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It has been demonstrated numerically that there are two real solutions of the 
dispersion relation of fifth order Stokes waves given by Skjelbreia and 
Hendrickson (Fifth order gravity wave theory, Proc. 7th Coastal Engng Co& 
The Hague, 1960, pp. 184-196) which is widely used and recommended in 
offshore codes of practice. The additional solution predicts a triple crested wave 
and it always seems to coexist with the conventionally accepted solution. Some 
properties of this solution are given. 

INTRODUCTION 

The dispersion of a fifth order Stokes wave is governed 
by two coupled nonlinear equations in two variables, 
namely the wavelength (L) and the amplitude parameter 

(a). These arel,*: 

h (4 4 = a + P2a3B33 + P)@35 + B5,) 

-H/2=0 

f2(L, a) = L,(P + P3a2C, + P5u4C2) 

x tanh,Bd-2r=O 

(la) 

(lb) 

Wave 

1. 

d 

30 

T 

7.72 

Table 1. Typical waves with results 

H d R L a Ref. 

18.6667 0.0156 0.0097 250.0902a 7.4994a 1, 2 
478.9518*a 7.5334*a 
24 1 .0070b 7.5603b 
395.0810*b 13.8372*b 

2. 107 16.30 45 0.0125 0.00526 948.7933a 19.748a 4t 
1962-2000*a 22.5032*a 
933.3915b 19.8114b 

1487.7230*b 44.0268*b 

3. 107 16.30 70 0.0125 0.008 18 1083.0704a 26.26a 4t 
1666.8256*a 25.1016*a 
993.7100b 26.9239b 

1462.0100*b 43.81 l*b 

4. 36 15.00 11 O-005 0.0015 550.6992a 
840.1729*a 
521.1700b 
656.9810*b 

Tolerance for both L and a is l.OE - 05. All calculations are in single precision and therefore tolerance should not be smaller than 
the value used. Lower tolerances are possible by changing the code to double precision mode. 
Dimensions of d, H, L and a are in ft. T in seconds. Value of g used is 32.2 ft/s*. 
*Roots for triple crested wave. 
tSee Figs 4.19 and 4.20. 
aTheory of Ref. 1, bCorrection to theory of Ref. 1 as per Ref. 5. 
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Table 2. Progress of iteration for wave 1 

Step L a fiGa) fib% a) 

I. 
1 
2 
3 
4 
5 

II. 
1 
2 
3 
4 
5 
6 

III. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

IV. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0~30000000E + 03 0~90000000E + 0 1 0.41386580E + 01 0.11768480E + 00 
0.22466266E + 03 0~82176971E+Ol 0.10105621E +Ol 0.13474387E + 01 
0.24913908E + 03 0.75167871E+Ol @19797657E - 01 0.39182104E - 01 
0~25009428E + 03 0.74993067E + 01 -0e14867897E - 03 -0.18461708E - 03 
0.25009023E + 03 0.74994164E + 01 0.16474404E - 06 0.27733114E - 06 

04OOOOOOOE + 03 0~90OOOOOOE+01 0.45504274E + 01 0~11730301E +Ol 
0.48975275E + 03 0.75094042E + 0 1 -0.74037480E + 00 0.22888534E + 00 
0.48631381E+03 0.74709845E + 01 -044006577E + 00 0.41744698E - 01 
0.47926929E + 03 0.75311723E+Ol -0.18799199E - 01 0.28942653E - 02 
0.47895404E + 03 0.75333772E + 01 -0.13210154E - 03 0.19282403E - 04 
0.47895181E+03 0.75333934E + 01 0.31340882E - 04 0.17237437E - 06 

0~8OOOOO00E + 03 0~15000000E+02 -0.11547495E + 05 0.45950992E + 03 
0.89264557E + 03 0.97570829E + 01 -0.29330955E + 04 0.12294261E + 03 
O.l1514143E+O4 0*61505713E+Ol -0_19731820E+O4 0~49751232E + 02 
O.l1911885E+04 0.48916378E + 01 -0.78974774E + 03 0.19589855E + 02 
0.12237657E + 04 0.38882191E + 01 -0.29602289E + 03 0.53997388E + 01 
0.10898373E + 04 0.38933456E + 01 -0~11571520Ef03 O.l3454098E+Ol 
0.93 136792E + 03 0~43877244E + 0 1 -0~59594875E + 02 0.54406816E+OO 
0.80764349E + 03 0.49890189E + 01 -0.3 5749664E + 02 0.45 165846E + 00 
0.69722882E + 03 0.56787181E + 01 -0.19951878E+02 0.38832307E + 00 
0.61415405E +03 0.63212147E + 01 -0.10794580E + 02 0.34084073E + 00 
0.54938562E + 03 0.68927603E + 01 -0.4967OOOOE + 01 0.24989213E + 00 
0.50766107E + 03 0.72810454E+Ol -0.18344603E + 01 0.13969357E + 00 
0.48582925E + 03 0.74770756E + 01 -0.41231838E + 00 0*43770008E - 01 
0.47951111Ef03 0.75290976E + 01 -0.32856513E - 01 0.42042434E - 02 
0.47895660E + 03 0.75333557E + 01 -0.28262264E - 03 0.35991929E - 04 
0.47895178E + 03 0.75333929E + 01 0.31198568E - 04 0.98639714E - 06 

0~30000000E + 03 0~12000000E + 02 0.13795814E + 02 0*47116175E+Ol 
0.69234967E + 03 0.77340479E + 01 -0.11030473E + 03 0.13742968E + 02 
0.69241577E + 03 0.66458740E + 01 -@46244450E + 02 0.51208296E+Ol 
064510583E + 03 0.62828703E + 01 -@17105137E+02 0*11893206E+Ol 
0.56727777E + 03 0.67567921E + 01 -@66301684E + 01 0.3668785 1 E + 00 
0.52190472E + 03 0*71515555E+Ol -0.28551941E+Ol 0.193 14869E + 00 
0.49142126E + 03 Oe74290094E + 0 1 -0.76141453E + 00 0.74126817E - 01 
0.4806906 1 E + 03 0.75197163E + 01 -0.10253778E + 00 O-12332404E - 01 
0.47899042E + 03 0.75331049E+Ol -0.22780236E - 02 0.30782892E - 03 
0.47895166E + 03 0.75333953E + 01 0.10088090E - 04 0.25 180550E - 05 

(Step 1 in each case gives trial values of L and a) 

where 

Lo = gT2/(2n); ,fl = 2r/L 

and the coefficients B33, BJ5, Bs5, Cl and C2 are functions 
of p whose forms are given in Ref. 1. In the above, H is 
the crest to trough height, d is the water depth, T is the 
wave period and g is the acceleration due to gravity. 

Solution of eqn (la,b), given d, H and T, will yield the 
unknowns L and a, both of which are required to 
calculate any quantity of interest, e.g. wave profile, 
kinematics, etc. A computer program to compute the 
roots of eqn (1) by the Newton-Raphson iterative 
algorithm is described in Ref. 2. 

A survey of the literature on fifth order Stokes waves 
reveals that this theory has found widespread use in 
engineering applications, its domain [in d/gT2 (or 2) 
-H/gT’ (or I!?) plane] of applicability is well studied, its 

experimental verification extensive and its peculiarities 
outside the domain of application as well as near its 
boundary underscored. 

However, no fundamental mathematical analysis of 
this theory seems to exist and the question of the 
existence of the solution as well as its uniqueness remains 
unanswered. This is particularly in contrast to the case 
of linear wave theory, where all these questions are fully 
answered. An attempt to answer the question of the 
existence of the solution was made in Ref. 3, albeit 
numerically. It was claimed that the region in the d-B 
plane bounded by the line indicating the breaking wave 
limit and the axes can be partitioned into three 
subregions, say (a), (b) and (c) such that in region (a) 
the solution yields a smooth wave profile, in region (b) 
the solution yields wave profiles with bumps and in 
region (c) either no solution exists or the profile is triple 
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Fig. 1. Wave profiles for waves l-4 [Q in ft, 8 in degrees; profiles 1 and 2 correspond to (L,, al) and (L2, a2) respectively]. 

crested. Nothing however was said about the uniqueness 
of the solution. In this paper, we numerically demon- 
strate that eqn (1) has two real solutions in its entire 
domain of applicability and the additional solution is 
always a triple crested wave. The regions (a), (b) and (c) 
of Ref. 3 (also see Ref. 4) are reviewed and some 
weaknesses pointed out. 

RESULTS AND DISCUSSION 

To obtain the roots L and a of eqn (l), we have used the 
program given in Ref. 2. For specific illustration we 
consider four waves as shown in Table 1. Waves 1 and 3 
belong to region (b), wave 2 to region (a) and wave 4 to 
region (c). We have obtained two sets of real roots for 
each of these cases which are shown in Table 1. For 
convenience we designate them as (Lt , al) and (t2, a*) 
where the latter set is the one which is not considered in 

the literature. To illustrate the convergence of the 

Newton-Raphson iteration scheme we choose wave 1 
and reproduce the progress of iteration with various 
starting points especially for (Lz, az) in Table 2. It is 
amply clear from this table that convergence for this set 
of roots is authentic. Similar convergence was obtained 
for all other cases. Using both the sets of roots, we 
computed the wave profiles (phase angle 8 vs surface 
elevation 9) and horizontal particle velocities (u) under 
the wave crest vs water depth (s) for all cases by using 
the expressions of Ref. 1 and these are shown in Figs 1 
and 2 respectively. It can be seen that (L2,a2) gives a 
triple crested wave in each case and in all cases L1 < Lx. 
Wave 1, despite being in region (b), does not show any 
bump, which may be because it is very close to the 
boundary of region (b). Wave 4, well within region (c), 
contrary to the claim in Ref. 3, has both solutions, i.e. 
the usual one as well as a triple crested profile. The plots 
of Fig. 2 show that (Ll, al) always gives a larger velocity 
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Fig. 2. Horizontal water particle velocities under wave crest (0 = 0) over water depth for waves l-4 [S in ft and u in ft/s, curves 1 
and 2 correspond to (L1, al) and (L2, u2) respectively]. 

at seabed and a smaller velocity at a certain height above 
seabed as compared to (L2, a*) and in the latter case u 

may even change sign over depth. To find how the roots 
vary with d, we plotted both sets of roots for a constant 
value of R. This is shown in Fig. 3. It can be observed 
that whereas both Lt and L2 increase with decreasing d, 
an increase in al with decreasing d is associated with a 
decrease in a2. The significance of the second solution of 
the dispersion relation is certainly not clear. Contrary to 
belief, a solution with bumps or triple crested profile 
does not indicate that the theory is being used outside 
the domain of applicability, since this second solution 
stands on its own right everywhere and at least the 
wavelengths it predicts are certainly not unbelievable. 
We found no case where both these solutions do not 
coexist. 

At this stage, it should be mentioned that Fenton5 has 
developed a new theory of fifth order Stokes waves using 

one parameter expansion instead of two (L and a) as in 
Ref. 1. In this work, the theory of Ref. 1 was shown to 
be ‘wrong in fifth order’ and traced it to a wrong 
coefficient (2592 instead of the correct value of -2592) 
in the expression for C2 (see Ref. 1). However, it is not 
clear that if this change is made the theory becomes 
‘correct in fifth order’. The results of this correction on 
the four example waves considered are shown in Table 2 
and Fig. 4. From these results it is clear that the change 
in the regular solution (both wavelength and kinematics) 
is moderate whereas the change in the triple crested 
solution is so drastic that the results are plainly 
untenable. 

In another trail of investigation of gravity waves, 
based on Hamiltonian theory, non-uniqueness of wave 
form had been demonstrated by Chen & Saffman6; 
their stability and symmetry breaking bifurcation had 
been studied by Saffman,’ Zufiria & Saffman’ and the 
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Fig. 3(a). Plot of L/d vs d/gT2 for a constant H/gT2. (b). Plot of a/d vs d/gT2 for a constant 

existence of nonsymmetric waves proved by Zufiria.g How 
these results can be reconciled with the theories of Refs 1 
and 5 is not apparent, and yet multiple solutions or non- 
uniqueness seem possible as borne out by these works. 

Finally the correction to this theory pointed out in 
Ref. 5 seems crucial. The offshore codes of practice (e.g. 
Ref. lo), while recommending its use does not mention 

H/gT2. 

situation that the this correction, thereby creating a 
triple crested solution may inadvertently be chosen 
in cases where wavelength and amplitude parameters 
are not too different from the regular solution. In any 
case, it seems that the theory of Ref. 5 should be 
recommended in codes of practice and the significance 
of the triple crested solution should be established. 



68 

60 

\ 

40 

SK Bhattacharyya 

L 
b 

0 50 100 150 200 

0 

0 50 100 150 200 
0 

Fig. 4. Effect of correction on wave profiles of example wave 3 
(a: without correction, b: with correction). 
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