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A triangle-based unstructured finite volume method is developed for chemically
reactive hypersonic calculations. The method is based on a Steger-Warming flux
vector-splitting approach generalized to mixtures of thermally perfect gases. Second
order-in-space and -time accuracy is provided by limited flux blending and an implicit
multi-stage time marching scheme. The final stiff non-linear problem resulting
from discretization presents a very peculiar block diagonal structure. This allows
a decoupling of the species and gas dynamic equations in smaller sub problems.
A linear algebra argument based on M-matrix theory allows also to show that the
method guarantees positivity of species mass densities and vibrational energies under
areasonabl€FL-like constraint. Finally, a set of 2-D numerical test cases illustrates
the performance of the method.
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1. INTRODUCTION

During the eighties and early nineties both in US and Europe several projects were
funded to design transatmospheric flight vehicles. This event had a great impact on the
fluid dynamic community and stimulated researchers to investigate hypersonic flows and
correlated topics. The modelization of such compressible flow configurations and its
numerical approximation soon appeared as a considerably complex task, deserving special
efforts to produce accurate and reliable results [12]. Indeed, the features of hypersonic
flow regimes are quite different from those of subsonic, transonic, and supersonic ones.
Hypersonic flows are characterized by high speed flows in low density environments, and
non-equilibrium thermodynamical effects are normally not negligible. In fact, the crucial
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issue consists in the significant departure of the fluid from ideal gas conditions, which must
be correctly accounted for, see Reference [26].

Moreover, strong shock patterns may appear in the flow configuration, due to the com-
pressible nature of the fluid. The significant increase in temperature and pressure across
high Mach number shocks induces the excitation of internal vibrational modes of poly-
atomic molecules, and dissociation and ionization reactions may occur.

The fluid, i.e. air, is described in terms of a chemically reactive mixture of thermally
perfect gases. The usual inviscid gas dynamic equations applies to the conservation of fluid
mass, momentum, and energy. The global mass conservation equation is replaced by a
system of mass density (or mass fraction) conservation equations for each chemical species
[1, 18]. In addition, a vibrational energy conservation equation is to be considered for each
polyatomic — vibrating — species, see Reference [35].

Low densities, very high temperatures, and strong shocks thus produce a non-ideal
thermodynamic behavior of the fluid, which demands for special care in designing efficient
and accurate numerical algorithms.

High resolution approximations of shock-wave dominated flows have been obtained
since the early eighties in the CFD community by means of shock-capturing techniques.
Both finite difference (FD) and finite volume (FV) schemes result the natural frameworks
where the shock-capturing methodology may be applied. A great amount of literature has
been produced and the interested reader may be referred for instance to the collection of
historical papers recently republished in Reference [25].

Both FD and FV methods may take advantage of those classes of algorithms generally
referred to as upwind or flux-split schemes. In such algorithms, the estimation of the nu-
merical flux is biased somehow in the direction determined by the signs of the characteristic
flow fields. Among them, we will just mention the Steger-Warming flux-vector splitting
technique [40], whose extension to non-equilibrium flows has been utilized in the present
work — see also the references above. A full presentation of these topics may be found for
instance in [16, 23].

It is an historical fact that the aforementioned methods were firstly developed for per-
fect gas calculations. In such a case, the equation of state is relatively simple and the
homogeneity property of the inviscid compressible flux makes possible an almost straight-
forward procedure to obtain algebraic relationships for the numerical split fluxes and their
associated Jacobians, [40]. The homogeneity property is not retained for a general real gas
system [20], but it is still retained in the case of thermally perfect gases, [18, 19, 32].

Several successful extensions have been proposed in literature to generalize upwind
and flux-split methods to the case of thermal and chemical equilibrium flows, see for
instance [14, 31, 43] and subsequently to include the treatment of non-equilibrium chemistry
and vibrational relaxation effects [1, 18, 19, 32, 38].

Another potential source of difficulty that numerical algorithms for high-speed flows with
real gas phenomena must account for relies in the presestiéf sburce terms, [35]. More
precisely, stiffness is originated in the different time scales associated with fluid motion
and non-equilibrium chemistry and thermodynamics, see [2, 35, 18]. If a conditionally
stable algorithm was naively used to advance a discrete solution in time, for instance an
explicit time stepping scheme, stiffness would force the time step to a value which should
be dramatically smaller than the one usually required by spatial accuracy concerns. The
resulting method would be too expensive and unpractical for real calculations.
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Freguent and rather common cures for stiff source terms in a set of ordinary differential
equations consist in adopting implicit discretization or some special splitting procedures
which allow a separate integration.

Both the approaches have been exploited and largely investigated in order to include the
stiff non-equilibrium chemically reactive and vibrational energy source terms in species
conservation and gas dynamic equations. However, a special care is demanded in designing
such solution algorithms. It has been shown in [17, 29] and more recently discussed by [30]
that when a conservation law is coupled to a stiff source term which represents chemical
reactions, the numerical dissipation introduced by the scheme may produce an incorrect
propagation speed for a time-dependent discontinuous solution.

A decoupling of the non-equilibrium chemical and vibrational equations from the fluid
dynamic system has been adopted for instance in [2]. The chemical species are firstly
convected without considering chemistry and vibrational effects, and then chemical reac-
tions are integrated using a separate incremental scheme in conjunction with frozen flow
conditions. The time-split approach has been shown to be effective also in the recent work
by [13]. Therein, &-nd order-in-time Strang splitting is utilized in order to handle source
terms separately as a set of stiff non-linear ODEs.

Alternatively, fully-coupled approach with implicit treatment of stiff source terms have
been shown to be capable of accounting for non-equilibrium real gas effects, see for instance
References [7, 18, 19, 21].

A strongly non-linear algebraic problem is provided by the discretization method, which
requires some non-linear iterative technique with (formally) large matrix inversions at each
iteration. The resulting algorithm may thus be very expensive.

Intermediate between decoupled and fully-coupled approach is the partially decoupled
semi-implicit scheme proposed for unsteady flows by [21]. The full set of equations is
partially split in two subsets, the first one for the usual gas dynamic variables (total fluid
density, momentum and energy) and some characteristic thermal quantities (specific heat
ratio, the universal gas constant, assumed to be variable in space, and part of the energy),
and the second one for species mass fractions and total energy. Despite the efficiency and
the originality of the approach, the authors themselves report that their scheme may fail in
calculating solutions dominated by very high Mach number and complex shock patterns: a
kinked Mach stem may appear in the ramp problem solution. This failure is a well-known
and documented numerical effect, among the ones catalogued and discussed in details
by [37].

The objective of the present paper is to present an implicit finite volume approximate
solution algorithm, developed in the spirit of fully-coupled methods, for time-dependent
hypersonic calculations on 2-D triangle-based unstructured meshes.

The proposed method makes usage of a flux vector-splitting technique along the lines
of the original Steger-Warming approach [40] and the generalization to non-equilibrium
flows proposed in [32]. However, it is formulated in a very general way by introducing a
suitable chemical reaction matrix to tresaty chemical and vibrational model. That is, no
model-dependent Jacobians are used to express numerical flux formulae.

Global second order-in-space and -time accuracy is provided by flux blending and
implicit multi-stage time marching scheme. A bidimensional flux limiter is introduced to
control numerical oscillations. The new limiter effectively extends in 2-D the family of
flux limiting functions analyzed by [41].
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Although some rather standard and well-known techniques in shock-capturing methodol-
ogy are utilized, the method presented herein is original — at least to the authors’ knowledge
—in the way the species mass densities, vibrational energies, and stiff source terms are im-
plicitly discretized in time. The approach leads to a non-linear algebraic problem with a
very peculiar block structure, which may be exploited to decouple at the algebraic level the
species mass density equations, the vibrational equations and the rest of the fluid dynamic
system.

Thus, the global non-linear problem is decomposed in four separate and smaller size
problems, which are solved iteratively via a block Gauss-Seidel-like algorithm and a
standard preconditioned Krylov subspace solver [42].

Furthermore, each single block coefficient matrix is shown to be an M-matrix. This
property guarantees the positivity of the species mass densities and the vibrational energies
at each time step under a suitable and not too restri@ie-like constraint. A way of
enforcing positivity on mass fractions and vibrational energies was proposed by [27] in the
framework of approximate Riemann solver generalized to mixtures of real gases. However,
as pointed out by the author, the main trade-off in this approach just consist<iRitHike
condition which might be impossible to fulfill in practice.

In section 2, we present the mathematical model, in 3 the derivation of the scheme, and
in 4 the algebraic decomposition and its iterative solution procedure. Finally, in section 5,
several numerical examples illustrate the shock-capturing capabilities and the effectiveness
in describing real gas effects of the new method. The test case suite includes both classical
1-D calculations extended in 2-D and real 2-D simulations of unsteady shock wave systems
on compression ramps and a steady bow shock calculation in a blunt-body problem.

2. MATHEMATICAL MODEL

The unsteady hypersonic flow of a mixture of compressible gases with chemically reactive
processes can be modelled by the following set of time-dependent partial differential
equations

ou

5 +V-F(U) =S(U). (1)
System (1) expresses in divergence form the conservation of the vector of unkhbwns
by balancing their time variation rate with the convective flul¢#J) and the chemical
reaction source term$(U). These vector quantities take the form

p pRV w
&Y E'Rv Z
U= , FU) = » S(U) = : )
pv pv v+ pl 0
pE pHv 0

In equation (2), the components Bf are logically collected in the species mass density
vector, denoted by, the vibrational energy vectot, the momentum vectop,v, and the
total energypE. The symbol® which appears in the flux definition denotes the dyadic
product between vectors, that(is ® b);; = a;b;. The components g are the chemical
mass densities of the, different species considered in the modelindicates the total
mass density, the components of the veétoare the vibrational energy of thg, diatomic
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speciesy = [u, v]T denotes the velocity vector, apd? the total energy. The pressyse
satisfies the equation of state for a mixture of thermally perfect gases

Ny P
b= 7RT7

where we introduced the chemical molecular weighisof the k—th species, the universal
gas constanfR = 8.3143.J/(mole K), and the translational-rotational temperatdre,
We assume thaf satisfies the mechanical-thermal relation, see Reference [7],

Ny

Ns ] 1
pE:TZpk(C,;’+h,S)+Z£;’+§plvl2,

k=1 j=1

where Cp and b)) are, respectively, the constant volume specific heat and the heat of
formation at0 K reference temperature for tteth species. The translational-rotational
temperature represents the contribution to the internal energy by the translational and
rotational modes of all molecules and atoms in the mixture, assumed to be in thermal
equilibrium. It is worth noticing that the constant coefficierit$ do not represent the
complete specific heats, but just the part due to molecular translation and rotation. They
take the valueCy = (3/2)(R/M) for monatomic species an@d = (5/2)(R/My) for
diatomic species, [26]. The total enthalpy is denoteddbgnd is related td, p andp by

H=E+2.
P

The source vectd8(U) takes into account both dissociation-recombination and exchange
reactions in a mixture of thermally perfect gases. The tenrmodels the chemical reactions
while the termz is responsible for the exchange reactions.

We assume thatr depends on the mass densitigsand on the thermal state of the
mixture of gases. This latter one can be described in terms of the translational-rotational
temperaturel” and a set of vibrational temperatures (or energiéy), for j = 1...n,,
one for each polyatomic species. Each vibrational temperature represents the contribution
to the internal energy by the vibrational modes of the corresponding polyatomic species.
Let us introduce thén, + 1) component vectol = (T, Ty, ... T )*. Hence, we can
indicate the functional dependence of the source terasw(p, T), and its generie-th
component can be expressed as in [2] by

N s
we =) M —vyy)
j=1

Khﬁﬁﬁ(ﬁ)%—KW@ﬁﬁ(ﬁj%].(Q

i=1 i=1

In (3), v,; andv,’; are stoichiometric coefficients, while KT') and K,(T) denote the

forward and backward rate coefficients, respectively. Their functional dependefitéson
provided by the chemical model.
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As pointed out in [5], the source term can be written in the fornC(p, T)p, where
C(p, T) is ans x ns matrix with continuous entrie§’;; (p, T), such that

(a) C“(p,T) <0 1=1,...,ng

(b) Cij(p,T) >0 i # ]

(c) > Cii(p,T) =0 j=1,...,n,.
i=1

The genericr-th component ofv can be decomposed in the sum of a production and a
consumption term, respectively denoteddgy andw, . That s, it holdsw, = w;f +w, .

The diagonal and off-diagonal entries of the maf@igp, T) respectively contribute to*

as

w, (p,T) = Crr(p, T)pr,

() 4)
wh(p,T) = Cri(p, T)pj

j=1

where the symbdl”) indicates that the term = r is dropped out in the sum.
The genericj-th component of the vibrational energy exchange source term can be
written as

gea _ gv wt w
y=d T ewy e =1, )
Tj Pj Pj

where&®? is the vector of the equilibrium energy densities andthare the relaxation
times, [26]. Both constitutive relations fcﬂjq and expressions for; to be used in
practical computations are model-dependent. As remarked in Reference [32], the choice
of an appropriate model for describing a given phenomenology may be a difficult task. In
this paper the approximate solution algorithm is formulated as generally as possible by
using the matrixC(p, T). In this way, we do not attempt to suggest which model should
be used for practical calculations, but many different models could be included in the
algorithm by formally changing the entries € p, T). More details about the chemical

and thermodynamical model used for the numerical tests in section 5 are reported therein.

3. FINITE VOLUME FORMULATION

In this section, we present the construction of the cell-centered finite volume method for
the numerical approximations on unstructured 2-D grids of unsteady hypersonic flows. An
upwind semi-discrete approximation of the integral form of system (2) is first derived. A
finite volume scheme can be obtained by introducing a finite difference approximation of
the time derivative of the vector of unknowkk It is well-known that this approach yields
numerical schemes which are formally first order accurate in space and time, [23]. The
upwinding mechanism provides enough dissipation to ensure monotonicity, and prevents
the formation of numerical oscillations even if the solution shows strong shock disconti-
nuities, [16]. Higher order accuracy can be obtained by blending the first order upwind
numerical flux with a second order accurate symmetric one, along the lines of [44, 45, 46].
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This blending islocally driven by a suitable limiting procedure which controls the nu-
merical oscillations, [41]. Second order accuracy in time is finally achieved by means of
a two-step time-marching integration scheme, [9]. Although some rather standard ideas
from shock-capturing techniques are applied, to the best of the authors’ knowledge, several
aspects in the proposed approach are substantially new. They are: the final functional form
of the numerical flux for a mixture of thermally perfect gases; the form of the flux-limiter,
the way the implicit discretization is performed and the algebraic decomposition to solve
the final stiff non-linear problem. For this reason, the derivation of the scheme is presented
in full herein, while the essential features of the non-linear solution procedure are discussed
in details in the next section.

3.1. Preliminaries

Let us first introduce &iangulationwhich covers all the computational domain — also
referred to as theneshin the rest of the paper. The triangulation is defined as a collection
of N triangles, conventionally denoted By, and assumerkegular andconformalin the
sense specified by [8]. Triangles are conventionally labeled by an integer identifier ranging
in a global numbering system. The identifier may be generically indicated by the index
lettersi, j or k. For the generic triangléwe indicate by K;| the area of the triangle, by
o (i) the set of adjacent triangles, and &Y(:) the subset of triangle edges located at the
boundary. The internal edge shared by trianglassdj will be denoted by the paiij. For
the sake of notation consistency, a boundary edge will also be indicated by a pair of indices
ik, i being in such a case the unique triangle the edge belongs t&,aspecific boundary
edge identifier (like a fictitious “external” triangle). This convention allows us to refer to
either internal or boundary edges by means of an index pair. For the generi¢jedge
indicate by/;; its length, and byn;; the normal vector. This latter one is assumed to be
oriented from celi to cell j when the edge is internal and outward directed when the edge
is on the boundary. For the sake of clearness, throughout the paper the nBtdtion)
will indicate the normal projection of the flux vector, iB(U) - n.

The semi-discrete finite volume approximation is

dU;
K;
P

-t > HULUjng) + Y iy HGY = K| 8i(U3), (6)

j€a(i) J'€a’ (i)

with the indexi running throughout all the mesh triangles, i.e= 1,2,..., N. This
formulation is obtained by integrating in a cell-wise fashion system (1), applying the
divergence theorem, approximating the interface integrals with the midpoint rule, and
finally introducing some suitable numerical flux function, [23].

The quantityU, stands for the cell-averaged solution within the triangl@he terms
H(U,,U,,n,;) and H§?f> are respectively the numerical flux function at internal edges
and at boundary edges. The former one depends on the cell-averaged salytaordU ;
within the cells sharing the given edge, while the latter one depends on the cell-averaged
solutionU; within the unique boundary triangieand may depend in some suitable form
on a set obxternaldataU§?c).

Remark. For boundary fluxes the notatidFIl(.;ff) instead ofH (<) (Ui,Ug-[,’C),nij/)
is preferred. This is because boundary conditions may differ at distinct boundary edges,
implying also a different functional form for the numerical fluxes.
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3.2.  Construction of the numerical flux
The construction of the numerical flux by a flux-vector splitting approach dates back
to [40], where a decomposition of the form

H(U,V,n) = F"(U,n) + F~(V,n) 7)

is proposed. In (7)F*(U,n) are the normal projections of the vect®$ (U), and by
definition there hold&*(U) = J*(U)U. The matriced* (U) are built by diagonalizing

the Jacobian matrid(U) and splitting its eigenvalues into a positive and a negative part.
This approach basically relies on the homogeneity propB(ly) = J(U)U, which is
satisfied by the compressible Euler flux, [23]. As discussed in [18], homogeneity is again
retained in the case of a mixture of thermally perfect gases. Thus, accordingly to the
form of the flux vectof(U) for a reactive multi-component system in (2), and after some
algebraic manipulations, the flux split methodology yields the two partial contribufiéns

as

F*(U,n) = a*(U,n)U+ G*(p,pv,U,n), ®)
where
0
G*(p,pv, U,n) = ° ©)
R pbT(U,n)n ’
pv -nbT(U,n)+ pct(U,n)
and
n _28(v-n)T 4+ (von4o)F +(v-on—co)F
O = 201+ 5) ’
b*(U,n) = g((v-n+c)i—(v-n—c)i), (10)
ct(U,n) = %2 ((v~n+c)i+(v~nfc)i 72(V~n)i).

In equations (10), foy = (v - n), (v - n + ¢), the symboly* takes the usual definition
gt = (¢ £ |q|)/2. Finally, the parameters, c, andx are defined as

Ny

Pi
R
ﬁ* =1 , c= — 5, K=

- n,
Soner
i=1

wherec is the frozen speed of sound amhd- 3 is the frozen specific heat ratio of the
mixture, [21].
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3.3. Semi-discrete FV formulation
The semi-discrete FV formulation

)Ui —a*(Uj,n;)U,}

i 1%}

j€o(i)

+ 3 4 {GH (pi (pv)is Usimig) — Gy, (pv);, Ujomya) b (11)
j€a(i)

+ Y LyHGD = K| S(U),
j'€a’ (i)

is obtained by using in (6) the definition (8) fBf:, and then exploiting the geometric iden-
tity n;; = —n;;, and the “local” flux consistency conditidi* (U,n) = —F~ (U, —n),
which holds since the scheme must be conservative. The numericﬂﬁjﬁ%\t boundaries
can be written as

0 . ,
HY = gsetidy, +OLF(U;) - nyy + 0 F(USY) ny. (12)

?
3’ n;ji

1

In equation (12) the parameteﬂ'ig’”d Gf”’" andamlet are three mutually exclusive switch-
ers which may take integer valuesr 1, |n order to get the correct boundary flux expression
(respectively for aolid wall, free or supersonic inleboundary).

Using the definition ofu;* in (4), within the triangle the source tern$;(U;) takes the
form

C(pi, Ti)pi
Si(U;) = S(pi, T;) = s(pi, Ti) ® € ; d(p;, T;) ® €Y
0
where
o), = -+ MfT) sp. D)) = - “p”T)

The symbol-],- indicates the component related to thth species.

Note that the distinct functional dependence on the density vpaaod the temperature
vectorT inthe source terr8 is still retained. This choice will be motivated in the following
section.

3.4. Base first order semi-implicit scheme
The base time-marching scheme is obtained by approximating the time derivative of
—which appears in the first term in the semi-discrete formulation (11) — by first-order finite
differences

dU;(t) _uptt—ur
- At
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WhereUg”r1 andU? are the cell-averaged solutions within the triangh timest”+! and
t7, andAt = t"+1 —¢". Let us also introduce the symbolg andG}; defined as

& =at(Urny), G5 =G (i, (pv);i T, UL, my).

%

Thus, the base time-marching scheme takes the form

Ut -y +1 +1
3 1 7 n Tl n
il =+ > by @URT —a Uyt
j€o(i)
n, n+1 n, n+1
+ > by (Gij - Gji ) (13)
j€o(i)
+ >0 L EET = K| S(pp T,
J'€a’(3)

The term(a;’jU;1+1 — a;?iU;l“), which appears in the first summation in (13), is originated

by considering the first — zero-th order — term of the Taylor expansion in time of
at(U(t),n;;) around™. This strategy will also produce a block-diagonal matrix operator,

whose block-matrix components are M-matrices, see section 4.

The term (G} nrl G "*1), which appears in the second summation in (13), is
instead originated by usifg™ in b* (U, n) andc® (U, n), andp™*! and(pv)"+! for the
termsp andpv which appears explicitly in the definition &+ (p, pv, U, n) given in (9)
and (10).

The discretization of the source teSﬁp?“, T?) is implicitly dependent on the density
vector p and explicitly dependent on the temperature ve@torThe implicit dependence
on p is chosen for stability reasons to cope with the stiffness introduced by the chemical
reactions, [2]. Instead, an explicit evaluation®ris preferred, because an implicit evalu-
ation of the temperature would results in a strong non-linear system due to the exponential
nature of the Arrhenius equation, see the appendix.

Scheme (13) is globally first-order accurate in space and time.

3.5. Second order in space accuracy
The accuracy in space may be improved by blending the first-order accurate upwind
numerical flux in (8-10) with a central symmetric flux, i.e.

F(U,n) - F(V,—n)

H(U,V,n) = (1-6) (F*(U,n) —F"(V,-n)) +6 5

, (14)

where the parametér € [0, 1] can be locally estimated. The choiée= 0 returns the
original first-order upwind flux, while the on2 = 1 the second order central numerical
flux. The issue of how to estimate an appropriate value for the parathisteddressed in
section 3.7. Using the definition of blended numerical flux given in (14), with the normal
flux F(U, n) written as

62

1+8 | pn |’

pv -1

F(U,n)=(v-n)U+G(U,n), G(U,n)=
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the computational scheme (13) becomes

Ut — U S
K| = + D Gy {al Uit —ap Uty
j€a(i)
+ Z Ezg {G:Lj n+l (";;LZ 'rH-l} Z gz]’H be)n (15)
j€o(i) j'€a’(7)
= K| S(pp !, T7) = Y by {0} U7 — 3 Up )

j€o(i)

For the sake of clearness, in equation (15) we have introduceddbpendent symbols

(";Z n+l _ (1 _ GU)GZ, n+1 L] G( n+1 (pv)n+1 Un nij)-

Note that a new term appears in the r.h.s. of equation (15), due to the blending of numerical
fluxes.

3.6. Second order in time accuracy

The semi-discrete formulation in (6) actually consists in a large system of ordinary
differential equations in the unknowrs,;. The time-marching scheme presented in
section 3.4 basically consists in the application of a semi-implicit version of the Euler
method for ODE. A formally second-order accurate-in-time scheme may be obtained by
applying a slightly modified version of the two-step Collatz algorithm, see [9]. The first step
evaluates a preliminary solution at the intermediate tifife. The second step evaluates
the numerical fluxes by using the approximate solutiottat and advances the solution
from ¢ to t"*1. An implicit treatment of the source vector tei®ip, T) must always
be devised because of the stiffness introduced in the equations by the chemical reactions.
Computational stability can be ensured by treating implicitly the dependengeam
explicitly the one o in the source terr in both steps, [2, 13].

First step:

n+3
U 2 Un I]n N I]n %
|Ki| § zJ {a +2 ajl/i j+2}

At/2
/ jeo(i)
+ 3 {GETT -G e 3 " )
jeo(i) j'ea’(i)

—1KiIS(p 3T = Sy {onur — U
j€o(i)
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Second step:

| K 17

2 Ji 2

n+1 n n+1 n n+1 n
U UL s, {eﬁ*%Uﬁ Ll HRPEE ik +UJ}
At ! t

j€o(i)

anti ntd anti ntd (bc)n+2
+ > {GTETTE G e Y

17 Jt
j€o(i) j'€o’ (1)
— K S(pn Tn+% / ﬂH—%Un—&-% An+%Un+%
=|Ki|S(p;",T; %) - Z ij | Vij i — Yy j
Jj€o(i)

3.7. 2-D limiting procedure

In this section we present our strategy for estimating the coefficlent3 he estimation
is local in the sense that a different facty is computed for each internal edge, depending
on the approximate solution value within adjacent cells. Remark thétfactor is needed
for boundary edges, since the numerical flux is specified by the boundary conditions. Each
9;; takes a value in the rande, 1], and, thus, plays the role of a flux limiter. In the last
two decades, the limiters have been extensively studied in the framework of high resolution
finite volume schemes, and a considerable amount of literature has been produced; we just
mention the general review given in [23]. For the sake of convenience, limiting strategies
are grouped in two great families, the one of flux-limiters and the one of slope-limiters. The
slope-limitersare designed to ensure properties such as the preservation within each control
volume of the integral cell averagElux-limiters, while ensuring conservation, may not be
expected to preserve the latter property. Our limiting strategy is based on a simple heuristic
2-D extension of the 1-D class of limiters which compare consecutive variations of the
approximate numerical solution. Those 1-D limiters have been widely experienced by a
number of authors and theoretically analyzed by [41]. The proposed face-based limiting
strategies has proved to be successful in all of the present calculations. It does allow an
edge-based implementation and does not need the storage of an accumulated limiter for
each triangle. Nevertheless, while ensuring conservation, to the authors’ knowledge it is
not known whether the presented limiting strategy can preserve the integral cell average.
The above issue is beyond the scope of this work.

In order to detect shock discontinuities in the approximate solution, we compare the
slopes of some given indicatqgr such as the pressure or the total density. Slopes are
estimated on both sides of an internal edge as normal projections of the gradient of a linear
interpolant ofg.

Let us denote b¥X; the centroid of the-th triangle and byX;; the point defined as

X; + X,
midpoint of edgej if i5 is a boundary edge.

if 47 is an internal edge,

To compute the values @f we use the following procedure
(1) define

Cna/] if 77 is an internal edge,

qij =
q if 45 is a boundary edge,
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whereg; is the value taken by within triangles, as illustrated by Figure 1;

(7i) for each triangle, build the operator;, which linearly interpolates the three nodes
(Xij,4i5), j € o(i) —in case of a boundary edge, takes ¢'(7) in place of the missing
triangle;

(¢43) for each internal edggj, define the slopes; ands; as the gradient of; andr;
projected along the directiam,;;

(iv) for each internal edge;; is defined as

0 If S,‘S]‘ S 0,

Vij =\ min{[si, |s;|}

otherwise.
max{]s;/, |s;]}

For time-dependent calculatiods; is set tov;;. For steady ones, the limiter proceeds
throughout the further steps:

(v) for each triangle defing; as
0; = YVijVikVil,
(vi) for the internal edgej defined,; as

Hij = min{uij,ﬁiﬁj} .

FIG. 1. Construction of the limiter

In the computation done in the papgee |v|, c.

4. SOLUTION ALGORITHM

By inspecting the structure of the two-stage scheme formulated in section 3.6, we note
that equations (16)—(17) can be written more compactly in matricial form

first step: Lr(pnta)unte 4 Gty = B

second step: Ln+%(pn+1)Un+1 +9n+%,n+% — Bn+%
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whereL"t%(p) is the block-diagonal matrix operator:

n+aoa n—+ao
Dt (p) + M @ T, 0 0 0
0 :Dn-‘r(x(p) 4 M te ® In,u : 0 0
......................................... LI EPIERI (18)
0 0 :
0 0

A unified time index notation was introduced such that 0 anda = 1/2 respectively
denote the first and the second stage of the method. The terms invo&dinare defined
as

n+ao 1 n+ao
D} (p) = 0y At (a + 2> Clp, T},

(19)
n 1 n 1
De,—t,?(p) = 5let <O[ + 2) d(p, Tz +(1) ,
and
At e
|KZ| + 7 Z Eikflg;_a if ¢ =7,
nto __ keo(i)
MY (20)
— =5 ity if i # j,
whered;; in (19) is the Dirac-Kronecker symbol. Ti§eoperator
. S % A\ T
grremty = ( 0 {0 iGumrTEig ) (21)
and the r.h.s. vector
: : : T
B = (bgm by ibnEe b e ) (22)

are expressed by some rather complicated formulae reported in the final appendix for
the sake of completeness. Let us first notice gt > and D> are respectively a
block-diagonal and a diagonal non-negative matrix.

A remarkable property holds for all the diagonal blocks forming the operator (18). We
formally state it in the next proposition. The proof is given in the appendix.

ProrosiTION 4.1. The four diagonal blocks defined (h8) are M-matrices.

The formal inverse of an M-matrix has only non negative entries. Thllﬁ,}*if* >0
andb? "t > 0, thenpmtetz gntats > 0, that is the scheme prevents by construction
that negative —i.e. unphysical — densities or vibrational energies appear during the solution
process. A simple inspection of the r.h.s. terms — see the appendix for details — shows
that positivity of species mass densities and vibrational energies generally hold under a
CFL-like constraint onAt. This can be formally stated as follows.
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ProprosITION 4.2. Letus denote by the minimum height of the triangles in the mesh,
and suppose that

(i)p™ > 0and€&v ™ > 0;

(m)% max{u,c} < 1/6, whereu = max{|v;|} andc = max{¢;}.

Then,p"*! > 0and&» "+ > 0.

The proof is given in the appendix. Condition (Prop. 4.2-ii) leads to an important
reduction of the time step size. The time step becomes smaller but comparable to the
one typically associated with an explicit time marching scheme. Numerical experience
shows that positivity of species mass densities and vibrational energies still holds when
greater time steps, correspondingdBL numbers of about one, are used. It is reasonable
to conjecture that proposition 4.2 states a somewhat crude estimate which is far from
optimality.

The block-diagonal structure of the operat®f+* suggests a block Gauss-Seidel-
like decoupling into four separate sub problems to be solved sequentially. The solution
algorithm proceeds as follows

(1) solve the non-linear system for species mass dengities
(Dpro (o o) £ M o 1, ) prteth — e,
(7i) solve the linear system for vibrational energi&s
(D2+a<pn+a+%) 4 Mn+a ® In,u) ev, n+(x+% — ngLJroz7
(#4i) solve the linear system for moments,
1

(M™ @ L) (pv)" ot s = prfe — gole s

(iv) solve the linear system for total energy,

n+a n+a+i _ pnta nto, n+3
M (pE) 2 —pr _ng .

Stage(i) requires the solution of a non-linear problem. The non-linearity is due to the
implicit treatment of the chemical reaction source terms. If chemical reaction processes
were absent, a linear problem should be solved instead. Let us introduce the(map
RN>ns — RNns which is formally written as

n+—ao n+ao -1 n+ao
2(p) := (D} (p) + M & 1,) " b,

and whose domain of definition is the convex compact set

N
K= {p € RN | p; >0, foralli, Y |Ki||pill, = HbZMHl}'

i=1
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The solution of(i) is a fixed pointp™tot2 = ®(pn+otz). As already noted in [5]P

is a continuous map frork into itself and the Brouwer fixed point theorem [48] implies

that at least one non-negative fixed point must exist. Furthermore, if the timeé\stisp
sufficiently small, the map is also contractive and convergence of the iterative fixed point
scheme is guaranteed. In practice, it has been noticed that iterations easily converge when
the initial guess solution is obtained by first solving a problem without chemistry — i.e.
with null source terms. The upgraded valuesnﬁfa% are then substituted B
Stage(i) is thus linearized and may be solved by a diagonally preconditioned Bi-CGSTAB
method, see Reference [42]. Sta@g) is also linearized by using the upgraded values

1 . i _
of the species mass densitiesGfiy "2, Similarly, stage(iv) can be linearized by
] 1 1
substituting inG" ;" "> the upgraded values fdd, "> and also for(pv)"t*+3

previously estimated in stagé).

Stageqiii) and(iv) are solved by an iterative Bi-CGSTAB method, preconditioned by
an incomplete. DU factorization. Since in stagésii) and(iv) the system matrix is the
same, the preconditioner is computed only once. As reported earlier in this section, the
coefficient matrix of the resulting linear problem (#iz) and (iv) is an M-matrix. It is
possible to show that theDU factorization of an M-matrix does not require any pivoting
(see [3]), thus resulting in a simplification of the incomplete factorization algorithm for
preconditioning.

Remark. The cost of solving the non-linear system does not depend directly on the
number of reactions included in the model, see e.g. [4]. However, it is affected by the
stiffness of each reaction. That is, if one more reaction is included into the model, which
is very stiff, the iteration matrix of the final non-linear system may become more ill
conditioned and the number of iteration steps be increased.

In our implementation of the method, each iteration step basically requires the direct
solution of a linear system of, equations i, unknowns per triangular cell, wherg
is the number of species. Then, the cost of such an iteration is roughly proportional to
ns> x N, whereN is the number of triangles, if the factorization is performed at each
iterative step. This cost could be reduced in order to be proportional*o< N if the
system was first linearized. Nevertheless, this strategy would imply a great amount of
storage for the memorization of the linearized factors, and the loss of the non-negativity of
the computed mass fractions.

We finally mention that in literature some efficient techniques have been proposed to
solve similar non-linear systems, see References [10, 33].

5. NUMERICAL TESTS

Seven different test cases from literature illustrate the capabilities of the present method in
hypersonic flow calculations with non-equilibrium chemical reaction and vibrational energy
effects. The implementation is based on the freely available software lipPagsh, see
Reference [6].

The first three test cases are bidimensional transpositions of some rather “classical” 1-D
shock-tube problems. They include the Lax problem [28] and the Sod problem [39] for
inert air, and the chemically reactive shock tube problem for a mixture of gases reported
in [1].
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The second three test cases consist in different shock wave systems propagating in
quiescent inert air on a two-dimensional compression ramp. Inert air is assumed to be a
mixture of aboutr6.71% N», 23.29% O, and null fractions forN, O and NO. In all
these test cases, complex unsteady shock wave patterns are characteristic of the solution
and must be correctly captured by the scheme.

The final test case consists in a hypersonic blunt-body flow in pure nitrogen, where a
steady bow shock forms.

In the first two 1-D shock tube calculations — the ones with Lax and Sod initial data
— the calculations is performed for all the chemical species considered in the model, but
neither reactions nor vibrational energy exchange occur. These calculations just show that
the scheme is capable of solving “pure” gas dynamic problems. In all the other test cases,
chemical reactions and vibrational energy exchanges are present.

The chemical reaction processes herein considered utilize the Dunn-Kang or the Park
air model, see Reference [36, 47] for a detailed presentation. Both models — in the version
with no free electrons and ions and associated reactions — describe air as a mixture of five
speciesN», O, NO, N andO, which are assumed to be thermally perfect gases. Both
models consider fifteen elementary dissociation—recombination reactions and two exchange
reactions

No+M = 2N+ M,
Os+M =20+ M,
NO+M = N+0+M,
N+0 = NO+N,
NO+0O = O3+ N.

M represents a collision partner catalytic moleculend may be any one of the previous
species. The equilibrium ener@y? and the vibrational energd/ respectively depend on
the translational temperatuféand the vibrational temperatufe’ by

-1 -1
£et = pg\i’m (exp (?) —1) . ev= pg\iﬂz (exp (;) —1) ,

withr = Ny, Oz, NO. Their characteristic vibrational temperatures take the vélnes=
3395 K, Op, = 2239K andfyo = 2817 K, which were obtained via spectroscopic
measurements and are reported for example in [7].

The Landau-Teller relaxation times in equation (5) are given by

Ns ps 1 1
> L exp (A,. (T 50015 ué‘s) _ 18.42)
= s Ms s
=i M e = 1000 M

'S i Ps M+ M,
101325 par M,

The coefficientsd,. take the valuesiy, = 220, Ap, = 129, Ayo = 168, see e.g. [7].
These semi-empirical relations are known to be valid over a temperature rang&fidih
through9000 %, see [7, 34].
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5.1. Shock-tube problems in 2-D

The computational domain for the shock-tube problems is the bidimensional strip
[—0.5, 0.5] x [—0.025, 0.025]. A diaphragm, located along the vertical line= 0,
separates the initial left state, denoted(hy, and the right one, denoted KR). In Lax
and Sod problems, the shock-tube is filled by inert air. In this case, the usual value of the
specific heat ratio holds, i.e.=1+ 5 = 1.4.

In the shock-tube problem with chemistry, only the right side of the shock-tube domain
contains quiescent inert air. At the left of the diaphragm, the temperature is high enough to
induce chemical and vibrational effects. The air composition is thus assumed at equilibrium
at the given temperature,which corresponds to a mixture compositih2y% Ns, 7.36 x
1072% 04, 2.3% NO, 31.4% N, and22% O.

Lax problem:

(L) p=0.445 Kg/m?, u = 0.698 m/s, p = 3.528 Pa.
(R) p=05Kg/m? u=0m/s,p=0.5T71 Pa.

Sod problem:

(L) p=1Kg/m3 u=0m/s,p=1Pa.
(R) p=0.125 Kg/m?,u=0m/s,p = 0.1 Pa.

Shock-tube problem with chemistry:

(L) p=2532Kg/m3 u=0m/s, T =9000 K.
(R) p=1.156 Kg/m3, u=0m/s, T = 300 K.

Attime ¢t = 0 the diaphragm is instantly removed and well-known patterns of interacting
rarefaction waves, contact and shocks discontinuities begin to form, [1, 23]. All the

FIG. 2. Computational Mesh.

results reported here were calculated on an unstructured irregular mesh of@hali00
triangles, see Figure 2. Figure 3 shows the density solution of the Lax problem computed
att = 0.15s. The calculation was performed by using a fixed time gtep= 0.15s/100 =

1.5ms. Figure 4 shows the density solution of the Sod problem computed &t24s. The
calculation was performed by using a fixed time sfep= 0.24s/100 = 2.4ms. Figures

5-6 show the solution of the shock-tube problem with chemistty-at0.16s, computed

by using a fixed time step\t = 0.16ms/200 = 0.8us. In order to compare the results
obtained in this test case with the ones reported by [1], the Park air model was included
in the solver. It is informative to say that in the three cases the 2-D solver was tested on
several kind of meshes, both regular and irregular ones. Irregular meshes were generated
by triangle, with the requirement that a maximum angle constraint be satisfied, see the
documentation reported within the software distribution package and also Reference [8].
Regular meshes were built by simply partitioning regular square-shaped cells in four sub-
triangles. No orientation effects were noticed in these computed solutions. However, we
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noticed that triangles may produce a slight distortion in the front of an advancing shock
wave. This effect seems to be influenced by chemical and vibrational relaxation processes,
being more apparent in the reactive calculations. As far as shock resolution accuracy is
concerned, we remark that the discontinuity is generally well resolved in these problems
with an average “width” of three-five triangles. This result is also in accord with the
behavior observed in the two-dimensional calculations reported in the following section.

5.2. Two dimensional test cases

Three numerical solutions of shock wave propagation problems are presented in order
to illustrate the performance of the method in predicting 2-D unsteady hypersonic flows.
The examples consists in calculating the single, complex and double Mach reflection of a
planar shock wave incident on a compression ramp. An unsteady complex shock pattern
forms on the ramp and evolves during the reflection process. In these calculations we used
the limiter described in stef$)—(iv), section 3.7.

The final test case concerns with the numerical approximation of a blunt-body hypersonic
flow around a two-dimensional circular cylinder and illustrates how the method performs
in a steady state calculation. The longitudinal axis of the cylinder is orthogonal to the
free-stream flow direction and a steady bow shock forms above the cylinder. Across the
steady shock wave the flow temperature raises and thermodynamic equilibrium is reached
by a strong non-equilibrium dissociation process. In this calculation we used the limiter
described in steps)—(vi), section 3.7. The steady state solution is achieved by relaxing the
initial free-stream solution by using (16), which is a first-order-in-time marching scheme.
No acceleration techniques — such as local time stepping, residual smoothing, ...— have
been introduced.

The cost of solving the non-linear system for the species mass densities was experimen-
tally measured and varies through@¥ to 70% of the total cost of the computation,
depending on the test case, see Table 2.

A detailed presentation of all of the test cases can be found in References [11, 15, 21, 24],
where both results from laboratory experiences and numerical simulations are reported. A
comparison to the mentioned literature results shows that our method generally performs
well.

TABLE 1

Initial values for compression ramp problems

| Single Complex  Double |
pi"[Kg/m3] | 1.05702  0.70678  0.382407
ui™m/s] 447.077 3205.8  2646.49
T [ K] 510.147  4080.08 3373.17
UK g/m3] | 0.387 0.0777  0.0476
T K] 299.2 299  299.2

5.2.1. Single Mach reflection in air

Table 1 summarizes the inlet and initial quiescent states of the problem. The moving
shock wave Mach number g, = 2.03 and the compression anglei&’. In this reflection
process, the temperature never attains values capable of inducing non-equilibrium reactions.
Hence, the test case mainly allows to check the shock-capturing capability of the method
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TABLE 2

Relative chemical computational costs
| Complex Double Blunt]

cost percentagd  68% 67% 59% |

as a compressible gas dynamic solver. Figures 7—8 depict the density contours and the wall
density distribution at timé = 100us. The solution is computed by using a fixed time step

At = 100us/800 =~ 0.125us on a mesh witt52742 triangles. TheCFL ranges throughout
0.79t00.99.

5.2.2. Complex Mach reflection in air

Table 1 summarizes the inlet and initial quiescent states of the problem. The moving
shock wave Mach number &/, = 10.37 and the compression angleli§’. Figures 9—
10 depict the density contours and the wall density distributions at#ime20us. The
approximate solution is computed by using a fixed time ffép= 20us/800 = 0.025us
on a mesh witt34833 triangles TheCFL is stable af.87.

5.2.3. Double Mach reflection in air

Table 1 summarizes the inlet and initial quiescent states of the problem. The moving
shock wave Mach number &/, = 8.7 and the compression angleds". Figures 11—
12 depict the density contours and the wall density distributions at#ime24us. The
approximate solution is computed by using a fixed time ftéep= 2415/1000 = 0.024us
on a mesh wit64435 triangles. TheCFL ranges throughout.67 to 0.82.

5.2.4. Blunt-body flow in nitrogen

Table 3 summarizes the free-stream conditions of the problem. The free-stream gas is
7% dissociated nitrogen, the frozen-flow Mach number is about 6.9. The radius of the
cylinder is2.54 cm.

Figures 13-14 depict the density contours over all the computational domain and three
zoomed views of the region across the bow shock.

This steady state solution is reached;i0 iterations with a time step\t = 0.05us
corresponding t€FL= 1.3 on a mesh witt5277 triangles.

TABLE 3

Free-stream values for the blunt-body problem
Poo[Pa]  poc[Kg/m?]  usc[m/s] Too| K]

2.445 551073 5.5102 1400

6. CONCLUSIONS
We have presented here a finite volume scheme for hypersonic flows on 2-D unstruc-
tured triangle-based meshes. The scheme makes usage of a numerical flux obtained by
blending a first-order upwind flux with a second-order central one. A new 2-D flux limiter
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is presented in order to prevent the formation of numerical oscillations near solution dis-
continuities. Then, a two-stage time-stepping scheme formally guarantees a global second
order accuracy. The way we propose to perform implicitation in time of the stiff chemical
source terms and of the numerical flux produces a non-linear fully-coupled algorithm with

a very peculiar algebraic block structure. We suggest a resolution strategy based on a block
Gauss-Seidel-like decomposition into four smaller size problems which may be solved
sequentially. A linear algebra argument based on M-matrix theory ensures the positivity
of species mass densities and vibrational energies under a not too resttiEtivike
constraint. Several numerical examples illustrate the capabilities of our methodologies in
accurately solving strong shock dominated hypersonic flows. Finally, it is worth mention-
ing that the method is quite general and can be easily extended in three dimensions, where
reduction of computational costs are essential.

REFERENCES
1. R. Abgrall, L. Fezoui, and J. Talandiém extension of Osher’s Riemann solver for chemical and vibrational
non-equilibrium gas flowinternational Journal of Numerical Methods in Fluild$(1992), 935-960.

2. J. Argyris, 1.St. Doltsinis, H. Friz., and J. Urbafn exploration of chemically reacting viscous hypersonic
flow, Computer Methods in Applied Mechanics and Enginee@@§1991), 85-128.

3. A. Berman and R. J. Plemmoris$pnnegative matrices in the mathematical scien&AM, Philadelphia,
1994, (republished in “Classics in Applied Mathematics”).

4. E. BertolazziPositive and conservative schemes for mass action kin@imsputers & Mathematics with
Applications32 (1996), 29-43.

5. , A finite volume scheme for two dimensional chemically reactive hypersonic fistemational
Journal of Numerical Methods for Heat & Fluid Fldy(1998), 888—933.

6. E. Bertolazzi and G. Manzinfemplate classes for PDE solvers on 2-D unstructured meJkees. Report
1124, IAN-CNR, 1998.

7. G. Candler,The computation of weakly ionized hypersonic flows in thermo-chemical nonequilii*hiin
Thesis.— Dept. of Aeronautics and Astronautics Stanford University, 1988.

8. P.G. CiarletThe finite element method for elliptic problem®rth-Holland Publishing Company, Amsterdam,
Holland, 1980.

9. L. Collatz,The numerical treatment of differential equatip8pringer, Berlin, 1960.

10. Y. D’Angelo and B. LarrouturouComparison and analysis of some numerical schemes for stiff complex
chemistry problemsviathematical Modelling and Numerical Analy€9 (1995), 259-301.

11. R. L. Deschambault and I. I. Glas&n update on non-stationary obliqgue shock-wave reflections: actual
isopicnics and numerical experimend®urnal of Fluid Mechanic$31(1983), 27-57.

12. J. A. Desideri, R. Glowinsky, and Jeffaux (eds)Hypersonic flows for reentry problem&pringer-Verlag,
Berlin, 1991, Proceedings of a workshop held in Antibe (France), 22-25 January 1990.

13. R. P. Fedkiw, B. Merriman, and S. Oshidigh accuracy numerical methods for thermally perfect gas flows
with chemistry Journal of Computational Physi&82(1997), 175-190.

14. P. GlaisterAn approximate linearised Riemann solver for the Euler equations for real gdsesnal of
Computational Physicg7 (1988), 361-383.

15. H. M. Glaz, P. Colella, I. . Glass, and R. L. Deschambauttumerical study of oblique shock-wave reflections
with experimental comparisonBroc. of the Royal Society of Lond@98(1985), 117-140.

16. E. Godlewski and P.-A. Raviarbumerical approximation of hyperbolic systems of conservation,laws
Springer, Berlin/New York, 1996.

17. D. F. Griffiths, A. M. Stuart, and H. C. Yed&lumerical wave propagation in an advection equation with a
non-linear source terpSIAM, Journal on Numerical Analys9 (1992), 1244-1260.

18. B. Grossman and P. CinnellBhe computation of non-equilibrium, chemically-reacting flo@smputers &
Structures30(1988), no. 1/2, 79-93.

, Flux split algorithms for flows with non-equilibrium chemistry and vibrational relaxatiturnal
of Computational Physic88 (1990), 131-168.

19.




22 E.BERTOLAZZI AND G.MANZINI

20

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48

. B. Grossman and R.W. Waltefs analysis of flux-split algorithms for Euler’s equations with real gagés
Computational fluid dynamic conference, no. AIAA-87-1117, AIAA, 1987, pp. 177-186.

C. P.T. Groth and J. J. GottlieByD finite-difference methods for computing high-speed thermal and chemical
non-equilibrium flows with strong shogkaternational Journal of Numerical Methods for Heat & Fluid Flow
3(1993), 483-516.

P. R. HalmosFinite-dimensional vector spacedan Nostrand, Princeton, N.J., 1958.

C. Hirsch,Numerical computation of internal and external flows Wiley & Sons Ltd., Baffins Lane,
Chichester, West Sussex PO19 1UD, England, 1990.

H. G. HornungNon-equilibrium dissociating nitrogen flow over spheres and circular cylind#arnal of
Fluid Mechanic$3(1972), 149-176.

M. Y. Hussaini, B. van Leer, and J. Van Rosendale (edpyyind and high-resolution schemeSpringer,
Berlin/New York, 1997.

Jr. J. Andersortlypersonic and high temperature gas dynamids Graw-Hill, 1990.

B. LarrouturouHow to preserve mass fraction positivity when computing compressible multi-component
flows Journal of Computational Physies (1991), 59-84.

P. D. Lax,Weak solutions of nonlinear hyperbolic equations and their numerical computatGi®sMm 7
(1954), 159-193.

R. J. LeVeque and H. C. YeA,study of the numerical methods for hyperbolic conservation laws with stiff
source termsJournal of Computational Physig§ (1990), 187—210.

D. Lindstrom,Effects of numerical dissipation on the speed of combustion waeeb. Report 174/1996,
Uppsala University, 1996.

M. S. Liou, B. Van Leer, and J. S. Shu&plitting of inviscid fluxes for real gase®ournal of Computational
Physics87 (1990), 1-24.

Y. Liu and M. Vinokur, Nonequilibrium flow computations. I. An analysis of numerical formulations of
conservation lawsJournal of Computational Physig8 (1989), 373—-397.

K. Meintjes and A. P. MorgarRerformance of algorithms for calculating the equilibrium composition of a
mixture of gaseslournal of Computational Physi6® (1985), 219-234.

R. C. Millikan and D. R. WhiteSystematics of vibrational relaxatipithe Journal of Chemical Physi&8
(1963), 3209-3212.

E. S. Oran and J. P. BorNumerical simulation of reactive floilsevier, Amsterdam/New York, 1987.

C. ParkProblems of rate chemistry in the flight regimes of aeroassisted orbital transfer veligl&@aermo-
physics Conference, no. AIAA-84-1730, AIAA, June 1984, pp. 1-11.

J. J. QuirkA contribution to the great Riemann solver debdtegernational Journal for Numerical Methods
in Fluids 18 (1994), 555-574.

J. S. Shuen, M. S. Liou, and B. van Ldauiscid flux-splitting algorithms for real gases with non-equilibrium
chemistry Journal of Computational Physi®$ (1990), 371-395.

G. A. SodA survey of several finite difference methods for systems of nonlinear hyperbolic conservatjon laws
Journal of Computational Physi2g (1978), 1-31.

J. L. Steger and R. F. Warminfglux-vector splitting of the inviscid gas dynamic equations with application
to finite-difference methogddournal of Computational Physid® (1981), 263-293.

P. K. SwebyHigh resolution schemes using flux limiters for hyperbolic conservation, I8i#gv, Journal on
Numerical Analysi21(1984), 995-1011.

H. A. van der VorstBi-CGSTAB: a fast and smoothly converging variant for Bi-CG for the solution of
nonsymmetric linear systenfslAM, J. Sci. Stat. Computing3 (1992), 631-644.

M. Vinokur and J.-L. Montagr Generalized flux-vector splitting and Roe average for an equilibrium real
gas Journal of Computational Physig8 (1990), 276-300.

H. C. YeeConstruction of explicit and implicit symmetric TVD schemes and their applicatlansnal of
Computational Physid88(1987), 151-179.

H. C. Yee, G. H. Klopfer, and J.-L. MontagrHigh-resolution shock capturing schemes for inviscid and
viscous hypersonic flowdournal of Computational Physig8 (1990), 31-61.

H.C. Yee, R. F. Warming, and A. Hartémplicit Total Variation Diminishing (TVD) schemes for steady-state
calculations Journal of Computational Physi63 (1985), 327—360.

S. T. Yu, B. J. McBridge, K. C. Hsiesh, and J. S. Shidumerical simulation of hypersonic inlet flows with
equilibrium or finite rate chemistry26th Aerospace Sciences Meeting, no. AIAA-88-0273, AIAA, January
1988, pp. 1-13.

. E. ZeidlerNonlinear functional analysis and its applicatiqr&pringer-Verlag, New York, 1986.



A 2-D UNSTRUCTURED FV HYPERSONIC SOLVER 23
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FIG. 3. Solution of Lax problem at time = 0.15s; mass density distribution.
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FIG. 4. Solution of Sod problem at time= 0.24s; mass density distribution.
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Chemically Reactive Sod Problem
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FIG. 5. Solution of Shock Tube problem at timie= 160 ns; mass density distributions.
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FIG. 6. Solution of Shock Tube problem at tinie= 160 ps; NO mass fraction distribution.
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Single M ach Reflection
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FIG. 7. Single mach reflection in air; mass density ratig o) distribution, wherepg is the density of
quiescent air. Axes units are in meters.
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FIG. 8. Single mach reflection in air; mass density ratio wall distribution. Axes units are in meters.
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Complex Mach Reflection
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FIG.9. Complex mach reflection in air; mass density rapigdo) distribution, wherep is the density of
quiescent air. Axes units are in meters.
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FIG. 10. Complex mach reflection in air; mass density ratio wall distribution. Axes units are in meters.
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Double M ach Reflection
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FIG.11. Double mass reflection in air; mass density rafigdp) distribution, wherepg is the density of
quiescent air. Axes units are in meters.
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FIG. 12. Double mass reflection in air; mass density ratio wall distribution. Axes units are in meters.
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Blunt-body flow in nitrogen
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FIG. 13.  Blunt-body flow in nitrogen; mass density ratip/p-c) distribution, wherep, is the density
free-stream gas. Axes units are in meters.
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FIG. 14. Blunt-body flow in nitrogen; zoomed views from Figure 13
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TABLE 4
The reaction matrix C(p, T) for the five species Dunn and Kang model

—FN2 — TOKfN 0 cirnKpn QQNQTN +cirnvoKen 0
0 i —To, — rnKpo : biroKy 0 200,70 +birnoKs
a1roKy dirnKyo E_FNO —71oKso —=rNKen: QnoTo +diro,Kio Qnvorn +a1rn, Ky
........................ —QQNer—QNOrO
T'n, + a2roK : 0 al'no + baroK : tazrn, K + baryoK
2 fNE fo D —rnoKyn —T0,Kbo 2NN fo

: : : . —2Qo0.,r0 — QnOTN
0 iTo, +darnKpoi (1 —a)Ino +earnKon icarnoKpn + d2ro, Ko :

Ky y —TNoKso

APPENDIX
The explicit form of the reaction matri&(p, T') is showed in Table 4 where

I Pm o= My

T M, My + Mo’
4 = v+ Mo o —l—a
LT oMy + Mo’ 2= L

2Mo
by = — 0 by=1—b
1T My +2Mo° 2 b
oo My el
L7 0My + Mo 2= b
My + Mo
YT My +2Mo] 2 b

and
L= Z Kfjmrm, Q; = Z Kb jmTm;

wherej = Ny, Oz, NO andm = N», Oz, NO, N, O. The reaction rates Kand K, are
assumed to be functions @f, 77, T3, T5 and they are described by the modified forms
of the Arrhenius equation. These reaction ratgs K, take the functional form

T,
mTf exp <_Ts> ,

whereT; is a function of the translational and vibrational temperaturesrarid 7,, are
coefficients that depend on the specific reaction. The values of the coefficjénig, and
the precise form of the functiof;, for each reaction can be found in [7, 36, 47].
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A.0.1. Operator§Gin (21).
Let us set

1 0;ic e
n+a __ - . ] _f.. + . ..
e = <a+ 2) Atl;; {QH@ +(1=0,)b (Ul,n”)} ,
n+a 1 n+a nta
Dl_jJr = (Oé + 2) Atgij(l — ei;r )(B+<UZ- + 7l’lij).

Then we have

9n+o¢, n+ 5
PV, -

(Cn+a 2 4 CTI+()( ) nij,

7L+a nJF nda n+3
(pz _prteptta)

+o, nt g 3 3
S,ei 0= Z ( (pivi)"tE - ny; — Cjit(pyvy)" e 'nﬂ)
€o (i)

A.0.2. R.H.S.in(22).
Let us first introduce

0 if 45 is not an edge,
Ante — g —lija A?fa if i # 7,
2
> talte ifi=j,
keo(i)
and
0 if 45 is not an edge,
n+a 1 76”6?’?& if 7 % j’
Vij =At|a+ 5
Dl ifi= .
keo (i)

The r.h.s. terms for densities and vibrational energies take the form

bt = |Kil o} — > {2045t g + Vit prte o~

J

n+aoa
_( )At > i [emkt ! nij’)pglfw)*effee(vi'nij')Pi] ’

j'€c’(3)

bt = || (e”" +s(p) T UMt g eeq") Z {2047 el 4 yotegy vy

( )At S b o8 el ) 4 05 (vi i e

jl€o’(3)

:| n+ao
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The r.h.s. term for momentum equation is

BIs = |Kil (ov)} — S {20455 (ov)] + Vi (pv); )

PV,
J
(o g)ar X hpme [0 ng )l 0
Jj'€a’ (i)
( >At Do Ll (v mig)(pv)i + piniy ]
j'ea’ (i)

j'€a’(2)

:| n+ao

l\.')\r—l

The r.h.s. term for total energy equation is

bzg(;c |K‘ pE rL Z{2aAn+a pE n VnJra(pE n+a}

c c n+ao
< )At Z gu gznlet{ (1/7) Il”/)[(pE)( )_,_p;b )]}

J'€a’ (i)

~ (o g) A X el e m BN+l

Jj'€o’ (i)

A.0.3. Proof of Proposition 4.1
If A andB are two matrices of ordefn x n andp x ¢, thetensor productA ® B is
the block matrix of ordefnp x ng whose blocki, j is given by(A @ B); ; = A;;B. The
tensor product have some noteworthy properties, see for instance [22]. We just mention
the one used in the following proof, that(id ® B)(C @ D) = AC ® BD, with A, B,
C andD four generic matrices (with compatible dimensions).
Let us introduce the definition of an M-matrix.

DErFINITION A.1. Any matrix A of the form A = sI — B, with s > 0 andB a
non-negative matrix, for which > p(B), the spectral radius d8B, is called arM-matrix.
Whens > p(B), A is called anon-singularM-matrix.

We recall in the following technical lemma some well-known results without proof. A
detailed exposition of the matter can be found in [3].

LEMMA A.1. The following statements are equivalent:

(i)A is a non-singular M-matrix;

(ii) AT is a non-singular M-matrix;

(7i1)there exists a positive vectarsuch thatAx is also a positive vector;
(iv)A~! is a non-negative matrix.

Remark Statementiv) in Lemma A.1 is not needed in the present proof, but is used in
section 4, and is mentioned here for the sake of completeness.
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A positive vectorx is a vector all of whose entries are positive. As usual, the property
will be denoted byx > 0, which stands for; > 0 for all i. The symbole; will also be
used, which indicates a vector R whose components are all equal to unity.

Proof of Proposition 4.1. Here we will show in reverse order that each diagonal block
in (18) is a non-singular M-matrix.

(¢) Since there holds

N
T
(BVMI9); = 3 Mi™™ = Mo+ 3 M+
i=1 i#j

At ~N—+o At AT
= \Kj\+7 Z iy ) Z e
keo(5) keo(j)

= ‘K]‘ > 0,

it immediately follows from Lemma (A.1) witbk = ey that thefourth diagonal block
in (18), i.e. the matrixM"+ defined in (20), is an M-matrix. It is also worth noticing that
M+ is a strictly column diagonally dominant matrix.

(i7) Let us take the vectat = ey ® ;. We have

x'(M" @ 1) = (ey ®e,) (M @ 1)
= (ey @ &) (M" " ® 1)
=esM" @ el1,
=e\M" el >0,

from the definition of the dyadic product ae§ M"*< > 0. Thus, Lemma (A.1) yields
that the matridM"+* @ I, is a non-singular M-matrix. Choosirig= 2 it follows that the
third diagonal block in (18) is a non-singular M-matrix.

(i17) The same argument used (iii) with k& = n, yields thatM"** @ I,, is a non-
singular M-matrix. Sincd”+¢(p) is a diagonal non-negative matrix, Lemma (A.1) with
x = ey ® e,, and a direct calculation yield that tiseconddiagonal block in (18), i.e.
DIt (p) + M"t* ® I, , is also a non-singular M-matrix.

(iv) The same argument used (i) with k = n; yields thatM"™ ® I,,_ is a non-
singular M-matrix. Let us take = ey ® e,_. From the properties of the matrn — see
section 2 —and the definition in (19) we have thé"ﬂ)g*a(p) = 0. Lemma (A.1) and a
direct calculation yield that thiérst diagonal block in (18), i.eDy*(p) + M"** ® I,,,,
is also a non-singular M-matrix.

A.0.4. Proof of proposition 4.2
To simplify the notation, let us introduce in (A.1) the symbols

Fi(ju) = a77;l]'+a(Ii - a;‘li+QQj )

Fy) = 5 (@vi+g;vy)" " nyg,
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whereg; is anyone of the components pf within cell i. Boundary condition terms will

also be neglected. That is, for the sake of clearness we will consider only internal edges.

A generalization of the following argument which includes also boundary edges is trivial.
Ther.h.s ternb;fj“ associated to theth triangle cell can be expressed as

n+o u ]- n+o c
Kilgi— Y altl;(1— o) pl — 3 (2 )Aw”&”* FY.

j€o(i) j€o(i)

We seek for a sufficient condition which implibgja > 0. Let us split the first term into
three contributions to be attributed to each (internal) edge ot .ceibquality surely holds
when we have

min {¢; |K;|, q; | K;|}
3

1
— QAU FS > At [(2 y a) B =k, “’]<A 2)

for eachj € o(i).
Consider first the second stage, ike= 1/2, we get

2min{q; [Ki|,q; | K|} () +3 (om0 (w)
’ ~ =05 2Ry - FY). A3
3At€ij i - Y ( )

We must necessarily require that there holds

2min {q; | K|, q; | K;|}
SAMU

(u)

which is ensured by assuming that satisfies a&CFL-like constraint of the form
2| K
1 1 -
3(1']‘ max{a:lj+ 2 5 a;L:_ 2 }

At < (A.4)

After this condition is assumeﬂf;“% can be computed from (A.3). Since for every cell
and every edgg € o(i) there holds

n-4 n+1 n+1 n+1 n+1
max{aij »a; }Smax{ ViJr2 , vj+2 , cijL2 , cjJr2 }Smax{\v|,|c|},
K; h )
d| | —, we obtain
Eij 2
At 1
- max{[v], [el} < &, (A.5)

whichis the constraint oAt givenin Proposition 4.2. A similar argument for the vibrational

energy source terrh"m B gives the same constraint.
At the first stage, ieq = 0, condition (A.2) reduces to the following condition én

2min {q; |Ki|, q; | K;|} > gn p(©
3At;; ki
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but if condition (A.4) is satisfied there are no restrictionén

Remark. Itis worth mentioning that (A.5) does not prev ’;fr% from reaching unity
in smooth solution regions, where second-order accuracy should be (formally) attained. In
fact, in smooth region we can have approximativglys g; andFZ.(j“) ~ Fl.(jc). Then we
can approximate (A.2) as

2 g, min{|K,|, | K|}
3 Atéij

n+%

—¢v-n>(1+0; *)¢gv-n,

Hence, we have

2 min{| K[, |Kj[}
3 Al

n-&-%
ij

>(1+46..2)v-n,

1 )
if we Want¢9Z<Jr2 ~ 1 we finally have

At
mel A6
Vo <1 (A.6)

Henceﬂ?f% is not constrained in smooth region by GEL-like condition (A.6)
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