbation procedure, during every stage of the time integration. The finite-di
matricesB0, A01, A02, B1, andA11 are banded in one horizontal dimension and sparse in two horizontal dimension
number of non-zero elements in each of these matrices is approximately the stencil size timesN . The Hilbert transformH∇
is evaluated using two fast sine transforms (either one or two dimensional) which is appropriate for wall condition
horizontal boundaries. Since the matrices are time-independent, and in one horizontal dimension banded, it is adv
to factorB0 andB1 once and for all, and then back-substitute for subsequent solutions. For large problems in two ho
dimensions however, it may be faster to solve using an iterative technique. The scheme is generally stable, but high-frequ
oscillations do tend to appear near the peaks of very steep waves, especially near discontinuities in the depth. When
we apply Savitsky–Golay smoothing at the finite-difference stencil size. The solution effort in one horizontal dimension
of the orderMN logN for every stage of the time integration forM steps in nonlinearity.

In augmented mild-slope form, we writêw1 = ŵ11 + ŵ12 where

ŵ11 = sec(h∇)∇(
δ sec(h∇)∇φ̂

)
, ŵ12 = B−1

0 (δB ′∇ŵ0 + δA′∇ · û). (55)

Discretizing the Padé (4,6) approximation of sec(h∇) in (41), and applying the relation in (40) means solving six linear syst
instead of two at each solution step.

5.2.1. Steep periodic waves of constant form
The calculations in Section 5.1.1 suggest that the Direct(5,6) method discussed above should be able to treat stead

nonlinear waves up to approximately 80% of the stable limiting steepness, for anyκ . This section summarizes a series
calculations which confirm that this is the case in practice. For this test case we use the semi-analytic solutions d
in Section 5.1 as initial and boundary conditions for the numerical model. The wave is generated in a relaxation zone
wavelengths long at one end of the domain and absorbed by another of the same length at the other end. The wave tra
in the domain for five wavelengths, and each simulation is run for ten wave periods after a steady state has been rea
final free-surface profile in the free part of the domain is then compared to the analytic result to get a measure of th
error due to all sources for realistic applications of the model. The results are summarized in Table 4, where the integr
eη is defined in (52), withηe the computed value from stream-function theory. In each case the wavelength was chose
one, so thatL = 5, whileH andh were varied to produce the conditions shown in the table,M = 4 terms were included in th
free-surface perturbation scheme. Each case is at approximately 80% of the limiting steepness for a stable wave at
of κ . For all cases other thanκ = 0.2, 32 points per wavelength and 100 points per wave period were used. Theκ = 0.2 case,
being essentially a solitary wave ofH/h = 0.57, required 128 points per wavelength and 800 points per period to obtai
level of accuracy. Calculations consistently broke down for waves significantly steeper than 80% of the maximum.

5.2.2. Linear shoaling
We next consider the linear shoaling properties of the model, and verify that the two variants discussed above, co

the same result when reflection and higher derivatives ofh are negligible. (When solving linear problems the nonlinear te
in the free-surfaceboundary condition are switched off andM = 1 is used in the free-surface perturbation procedure.) We
an infinitely smooth bathymetry defined by

h(x) = h0 − h0 − h1

2

[
1+ tanh

(
sin(πx/l)

1− (2x/l)2

)]
, − l

2
� x � l

2
; (56)



H.B. Bingham, Y. Agnon / European Journal of Mechanics B/Fluids 24 (2005) 255–274 269

Table 4
Steady nonlinear wave conditions used to evaluate the practical errors incurred
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by the Fourier–Boussinesq Direct(5,6) method. The erroreη is defined in (52)

κ 0.2 1 2π 100

H/L 0.018 0.075 0.11 0.11
H/h 0.566 0.47 0.11 0.0069
Error eη 0.045 0.04 0.045 0.03

Fig. 8. Amplitude envelope of a linear wave shoaling up a smooth beach. Calculations using the Direct(5,6) method in the augmented mild-s
form of (39), and the mild-slope form of (43).

with h0 = 5, h1 = 0.05, andl = 256 (see Fig. 8). This giveshx � 0.04, with each higher derivative an order of magnitu
smaller than the previous. A linear wave ofL = 10 is generated at the left end of the domain and allowed to propagate
a steady state has been reached everywhere. This produces relative conditions from deep to shallow water, corresponding
0.07 � kh � π , or approximately a factor of 50 change in the local value ofkh. A relaxation zone at the left end of th
computational domain generates the wave, while one at the right end absorbs it, ensuring minimal reflection from that b
The time and space discretizations are refined until convergence to approximately three significant digits is reached using e
variant of the method. Fig. 8 shows the amplitude envelope of the convergedsteady-state time signals, along with that predicted
by energy conservation,

a(x)

a0
=

(
k(x)(1+ 2k0h0/sinh(2k0h0))

k0(1+ 2k(x)h(x)/sinh(2k(x)h(x)))

)1/2
. (57)

The two variants are seen to converge to the analytic value when higher derivatives ofh and reflection are negligible.

5.2.3. Bragg reflection
As an example where the form of the variable bottom term does matter, we next consider Bragg reflection from a s

bottom ripple patch. The conditions of [36] are used, in order to compare with these experiments. The bottom is de
h + d sin(kbx);−l0 � x � l0, andh elsewhere, whereh andd are constants. The bottom slope iskbd = 0.31 andl0/lb = 10
(kb = 2π/lb). The incident wave is at the linear resonance condition ofk = kb/2 with a wave steepness ofkH/2 = 0.05. The
time and space discretizations, as well as the nonlinearityM are refined until convergence to approximately 3 significant di
is reached for the steady-state elevation using each variant of the Direct(5,6) method. For this mildly nonlinear casM = 2
was sufficient. The local reflection coefficient is then extracted from these time-series using the method of [37] as e
by [4]. The results appear in Fig. 9 for the two cases ofd/h = 0.14 andd/h = 0.1, along with the experimental measureme
of [36]. The linear perturbation solution of [38] is also included with the mild-slope calculations. The importance of the
derivative terms is quite clear from these figures.

Fig. 10 shows the reflection coefficient computed at a number of points near the linearized resonance condition of 2k/kb = 1,
using a wave steepness ofkH/2= 0.05 and a bottom ripple steepness ofkbd = 0.16. We note that these results are very sim
to those obtained by [4] using a high-order spectral method, and they show the characteristic down-shift of the reson
relative to the linear value which is also observed in the experiments.
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Fig. 9. Bragg reflection from a sinusoidal bottom ripple patch over−5lb < x < 5lb with kH/2= 0.05, andkbd = 0.31. Calculations using th
Direct(5,6) method in the augmented mild-slope form of (39), and the mild-slope form of (42). Symbols are the measurements of [36].
linear perturbation theory of [38] is also shown with the mild-slope results.

Fig. 10. Bragg reflection coefficient near the linearized resonance condition 2k/kb = 1, for kH/2= 0.05, kbd = 0.16. Calculations using th
Direct(5,6) method in augmented mild-slope form (39), are compared tothe measurements of [36], and thelinear perturbation theory of [38].

5.2.4. Harmonic generation over a submerged bar
This example considers the transformation of a mildly-nonlinear, monochromatic wave as it travels up and over a su

bar. As the wave shoals up the front face of the bar it steepens dramatically, accumulating higher harmonics which ar
on the downslope producing an irregular pattern behind the bar. This phenomenon is often used as a strenuous te
nonlinear models of surface wave propagation on a variable bottom. Many authors have considered the problem, bo
mentally (e.g. [39] and [40,41]), and numerically (e.g. [42,43], and [9]). The geometry of the experiment can be found
and is usually scaled by a factor of two, to make it equivalent to [39].

Fig. 11 compares a portion of the time series at four of the experimental measurement points. The left column s
long wave (T = 2.01 s) case, and the right column the short wave (T = 1.01 s) case. Computations for both cases have b
made on both a coarse and a fine grid to ensure convergence. The coarse grid used 1025 grid points over 0� x � 30, and 2001
time steps for 0� t/T � 50; while the fine grid used twice as many points in both time and space.M = 4 steps in nonlinearity
were taken in both cases. Additional runs were also made usingM = 6, and twice as many time steps, producing insignific
changes to the results. Only the fine grid results are shown in the figures as the coarse grid calculations are indistingu
this scale. The comparison is reasonably good, and similar to results obtained using other fully (or highly) dispersive m

5.2.5. Shoaling irregular waves – an engineering application
We close with an example of an engineering application for which this method is particularly well suited: the determ

prediction of wave climate in the near shore region given generic deep water conditions offshore. This is a tool wh
interest to engineers involved in building coastal wind-power plants for example. Such installations are often put



H.B. Bingham, Y. Agnon / European Journal of Mechanics B/Fluids 24 (2005) 255–274 271

the
],

(which is

deep
sis
8 which
ously

dels.
of a

The

MHz
nd of the
4 where
Fig. 11. Time series of measured and computed surface elevations atfour positions for waves passing over a bar. The solid line shows
calculations and the points are the measurements. Left: long wave case from [40],T = 2.01 s,a = 0.02 m. Right: short wave case from [41
T = 1.01 s,a = 0.0405 m.

depths of around 10 m in countries which border the North Sea. Fig. 12 shows the square root of the spectral density
proportional to wave height) for a typical North Sea JONSWAP spectrum plotted against cyclic frequencyf . The peak period
is Tp = 12 s and the significant wave heightHs = 7.5 m. If the peak wave of this spectrum is placed at the approximate
water limit of kh = π , then the offshore water depth should beh0 = 120 m. To include all short wave energy in the analy
with wave heights larger than 5% of the peak wave height, we get a short wave cut-off frequency of approximately 0.2
corresponds tokmaxh0 = 37 at the offshore limit of the domain. This simple example illustrates the need to simultane
consider both a large variation inh and large variation ink and represents a difficult challenge for most nonlinear wave mo

The spectrum discussed above was used to generate a pseudo-random time series as boundary conditions at the left end
7 km long domain where the depth decreases fromh0 = 120 m toh1 = 10 m at an average slope of around 2% using (56).
simulation was run for approximately 55 minutes of real time corresponding to 215 time steps atdt = 0.1 s withN = 211 grid
points over the domain andM = 3 steps in nonlinearity. This required approximately 18 minutes of CPU time on a 2.26
Pentium IV machine. Fig. 13 shows a snapshot of the free-surface during a particularly large event near the shallow e
domain, along with the bottom bathymetry. An expanded view of the large wave near the shallow end is shown in Fig. 1
we can observe its highly nonlinear and asymmetrical features.
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s
Fig. 12. A typical North Sea JONSWAP spectrum withTp = 12 s andHs = 7.5 m, indicating the range ofkh required to shoal these wave
from deep to shallow water.

Fig. 13. A snapshot of the free-surface elevation along withthe bottom bathymetry for the nonlinear shoaling calculation.

Fig. 14. Expanded view of Fig. 13 around the large shallow water event.
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The next step will be to validate such calculations against experimental measurements, after which we intend to use them to
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help predict the wave loading on near-shore structures.
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