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In the present study, the effect of shear current on the propagation of flexural gravity waves is analyzed

under the assumptions of linearized shallow-water theory. Explicit expressions for the reflection and

transmission coefficients associated with flexural gravity wave scattering by a step discontinuity in both

water depth and current speed are derived. Further, trapping and scattering of flexural gravity waves by

a jet-like shear current with a top-hat profile are examined and certain limiting conditions for the waves

to exist are derived. The effects of change in water depth, current speed, incident wavelength and the

angle of incidence on the group and phase velocities as well as on the reflection and transmission

characteristics are analyzed through different numerical results.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Wave–current interaction is an important branch of study in
the fields of coastal and offshore engineering and is a common
feature in most of the marine environments. There are various
reasons such as wind, tidal, thermal, and coriolis effects that
generate ocean currents. As a result, wave–current interaction
problems are very complex in nature and it is very difficult to
analyze and derive physical insight from direct computational
results. However, significant physical insight about the wave–
current interaction can be obtained from simpler problems
associated with long waves in shallow water even under the
assumptions of linearized theory.

The influence of various types of currents on ocean wave
propagation has been observed by navigators for a long time (see
Isaacs, 1948). The significant effects of current are observed in the
channel entrances to estuaries and bays, where ebb and flood
currents can increase the wave height and the wave steepness
causing severe damage to navigation. These are examples of shear
current with jet-like profile, which are appreciable only over a
finite region. For example, the mean discharge velocity of the
Connecticut River at ebb tide can be 0:5 m s�1 at the mouth where
the depth is of the order of 2 m. The resulting jet is roughly 100 m
wide and 20 km long. At the mouth of the Ishikari River
in Hokaido Japan, the depth is roughly 5 m and width 500 m;
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the river jet has a mean discharge velocity as high as 1 m s�1

extending several kilometers offshore (Mei and Lo, 1984). Another
interesting phenomenon is the effect of current discontinuities in
open water due to short wave breaking (see Isaacs, 1948).

Peregrine (1976) gave a comprehensive study on the interac-
tion of water waves and currents. He discussed in detail the
reasons behind the generation of currents in oceans and the
effects of different kinds of currents on the propagation of ocean
waves. Jonsson and Wang (1980) studied the surface gravity wave
refraction by large scale currents over a gently sloping sea bed.
Thomas (1981) predicted the wavelength and particle velocities
under the waves by analyzing the linear wave–current interaction
both experimentally and numerically. Peregrine and Jonsson
(1983) presented an overview of wave–current interaction,
including a comprehensive review of the literature available.
Craik (1985) described the interaction between free surface
gravity waves and a slowly varying, depth independent, horizontal
current in water of variable depth. Hedges (1987) reviewed the
progress on wave–current interaction and analyzed the effect of
current on wavelength, wave periodicity, water particle kine-
matics, subsurface pressure, wave height, wave refraction and
wave spectra. He gave an account of the situations when the
complex interaction between the waves and currents was to be
taken into consideration by engineers. Baddour and Song (1990)
analyzed the interaction of current-free plane free surface waves
of fixed frequency and a uniform wave-free current normal to the
wave crest. They studied the wave height, wavelength and water
depth after the interaction by using numerical methods to solve a
system of nonlinear equations. Hartnack (2000) investigated the
propagation of small amplitude water waves in a medium with
steady uniform current and analyzed the physical phenomena
of change in wavelength and wave amplitude, as well as the
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Fig. 2. Schematic diagram for the case of wave scattering and trapping by parallel

depth/current discontinuities.
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conservation of mass, momentum and energy. On the other hand,
Mei and Lo (1984) analyzed in detail the effects of jet-like currents
on the propagation of shallow-water gravity waves in a homo-
geneous sea by analyzing the trapping and scattering of waves by
a top-hat current profile. In this study, it was assumed that the
current is steady and parallel and its horizontal velocity
components vary only transversely. Kirby (1986) corrected the
edge condition used by Mei and Lo (1984) and subsequently the
results of Mei and Lo (1984). It may be noted that most of these
studies are limited to wave interaction with surface gravity waves.

Flexural gravity waves are generated due to the interaction of
free surface gravity waves with large floating flexible structures.
This finds its application in the field of Ocean Engineering, where
very large floating offshore structures are constructed for various
human activities (see Chen et al., 2006; Watanabe et al., 2004),
such as floating airports or floating wave energy extraction
devices. These structures are assumed to be flexible in nature.
On the other hand, in the cold regions of Arctic and Antarctic, vast
ocean surface remains covered by a thin sheet of floating ice,
which is also modeled as a floating elastic plate. There has been
very little progress on the analysis of the effect of current on
flexural gravity waves. Davys et al. (1985) studied the flexural
gravity waves due to a steadily moving source on a floating ice
sheet. Schulkes et al. (1987) investigated the effect of uniform
flow beneath an ice sheet on the waves generated due to a steadily
moving source. They analyzed different cases and obtained
various critical aspects of the problem for both short and long
waves. Recently, Squire (2007) reviewed the recent progress on
the analysis of wave interaction with a floating ice sheet.
Bhattacharjee and Sahoo (2007) considered the flexural gravity
wave interaction with uniform currents in two dimensions in
water of both finite and infinite depths. Further, Bhattacharjee and
Sahoo (2008) analyzed the generation of flexural gravity waves
due to initial disturbance in the presence of uniform current.

In the present study, the effect of a shear current profile on the
propagation of flexural gravity waves is analyzed under the
assumptions of linearized shallow-water theory. The boundary
value problem is formulated in the three-dimensional Cartesian
coordinate system and the floating ice sheet is modeled under
the assumptions of the Euler–Bernoulli thin plate equation. The
scattering of flexural gravity waves by a jet-like shear current
(as shown in Fig. 1) is investigated and explicit expressions
for the reflection and transmission coefficients are derived. The
phenomenon of wave trapping by a jet-like shear current with a
top-hat profile (as shown in Fig. 2) is analyzed and conditions for
wave trapping are derived in specific cases. The energy relation
involving the reflection and transmission coefficients for the case
of wave scattering by a step discontinuity in both water depth and
shear current speed is obtained by the application of conservation
of energy flux and the continuity of the vertical deflection of the
ice sheet. The group and phase velocities of flexural gravity waves
V1 V2

Region 1 Region 2

x

y

θ
η incident

Fig. 1. Schematic diagram for the case of wave scattering by a depth/current

discontinuity.
in shallow water in the presence of shear current are presented in
brief. Numerical results are analyzed to understand the effects of
change in current speed, incident wavelength, water depth and
the incident wave angle on the behavior of flexural gravity wave
propagation in the presence of a shear current.
2. The general boundary value problem

In the present section, a linearized shallow-water equation for
flexural gravity waves is formulated in the presence of a shear
current. In the three-dimensional Cartesian coordinate system,
the x–y plane is considered as the horizontal plane and z-axis is
vertically downward positive. The fluid is assumed to be inviscid
and incompressible, and the motion is irrotational. The shear
current is assumed to be steady and always parallel to the y-axis.
The upper surface of the fluid �1ox; yo1, z ¼ 0 is covered by
an infinite thin elastic plate of small thickness d, which is assumed
to be an ice sheet in the present study unless otherwise specified.
It may be noted that in linear shallow-water theory, the vertical
velocity component is a linear function of distance above the
bottom. Thus, the equation of continuity in the presence of a shear
current with velocity ð0;VÞ yields (see Mei and Lo, 1984 with h and
V as constants)

h
@2F
@x2
þ
@2F
@y2

 !
¼
@Z
@t
þ V

@Z
@y

, (1)

where Zðx; y; tÞ is the free surface displacement, Fðx; y; tÞ is the
velocity potential, h is the water depth, and V is a constant. On the
other hand, the Euler–Bernoulli thin plate equation yields

rid
@2Z
@t2
¼ �EI

@2Z
@x2
þ
@2Z
@y2

 !2

� P, (2)

where I ¼ d3=12ð1� n2Þ, E is Young’s modulus, n is Poisson’s ratio,
ri is the mass per unit area of the ice sheet, and P is the
hydrodynamic pressure exerted on the structure. In the presence
of a constant shear current ð0;VÞ, the hydrodynamic pressure P is
obtained from the linearized Bernoulli’s equation as given by

P ¼ �r @F
@t
þ V

@F
@y

� �
þ rgZ, (3)

where r is the density of water and g the acceleration due to
gravity. Eliminating P and F from Eqs. (1) to (3) yields (similar to
Bhattacharjee and Sahoo, 2007)
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Eq. (4) is a 6th order partial differential equation in Z and
represents the linearized long wave equation for flexural gravity
waves in the presence of a shear current under the assumptions of
shallow-water theory. The above Eq. (4) can be expressed in terms
of the velocity potential F, which is similar to Eq. (4) with Z
replaced by F. We assume that the motion is simple harmonic in
time with angular frequency o and a monochromatic wave
is obliquely incident making an angle y with the x-axis. Thus,
the vertical deflection Zðx; y; tÞ can be expressed as Zðx; y; tÞ ¼
RefzðxÞe�iby�iotg, where b is the y-component of the wave number.
Hence, the long wave equation (4) will reduce to the form given by

EI
@2

@x2
� b2

 !3

zþ ðrg � ri do2Þ
@2

@x2
� b2

 !
z

¼ �
r
h
ðoþ bVÞ2z. (5)

Sturova (2001) used an equation describing the normal buckling
of an elastic plate similar to Eq. (5), with V ¼ 0. Next, the phase
and group velocities of plane progressive flexural gravity waves in
the presence of a shear current flow are discussed in brief.
3. Phase and group velocity

In the present section, the group and phase velocities of
flexural gravity waves are analyzed to understand the effect of a
shear current profile on the propagation of obliquely incident
flexural gravity waves. Assuming that the motion is harmonic in
time and in y-direction, the velocity potential F will be of the
form Fðx; y; tÞ ¼ ReffðxÞe�iby�iotg. Thus, the linearized long wave
equation (4) can be re-expressed in terms of the velocity potential
f as given by

EI
@2

@x2
� b2

 !3

fþ ðrg � ri do2Þ
@2

@x2
� b2

 !
f

¼ �
r
h
ðoþ bVÞ2f. (6)

A progressive wave solution for f of the form fðxÞ ¼ e�iax yields

EIk6
þ ðrg � ri do2Þk2

¼
r
h
ðoþ bVÞ2, (7)

where k2
¼ a2 þ b2, with b ¼ k sin y, y is the angle made by the

progressive wave with the positive x-axis. Eq. (7) is the linearized
shallow-water dispersion relation for flexural gravity wave in the
presence of a shear current. Analyzing the dispersion relation (7),
the general expression for the group velocity cg in the presence of
a shear current is obtained as

cg ¼ ncr � V siny; n ¼
3EIk4

þ rg þ ri dokV sin y� ri do2

EIk4
þ rg þ ri dokV siny

, (8)

where cr ¼ c þ V sin y, c ¼ o=k is the absolute phase velocity and
cr is the relative phase velocity. In the absence of current (i.e.
V ¼ 0), the above relation reduces to

cg ¼ ncr ; n ¼
3EIk4

þ rg � ri do2

EIk4
þ rg

. (9)

On the other hand, if the thickness of the ice sheet is sufficiently
small compared to the wavelength, i.e. for ri do2=rg! 0, cg is
given by Eq. (8) with

n ¼
3EIk4

þ rg

EIk4
þ rg

. (10)

In the present study, hereafter the term involving ri do2=rg is
neglected assuming the thickness of the ice sheet is sufficiently
small compared to the wavelength, which is very common in the
hydroelastic analysis of very large floating structures (Schulkes
et al., 1987).
4. Wave scattering due to change in depth and current

In the present section, scattering of flexural gravity waves due
to an abrupt change in water depth and current speed from region
1 (xo0) to region 2 (x40) is analyzed under the assumptions of
linearized shallow-water theory as shown in Fig. 1. The abrupt
change in the current speed can be interpreted as a thin vortex
sheets at the interface with the assumption that the flow is
irrotational in the adjoining regions with uniform current. The
asymptotic forms of the wave profiles in the two regions are
described as

zðxÞ�
eia1x þ Re�ia1x; xo0;

Teia2x; x40;

(
(11)

where R and T are the unknowns associated with the amplitudes
of the reflected and transmitted waves, respectively, and for a
given b, aj, j ¼ 1;2 is the positive real root of the dispersion
relation (7) that represents the progressive wave mode. It may be
noted that �aj is also a solution of Eq. (7). Further, apart from the
two real roots, Eq. (7) has in general four complex roots that
represent the decaying (evanescent) modes. In the present study
of wave scattering, only the progressive wave solutions are
considered. The amplitude of the incident wave is taken as one
for numerical convenience. We assume an abrupt jump in the
water depth and current speed from h1, V1 in region 1 to h2, V2 in
region 2. The continuity of vertical deflection of the floating ice
sheet at the point of discontinuity at x ¼ 0 yields

1þ R ¼ T . (12)

On the other hand, conservation of energy flux yields

E

s ðcg þ V sinyÞ ¼ constant, (13)

where s ¼ oþ kV sin y is the relative wave frequency, E ¼
H2
ðEIk4

þ rgÞ=8 is the total wave energy for flexural gravity waves
with H as the wave height (i.e. twice the wave amplitude). It may
be noted that the total energy in case of flexural gravity waves
is the combination of kinetic, potential and surface energy.
The surface energy is generated here due to the presence of the
floating ice sheet. Substituting s and E in (13), the energy relation
involving R and T is obtained as

1� R2
¼ gT2; g ¼

ðEIk4
2 þ rgÞðcg2 þ V2 sin yÞs1

ðEIk4
1 þ rgÞðcg1 þ V1 sin yÞs2

, (14)

where the subscripts 1 and 2 denote the values of the parameters
in the respective regions. Solving the two Eqs. (12) and (14), the
reflection and transmission coefficients R and T are obtained as

R ¼
1� g
1þ g

; T ¼
2

1þ g
. (15)
5. Wave trapping

In this section, the conditions for existence of trapped modes of
flexural gravity waves in the presence of a jet-like shear current
with a top-hat profile (Mei and Lo, 1984) are studied. The entire
fluid domain is divided into two regions, namely region 1 (jxj4a)
and region 2 (jxjoa) as shown in Fig. 2. It is assumed that
the current is in the positive y-direction and the distribution is
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of the form

VðxÞ ¼
V ¼ constant40; jxjoa;

0; jxj4a:

(
(16)

Hence, the linearized shallow-water equation (5) for flexural
gravity wave yields

D
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z ¼ 0;

jxjoa;

(17)

where D ¼ EI=rgb2, K ¼ o=b
ffiffiffiffiffiffi
gh

p
, F2
¼ V2=gh and G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Db6

q
.

Thus, varying the physical parameters o and b, different types of
physical problems of flexural gravity waves can be modeled. The
waves will be trapped if there exists, at a given frequency, a
propagating wave-like solution in the region jxjoa, accompanied
by a solution that decays exponentially toward the far field in the
region jxj4a. Hence, in the case of trapped modes inside the top-
hat current profile, the vertical deflection zðxÞ is given by

zðxÞ�
Aea1ðxþaÞ; xo� a;

Beia2x
þ Ce�ia2x; jxjoa;

De�a1ðx�aÞ; x4a;

8><
>: (18)

where A, B, C and D are the unknown constants associated with
the wave amplitudes. From Eqs. (17) and (18), it is easily derived
that the wave number a1 satisfies the equation

Da6
1 � 3b2Da4

1 þ 3b4Dþ
1

b2

 !
a2

1 þ K2
� G2

¼ 0, (19)

whereas a2 satisfies

Da6
2 þ 3b2Da4

2 þ 3b4Dþ
1

b2

 !
a2

2 � fðK þ FÞ2 � G2
g ¼ 0. (20)

Eq. (19) will have a real root if

KoG. (21)

On the other hand, Eq. (20) will have a real root if

G� FoK . (22)

The inequalities in Eqs. (21) and (22) provide the conditions for
flexural gravity wave trapping in a region having a jet-like current
with top-hat profile. The vertical deflection z of the ice sheet is
assumed to be continuous at the interface x ¼ �a, which yields

zjx¼�a� ¼ zjx¼�aþ . (23)

Eq. (23) provides two equations with four unknowns A, B, C and D.
Thus, we need two more conditions, which can be derived from
the shallow-water equation (5). The linearized shallow-water
equation for flexural gravity waves can be written in the form

dj
@6

@x6
� 3b2dj

@4

@x4
þ ð3b4dj þ mjÞ

@2

@x2
þ f1� ðb4dj þ mjÞb

2
g

" #
z ¼ 0,

j ¼ 1;2, (24)

where m1 ¼ gh=o2, m2 ¼ gh=ðoþ bVÞ2, d1 ¼ EIh=ro2 and d2 ¼

EIh=rðoþ bVÞ2. Integrating Eq. (24) between x ¼ �a� � and x ¼

�aþ � where �! 0 and assuming the continuity of shear force,
bending moment, slope of deflection and the deflection of the ice
sheet at x ¼ �a, it can be derived that

d2
@5z
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����
x¼a�
¼ d1

@5z
@x5

����
x¼aþ

; d1
@5z
@x5

����
x¼�a�

¼ d2
@5z
@x5

����
x¼�aþ

. (25)
Eq. (25) provides a higher order edge condition for flexural gravity
waves and accounts for the higher order term present in the
shallow-water equation due to the floating ice sheet.

Using the continuity of the deflection of the ice sheet at x ¼ �a

as in Eq. (23) along with the two edge conditions in Eq. (25) at
x ¼ �a, from Eq. (18), a homogeneous system of four equations
is obtained in terms of A, B, C and D. For a non-trivial solution
of the system of homogeneous equations, an eigenvalue condition
is obtained as given by

tan 2a2a ¼ tan 2d, (26)

with d ¼ tan�1fd1a5
1g=fd2a5

2g. From Eq. (26), it is easily derived that

d ¼
np
2
þ a2a for n ¼ 0;1;2; . . . . (27)

Thus, from Eqs. (26) and (27), the condition for trapped modes is
obtained as

d1a5
1

d2a5
2

¼
tana2a in case n is even;

� cota2a in case n is odd:

(
(28)

6. Wave scattering by top-hat current

In this section, scattering of flexural gravity waves by a top-hat
current profile is analyzed under the shallow-water approxima-
tion. The form of the jet-like shear current with a top-hat profile is
the same as described in Eq. (16) and shown in Fig. 2. In the case
of wave scattering, it is required to have propagating wave-like
solutions everywhere in the domain of consideration. Eq. (17) will
have a wave-like solution of the form

zðxÞ�
eia1ðxþaÞ þ Re�ia1ðxþaÞ; xo� a;

Aeia2x
þ Be�ia2x; jxjoa;

Teia1ðx�aÞ; x4a;

8><
>: (29)

provided

K24G2 in region 1;

ðK þ FÞ24G2 in region 2:
(30)

In the present study, the length of the intermediate region is
assumed to be large in comparison to the incident wavelength.
Thus, the decaying modes do not affect the wave motion inside
the shear current region and only progressive waves are
considered. It may be further observed that for b40, the incident
angle y lies in 0oyo90�, where y ¼ sin�1

ðb=kÞ, and hence the
waves will be propagating against the current. On the other hand,
for bo0, y lies in �90�oyo0 and the waves will be propagating
along with the current provided Ko� G. Further, for bo0 the
condition for region 2 in Eq. (30) is modified to the form given by

Ko� G� F. (31)

The regions for wave trapping and scattering due to a top-hat
current are shown in Fig. 3 for clarity. Next, the flexural gravity
wave scattering by a top-hat current will be analyzed by
determining the unknown constants R and T . Using the
continuity of the deflection of the ice sheet at x ¼ �a as in
Eq. (23) along with the edge conditions at x ¼ �a as in Eq. (25),
the constants R and T associated with the reflected and
transmitted wave amplitudes are obtained as

R ¼
�ð1� b2

Þ½e�2ia2a � e2ia2a�

ð1þ bÞ2e�2ia2a � ð1� bÞ2e2ia2a
,

T ¼
4b

ð1þ bÞ2e�2ia2a � ð1� bÞ2e2ia2a
, (32)

where b ¼ a5
1ðoþ bVÞ2=a5

2o2. The explicit expressions for the
square of the reflection and transmission coefficients jRj and jTj
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Fig. 3. Regions of flexural gravity wave trapping and scattering.

Fig. 4. Wave number k versus wave frequency o for various values of water depth

h with y ¼ 45� , d ¼ 0:1 m, E ¼ 5 GPa and V ¼ 2 m s�1.
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are given by

jRj2 ¼
ð1� b2

Þ
2 sin2

ð2a2aÞ

4b2
þ ð1� b2

Þ
2 sin2

ð2a2aÞ
,

jTj2 ¼
4b2

4b2
þ ð1� b2

Þ
2 sin2

ð2a2aÞ
. (33)

It is evident from the expressions in Eq. (33) that jRj exhibits a
periodic behavior with the scatter parameter a2a, and is equal to
zero when b ¼ 1 or when 2a2a ¼ np. Further, it can be observed
from Eq. (33) that the reflection and transmission coefficients jRj
and jTj satisfy

jRj2 þ jTj2 ¼ 1. (34)

The above relation can also be derived from the conservation of
energy flux and is termed the energy relation. This energy relation
provides a numerical check for the computed results for reflection
and transmission coefficients.
Fig. 5. Wave number k versus wave frequency o for various values of current

speed V with y ¼ 45� , d ¼ 0:1 m, E ¼ 5 GPa and h ¼ 2 m.
7. Numerical results and discussion

In this section, simple numerical computations are performed
to study the effects of jet-like current, water depth, thickness of
the ice sheet and rigidity of the ice sheet on the propagation
of flexural gravity waves. The results and discussions are based on
the evaluation of reflection coefficient, transmission coefficient,
phase velocity and group velocity. The numerical values of the
physical parameters which are fixed throughout the computation
are r ¼ 1025 kg m�3, ri ¼ 922:5 kg m�3, n ¼ 0:3 and g ¼ 9:8 m s�2.

7.1. Wave number, phase and group velocity

In Fig. 4, the variation of flexural gravity wave number k versus
wave frequency o is plotted for various values of water depth h in
the presence of a jet-like current. It is observed that the wave
number increases with increasing wave frequency for all water
depths. Further, the wave number k decreases with increase in the
values of water depth h, which is evident also from the shallow-
water dispersion relation as in Eq. (7). This in turn shows that the
phase velocity c increases with an increase in the water depth h.

Fig. 5 shows the variation of flexural gravity wave number k

versus wave frequency o for various values of a jet-like current
speed V . It is observed that the wave number k increases with
increasing wave frequency o for all values of current speed V .
Further, it may be noted that k increases with increasing current
speed for V40. However, k decreases for opposing current, i.e., for
Vo0. These observations suggest that the phase velocity c

decreases with an increase in positive current speed.
In Fig. 6, the variation of flexural gravity wave number k versus

wave frequency o is plotted for various values of the plate
thickness d in the presence of a jet-like current. As in Figs. 4 and 5,
in this case also, the wave number k increases with wave
frequency o for all values of plate thickness d. On the other
hand, the wave number k decreases and hence the phase velocity c

increases with increase in the values of plate thickness d. Further,
the variation in the values of the wave number k with increasing
wave frequency o is comparatively small for plate thickness
d � 0:5 m.

In Figs. 7(a) and (b), respectively, phase and group velocities c

and cg versus wave number k are plotted for various values of
water depth h for shallow-water flexural gravity waves in the
presence of a jet-like current. It is observed that as h increases, c

also increases steadily. On the other hand, up to a particular value
of the wave number, cg increases with increasing h and then starts
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decreasing. Finally, cg again increases with increasing h. It is
further observed that both c and cg increase with increasing wave
number. In addition, cg4c, i.e. for flexural gravity waves the wave
energy moves faster than the individual waves.

In Figs. 8(a) and (b), respectively, c and cg versus k are plotted
for different values of the current speed V . It is observed that as V

increases, the phase velocity c decreases. This is due to the fact
that in case of positive incident angle, the waves are propagating
opposite to the current direction for V40 whereas waves
propagate along with the current when Vo0. The group velocity
cg decreases with increase in V up to a certain wave number, and
beyond that cg starts increasing with increase in V .

Figs. 9(a) and (b), respectively, show the variation of c and cg

versus k for various values of incident angle y. It may be noted
that c decreases with increase in y and the decrease is more
evident for smaller values of k. On the other hand, cg decreases
with increase in y for smaller values of k and as k increases,
Fig. 6. Wave number k versus wave frequency o for various values of plate

thickness d with y ¼ 45� , E ¼ 5 GPa, V ¼ 2 m s�1 and h ¼ 2 m.

Fig. 7. (a) Phase velocity c and (b) group velocity cg versus wave number k for vario
cg increases with an increase in y. Further, it is observed that
cg4c for a particular wave number which indicates that the
propagation speed of an individual wave is smaller than the rate
at which the wave energy propagates.
7.2. Wave scattering due to change in depth and current

In this subsection, the flexural gravity wave scattering due to
an abrupt change in the water depth and current speed is
analyzed by studying the reflection coefficient characteristics.

Fig. 10 shows the variation of the reflection coefficient jRj
versus wave frequency o for various values of ice thickness d.
The reflection coefficient jRj initially increases with increasing o
and attains a maximum. Then, it starts decreasing with o. It is
further observed that the maximum values of jRj are attained at
lower frequencies as d increases. In addition, after attaining the
maximum, the rate of decrease in jRj reduces as d decreases.

In Fig. 11, jRj is plotted versus o for different values of the
water depth h1 with h2 ¼ 2 m and V1 ¼ V2 ¼ 5 m s�1. The figure
shows that, at very low frequencies, initially jRj decreases with
increasing o and attains a minimum value. After attaining the
minimum, jRj rises sharply to attain a maximum and then
decreases slowly with frequency. It may also be noted that as h1

decreases, the minimum values of jRj are attained at a lower wave
frequency. Further, jRj decreases with decrease in the water depth
h1.

Fig. 12 shows the variation of jRj versus o for various values of
y. It is observed that for smaller values of y, jRj attains zero
minimums, whilst jRj attains maximums for higher values of y.
Further, the wave reflection increases with increase in the angle of
incidence.

Fig. 13 shows the variation of jRj versus o for various values of
current speed V2 with V1 ¼ 2 m s�1 and h1 ¼ h2 ¼ 10 m. It is
observed that jRj increases with increase in o and attains a
maximum. After attaining the maximum, jRj starts decreasing.
Further, jRj increases with increase in positive current speed.
A similar observation is made when the magnitude of the negative
current speed increases.
us values of water depth h with y ¼ 45� , d ¼ 0:1 m, E ¼ 5 GPa and V ¼ 2 m s�1.
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Fig. 8. (a) Phase velocity c and (b) group velocity cg versus wave number k for various values of current speed V with y ¼ 45� , d ¼ 0:1 m, E ¼ 5 GPa and h ¼ 10 m.

Fig. 9. (a) Phase velocity c and (b) group velocity cg versus wave number k for various values of incident angle y with d ¼ 0:1 m, E ¼ 5 GPa, V ¼ 2 m s�1 and h ¼ 10 m.
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7.3. Wave scattering by top-hat current

In this subsection, the scattering of flexural gravity waves by a
top-hat current profile is analyzed by studying the reflection
coefficient characteristics. Fig. 14 shows jRj versus ka for various
values of the water depth h. It is observed that jRj increases with
decrease in h for a particular current speed and incident angle.
Further, jRj exhibits a periodic behavior with ka with the
magnitude of the peak values decreasing as ka increases, which
is evident also from the explicit expressions of jRj in Eq. (33). In
addition, the period of the oscillations in jRj is increasing with
increase in h. This is due to the fact that the period of the
oscillations in jRj is proportional to the wave number component
a2, which is in turn dependent on the water depth h.
Figs. 15(a)–(c) show the variation of jRj versus ka for various
values of y40� for three different cases of F ¼ 0:1, 0:3 and 0:5,
respectively. It may be observed that the minimums attained by
jRj are almost zero for F ¼ 0:1, but jRj never reaches a zero
minimum in the other two cases of F ¼ 0:3 and 0:5. This may be
due to the difference in the phase of the incident and reflected
waves when the wave interacts with the current. As the current
speed increases, the period of the oscillations in jRjwith respect to
ka decreases. This is evident from Eq. (33), which shows that the
period of the oscillations in jRj is proportional to a2, and in turn
dependent on the current speed V . The above fact demonstrates
the dominating role of the jet-like current on the propagation of
flexural gravity waves. Further, it is observed that in all the three
cases, as y increases, jRj increases. In addition, as y40� implies
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Fig. 10. Reflection coefficient jRj versus wave frequency o for various values of

plate thickness d with y ¼ 30� , E ¼ 5 GPa, h1 ¼ 15 m, h2 ¼ 10 m, V1 ¼ 2 m s�1,

V2 ¼ 5 m s�1.

Fig. 11. Reflection coefficient jRj versus wave frequency o for various values of

water depth h1=h2 with y ¼ 30� , d ¼ 0:1 m, E ¼ 5 GPa.

Fig. 12. Reflection coefficient jRj versus wave frequency o for various values of

angle of incidence y with h1 ¼ 15 m, h2 ¼ 10 m, V1 ¼ 2 m s�1, V2 ¼ 5 m s�1,

d ¼ 0:1 m, E ¼ 5 GPa.

Fig. 13. Reflection coefficient jRj versus wave frequency o for various values of

current speed V2 with y ¼ 30� , d ¼ 0:1 m, E ¼ 5 GPa.
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that the waves are propagating against the current, it is evident
from the three figures that a stronger current causes more
reflection and subsequently less transmission of wave energy. As
y approaches 90�, jTj ! 0 and jRj ! 1. In addition for y ¼ 90�,
complete reflection of the plane progressive wave occurs. This is
due to the fact that the wave and current headings are opposing
each other and the current will disrupt the propagation of the
plane progressive wave. On the other hand, as y approaches 0�, the
waves become nearly perpendicular to the direction of current.
Thus, jRj is verysmall and almost all the wave energy is
transmitted.

Figs. 16(a)–(c) show jRj versus ka for various values of yo0�

for three different cases of F ¼ 0:1, 0:3 and 0:5, respectively.
The pattern of jRj is similar to the observations made in Fig. 15
except that the period of oscillations of jRj with ka is
comparatively larger in Fig. 16. However, for a particular current
speed, there exists a limiting value of y for which jRj becomes
almost 1. This is due to the fact that beyond this value of y,
progressive wave propagation is not possible. Hence, beyond this
limiting angle, no progressive waves exist and this angle may be
referred as a critical angle. A similar conclusion has been made in
Section 6 for Ko� G� F.

In Fig. 17, jRj versus ka is plotted for various values of d. It is
observed that as d increases, jRj decreases significantly for
a particular current speed and incident angle. Further, as ka

increases, the magnitude of the maxima attained by jRj decreases.
In case of d ¼ 1 m, the reflection curve dies down to almost zero
beyond ka ¼ 7. This may be attributed to the fact that the period
of oscillations in jRj and the quantity b are dependent on the ice
thickness d.
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Fig. 14. Reflection coefficient jRj versus ka for various values of water depth h with

y ¼ 30� , d ¼ 0:1 m, E ¼ 5 GPa and a ¼ 50 m.

Fig. 15. Reflection coefficient jRj versus ka for various values of angle of incidence y4
F ¼ 0:5.
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8. Conclusion

The interaction of shear current with flexural gravity waves is
analyzed under the assumptions of linearized shallow-water
theory. The effect of shear current on phase and group velocities
associated with a flexural gravity wave is studied. In the case of
oblique waves, beyond certain values of the wave number, the
group velocity is larger than the phase velocity. Explicit expres-
sions for the reflection and transmission coefficients due to wave
scattering by a step discontinuity in both water depth and shear
current speed are obtained by applying conservation of energy
flux and enforcing the continuity of the vertical deflection of the
ice sheet. Certain extreme values in the reflection characteristics
are observed in different cases. Further, trapping and scattering of
flexural gravity waves by a jet-like shear current with a top-hat
profile are investigated. The trapping and scattering zones for
flexural gravity waves in the presence of a jet-like current are
obtained theoretically and presented graphically. Limiting condi-
tions in the case of trapping and scattering of flexural gravity
waves are derived. Numerical results show multiple local
extremes in the case of wave scattering by a top-hat current
0� with h ¼ 10 m, d ¼ 0:1 m, E ¼ 5 GPa, a ¼ 50 m and (a) F ¼ 0:1, (b) F ¼ 0:3, (c)
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Fig. 16. Reflection coefficient jRj versus ka for various values of angle of incidence yo0� with h ¼ 10 m, d ¼ 0:1 m, E ¼ 5 GPa, a ¼ 50 m and (a) F ¼ 0:1, (b) F ¼ 0:3, (c)

F ¼ 0:5.

Fig. 17. Reflection coefficient jRj versus ka for various values of plate thickness d

with y ¼ 30� , h ¼ 10 m, E ¼ 5 GPa and a ¼ 50 m.
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profile. The results will be of significant importance to the study of
wave–current interaction in the fields of Coastal, Offshore and
Arctic Engineering.
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